WO2023056767A1 - 一种高倍率磷酸铁锂正极材料的制备方法 - Google Patents

一种高倍率磷酸铁锂正极材料的制备方法 Download PDF

Info

Publication number
WO2023056767A1
WO2023056767A1 PCT/CN2022/104544 CN2022104544W WO2023056767A1 WO 2023056767 A1 WO2023056767 A1 WO 2023056767A1 CN 2022104544 W CN2022104544 W CN 2022104544W WO 2023056767 A1 WO2023056767 A1 WO 2023056767A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
lithium
source
preparation
Prior art date
Application number
PCT/CN2022/104544
Other languages
English (en)
French (fr)
Inventor
杨娇娇
王勤
程国章
高川
赵旭
余随淅
Original Assignee
湖北万润新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北万润新能源科技股份有限公司 filed Critical 湖北万润新能源科技股份有限公司
Priority to KR1020237001127A priority Critical patent/KR20230051657A/ko
Priority to EP22814274.1A priority patent/EP4187648A4/en
Priority to JP2022577335A priority patent/JP2023548993A/ja
Priority to US18/010,200 priority patent/US20240105937A1/en
Publication of WO2023056767A1 publication Critical patent/WO2023056767A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium batteries, and relates to the preparation of positive electrode materials of lithium ion batteries, in particular to a preparation method of high rate lithium iron phosphate positive electrode materials.
  • Lithium iron phosphate polyanionic lithium iron phosphate the positive electrode material of lithium ion battery, has the advantages of high theoretical capacity, good thermal stability, good cycle performance, stable structure, and environmental friendliness, and has attracted widespread attention, especially in power batteries and starters. outage power field.
  • the technology of lithium iron phosphate becomes more and more mature, the application of lithium iron phosphate instead of lead-acid batteries in the field of start-stop power supply is becoming more and more extensive.
  • the synthesis methods for preparing lithium iron phosphate cathode materials are mainly divided into the following five categories, which are high-temperature solid-phase method, carbothermal reduction method, microwave synthesis method, sol-gel method and hydrothermal/solvothermal method.
  • Hydrothermal/solvothermal method and high-temperature solid-phase method are currently the main methods used to synthesize lithium iron phosphate.
  • the lithium iron phosphate material prepared by the hydrothermal/solvothermal method has the advantages of complete crystal structure, no impurity peaks, uniform particle size, uniform carbon coating on the particle surface, etc., but the preparation process is complicated, the lithium source consumption is relatively large, and the cost Higher, and the reaction temperature is lower when the hydrothermal/solvothermal method is used to prepare lithium iron phosphate, which is likely to cause antisite defects in the material lattice.
  • the high-temperature solid-phase method is to fully grind the lithium source, iron source, phosphorus source, and carbon source pure water according to a certain ratio, and then undergo high-temperature spray pyrolysis to obtain a light yellow precursor powder. After a while, well-crystallized lithium iron phosphate was obtained.
  • the advantages of this method are low cost, simple process route, good product stability, uniform carbon coating, and easy large-scale industrial production, but the disadvantages are large primary particles, uneven particle size, long diffusion distance of lithium ions, The low coefficient seriously restricts its application in high-power start-stop power supply. Therefore, to study and solve the above problems is the direction of further research of high-temperature solid-phase method.
  • the present invention mainly aims to solve the problem that the primary particles of the material are large and uneven when the lithium iron phosphate cathode material is prepared by the high-temperature solid-phase method, and proposes a novel high-rate lithium iron phosphate cathode material and a preparation method thereof.
  • the shape of the above-mentioned high-magnification lithium iron phosphate material is spherical, and the primary particle size is 100nm;
  • the above-mentioned high-rate lithium iron phosphate cathode material the anhydrous iron phosphate used has a honeycomb coal structure, and its BET is 9-11m 2 /g;
  • the molar ratio of the iron source to the lithium source is 1:1 to 1:1.05, and the mass of the carbon source accounts for the mass of the iron source and the lithium source. 5-15% of the total;
