WO2023165130A1 - 一种改性的单晶型高镍三元材料及其制备方法与应用 - Google Patents

一种改性的单晶型高镍三元材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023165130A1
WO2023165130A1 PCT/CN2022/123241 CN2022123241W WO2023165130A1 WO 2023165130 A1 WO2023165130 A1 WO 2023165130A1 CN 2022123241 W CN2022123241 W CN 2022123241W WO 2023165130 A1 WO2023165130 A1 WO 2023165130A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel ternary
sintering
sintered
preparation
sintered material
Prior art date
Application number
PCT/CN2022/123241
Other languages
English (en)
French (fr)
Inventor
高玉仙
高伟
李道聪
杨茂萍
刘星
龙君君
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Publication of WO2023165130A1 publication Critical patent/WO2023165130A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a modified single-crystal high-nickel ternary material and a preparation method and application thereof, belonging to the technical field of lithium-ion batteries.
  • lithium-ion batteries Due to its high working voltage, energy density, long life and environmental friendliness, lithium-ion batteries have become the power source of a new generation of electric vehicles, electric tools and electronic products, and have been widely used in energy, transportation, communication, etc. among different fields. As consumers have higher and higher requirements for cruising range, the energy density of batteries is also gradually increasing.
  • Ternary materials are the current research hotspots, and have been widely used due to their high capacity and excellent cycle performance.
  • the residual alkali on the surface of the ternary material is also getting higher and higher, and the cycle stability is getting worse.
  • water washing is often used for treatment at present, but when the nickel content reaches 90 mol% or even higher, the material is very sensitive to moisture, and water washing will cause irreversible changes in the material structure and affect the capacity. In addition, washing with water results in a substantial increase in material costs.
  • an object of the present invention is to provide a method for preparing a modified single-crystal high-nickel ternary material.
  • Another object of the present invention is to provide a modified single-crystal high-nickel ternary material, which is prepared by the above-mentioned preparation method of the modified single-crystal high-nickel ternary material.
  • Another object of the present invention is to provide the application of the above modified single crystal high-nickel ternary material as the positive electrode material of lithium ion battery.
  • Yet another object of the present invention is to provide a lithium ion battery, the positive electrode material of which is the above-modified single crystal high-nickel ternary material.
  • the present invention provides a method for preparing a modified single crystal high-nickel ternary material, which includes the following steps:
  • the particle size D50 of the micronized lithium hydroxide is 5-15 microns.
  • the composition of the high-nickel ternary hydroxide precursor is Ni x Co y Mn (1-xy) (OH) 2 , wherein, 0.90 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1.
  • the high-nickel ternary hydroxide precursor used in the present invention can be prepared by a conventional co-precipitation method in the field.
  • the particle size range of the high-nickel ternary hydroxide precursor in terms of D50 is 2.5-4.5 ⁇ m, and the specific surface area is 8-15 m 2 /g.
  • the solid density is 1.6-2.0g/cm 3 .
  • the pre-sintering is sintering at 400-600° C. for 3-5 hours.
  • the particle size range of the micronized lithium hydroxide in terms of D50 is 5-15 ⁇ m.
  • the pre-sintered material and micronized lithium hydroxide are mixed according to the molar ratio of Li and M of 1.0-1.1, wherein M is the transition metal in the pre-sintered material.
  • the diameter of the alumina ball is in the range of 15-25 mm.
  • the mass content of alumina balls is 30-60%.
  • nano-dopants include Al 2 O 3 , ZrO 2 , WO 3 , MgO, TiO 2 , B 2 O 3 , SrCO 3 , Nb 2 O 5 and one or more of La 2 O 3 .
  • the molar amount of the nano-dopant accounts for 0.1-0.5% of the molar amount of the high-nickel ternary hydroxide precursor.
  • the nano dopant is doped into the crystal structure of the obtained single-crystal material, Partially occupying the Li site and partially occupying the transition metal site, it can be considered to be uniformly dispersed.
  • the nano dopant used in the present invention can improve the structural stability of the obtained modified single-crystal high-nickel ternary material.
  • the mixing can be performed in a three-dimensional mixer, which is a conventional equipment.
  • the first sintering includes sintering at the first sintering temperature for a certain period of time, then raising the temperature to the second sintering temperature for a certain period of time, and finally annealing to the third sintering temperature.
  • the sintering temperature is sintering for a certain period of time.
  • the first sintering is first sintering at 450-550°C for 3-6h, then raising the temperature to 730-800°C for 12-18h, and finally annealing to Sinter at 500-700°C for 1-3h.
  • the particle size range of the obtained material after pulverization in terms of D50 is 3-5 ⁇ m.
  • the pulverization in S3 may be jet pulverization.
  • the nano-coating agent includes Al 2 O 3 , ZrO 2 , WO 3 , TiO 2 , H 3 BO 3 , Co(OH) 2 , LiAlO 2 and One or more of Li l.3 Al 0.3 Ti l.7 (PO 4 ) 3 .
  • the mass of the nano-coating agent accounts for 0.1-1% of the mass of the first sintered material.
  • the mixing can be performed in a high mixer, which is also a conventional equipment.
  • the temperature of the second sintering is 400-700°C, and the time is 4-6h.
  • the crushing, sieving and demagnetization processes are carried out in an environment with a relative humidity of less than 10%.
  • the pulverization in S4 can be realized by using a stone mortar mill.
  • the present invention also provides a modified single-crystal high-nickel ternary material, wherein the modified single-crystal high-nickel ternary material consists of the above modified single-crystal high-nickel ternary material It is prepared by the preparation method, which is a single-crystal high-nickel ternary material LiNi x Co y Mn (1-xy) O 2 coated and modified by a nano-coating agent, wherein, 0.90 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.1 .
  • the preparation method provided by the present invention uses a nano-coating agent for dry coating.
  • the nano-coating agent covers the modified single-crystal form in the form of point coating.
  • High nickel ternary material is
  • the present invention also provides the application of the above modified single crystal high-nickel ternary material as a positive electrode material for a lithium ion battery.
  • the present invention also provides a lithium ion battery, wherein the positive electrode material of the lithium ion battery is the above-modified single crystal high-nickel ternary material.
  • the beneficial effects of the present invention include:
  • the present invention first screens a suitable high-nickel ternary hydroxide precursor and pre-sinters the high-nickel ternary hydroxide precursor, and then uses the pre-sintered high-nickel ternary hydroxide precursor to improve Compared with the modified high-nickel ternary material prepared by using the non-pre-sintered high-nickel ternary hydroxide precursor, the modified single-crystal ternary material provided by the invention The residual alkali of the crystalline high-nickel ternary material is significantly reduced, and does not require subsequent water washing modification or special coating modification, does not generate waste water, and greatly reduces production costs.
  • the present invention adds a pre-sintering when preparing the modified single-crystal high-nickel ternary material, because the moisture in the high-nickel ternary hydroxide precursor after pre-sintering is removed, the second The charging amount during primary sintering can be increased by about 20%, so the comprehensive cost of the preparation method provided by the present invention does not increase, which is far lower than the preparation of high-nickel ternary materials by water washing modification in the prior art the cost of.
  • the present invention pre-sinters the high-nickel ternary hydroxide precursor when preparing the modified single-crystal high-nickel ternary material, and uses a three-dimensional mixer to add alumina balls for mixing. Microcracks are generated by the collision of alumina balls, so that the sintered single crystal material, that is, the first sintered material is very easy to be crushed.