  • the preparation method of the lithium iron phosphate cathode material the carbon source is one or more of glucose, PEG2000, PEG6000, white sugar, and citric acid;
  • the preparation method of the lithium iron phosphate cathode material the final particle size D50 of the slurry after sand grinding is controlled at 100-200nm.
  • the preparation method of the lithium iron phosphate cathode material the precursor is sintered at a high temperature under the protection of a nitrogen atmosphere, and the sintering temperature is 650-700°C.
  • the invention of the present application specifically limits the excess coefficient of the lithium source, the type of the carbon source, the particle size D50 of the sand mill, and the temperature of the high-temperature calcination in the following preferred solutions.
  • the ball milling time is 2h, so that the slurry can be mixed evenly;
  • the slurry after ball milling is transferred to a sand mill for fine grinding, and the final particle size D50 after sand milling is controlled at 100-200nm;
  • the slurry after sand milling is spray-dried, the air inlet temperature of the spray is 240-280° C., and the exhaust air temperature of the spray is 80-95° C. to obtain light yellow precursor powder.
  • the precursor powder is packed in a graphite sagger, and sintered at high temperature under the protection of nitrogen atmosphere, and the sintering period is 18-20h.
  • the sintering temperature is 650-700°C, and then cooled naturally.
  • the sintered material is pulverized through a jet mill, and the pulverized particle size D50 is controlled at 0.4-1.5 ⁇ m, and then sieved, and iron is removed by current to obtain a high-rate lithium iron phosphate cathode material.
  • a lithium iron phosphate precursor with a spherical shape was prepared by a high-temperature solid-state method, and its primary particle size was 100 nm.
  • the prepared lithium iron phosphate material was characterized, and the characteristic peaks of lithium iron phosphate were shown in the XRD spectrum, and there were no impurity peaks.
  • the prepared materials were assembled into CR2032 coin half cells. The electrical properties of the CR2032 button half-battery were tested.
  • the prepared spherical lithium iron phosphate positive electrode material has a specific discharge capacity of 161mAh/g at room temperature at 0.1C, and a specific capacity of 140mAh/g at 10C. g, at 25°C, 17,878 cycles of working conditions, the capacity retention rate is above 95%.
  • Fig. 8 shows that Example 1 has 11,922 cycles of working conditions at 45°C, the capacity retention rate is above 90%, and it has good rate performance and cycle stability.
  • the material prepared by the invention has a complete crystal structure, no impurity peaks, good discharge capacity and cycle performance.
  • Fig. 1 is the XRD figure of embodiment 1 lithium iron phosphate cathode material of the present invention
  • Fig. 2 is the SEM figure of embodiment 1 lithium iron phosphate cathode material of the present invention
  • Fig. 3 is the 0.1C initial charge-discharge curve of the lithium iron phosphate cathode material in Example 1 of the present invention
  • Fig. 4 is the particle size distribution of 0.5C charging, 0.5C discharging, 0.5C charging, 1C discharging, 0.5C charging, 0.5C discharging 2C charging, 0.5C discharging 5C charging, and 10C discharging of lithium iron phosphate cathode material in Example 1 of the present invention.
  • Fig. 5 is the particle size distribution of 0.5C charging, 0.5C discharging, 0.5C charging, 1C discharging, 0.5C charging, 0.5C discharging 2C charging, 0.5C discharging 5C charging, and 10C discharging of the lithium iron phosphate cathode material of Example 2 of the present invention.
  • Fig. 6 is the particle size distribution of 0.5C charging, 0.5C discharging, 0.5C charging, 1C discharging, 0.5C charging, 0.5C discharging 2C charging, 0.5C discharging 5C charging, and 10C discharging of the lithium iron phosphate cathode material of Example 3 of the present invention.
  • Fig. 7 is a cycle curve diagram of working condition at 25°C of the lithium iron phosphate cathode material in Example 1 of the present invention.
  • Fig. 8 is a cycle graph of working conditions at 45°C for the lithium iron phosphate cathode material in Example 1 of the present invention.
  • the morphology of the high-magnification lithium iron phosphate positive electrode material described in the present invention is spherical, and the primary particle size is 100nm.
  • the specific preparation method is as follows:
  • the iron phosphate lithium carbonate material with a molar ratio of 1:1 to 1:1.05, then weigh 5-15% of the total mass of the iron source and lithium source materials as the carbon source, and the total mass of the iron source and lithium source materials 0-1% metal ion dopant, add pure water, make a slurry with a solid content of 40%, after ball milling and sand milling, the D50 particle size of sand milling is controlled at 100-200nm, so that the iron source and lithium source , phosphorus source, carbon source, and other raw materials are fully mixed evenly, and then centrifugally spray-dried to obtain light yellow precursor powder.
  • the sintering cycle is 18-20h, the holding temperature during sintering is 650-700°C, cool naturally, and then pulverize through jet mill, and get high rate after removing iron Lithium iron phosphate cathode material.
  • the source of iron and phosphorus is anhydrous iron phosphate, which has a honeycomb coal structure, and its BET is 9-11m 2 /g;
  • Lithium source is battery grade lithium carbonate, the main content of which is ⁇ 99.7%;
  • the carbon source is one or more of glucose, PEG2000, PEG6000, white sugar, and citric acid;
  • the metal ion dopant is one or more of nano titanium dioxide and zirconium dioxide;
  • the invention adopts a high-temperature solid-phase method to prepare a lithium iron phosphate precursor with a spherical shape, and then obtains a lithium iron phosphate positive electrode material with a spherical shape after sintering, and the primary particle size of the lithium iron phosphate is 100 nm.
  • the prepared material has a complete crystal structure without impurity peaks, and has good discharge capacity and cycle performance.
  • the sintering cycle is 18-20h, the holding temperature during sintering is 650-700°C, cool naturally, and then pulverize through jet mill, and get high rate after removing iron Lithium iron phosphate cathode material.
  • the sintering cycle is 18-20h, the holding temperature during sintering is 650-700°C, cool naturally, and then pulverize through jet mill, and get high rate after removing iron Lithium iron phosphate cathode material.
  • the sintering cycle is 18-20h, the holding temperature during sintering is 650-700°C, cool naturally, and then pulverize through jet mill, and get high rate after removing iron Lithium iron phosphate cathode material.
  • the sintering cycle is 18-20h, the holding temperature during sintering is 650-700°C, cool naturally, and then pulverize through jet mill, and get high rate after removing iron Lithium iron phosphate cathode material.
  • the Lithium Iron Phosphate material prepared in Example 1 was characterized by a Japanese Rigaku X-ray powder diffractometer (XRD). Impurity peak.
  • the lithium iron phosphate material prepared in Example 1 was characterized by a Zeiss Sigma500 field emission scanning electron microscope (SEM). The particle size is 100 nm.
  • Example 1 Mix the lithium iron phosphate positive electrode material prepared in Example 1 with conductive carbon powder and PVDF binder in a mass ratio of 90:5:5, coat it on an aluminum foil after homogenizing, dry it at 100°C, and roll it with a pair of rollers Press, and then use a punching machine to make a pole piece with a diameter of 14mm, then weigh it, and deduct the mass of the aluminum foil to obtain the mass of the active material. After drying, it was assembled into a CR2032 button half-cell in a UNlab type inert gas glove box from Braun, Germany. Assemble in the order of negative electrode casing, lithium sheet, electrolyte, separator, electrolyte, pole piece, gasket, shrapnel, and positive electrode casing.
  • Figure 6 shows that the lithium iron phosphate positive electrode material prepared in Example 3 has a discharge capacity of 124mAh/g at 10C at room temperature at a charge current of 0.5C.
  • Fig. 7 shows that in Example 1, at 25°C, the working condition cycled for 17878 cycles, and the capacity retention rate was above 95%.
  • Fig. 8 shows that Example 1 has 11,922 cycles of working conditions at 45°C, and the capacity retention rate is above 90%, which has excellent rate performance and cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高倍率磷酸铁锂正极材料及其制备方法,先按照摩尔比1:1~1:1.05称取铁源和锂源,再称取该铁源和锂源质量总和的5-15%的碳源和0-1%的金属离子掺杂剂,加水球磨、砂磨,砂磨D50控制在100-200nm,然后喷雾得到前驱体;将前驱体进入烧结炉内,同时通入氮气保护,烧结时温度为650-700℃,经过冷却后,得到烧结料,然后将烧结料粉碎、筛分除铁后、得到磷酸铁锂。所制备的磷酸铁锂具有良好的倍率性能和循环稳定性能,其0.1C放电容量达到160mAh/g,10C放电容量达到140mAh/g,该正极材料的微观形貌是类球形颗粒,一次颗粒均值为100nm。