  • the preparation method of the modified single-crystal high-nickel ternary material provided by the present invention is very simple, easy for industrialization, and has broad application prospects.
  • FIG. 1 is a comparison chart of the surface residual alkali content of the modified single crystal high-nickel ternary material provided in Example 1 of the present invention and the modified high-nickel ternary material provided in Comparative Example 1.
  • Fig. 2 is an SEM image of the modified single-crystal high-nickel ternary material provided in Example 1 of the present invention.
  • FIG. 3 is an SEM image of the modified high-nickel ternary material provided in Comparative Example 1.
  • FIG. 4 is an SEM image of the modified single-crystal high-nickel ternary material provided in Comparative Example 2.
  • Fig. 5 is the first cycle charge and discharge curve of a lithium ion battery assembled with the modified single crystal high-nickel ternary material provided in Example 1 of the present invention as the positive electrode material.
  • Fig. 6 is the charge-discharge curve of the first cycle of the lithium-ion battery assembled with the modified high-nickel ternary material provided in Comparative Example 1 as the positive electrode material.
  • ranges are given in terms of lower limits and upper limits. There can be one or more lower bounds, and one or more upper bounds, respectively.
  • a given range is defined by selecting a lower limit and an upper limit. Selected lower and upper limits define the boundaries of a particular range. All ranges defined in this manner are combinable, ie, any lower limit can be combined with any upper limit to form a range. For example, ranges of 60-120 and 80-110 are listed for a particular parameter, with the understanding that ranges of 60-110 and 80-120 are also contemplated. Additionally, if the minimum range values listed are 1 and 2, and the maximum range values listed are 3, 4, and 5, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" indicates that all real numbers between "0-5" have been listed in the present invention, and "0-5" is only an abbreviated representation of these numerical combinations.
  • This embodiment provides a modified single crystal high-nickel ternary material, which is prepared according to the preparation method comprising the following steps:
  • the high-nickel ternary hydroxide precursor Ni 0.95 Co 0.04 Mn 0.01 (OH) 2 has a particle size (D50) of 4 ⁇ m, a specific surface area of 11 m 2 /g, and a tap density of 1.7 g/cm 3 ;
  • the resulting mixture After sieving alumina balls out of the resulting mixture, it is sintered for the first time in a pure oxygen atmosphere, wherein the first sintering is first sintered at 500°C for 5 hours, then raised to 760°C for 15 hours, and finally annealed to 550°C Sintering for 2 hours, after the sintering is completed, the temperature is naturally lowered in a pure oxygen atmosphere to obtain the first sintered material;
  • the second sintered material that is, the second sintered material, is crushed, screened, and demagnetized by a stone mortar to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening, and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified single-crystal high-nickel ternary material provided in this embodiment is LiNi 0.95 Co 0.04 Mn 0.01 O 2 single-crystal high-nickel ternary material coated with nanometer Al 2 O 3 and modified.
  • This embodiment provides a modified single crystal high-nickel ternary material, which is prepared according to the preparation method comprising the following steps:
  • the high-nickel ternary hydroxide precursor Ni 0.92 Co 0.04 Mn 0.04 (OH) 2 has a particle size (D50) of 2.5 ⁇ m, a specific surface area of 13 m 2 /g, and a tap density of 1.7 g/cm 3 ;
  • the first sintering is sintering at 500°C for 4 hours, then rising to 780°C for 15 hours, and finally annealing to 600°C for 2 hours. , after the sintering is completed, the temperature is naturally lowered under an oxygen atmosphere to obtain the first sintered material;
  • the material sintered for the first time that is, the first sintered material, is air-pulverized to a particle size (D50) of 4.0 ⁇ m, and then the pulverized first sintered material, nano-Al 2 O 3 and nano-WO 3 are added to the high-mixing Fully mixed in the machine, wherein the total mass of nano-Al 2 O 3 and nano-WO 3 accounted for 0.6% of the mass of the first sintered material, and then the mixed material was sintered at 600°C for 3 hours in a pure oxygen atmosphere to obtain the second sintered material ;
  • D50 particle size
  • the second sintered material that is, the second sintered material, is crushed, screened, and demagnetized by a stone mortar to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening, and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified single-crystal high-nickel ternary material provided in this example is LiNi 0.92 Co 0.04 Mn 0.04 O 2 single-crystal high-nickel ternary material coated with nano-Al 2 O 3 and nano-WO 3 .
  • This embodiment provides a modified single crystal high-nickel ternary material, which is prepared according to the preparation method comprising the following steps:
  • the high-nickel ternary hydroxide precursor Ni 0.96 Co 0.02 Mn 0.02 (OH) 2 has a particle size (D50) of 3.5 ⁇ m, a specific surface area of 8 m 2 /g, and a tap density of 1.75 g/cm 3 ;
  • the alumina balls were screened out from the mixture obtained, it was sintered for the first time in a pure oxygen atmosphere.
  • the first sintering was first sintered at 500°C for 5h, then raised to 750°C for 15h, and finally annealed to 500°C for 2h. , after the sintering is completed, the temperature is naturally lowered under an oxygen atmosphere to obtain the first sintered material;
  • S3 Airflow pulverize the first sintered material, that is, the first sintered material to a particle size (D50) of 3.5 ⁇ m, and then add the pulverized first sintered material and nano-Al 2 O 3 into the high mixer Carry out thorough mixing, wherein the quality of nano -Al2O3 accounts for 0.5% of the mass of the first sintered material, and then sinter the mixed material at 500° C. for 5 hours under a pure oxygen atmosphere to obtain the second sintered material;
  • D50 particle size
  • the second sintered material that is, the second sintered material, is crushed, screened, and demagnetized by a stone mortar to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening, and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified single-crystal high-nickel ternary material provided in this embodiment is LiNi 0.96 Co 0.02 Mn 0.02 O 2 single-crystal high-nickel ternary material coated with nanometer Al 2 O 3 and modified.
  • Example 1 The only difference from Example 1 is: S1: The high-nickel ternary hydroxide precursor Ni 0.92 Co 0.04 Mn 0.04 (OH) 2 prepared by the co-precipitation method was pre-sintered at 400°C for 3 hours under pure oxygen to obtain a pre-sintered material.
  • Example 1 The only difference from Example 1 is: S1: The high-nickel ternary hydroxide precursor Ni 0.92 Co 0.04 Mn 0.04 (OH) 2 prepared by the co-precipitation method was pre-sintered at 600°C for 5 hours under pure oxygen to obtain a pre-sintered material.
  • Example 1 The only difference from Example 1 is: S1: The high-nickel ternary hydroxide precursor Ni 0.92 Co 0.04 Mn 0.04 (OH) 2 prepared by the co-precipitation method was pre-sintered at 700°C for 2 hours under pure oxygen to obtain a pre-sintered material.
  • Example 1 The only difference from Example 1 is that the alumina balls account for 60% of the total mass of the mixture.
  • Example 1 The only difference from Example 1 is that the diameter of the alumina ball is 15mm.
  • Example 1 The only difference from Example 1 is that the diameter of the alumina ball is 30mm.
  • This comparative example provides a modified high-nickel ternary material, which is prepared according to a preparation method comprising the following steps:
  • the particle size (D50) of the high-nickel ternary hydroxide precursor Ni 0.95 Co 0.04 Mn 0.01 (OH) 2 is 4 ⁇ m and the specific surface area is 11 m 2 /g, the tap density is 1.7g/cm 3 ; the particle size (D50) of the micropowder lithium hydroxide is 7.5 ⁇ m, the alumina balls account for 40% of the total mass of the mixture, and the diameter of the alumina balls is 20mm;
  • the first sintering is first sintered at 500°C for 5h, then raised to 760°C for 15h, and finally annealed to 550°C for 2h , after the sintering is completed, the temperature is naturally lowered under an oxygen atmosphere to obtain the first sintered material;
  • the material sintered for the first time that is, the first sintered material, is jet-milled to a particle size (D50) of 4.0 ⁇ m, and then added to a high-mixer with nano-Al 2 O 3 for thorough mixing, in which nano-Al 2 The mass of O3 accounts for 0.15% of the mass of the first sintered material, and then the mixed material is sintered at 500° C. for 5 hours under a pure oxygen atmosphere to obtain the second sintered material;
  • the second sintered material that is, the second sintered material, is crushed, screened and demagnetized by a mortar mill to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified high-nickel ternary material provided in this comparative example is LiNi 0.95 Co 0.04 Mn 0.01 O 2 single crystal high-nickel ternary material coated with nanometer Al 2 O 3 and modified.
  • This comparative example provides a modified single crystal high-nickel ternary material, which is prepared according to a preparation method comprising the following steps:
  • the high-nickel ternary hydroxide precursor Ni 0.95 Co 0.04 Mn 0.01 (OH) 2 has a particle size (D50) of 4 ⁇ m, a specific surface area of 11 m 2 /g, and a tap density of 1.7 g/cm 3 ;
  • S2 Add the pre-sintered precursor, that is, the pre-sintered material, micro-powder lithium hydroxide, and nano-ZrO 2 into a high-speed mixer for thorough mixing.
  • the high-nickel ternary hydroxide precursor Ni 0.95 Co 0.04 Mn 0.01 (OH) 2 and micropowder lithium hydroxide are mixed according to the ratio of the molar weight of the Li element to the molar weight of the transition metal element is 1.03, and the molar weight of nano ZrO accounts for 0.2 of the molar weight of the high-nickel ternary hydroxide precursor %, the particle size (D50) of micronized lithium hydroxide is 7.5 ⁇ m;
  • the resulting mixture was sintered for the first time in a pure oxygen atmosphere, wherein the first sintering was first sintered at 500°C for 5 hours, then raised to 760°C for 15 hours, and finally annealed to 550°C for 2 hours. Natural cooling is carried out under the atmosphere to obtain the first sintered material;
  • the second sintered material that is, the second sintered material, is crushed, screened, and demagnetized by a stone mortar to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening, and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified single-crystal high-nickel ternary material provided in this comparative example is LiNi 0.95 Co 0.04 Mn 0.01 O 2 single-crystal high-nickel ternary material coated with nanometer Al 2 O 3 and modified.
  • This comparative example provides a modified single crystal high-nickel ternary material, which is prepared according to a preparation method comprising the following steps:
  • the high-nickel ternary hydroxide precursor Ni 0.95 Co 0.04 Mn 0.01 (OH) 2 has a particle size (D50) of 4 ⁇ m, a specific surface area of 11 m 2 /g, and a tap density of 1.7 g/cm 3 ;
  • the resulting mixture After sieving alumina balls out of the resulting mixture, it is sintered for the first time in a pure oxygen atmosphere, wherein the first sintering is first sintered at 500°C for 5 hours, then raised to 760°C for 15 hours, and finally annealed to 550°C Sintering for 2 hours, after the sintering is completed, the temperature is naturally lowered in a pure oxygen atmosphere to obtain the first sintered material;
  • the second sintered material that is, the second sintered material, is crushed, screened, and demagnetized by a stone mortar to obtain a modified single crystal high-nickel ternary material, wherein the entire crushing, screening, and demagnetization environment is controlled
  • the relative humidity is less than 10%
  • the modified single-crystal high-nickel ternary material provided in this comparative example is the single-crystal high-nickel ternary material of LiNi 0.95 Co 0.04 Mn 0.01 O 2 coated with nanometer Al 2 O 3 modified.
  • Residual alkali in high-nickel ternary materials mainly affects the processing performance and high-temperature storage performance of the material. Specifically, if the material has a high residual alkali content, jelly phenomenon is likely to occur during the slurry mixing, resulting in the inability to coat; in addition, when the residual alkali content is high, the battery made of a material with a high residual alkali content can be used at high temperature. The gas production under the conditions is more serious, which will lead to the attenuation of the electrochemical performance of the battery or cause the battery to bloat and leak.
  • the modified single crystal high-nickel ternary material provided in Example 1 the modified high-nickel ternary material provided in Comparative Example 1
  • the modified single crystal high-nickel ternary material provided in Comparative Example 2 The materials were analyzed by scanning electron microscopy, and the obtained SEM images are shown in Figure 2, Figure 3 and Figure 4, respectively.
  • Comparing Figure 2 and Figure 3 it can be seen that the particles of the modified high-nickel ternary material provided by Comparative Example 1 are relatively small and there are agglomerated particles, while the particles of the modified single crystal high-nickel ternary material provided by Example 1 Larger and basically no agglomeration, showing a good morphology of single crystal particles. It can be seen that, in Example 1, the high-nickel ternary hydroxide precursor is pre-sintered and the modified high-nickel ternary material is prepared with the pre-sintered high-nickel ternary hydroxide precursor, and the obtained modified High-nickel ternary materials can exhibit good single-crystal grain morphology.
  • the modified single crystal high-nickel ternary material provided in Example 1 and the modified high-nickel ternary material provided in Comparative Example 1 were used as positive electrode materials, and were assembled respectively to obtain a button-type lithium-ion battery.
  • the assembly of lithium-ion batteries includes the following specific steps: first dissolve PVDF into NMP, then add positive electrode materials and conductive carbon black, mix thoroughly, and evenly coat the resulting mixture on aluminum foil to make positive electrode sheets, and then use molds to The positive electrode sheet is cut into a disc with a diameter of 12mm, and finally the cut positive electrode disc, separator, lithium sheet and electrolyte are assembled into a button-type lithium-ion battery in a glove box;
  • the mass ratio between positive electrode material, PVDF and conductive carbon black is 90:5:5;
  • the diaphragm is made of polypropylene film with a thickness of 20 ⁇ m;
  • the electrolyte includes LiPF 6 and a solvent, wherein the concentration of LiPF 6 is 1mol/L, and the solvent includes EC, DMC and EMC with a volume ratio of 1:1:1;
  • the first-week charge and discharge curves of the lithium-ion battery are measured using conventional methods in the art, as shown in Figure 5 and Figure 6 respectively.
  • the lithium-ion battery assembled with the modified single crystal high-nickel ternary material provided by Example 1 of the present invention as the positive electrode material and the modified high-nickel ternary material provided by Comparative Example 1 The discharge specific capacity and first effect of the lithium-ion battery assembled with the nickel ternary material as the positive electrode material are equivalent.
  • the capacity of the obtained material usually decreases with the increase of the sintered single-crystal particle, while the modified single-crystal high-nickel ternary material provided by the embodiment of the present invention Not only is the residual alkali lower, but the single crystal particles are larger and better dispersed, and the preparation method has no effect on the capacity and first-time efficiency of the obtained modified single crystal high-nickel ternary material.
  • Table 1 shows the residual alkali content, discharge specific capacity and first-efficiency performance of the lithium-ion battery in the examples and comparative examples.
  • the embodiment of the present invention first screens a suitable high-nickel ternary hydroxide precursor and pre-sinters the high-nickel ternary hydroxide precursor, and then uses the pre-sintered high-nickel ternary hydroxide precursor.