Description

一种高倍率磷酸铁锂正极材料的制备方法
本申请要求于2021年10月9日提交中国专利局、申请号为202111175470.8、发明名称为“一种高倍率磷酸铁锂正极材料的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于锂电池技术领域,涉及锂离子电池正极材料的制备,特别是一种高倍率磷酸铁锂正极材料的制备方法。
背景技术
传统的铅酸蓄电池虽然技术成熟,成本较低,但是其质量和体积能量密度较低,循环寿命较短,且产业链存在铅污染风险。而锂离子电池正极材料以磷酸铁锂为代表的聚阴离子磷酸铁锂具有理论容量高、热稳定性能好、循环性能好结构稳定,环境友好等优点而受到广泛关注,特别是在动力电池和启停电源领域。随着磷酸铁锂的技术工艺越来越成熟,磷酸铁锂替代铅酸电池在启停电源领域的应用越来越广泛。
目前,制备磷酸铁锂正极材料的合成方法主要分为以下5类,分别是高温固相法,碳热还原法,微波合成法,溶胶凝胶法和水热/溶剂热法。水热/溶剂热法和高温固相法是目前用来合成磷酸铁锂的主要使用方法。水热/溶剂热法制备的磷酸铁锂材料具有晶体结构完整,无杂质峰,并且颗粒粒径均一,颗粒表面碳包覆层均匀等优点,但是制备工艺复杂,锂源消耗相对较多,成本较高,且水热/溶剂热法制备磷酸铁锂时反应温度较低,容易造成材料晶格中出现反位缺陷。
高温固相法是是将锂源、铁源、磷源、碳源纯水、按照一定的比例充分研磨之后,经过高温喷雾热解得到浅黄色的前驱体粉末,在保护气氛下,经过高温反应一段时间之后得到结晶良好的磷酸铁锂。该方法的优点是成本较低,工艺路线简单,产品稳定性好,碳包覆均匀,易于大规模产业化生产,但是缺点是一次颗粒较大,粒径不均匀,锂离子扩散距离远,扩散系数低,严重制约其在大功率启停电源中的应用,因此,研究和解决上述问题是高温固相法进一步研究的方向。
发明内容
本发明主要是为了解决上述高温固相法制备磷酸铁锂正极材料易造成材料一次颗粒大,颗粒不均匀的问题,而提出一种新型的高倍率磷酸铁锂正极材料及其制备方法。
本发明是通过以下方案实现的:
上述的高倍率磷酸铁锂材料的形貌是类球形,一次颗粒粒径是100nm;
上述的高倍率磷酸铁锂正极材料,所使用的无水磷酸铁具有蜂窝煤结构,其BET在9-11m 2/g;
上述的高倍率磷酸铁锂正极材料,所述前躯体粉末与锂源充分混合中,铁源和锂源的摩尔比为1:1~1:1.05,碳源的质量占铁源和锂源质量总和的5-15%;所述的磷酸铁锂正极材料的制备方法:所述碳源是葡萄糖、PEG2000、PEG6000、白砂糖、柠檬酸中的一种及以上;
所述的磷酸铁锂正极材料的制备方法:浆料砂磨后的最终粒径D50控制在100-200nm。
所述的磷酸铁锂正极材料的制备方法:所述前驱体在氮气气氛保护下高温烧结,烧结温度为650-700℃。本申请发明在以下的优选方案中分别对锂源的过量系数,碳源的种类,砂磨的粒径D50,以及高温煅烧的温度等条件进行了特别限定。
所述的磷酸铁锂正极材料的制备方法,其具体步骤为:
首先,按摩尔比为1:1~1:1.05称取一定量的磷酸铁和碳酸锂,再取该磷源和锂源材料质量总和的10%的碳源化合物,配成固含量为40%的浆料;
将上述浆料加入球磨机中进行球磨,球磨时间为2h,使浆料能够混合均匀;
将球磨后的浆料转入砂磨机中进行细磨,控制砂磨的砂磨后的最终粒径D50控制在100-200nm;
将砂磨完成后的浆料进行喷雾干燥,喷雾的进风温度为240-280℃,喷雾的排风温度为80-95℃,得到浅黄色的前驱体粉末。
将前驱体粉末装在石墨匣钵中,在氮气气氛保护下高温烧结,烧结周期18-20h。烧结温度为650-700℃,然后自然冷却。
将烧结的物料经过气流磨粉碎,粉碎粒径D50控制在0.4-1.5μm,然后经过 过筛,电流除铁,得到高倍率的磷酸铁锂正极材料。
本发明的有益效果在于:
首先采用高温固相法制备了类球形形貌的磷酸铁锂前驱体,其一次颗粒粒径为100nm。所制备的磷酸铁锂材料进行表征,XRD谱图中表现出来的是磷酸铁锂的特征峰,并且没有杂质峰。将所制备的材料组装成CR2032扣式半电池。对CR2032扣式半电池进行电性能测试,所制备的类球形的磷酸铁锂正极材料在室温0.1C电流下,首次放电比容量达到161mAh/g,在10C电流下,首次放电比容量达到140mAh/g,在25℃下,工况循环17878圈,容量保持率在95%以上。图8表示实施例1在45℃下,工况循环11922圈,容量保持率在90%以上,具有良好的倍率性能和循环稳定性。
本发明所制备材料具有完整的晶体结构,无杂质峰,并且具有良好的放电容量和循环性能。
附图说明
图1为本发明所述实施例1磷酸铁锂正极材料的XRD图;
图2为本发明所述实施例1磷酸铁锂正极材料的SEM图;
图3为本发明所述实施例1磷酸铁锂正极材料的0.1C首次充放电曲线;
图4为本发明所述实施例1磷酸铁锂正极材料的0.5C充、0.5C放,0.5C充、1C放0.5C充、0.5C放2C充、0.5C放5C充、10C放粒度分布曲线图;
图5为本发明所述实施例2磷酸铁锂正极材料的0.5C充、0.5C放,0.5C充、1C放0.5C充、0.5C放2C充、0.5C放5C充、10C放粒度分布曲线图;
图6为本发明所述实施例3磷酸铁锂正极材料的0.5C充、0.5C放,0.5C充、1C放0.5C充、0.5C放2C充、0.5C放5C充、10C放粒度分布曲线图;
图7为本发明所述实施例1磷酸铁锂正极材料25℃的工况循环曲线图;
图8为本发明所述实施例1磷酸铁锂正极材料45℃的工况循环曲线图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述, 显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所述的高倍率磷酸铁锂正极材料的形貌是类球形,一次颗粒粒径是100nm,具体制备方法如下:
首先按摩尔比为1:1~1:1.05称取磷酸铁碳酸锂材料,再称取该铁源和锂源材料质量总和的5-15%的碳源,以及铁源和锂源材料质量总和的0-1%的金属离子掺杂剂,加入纯水,配成固含量为40%的浆料,经过球磨、砂磨,砂磨D50粒径控制在100-200nm,使铁源、锂源、磷源、碳源、等原材料充分混合均匀,再用离心式喷雾干燥,得到浅黄色的前驱体粉末。将前驱体装在石墨匣钵里,在氮气气氛保护下高温烧结,烧结周期在18-20h,烧结时保温温度在650-700℃,自然冷却,然后经过气流磨粉碎,除铁后得到高倍率磷酸铁锂正极材料。
其中铁源和磷源选用的是无水磷酸铁,具有蜂窝煤结构,其BET在9-11m 2/g;
锂源是电池级碳酸锂,其主含量≥99.7%;
碳源是葡萄糖,PEG2000,PEG6000,白砂糖,柠檬酸中的一种及以上;
金属离子掺杂剂为纳米二氧化钛,二氧化锆中的一种及以上;
本发明采用高温固相法制备了球形形貌的磷酸铁锂前驱体,然后烧结完之后得到类球形形貌的磷酸铁锂正极材料,其一次颗粒粒径是100nm。所制备材料具有完整的晶体结构,无杂质峰,并且具有良好的放电容量和循环性能。
实施例1
首先称量首先称取25g的无水磷酸铁,6.3g的碳酸锂,2.64g的葡萄糖和0.32g的PEG2000,0.25g的钛白粉,并将上述原料分散在5.3g的去离子水中,球磨2h,然后转入砂磨,砂磨D50粒径控制在100-200nm,使铁源、锂源、碳源、金属离子掺杂剂等原材料充分混合均匀,再用离心式喷雾干燥,得到浅黄色的前驱体粉末。将前驱体装在石墨匣钵里,在氮气气氛保护下高温烧结,烧结周期在18-20h,烧结时保温温度在650-700℃,自然冷却,然后经过气流磨粉碎,除铁后得到高倍率磷酸铁锂正极材料。
实施例2
首先称量首先称取25g的无水磷酸铁,6.3g的碳酸锂,3.8g的蔗糖和0.78g的PEG2000,0.25g的钛白粉,并将上述原料分散在5.3g的去离子水中,球磨2h,然后转入砂磨,砂磨D50粒径控制在100-200nm,使铁源、锂源、碳源、金属离子掺杂剂等原材料充分混合均匀,再用离心式喷雾干燥,得到浅黄色的前驱体粉末。将前驱体装在石墨匣钵里,在氮气气氛保护下高温烧结,烧结周期在18-20h,烧结时保温温度在650-700℃,自然冷却,然后经过气流磨粉碎,除铁后得到高倍率磷酸铁锂正极材料。
实施例3
首先称量首先称取25g的无水磷酸铁,6.3g的碳酸锂,5.68g的柠檬酸,0.13g的钛白粉,并将上述原料分散在5.3g的去离子水中,球磨2h,然后转入砂磨,砂磨D50粒径控制在100-200nm,使铁源、锂源、碳源、金属离子掺杂剂等原材料充分混合均匀,再用离心式喷雾干燥,得到浅黄色的前驱体粉末。将前驱体装在石墨匣钵里,在氮气气氛保护下高温烧结,烧结周期在18-20h,烧结时保温温度在650-700℃,自然冷却,然后经过气流磨粉碎,除铁后得到高倍率磷酸铁锂正极材料。
实施例4
首先称量首先称取25g的无水磷酸铁,6.3g的碳酸锂,5.68g的葡萄糖和0.32g的PEG2000,0.31g的二氧化锆,并将上述原料分散在5.3g的去离子水中,球磨2h,然后转入砂磨,砂磨D50粒径控制在100-200nm,使铁源、锂源、碳源、金属离子掺杂剂等原材料充分混合均匀,再用离心式喷雾干燥,得到浅黄色的前驱体粉末。将前驱体装在石墨匣钵里,在氮气气氛保护下高温烧结,烧结周期在18-20h,烧结时保温温度在650-700℃,自然冷却,然后经过气流磨粉碎,除铁后得到高倍率磷酸铁锂正极材料。
采用日本理学型X射线粉末衍射仪(XRD)对实施例1所制备的磷酸铁锂材料进行表征,结果如图1所示,XRD谱图中表现出来的是磷酸铁锂的特征峰,并且没有杂质峰。采用蔡司Sigma500型场发射扫描电镜(SEM)对实施例1所制备的磷酸铁锂材料进行表征,结果如图2所示,表明制备的磷酸铁锂材料是一种类球型颗粒形貌,其一次颗粒粒径是100nm。