  • the preparation of the modified single-crystal high-nickel ternary material compared with the modified high-nickel ternary material prepared by using the non-pre-sintered high-nickel ternary hydroxide precursor, the embodiment of the present invention provides The residual alkali of the modified single-crystal high-nickel ternary material is significantly reduced, and does not require subsequent water washing modification or special coating modification, does not generate waste water, and greatly reduces production costs.
  • the embodiment of the present invention adds a pre-sintering when preparing the modified single-crystal high-nickel ternary material, since the moisture in the pre-sintered high-nickel ternary hydroxide precursor is removed, the first The amount of charge during secondary sintering can be increased by about 20%, so the overall cost of the preparation method provided by the embodiment of the present invention does not increase, which is far lower than the preparation of high-nickel ternary by water washing modification method in the prior art. The cost of materials.
  • the high-nickel ternary hydroxide precursor when preparing the modified single-crystal high-nickel ternary material, is pre-sintered, and a three-dimensional mixer is used to add alumina balls for mixing. The collision of alumina balls produces microcracks, so that the sintered single crystal material, that is, the first sintered material is very easy to crush.
  • the preparation method of the modified single-crystal high-nickel ternary material provided by the embodiment of the present invention is very simple, easy to industrialize, and has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种改性的单晶型高镍三元材料及其制备方法与应用,制备方法包括将高镍三元氢氧化物前驱体在纯氧条件下进行预烧结,得到预烧结料;将预烧结料与微粉氢氧化锂、纳米掺杂剂以及氧化铝球进行充分混合,于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,烧结完成后在纯氧气氛中进行自然降温冷却,得到第一烧结料;将第一烧结料粉碎后,将其与纳米包覆剂充分混合,再将所得混合料在纯氧气氛中进行第二次烧结,得到第二烧结料;将第二烧结料进行粉碎、筛分、除磁后,得到改性的单晶型高镍三元材料。本发明提供的制备方法非常简单,易于产业化,且制得的改性的单晶型高镍三元材料的残碱含量明显降低。

Description

一种改性的单晶型高镍三元材料及其制备方法与应用
本申请是以CN申请号为202210196330.7,申请日为2022年3月01日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及一种改性的单晶型高镍三元材料及其制备方法与应用,属于锂离子电池技术领域。
背景技术
因具有较高的工作电压、能量密度、长寿命和对环境友好等特点,锂离子电池已经成为新一代电动汽车、电动工具及电子产品等的动力电源,目前已经广泛应用于能源、交通、通讯等不同的领域之中。随着消费者对续航里程的要求越来越高,电池的能量密度也在逐渐提高。
三元材料是当下研究的热点,由于其容量高、循环性能优异从而得到了广泛应用。对于三元材料而言,镍含量越高,容量也越高,因此高镍三元材料是制备高能量密度锂电池的理想材料。然而,随着镍含量的不断提高,三元材料的表面残碱也越来越高,循环稳定性也越来越差。为了解决上述问题,目前往往采用水洗的方法进行处理,但当镍含量达到90mol%甚至更高时,材料对水分非常敏感,水洗会导致材料结构发生不可逆的改变从而影响容量发挥。此外,水洗还会导致材料成本大幅增加。
因此,提供一种新型的改性的单晶型高镍三元材料及其制备方法与应用已经成为本领域亟需解决的技术问题。
发明内容
为了解决上述的缺点和不足,本发明的一个目的在于提供一种改性的单晶型高镍三元材料的制备方法。
本发明的另一个目的还在于提供一种改性的单晶型高镍三元材料,其是由以上改性的单晶型高镍三元材料的制备方法制得。
本发明的再一个目的还在于提供以上改性的单晶型高镍三元材料作为锂离子电池正极材料的应用。
本发明的又一个目的还在于提供一种锂离子电池,其正极材料为以上改性的单晶型高镍三元材料。
为了实现以上目的,一方面,本发明提供了一种改性的单晶型高镍三元材料的制备方法,其中,包括以下步骤:
S1:将高镍三元氢氧化物前驱体在纯氧条件下进行预烧结,得到预烧结料;
S2:将预烧结料与微粉氢氧化锂、纳米掺杂剂以及氧化铝球进行充分混合,于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,烧结完成后在纯氧气氛中进行自然降温冷却,得到第一烧结料;
S3:将第一烧结料粉碎后,将其与纳米包覆剂充分混合,再将所得混合料在纯氧气氛中进行第二次烧结,得到第二烧结料;
S4:将第二烧结料进行粉碎、筛分、除磁后,得到改性的单晶型高镍三元材料。
优选地,上述微粉氢氧化锂的粒径D50为5-15微米。
作为本发明以上制备方法的一具体实施方式,其中,S1中,高镍三元氢氧化物前驱体的组成为Ni xCo yMn (1-x-y)(OH) 2,其中,0.90≤x<1,0<y≤0.1。其中,本发明所使用的高镍三元氢氧化物前驱体可以通过本领域常规的共沉淀法制得。
作为本发明以上制备方法的一具体实施方式,其中,S1中,高镍三元氢氧化物前驱体的以D50计的粒度范围为2.5-4.5μm,比表面积为8-15m 2/g,振实密度为1.6-2.0g/cm 3
作为本发明以上制备方法的一具体实施方式,其中,S1中,预烧结为400-600℃烧结3-5h。
作为本发明以上制备方法的一具体实施方式,其中,S2中,微粉氢氧化锂的以D50计的粒度范围为5-15μm。
作为本发明以上制备方法的一具体实施方式,其中,S2中,预烧结料和微粉氢氧化锂按照Li和M的摩尔比为1.0-1.1进行配料,其中M为预烧结料中的过渡金属。
作为本发明以上制备方法的一具体实施方式,其中,S2中,氧化铝球的直径范围为15-25mm。
作为本发明以上制备方法的一具体实施方式,其中,S2中,以所得混合物的总重量为100%计,氧化铝球的质量含量为30-60%。
作为本发明以上制备方法的一具体实施方式,其中,S2中,纳米掺杂剂包括Al 2O 3、ZrO 2、WO 3、MgO、TiO 2、B 2O 3、SrCO 3、Nb 2O 5及La 2O 3中的一种或者多种。
作为本发明以上制备方法的一具体实施方式,其中,S2中,纳米掺杂剂的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.1-0.5%。
在本发明所提供的改性的单晶型高镍三元材料的制备方法中,高温烧结(第二次烧结)过程中,纳米掺杂剂掺杂进入所得单晶型材料的晶体结构中,部分占据Li的位置,部分占据过渡 金属的位置,可以认为其是均匀分散的。本发明使用纳米掺杂剂可以改善所得改性的单晶型高镍三元材料的结构稳定性。
作为本发明以上制备方法的一具体实施方式,其中,S2中,混合可在三维混料机中进行,三维混料机为常规设备。