将实施例1所制备的磷酸铁锂正极材料与导电碳粉和PVDF粘结剂按90:5:5质量比混合,匀浆之后涂布于铝箔片上,100℃烘干后用对辊机滚压,然后用 冲片机制得直径为14mm的极片,然后称重,扣除铝箔的质量,得到活性物质的质量。烘干之后,在德国布劳恩公司UNlab型惰性气体手套箱内组装成CR2032扣式半电池。按照负极壳、锂片、电解液、隔膜、电解液、极片、垫片、弹片、正极壳的顺序组装。采用武汉蓝电CT2001A型电池测试系统对CR2032扣式半电池进行电化学性能测试,电压范围为2.0-3.9V,测试结果见图3和图4。图3表明实施例1所制备的磷酸铁锂正极材料在室温0.1C电流下,首次放电容量达到161mAh/g。图4表明实施例1所制备的磷酸铁锂正极材料在室温0.5C充电电流下,10C放电容量达到140mAh/g。图5表明实施例2所制备的磷酸铁锂正极材料在室温0.5C充电电流下,10C放电容量达到135mAh/g。图6表明实施例3所制备的磷酸铁锂正极材料在室温0.5C充电电流下,10C放电容量达到124mAh/g。图7表示实施例1在25℃下,工况循环17878圈,容量保持率在95%以上。图8表示实施例1在45℃下,工况循环11922圈,容量保持率在90%以上,具有优良的倍率性能和循环性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种高倍率磷酸铁锂正极材料的制备方法,其特征在于:该正极材料的微观形貌是类球形颗粒,一次颗粒粒径为100nm;
    所述磷酸铁锂正极材料的制备方法为高温固相法,以下为具体步骤:A按一定的摩尔比称取铁源、锂源,再称取一定质量的碳源、离子掺杂剂,然后加入纯水,配成一定固含量的浆料球磨;B将球磨后的浆料转入砂磨机进行砂磨,控制砂磨粒径到一定的范围内;C将砂磨后的浆料经过喷雾,得到浅黄色的前驱体粉末;D将前驱体进入烧结炉里,在氮气保护下高温烧结,冷却后得到烧结料;E将烧结料粉碎、筛分除铁后、得到磷酸铁锂。
  2. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤A中选用的铁源为无水磷酸铁,具有蜂窝煤结构,其BET在9-11m 2/g。
  3. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤A中铁源和锂源的摩尔比为1:1~1:1.05。
  4. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤A中碳源是葡萄糖、PEG2000、PEG6000、白砂糖、柠檬酸中的一种及以上。
  5. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤A中的金属离子掺杂剂是钛白粉、二氧化锆中的一种。
  6. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤B中浆料砂磨后的粒径D50控制在100-200nm。
  7. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤C中喷雾的进风温度为240-280℃,喷雾的排风温度为80-95℃。
  8. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤D中前驱体在氮气保护下高温烧结,烧结温度为650-700℃,烧结周期在18-20h。
  9. 根据权利要求1所述的磷酸铁锂正极材料的制备方法,其特征在于:所述步骤E中烧结物料的粉碎粒径D50控制在0.4-1.5μm。
PCT/CN2022/104544 2021-10-09 2022-07-08 一种高倍率磷酸铁锂正极材料的制备方法 WO2023056767A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237001127A KR20230051657A (ko) 2021-10-09 2022-07-08 고효율 리튬인산철 양극 소재의 조제 방법
EP22814274.1A EP4187648A4 (en) 2021-10-09 2022-07-08 METHOD FOR PREPARING HIGH-RATE LITHIUM IRON PHOSPHATE POSITIVE ELECTRODE MATERIAL
JP2022577335A JP2023548993A (ja) 2021-10-09 2022-07-08 ハイレートのリン酸鉄リチウム正極材料の製造方法
US18/010,200 US20240105937A1 (en) 2021-10-09 2022-07-08 Preparation method of high-rate lithium iron phosphate positive electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111175470.8 2021-10-09
CN202111175470.8A CN113929070B (zh) 2021-10-09 2021-10-09 一种高倍率磷酸铁锂正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2023056767A1 true WO2023056767A1 (zh) 2023-04-13