作为本发明以上制备方法的一具体实施方式,其中,S2中,第一次烧结包括先在第一烧结温度烧结一定时间,然后将温度升至第二烧结温度烧结一定时间,最后退火到第三烧结温度烧结一定时间。
作为本发明以上制备方法的一具体实施方式,其中,S2中,第一次烧结为先在450-550℃烧结3-6h,然后将温度升至730-800℃烧结12-18h,最后退火到500-700℃烧结1-3h。
作为本发明以上制备方法的一具体实施方式,其中,S3中,粉碎后所得物料的以D50计的粒度范围为3-5μm。其中,在本发明一些实施例中,S3中的粉碎可为气流粉碎。
作为本发明以上制备方法的一具体实施方式,其中,S3中,纳米包覆剂包括Al 2O 3、ZrO 2、WO 3、TiO 2、H 3BO 3、Co(OH) 2、LiAlO 2及Li l.3Al 0.3Ti l.7(PO 4) 3中的一种或者多种。
作为本发明以上制备方法的一具体实施方式,其中,S3中,纳米包覆剂的质量占第一烧结料质量的0.1-1%。
作为本发明以上制备方法的一具体实施方式,其中,S3中,混合可在高混机中进行,高混机也为常规设备。
作为本发明以上制备方法的一具体实施方式,其中,S3中,第二次烧结的温度为400-700℃,时间为4-6h。
作为本发明以上制备方法的一具体实施方式,其中,S4中,粉碎、筛分及除磁过程在相对湿度小于10%的环境中进行。其中,在本发明一些实施例中,S4中的粉碎可采用石臼磨实现。
另一方面,本发明还提供了一种改性的单晶型高镍三元材料,其中,改性的单晶型高镍三元材料由以上改性的单晶型高镍三元材料的制备方法制得,其为纳米包覆剂包覆改性的单晶型高镍三元材料LiNi xCo yMn (1-x-y)O 2,其中,0.90≤x<1,0<y≤0.1。
本发明所提供的制备方法采用纳米包覆剂进行干法包覆,于所得改性的单晶型高镍三元材料中,纳米包覆剂以点包覆的形式包覆改性单晶型高镍三元材料。
再一方面,本发明还提供了以上改性的单晶型高镍三元材料作为锂离子电池正极材料的应用。
又一方面,本发明还提供了一种锂离子电池,其中,锂离子电池的正极材料为以上改性的单晶型高镍三元材料。
与现有技术相比,本发明的有益效果包括:
(1)本发明首先筛选合适的高镍三元氢氧化物前驱体并对高镍三元氢氧化物前驱体进行预烧结,再用预烧结后的高镍三元氢氧化物前驱体进行改性的单晶型高镍三元材料的制备,相较于采用未经预烧结的高镍三元氢氧化物前驱体制得的改性的高镍三元材料,本发明提供的改性的单晶型高镍三元材料的残碱明显降低,并且不需要进行后续的水洗改性或者特殊的包覆改性,不产生废水,大幅降低了生产成本。
(2)虽然本发明在制备改性的单晶型高镍三元材料时增加了一次预烧结,但是由于经过预烧结后的高镍三元氢氧化物前驱体中的水分被脱除,第一次烧结时的装料量可以提升约20%,因此本发明所提供的制备方法的综合成本并没有增加,其远低于本领域现有技术中通过水洗改性法制备高镍三元材料的成本。
(3)本发明在制备改性的单晶型高镍三元材料时对高镍三元氢氧化物前驱体进行预烧结,并且采用三维混料机加入氧化铝球进行混料,由于前驱体会受到氧化铝球的碰撞产生微裂纹,从而使得烧结后的单晶材料,即第一烧结料非常容易进行粉碎。
(4)本发明所提供的改性的单晶型高镍三元材料的制备方法非常简单,易于产业化,具有广阔的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的改性的单晶型高镍三元材料及对比例1提供的改性的高镍三元材料的表面残碱含量的对比图。
图2为本发明实施例1提供的改性的单晶型高镍三元材料的SEM图。
图3为对比例1提供的改性的高镍三元材料的SEM图。
图4为对比例2提供的改性的单晶型高镍三元材料的SEM图。
图5为以本发明实施例1提供的改性的单晶型高镍三元材料作为正极材料组装得到的锂离子电池的首周充放电曲线。
图6为以对比例1提供的改性的高镍三元材料作为正极材料组装得到的锂离子电池的首周充放电曲线。
具体实施方式
本发明所公开的“范围”以下限和上限的形式给出。可以分别为一个或多个下限,和一个或多个上限。给定的范围是通过选定一个下限和一个上限进行限定的。选定的下限和上限限定 了特别范围的边界。所有以这种方式进行限定的范围是可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是可以预料到的。此外,如果列出的最小范围值为1和2,列出的最大范围值为3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。
在本发明中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本发明中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。
在本发明中,如果没有特别的说明,本发明所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本发明所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种改性的单晶型高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2在纯氧条件下500℃预烧结5h,得到预烧结料;
其中,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2的粒度(D50)为4μm,比表面积为11m 2/g,振实密度为1.7g/cm 3
S2:将预烧结后的前驱体,即预烧结料与微粉氢氧化锂、纳米ZrO 2以及氧化铝球加入到三维混料机中进行充分混合,其中,预烧结料和微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.03进行配料,纳米ZrO 2的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.2%,微粉氢氧化锂的粒度(D50)为7.5μm,氧化铝球占所得混合物总质量的40%,氧化铝球的直径为20mm;
于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,其中,第一次烧结为先在500℃烧结5h,然后升至760℃烧结15h,最后退火到550℃烧结2h,烧结完成后在纯氧气氛下进行自然降温,得到第一烧结料;
S3:将第一烧结料进行气流粉碎至粒度(D50)为4.0μm,然后将粉碎后的第一烧结料与纳米Al 2O 3加入到高混机中进行充分混合,其中纳米Al 2O 3的质量占第一烧结料质量的0.15%,再将混合后的物料在纯氧气氛下500℃烧结5h,得到第二烧结料;
S4:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分、除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分及除磁环境的相对湿度小于10%;
其中,本实施例所提供的改性的单晶型高镍三元材料为纳米Al 2O 3包覆改性的LiNi 0.95Co 0.04Mn 0.01O 2单晶型高镍三元材料。
实施例2
本实施例提供了一种改性的单晶型高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.92Co 0.04Mn 0.04(OH) 2在纯氧条件下550℃预烧结5h,得到预烧结料;
其中,高镍三元氢氧化物前驱体Ni 0.92Co 0.04Mn 0.04(OH) 2的粒度(D50)为2.5μm,比表面积为13m 2/g,振实密度为1.7g/cm 3
S2:将预烧结后的前驱体,即预烧结料与微粉氢氧化锂、纳米ZrO 2以及氧化铝球加入到三维混料机中进行充分混合,其中,预烧结料和微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.02进行配料,纳米ZrO 2的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.3%,微粉氢氧化锂的粒度(D50)为15μm,氧化铝球占所得混合物总质量的50%,氧化铝球的直径为25mm;
于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,第一次烧结为先在500℃烧结4h,然后升至780℃烧结15h,最后退火到600℃烧结2h,烧结完成后在氧气氛下进行自然降温,得到第一烧结料;
S3:将第一次烧结的材料,即第一烧结料进行气流粉碎至粒度(D50)为4.0μm,然后将粉碎后的第一烧结料与纳米Al 2O 3、纳米WO 3加入到高混机中进行充分混合,其中纳米Al 2O 3、纳米WO 3的总质量占第一烧结料质量的0.6%,再将混合后的物料在纯氧气氛下600℃烧结3h,得到第二烧结料;
S4:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分、除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分及除磁环境的相对湿度小于10%;
其中,本实施例所提供的改性的单晶型高镍三元材料为纳米Al 2O 3、纳米WO 3包覆改性的LiNi 0.92Co 0.04Mn 0.04O 2单晶型高镍三元材料。