Family

ID=79278307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104544 WO2023056767A1 (zh) 2021-10-09 2022-07-08 一种高倍率磷酸铁锂正极材料的制备方法

Country Status (6)

Country Link
US (1) US20240105937A1 (zh)
EP (1) EP4187648A4 (zh)
JP (1) JP2023548993A (zh)
KR (1) KR20230051657A (zh)
CN (1) CN113929070B (zh)
WO (1) WO2023056767A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929070B (zh) * 2021-10-09 2022-05-17 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料的制备方法
CN114725318B (zh) * 2022-04-15 2023-11-10 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料及其制备方法、其正极和电池
CN114804058A (zh) * 2022-05-27 2022-07-29 湖北万润新能源科技股份有限公司 一种高振实密度磷酸铁锂正极材料及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070666A (ja) * 2007-09-12 2009-04-02 Univ Of Fukui 電極用リン酸鉄リチウム粉体の製造方法
CN107814372A (zh) * 2017-11-02 2018-03-20 沈阳国科金能新材料有限公司 一种磷酸铁锂正极材料的制备方法和应用
CN111313010A (zh) * 2020-03-26 2020-06-19 隆能科技(南通)有限公司 一种高容量锂离子电池正极材料磷酸铁锂的制备方法
EP3770996A1 (en) * 2019-07-23 2021-01-27 Formosa Plastics Transport Corporation Method for manufacturing lithium iron phosphate/carbon composite cathode material for secondary lithium ion battery
CN112331846A (zh) * 2019-08-27 2021-02-05 万向一二三股份公司 一种高倍率正极材料磷酸铁锂的制备方法
CN113929070A (zh) * 2021-10-09 2022-01-14 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580238B (zh) * 2009-06-21 2011-04-20 海特电子集团有限公司 一种复合磷酸铁锂材料的制造方法及其制造的复合磷酸铁锂材料
EP2355214B1 (fr) * 2010-01-28 2013-12-25 Prayon Accumulateurs au lithium à base de phosphate de fer lithié et de carbone
CN103003193B (zh) * 2010-09-29 2014-12-10 海洋王照明科技股份有限公司 一种磷酸铁锂复合材料、其制备方法和应用
JP2013001605A (ja) * 2011-06-17 2013-01-07 Jfe Chemical Corp リン酸鉄リチウムの製造方法
CN103224226A (zh) * 2013-04-15 2013-07-31 宜兴奕润新能源科技有限公司 适用于高倍率动力电池的纳米磷酸铁锂材料及其制备方法
CN108163828A (zh) * 2018-01-02 2018-06-15 乳源东阳光磁性材料有限公司 一种球形磷酸铁锂正极材料的制备方法
CN108455547B (zh) * 2018-02-11 2019-09-03 衢州华友钴新材料有限公司 一种低杂质高铁磷比大比表面积电池级磷酸铁的制备方法
CN109455687A (zh) * 2018-10-26 2019-03-12 四川朗晟新能源科技有限公司 一种磷酸铁锂正极材料的产业化制备工艺
CN111146439B (zh) * 2018-11-06 2021-10-15 北京泰丰先行新能源科技有限公司 一种磷酸铁锂正极材料的制备方法
CN112216829B (zh) * 2020-10-13 2022-05-13 湖北亿纬动力有限公司 一种复合正极材料及其制备方法和锂离子电池
CN113054171A (zh) * 2021-03-09 2021-06-29 湖北融通高科先进材料有限公司 一种磷酸铁锂材料以及以混合铁源与混合磷源制备磷酸铁锂材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070666A (ja) * 2007-09-12 2009-04-02 Univ Of Fukui 電極用リン酸鉄リチウム粉体の製造方法
CN107814372A (zh) * 2017-11-02 2018-03-20 沈阳国科金能新材料有限公司 一种磷酸铁锂正极材料的制备方法和应用
EP3770996A1 (en) * 2019-07-23 2021-01-27 Formosa Plastics Transport Corporation Method for manufacturing lithium iron phosphate/carbon composite cathode material for secondary lithium ion battery
CN112331846A (zh) * 2019-08-27 2021-02-05 万向一二三股份公司 一种高倍率正极材料磷酸铁锂的制备方法
CN111313010A (zh) * 2020-03-26 2020-06-19 隆能科技(南通)有限公司 一种高容量锂离子电池正极材料磷酸铁锂的制备方法
CN113929070A (zh) * 2021-10-09 2022-01-14 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187648A4 *