实施例3
本实施例提供了一种改性的单晶型高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.96Co 0.02Mn 0.02(OH) 2在纯氧条件下450℃预烧结4h,得到预烧结料;
其中,高镍三元氢氧化物前驱体Ni 0.96Co 0.02Mn 0.02(OH) 2的粒度(D50)为3.5μm,比表面积为8m 2/g,振实密度为1.75g/cm 3
S2:将预烧结后的前驱体,即与微粉氢氧化锂、纳米ZrO 2、纳米TiO 2以及氧化铝球加入到三维混料机中进行充分混合,其中,预烧结料和微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.01进行配料,纳米ZrO 2的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.4%,微粉氢氧化锂的粒度(D50)为5μm,氧化铝球占混合物总质量的30%,氧化铝球的直径为25mm;
于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,第一次烧结为先在500℃烧结5h,然后升至750℃烧结15h,最后退火到500℃烧结2h,烧结完成后在氧气氛下进行自然降温,得到第一次烧结料;
S3:将第一次烧结的材料,即第一次烧结料进行气流粉碎至粒度(D50)为3.5μm,然后将粉碎后的第一次烧结料与纳米Al 2O 3加入到高混机中进行充分混合,其中纳米Al 2O 3的质量占第一烧结料质量的0.5%,再将混合后的物料在纯氧气氛下500℃烧结5h,得到第二烧结料;
S4:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分、除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分及除磁环境的相对湿度小于10%;
其中,本实施例所提供的改性的单晶型高镍三元材料为纳米Al 2O 3包覆改性的LiNi 0.96Co 0.02Mn 0.02O 2单晶型高镍三元材料。
实施例4
和实施例1的区别仅在于:S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.92Co 0.04Mn 0.04(OH) 2在纯氧条件下400℃预烧结3h,得到预烧结料。
实施例5
和实施例1的区别仅在于:S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.92Co 0.04Mn 0.04(OH) 2在纯氧条件下600℃预烧结5h,得到预烧结料。
实施例6
和实施例1的区别仅在于:S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.92Co 0.04Mn 0.04(OH) 2在纯氧条件下700℃预烧结2h,得到预烧结料。
实施例7
和实施例1的区别仅在于:氧化铝球占混合物总质量的60%。
实施例8
和实施例1的区别仅在于:氧化铝球的直径为15mm。
实施例9
和实施例1的区别仅在于:氧化铝球的直径为30mm。
对比例1
本对比例提供了一种改性的高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2与微粉氢氧化锂、纳米ZrO 2以及氧化铝球加入到高混机中进行充分混合,其中,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2与微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.03进行配料,纳米ZrO 2的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.2%,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2的粒度(D50)为4μm,比表面积为11m 2/g,振实密度为1.7g/cm 3;微粉氢氧化锂的粒度(D50)为7.5μm,氧化铝球占所得混合物总质量的40%,氧化铝球的直径为20mm;
于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,第一次烧结为先在500℃烧结5h,然后升至760℃烧结15h,最后退火到550℃烧结2h,烧结完成后在氧气氛下进行自然降温,得到第一烧结料;
S2:将第一次烧结的材料,即第一烧结料进行气流粉碎至粒度(D50)为4.0μm,然后将其与纳米Al 2O 3加入到高混机中进行充分混合,其中纳米Al 2O 3的质量占第一烧结料质量的0.15%,再将混合后的物料在纯氧气氛下500℃烧结5h,得到第二烧结料;
S3:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分及除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分、除磁环境的相对湿度小于10%;
其中,本对比例中所提供的改性的高镍三元材料为纳米Al 2O 3包覆改性的LiNi 0.95Co 0.04Mn 0.01O 2单晶型高镍三元材料。
对比例2
本对比例提供了一种改性的单晶型高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2在纯氧条件下500℃预烧结5h,得到预烧结料;
其中,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2的粒度(D50)为4μm,比表面积为11m 2/g,振实密度为1.7g/cm 3
S2:将预烧结后的前驱体,即预烧结料与微粉氢氧化锂、纳米ZrO 2加入到高速混料机中进行充分混合,其中,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2与微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.03进行配料,纳米ZrO 2的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.2%,微粉氢氧化锂的粒度(D50)为7.5μm;
将所得混合物在纯氧气氛中进行第一次烧结,其中,第一次烧结为先在500℃烧结5h,然后升至760℃烧结15h,最后退火到550℃烧结2h,烧结完成后在纯氧气氛下进行自然降温,得到第一烧结料;
S3:将第一烧结料进行气流粉碎至粒度(D50)为4.0μm,然后将粉碎后的第一烧结料与纳米Al 2O 3加入到高混机中进行充分混合,其中纳米Al 2O 3的质量占第一烧结料质量的0.15%,再将混合后的物料在纯氧气氛下500℃烧结5h,得到第二烧结料;
S4:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分、除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分及除磁环境的相对湿度小于10%;
其中,本对比例中所提供的改性的单晶型高镍三元材料为纳米Al 2O 3包覆改性的LiNi 0.95Co 0.04Mn 0.01O 2单晶型高镍三元材料。
对比例3
本对比例提供了一种改性的单晶型高镍三元材料,其是按照包括如下步骤的制备方法制得的:
S1:将共沉淀法制备的高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2在纯氧条件下500℃预烧结5h,得到预烧结料;
其中,高镍三元氢氧化物前驱体Ni 0.95Co 0.04Mn 0.01(OH) 2的粒度(D50)为4μm,比表面积为11m 2/g,振实密度为1.7g/cm 3
S2:将预烧结后的前驱体,即预烧结料与微粉氢氧化锂以及氧化铝球加入到三维混料机中进行充分混合,其中,预烧结料和微粉氢氧化锂按照Li元素的摩尔量与过渡金属元素的摩尔量之比为1.03进行配料,微粉氢氧化锂的粒度(D50)为7.5μm,氧化铝球占所得混合物总质量的40%,氧化铝球的直径为20mm;
于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,其中,第一次烧结为先在500℃烧结5h,然后升至760℃烧结15h,最后退火到550℃烧结2h,烧结完成后在纯氧气氛下进行自然降温,得到第一烧结料;
S3:将第一烧结料进行气流粉碎至粒度(D50)为4.0μm,然后将粉碎后的第一烧结料与纳米Al 2O 3加入到高混机中进行充分混合,其中纳米Al 2O 3的质量占第一烧结料质量的0.15%,再将混合后的物料在纯氧气氛下500℃烧结5h,得到第二烧结料;
S4:将二烧后的材料,即第二烧结料进行石臼磨粉碎、筛分、除磁以获得改性的单晶型高镍三元材料,其中,控制整个粉碎、筛分及除磁环境的相对湿度小于10%;
其中,本对比例所提供的改性的单晶型高镍三元材料为纳米Al 2O 3包覆改性的LiNi 0.95Co 0.04Mn 0.01O 2单晶型高镍三元材料。
测试例1