Also Published As

Publication number Publication date
EP4187648A1 (en) 2023-05-31
CN113929070A (zh) 2022-01-14
CN113929070B (zh) 2022-05-17
US20240105937A1 (en) 2024-03-28
EP4187648A4 (en) 2024-08-21
KR20230051657A (ko) 2023-04-18
JP2023548993A (ja) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2023056767A1 (zh) 一种高倍率磷酸铁锂正极材料的制备方法
CN111952590A (zh) 一种提升安全和循环性能的锂离子电池正极材料及制备方法
US20240150197A1 (en) Cobalt-free high-nickel positive electrode material, preparation method therefor and use thereof
CN102745663B (zh) 制备磷酸铁锂材料的方法
CN113104824B (zh) Se掺杂Fe2P自支撑钠离子电池负极材料的制备方法
CN114665058A (zh) 一种锂离子电池正极材料磷酸锰铁锂的制备方法
WO2023124574A1 (zh) 钛、锆共掺杂碳包覆磷酸铁锂材料及其制备方法与应用
CN108807920B (zh) Laso包覆八面体结构镍锰酸锂复合材料及制备方法
CN111924885B (zh) 一种钴酸锂正极材料及其改性方法
CN113991112A (zh) 一种掺杂纳米二氧化钛磷酸铁锂正极材料的制备方法
CN114497694A (zh) 一种制造锂离子电池用的补锂剂及其制备方法
CN114105117B (zh) 一种前驱体及磷酸镍铁锂正极材料的制备方法
CN111313010A (zh) 一种高容量锂离子电池正极材料磷酸铁锂的制备方法
CN113582253B (zh) 一种四元正极材料及其制备方法和应用
CN112952074B (zh) 硼氧化物包覆的四元正极材料及其制备方法和应用
CN110620217A (zh) 一种锌掺杂磷酸铁锂/碳复合材料及制备方法
CN110190277B (zh) 一种锂离子电池正极材料LiMnO2@C及其制备方法
CN110176595B (zh) 一种锂离子电池正极材料LiMnO2@C及其制备方法
CN108288698A (zh) 一种磷酸铁锂正极材料的制备方法
CN110931792A (zh) 一种包覆型硅基材料及其制备方法
CN110790321A (zh) 一种掺杂的锂离子电池高电压nca正极材料及其制备方法
CN111313011B (zh) 一种低成本高性能磷酸铁锂的制备方法
CN105742617A (zh) 一种锂离子电池正极材料铜酸锂的制备方法
CN113086960A (zh) 一种磷酸钛锂正极材料的制备方法
CN113072050A (zh) 一种磷酸钒锂正极材料的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202217070604

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18010200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022577335

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022814274

Country of ref document: EP

Effective date: 20221209

NENP Non-entry into the national phase

Ref country code: DE