本测试例采用本领域现有常规方法对实施例及对比例提供的高镍三元材料的表面残碱含量分别进行了检测,性能效果如表1所示。同时,也可以从图1中可以看出,相较于对比例1中采用未经预烧结的高镍三元氢氧化物前驱体制得的改性的高镍三元材料,本发明实施例1采用经预烧结的高镍三元氢氧化物前驱体制得的改性的单晶型高镍三元材料的残碱(LiOH和Li 2CO 3)含量明显降低。高镍三元材料中的残碱主要影响材料的加工性能和高温存储性能。具体而言,如果材料的残碱含量较高,合浆时很容易出现果冻现象从而导致无法涂布;此外,残碱较高时,以具有较高残碱含量的材料制得的电池于高温条件下的产气更加严重,从而会导致电池电化学性能的衰减或者导致电池胀气漏液等。
测试例2
本测试例对实施例1提供的改性的单晶型高镍三元材料、对比例1提供的改性的高镍三元材料以及对比例2提供的改性的单晶型高镍三元材料分别进行了扫描电镜分析,所得SEM图分别如图2、图3及图4所示。
对比图2和图3可知,对比例1提供的改性的高镍三元材料的颗粒相对较小且存在团聚颗粒,而实施例1提供的改性的单晶型高镍三元材料的颗粒较大且基本没有团聚,呈现出很好的单晶颗粒形貌。由此可见,实施例1中对高镍三元氢氧化物前驱体进行预烧结并以经预烧结的高镍三元氢氧化物前驱体制备改性的高镍三元材料,所得改性的高镍三元材料可呈现出很好的单晶颗粒形貌。对比图2和图4可知,实施例1制备改性的单晶型高镍三元材料时加入氧化铝球进行混料可使所制得的材料单晶颗粒更大,一次颗粒之间没有团聚,呈现出更好的单晶形貌。
测试例3
本测试例首先以实施例1提供的改性的单晶型高镍三元材料及对比例1提供的改性的高镍三元材料作为正极材料,并分别组装得到纽扣式锂离子电池,纽扣式锂离子电池的组装包括以下具体步骤:先将PVDF溶解到NMP中,然后加入正极材料和导电炭黑,充分混合后将所得混合液均匀涂布到铝箔上制成正极片,再采用模具将正极片裁切成直径为12mm的圆片,最后将裁切好的正极片圆片与隔膜、锂片及电解液在手套箱中组装成纽扣式锂离子电池;
其中,正极材料、PVDF及导电炭黑之间的质量比为90:5:5;
隔膜采用厚度为20μm的聚丙烯薄膜;
电解液包括LiPF 6及溶剂,其中,LiPF 6的浓度为1mol/L,溶剂包括体积比为1:1:1的EC、DMC及EMC;
组装完成后,再采用本领域现有常规方法测得锂离子电池的首周充放电曲线,分别如图5和图6所示。从图5和图6中可以看出,以本发明实施例1提供的改性的单晶型高镍三元材料作为正极材料组装得到的锂离子电池及以对比例1提供的改性的高镍三元材料作为正极材料组装得到的锂离子电池的放电比容量及首效相当。
采用常规烧结方法制备高镍三元材料时,所得材料的容量通常会随着烧结的单晶颗粒的增大而降低,而本发明实施例所提供的改性的单晶型高镍三元材料不仅残碱更低,单晶颗粒更大且分散更好,并且制备方法对所得改性的单晶型高镍三元材料的容量和首次效率均没有影响。
实施例及对比例残碱含量、锂离子电池的放电比容量及首效性能表征如表1所示。
表1
Figure PCTCN2022123241-appb-000001
综上,本发明实施例首先筛选合适的高镍三元氢氧化物前驱体并对高镍三元氢氧化物前驱体进行预烧结,再用预烧结后的高镍三元氢氧化物前驱体进行改性的单晶型高镍三元材料的制备,相较于采用未经预烧结的高镍三元氢氧化物前驱体制得的改性的高镍三元材料,本 发明实施例提供的改性的单晶型高镍三元材料的残碱明显降低,并且不需要进行后续的水洗改性或者特殊的包覆改性,不产生废水,大幅降低了生产成本。
虽然本发明实施例在制备改性的单晶型高镍三元材料时增加了一次预烧结,但是由于经过预烧结后的高镍三元氢氧化物前驱体中的水分被脱除,第一次烧结时的装料量可以提升约20%,因此本发明实施例所提供的制备方法的综合成本并没有增加,其远低于本领域现有技术中通过水洗改性法制备高镍三元材料的成本。
本发明实施例在制备改性的单晶型高镍三元材料时对高镍三元氢氧化物前驱体进行预烧结,并且采用三维混料机加入氧化铝球进行混料,由于前驱体会受到氧化铝球的碰撞产生微裂纹,从而使得烧结后的单晶材料,即第一烧结料非常容易进行粉碎。
本发明实施例所提供的改性的单晶型高镍三元材料的制备方法非常简单,易于产业化,具有广阔的应用前景。
以上,仅为本发明的具体实施例,不能以其限定发明实施的范围,所以其等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本发明中的技术特征与技术特征之间、技术特征与技术发明之间、技术发明与技术发明之间均可以自由组合使用。

Claims (10)

  1. 一种改性的单晶型高镍三元材料的制备方法,其特征在于,包括以下步骤:
    S1:将高镍三元氢氧化物前驱体在纯氧条件下进行预烧结,得到预烧结料;
    S2:将所述预烧结料与微粉氢氧化锂、纳米掺杂剂以及氧化铝球进行充分混合,于所得混合物中筛除氧化铝球后将其在纯氧气氛中进行第一次烧结,烧结完成后在纯氧气氛中进行自然降温冷却,得到第一烧结料;
    S3:将第一烧结料粉碎后,将其与纳米包覆剂充分混合,再将所得混合料在纯氧气氛中进行第二次烧结,得到第二烧结料;
    S4:将所述第二烧结料进行粉碎、筛分、除磁后,得到改性的单晶型高镍三元材料。
  2. 根据权利要求1所述的制备方法,其特征在于,S1中,所述高镍三元氢氧化物前驱体的组成为Ni xCo yMn (1-x-y)(OH) 2,其中,0.90≤x<1,0<y≤0.1;
    优选地,S1中,所述高镍三元氢氧化物前驱体的以D50计的粒度范围为2.5-4.5μm,比表面积为8-15m 2/g,振实密度为1.6-2.0g/cm 3
    优选地,S1中,所述预烧结为400-600℃烧结3-5h。
  3. 根据权利要求1所述的制备方法,其特征在于,S2中,所述微粉氢氧化锂的以D50计的粒度范围为5-15μm;
    优选地,所述预烧结料和所述微粉氢氧化锂按照Li和M的摩尔比为1.0-1.1进行配料,其中M为所述预烧结料中的过渡金属;
    优选地,S2中,所述氧化铝球的直径范围为15-25mm;
    优选地,S2中,以所得混合物的总重量为100%计,所述氧化铝球的质量含量为30-60%。
  4. 根据权利要求1或3所述的制备方法,其特征在于,S2中,所述纳米掺杂剂包括Al 2O 3、ZrO 2、WO 3、MgO、TiO 2、B 2O 3、SrCO 3、Nb 2O 5及La 2O 3中的一种或者多种;
    优选地,所述纳米掺杂剂的摩尔量占高镍三元氢氧化物前驱体摩尔量的0.1-0.5%。
  5. 根据权利要求1或3所述的制备方法,其特征在于,S2中,所述第一次烧结包括先在第一烧结温度烧结一定时间,然后将温度升至第二烧结温度烧结,最后退火到第三烧结温度烧结;
    优选地,所述第一次烧结为先在450-550℃烧结3-6h,然后将温度升至730-800℃烧结12-18h,最后退火到500-700℃烧结1-3h。
  6. 根据权利要求1所述的制备方法,其特征在于,S3中,粉碎后所得物料的以D50计的粒度范围为3-5μm;
    优选地,S3中,所述纳米包覆剂包括Al 2O 3、ZrO 2、WO 3、TiO 2、H 3BO 3、Co(OH) 2、LiAlO 2及Li l.3Al 0.3Ti l.7(PO 4) 3中的一种或者多种;
    优选地,S3中,所述纳米包覆剂的质量占所述第一烧结料质量的0.1-1%;
    优选地,S3中,所述第二次烧结的温度为400-700℃,时间为4-6h。
  7. 根据权利要求1所述的制备方法,其特征在于,S4中,粉碎、筛分及除磁过程在相对湿度小于10%的环境中进行。
  8. 一种改性的单晶型高镍三元材料,其特征在于,所述改性的单晶型高镍三元材料由权利要求1-7任一项所述改性的单晶型高镍三元材料的制备方法制得,其为纳米包覆剂包覆改性的单晶型高镍三元材料LiNi xCo yMn (1-x-y)O 2,其中,0.90≤x<1,0<y≤0.1。
  9. 权利要求8所述改性的单晶型高镍三元材料作为锂离子电池正极材料的应用。
  10. 一种锂离子电池,其特征在于,所述锂离子电池的正极材料为权利要求8所述改性的单晶型高镍三元材料。
PCT/CN2022/123241 2022-03-01 2022-09-30 一种改性的单晶型高镍三元材料及其制备方法与应用 WO2023165130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210196330.7A CN114590848B (zh) 2022-03-01 2022-03-01 一种改性的单晶型高镍三元材料及其制备方法与应用
CN202210196330.7 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023165130A1 true WO2023165130A1 (zh) 2023-09-07

Family

ID=81816166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123241 WO2023165130A1 (zh) 2022-03-01 2022-09-30 一种改性的单晶型高镍三元材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114590848B (zh)
WO (1) WO2023165130A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590848B (zh) * 2022-03-01 2024-04-19 合肥国轩高科动力能源有限公司 一种改性的单晶型高镍三元材料及其制备方法与应用
CN115043443B (zh) * 2022-07-29 2024-03-01 宁波容百新能源科技股份有限公司 一种低成本高镍三元正极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015959A (ja) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
CN109305699A (zh) * 2018-09-12 2019-02-05 中伟新材料有限公司 一种无定形单晶前驱体氧化物的制备方法
CN109888235A (zh) * 2019-03-06 2019-06-14 广东邦普循环科技有限公司 一种级配高镍三元正极材料及其制备方法和应用
CN110265634A (zh) * 2019-05-09 2019-09-20 浙江美都海创锂电科技有限公司 一种单晶高镍ncm锂离子电池正极材料的制备方法
CN111217408A (zh) * 2020-01-16 2020-06-02 东莞东阳光科研发有限公司 高镍正极材料及其制备方法和应用
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN112080800A (zh) * 2020-05-26 2020-12-15 宜宾锂宝新材料有限公司 单晶三元正极材料的改性方法
CN114590848A (zh) * 2022-03-01 2022-06-07 合肥国轩高科动力能源有限公司 一种改性的单晶型高镍三元材料及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944610B (zh) * 2009-07-09 2013-08-28 河南新飞科隆电源有限公司 一种层状锂离子正极材料的制备
EP2621002B1 (en) * 2010-09-22 2019-01-23 GS Yuasa International Ltd. Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
CN104319386A (zh) * 2014-09-19 2015-01-28 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN104852043A (zh) * 2014-12-31 2015-08-19 常州益辉新能源科技有限公司 一种高电压锂离子电池正极材料及其制备方法
CN107785555A (zh) * 2017-10-30 2018-03-09 华中科技大学 一种锂离子电池、改性锂离子电池正极材料及其制备方法
CN108023078A (zh) * 2017-11-30 2018-05-11 宁波容百新能源科技股份有限公司 一种单晶形貌高镍三元正极材料及其制备方法
CN108269999B (zh) * 2017-12-20 2020-07-17 合肥国轩高科动力能源有限公司 一种锂离子电池用容量缓释型高镍三元材料的制备方法
CN110867576A (zh) * 2018-08-28 2020-03-06 比亚迪股份有限公司 三元正极材料及其制备方法、锂离子电池和电动汽车
CN111217407A (zh) * 2020-01-16 2020-06-02 东莞东阳光科研发有限公司 高镍正极材料及其制备方法和应用
CN112194197A (zh) * 2020-08-27 2021-01-08 浙江美都海创锂电科技有限公司 一种低内阻、低胀气率的高镍三元正极材料及其制备方法、应用
CN112079400A (zh) * 2020-09-09 2020-12-15 合肥国轩高科动力能源有限公司 一种低pH值锂离子电池高镍三元材料及其制法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015959A (ja) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
CN109305699A (zh) * 2018-09-12 2019-02-05 中伟新材料有限公司 一种无定形单晶前驱体氧化物的制备方法
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN109888235A (zh) * 2019-03-06 2019-06-14 广东邦普循环科技有限公司 一种级配高镍三元正极材料及其制备方法和应用
CN110265634A (zh) * 2019-05-09 2019-09-20 浙江美都海创锂电科技有限公司 一种单晶高镍ncm锂离子电池正极材料的制备方法
CN111217408A (zh) * 2020-01-16 2020-06-02 东莞东阳光科研发有限公司 高镍正极材料及其制备方法和应用
CN112080800A (zh) * 2020-05-26 2020-12-15 宜宾锂宝新材料有限公司 单晶三元正极材料的改性方法
CN114590848A (zh) * 2022-03-01 2022-06-07 合肥国轩高科动力能源有限公司 一种改性的单晶型高镍三元材料及其制备方法与应用

Also Published As

Publication number Publication date
CN114590848B (zh) 2024-04-19
CN114590848A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
EP3296267B1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
JP6850949B2 (ja) リチウムイオン電池正極材料、リチウムイオン電池、それを用いた通信装置、電力装置、エネルギー貯蔵装置及び携帯用記憶装置並びにリチウムイオン電池の使用
US10790506B2 (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
WO2023165130A1 (zh) 一种改性的单晶型高镍三元材料及其制备方法与应用
US20230046142A1 (en) Cobalt-free layered positive electrode material and method for preparing same, and lithium-ion battery
JP2016084279A (ja) リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
KR20190035670A (ko) 리튬 배터리용 구형 또는 구형-유사 캐소드 재료, 이의 배터리 및 제조 방법 및 적용
CN108172825B (zh) 一种高电压高压实低成本钴酸锂正极材料及其制备方法
CN105958038A (zh) 一种可快充的长寿命高电压钴酸锂正极材料及制备方法
WO2023124051A1 (zh) 一种镍钴锰酸锂高镍单晶正极材料及其制备方法
WO2024046046A1 (zh) 一种正极活性材料及其应用
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
CN113113590A (zh) 一种核壳结构的单晶正极材料及其制备方法
CN115924978A (zh) 锰基层状钠离子电池正极材料及其制备方法和应用
CN110606509B (zh) 球形锰酸锂正极材料及其制备方法和应用
CN116789185A (zh) 用于锂二次电池的正极活性材料及其制备方法
CN114988488A (zh) 钴酸锂细粉在制备钴酸锂正极材料中的应用
WO2024093679A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
KR20230130064A (ko) 구배 단결정 양극재, 조제 방법 및 응용
WO2024026713A1 (zh) 用于锂二次电池的正极活性材料及其制备方法
CN111933929B (zh) 一种f掺杂的正极材料及其制备方法
WO2021243928A1 (zh) 一种用于锂离子电池的正极材料及其制备方法和锂离子电池
CN116014118A (zh) 高体积电阻率正极材料及其制备方法、锂离子电池
CN117285085A (zh) 一种大颗粒高镍单晶正极材料及其制备方法
CN115472841A (zh) 一种正极活性材料及其制备方法、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929560

Country of ref document: EP

Kind code of ref document: A1