WO2024093679A1 - 一种正极材料及包括该正极材料的正极片和电池 - Google Patents

一种正极材料及包括该正极材料的正极片和电池 Download PDF

Info

Publication number
WO2024093679A1
WO2024093679A1 PCT/CN2023/125242 CN2023125242W WO2024093679A1 WO 2024093679 A1 WO2024093679 A1 WO 2024093679A1 CN 2023125242 W CN2023125242 W CN 2023125242W WO 2024093679 A1 WO2024093679 A1 WO 2024093679A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
battery
present disclosure
lithium
Prior art date
Application number
PCT/CN2023/125242
Other languages
English (en)
French (fr)
Inventor
曾家江
夏定国
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024093679A1 publication Critical patent/WO2024093679A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of batteries, and in particular relates to a positive electrode material and a positive electrode sheet and a battery comprising the positive electrode material.
  • the capacity of the positive electrode material plays a vital role in the capacity of lithium-ion batteries.
  • an important way is to increase its charge and discharge voltage.
  • the positive electrode material will face a series of unfavorable changes such as unstable crystal structure, rapid capacity decay and greatly reduced cycle performance. Therefore, it is a very critical task to develop a lithium-ion battery positive electrode material with high specific capacity, high voltage platform, good cycle performance and stable interface at high voltage.
  • the present disclosure provides a positive electrode material, a positive electrode sheet and a battery comprising the positive electrode material, wherein the positive electrode material belongs to the P63mc space group and has an O2 phase stacking structure.
  • the positive electrode material has high specific capacity, good interface stability and cycle stability at high voltage, and the use of the positive electrode material can improve the gram capacity, cycle performance, rate performance and energy density of the battery.
  • a positive electrode material which is a lithium transition metal oxide including Li element, Na element, K element, Co element and optionally A element and/or M element, wherein the A element is selected from at least one of B and P, and the M element is selected from at least one of Al, Mg, Ti, Mn, Te, Ni, W, Nb, Zr, La and Y.
  • the molar amount of the K element in the positive electrode material is z
  • the molar amount of the Co element in the positive electrode material is 1-a-b
  • the molar amount of the A element in the positive electrode material is a
  • the molar amount of the M element in the positive electrode material is b
  • the ratio of z to 1-a is 0 ⁇ z/1-a ⁇ 0.05
  • the optional may be selected or not selected.
  • the molar amount z of the K element in the positive electrode material per unit mole is 0 ⁇ z ⁇ 0.05, for example, z is 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.010, 0.012, 0.015, 0.018, 0.020, 0.022, 0.024, 0.025, 0.026, 0.028, 0.030, 0.032, 0.034, 0.035, 0.036, 0.038, 0.04, 0.042, 0.043, 0.045, 0.046, 0.048 or 0.049.
  • the electrochemical kinetics and rate performance during the charge and discharge process can be improved, and the polarization phenomenon can be reduced, so that the battery has higher gram capacity, coulombic efficiency, rate performance and cycle performance.
  • the molar amount a of element A per unit mole of positive electrode material is 0 ⁇ a ⁇ 0.05, for example, a is 0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.010, 0.012, 0.015, 0.018, 0.020, 0.022, 0.024, 0.025, 0.026, 0.028, 0.030, 0.032, 0.034, 0.035, 0.036, 0.038, 0.04, 0.042, 0.043, 0.045, 0.046, 0.048 or 0.049.
  • the A element is selected from at least one of B and P, preferably B.
  • the B element and the P element have a fluxing effect, so that the morphology of the positive electrode material is a single crystal or polycrystalline spherical morphology with a large particle size.
  • the morphology of the positive electrode material is a single crystal morphology.
  • the B element can make the structure of the positive electrode material more stable, and can stabilize the interface between the positive electrode material and the electrolyte during the charge and discharge process, which is beneficial to improving the cycle performance of the battery.
  • the B and P elements can significantly increase the gram capacity and compaction density of the positive electrode material, which is beneficial to improving the energy density and rate performance of the battery.
  • the molar amount b of the M element per unit mole of the positive electrode material is 0 ⁇ b ⁇ 0.1, for example, b is 0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.010, 0.012, 0.015, 0.018, 0.020, 0.022, 0.024, 0.025, 0.026, 0.028, 0.030, 0.032, 0.034, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09 or 0.095.
  • the M element is used to replace part of the Co element.
  • the structure of the cobalt layer can be stabilized, thereby improving the stability of the overall structure of the positive electrode material.
  • the molar amount y of the Na element in unit mole of the positive electrode material is 0 ⁇ y ⁇ 0.03, for example, y is 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.010, 0.012, 0.015, 0.018, 0.020, 0.022, 0.024, 0.025, 0.026 or 0.028.
  • a supporting effect can be played on the layered structure of the positive electrode material, which is beneficial to the insertion and extraction of lithium ions.
  • the chemical formula of the positive electrode material is:
  • z/1-a is within the range specified in the present invention, it means that the doping amount of K element is limited to a certain range, within which the radius of K ion>the radius of Li ion, which plays a certain supporting role on the skeleton of the layered structure, promotes the deintercalation of Li ions, and is beneficial to the performance of gram capacity and the improvement of cycle performance.
  • z/1-a exceeds the range, it means that more Li is replaced by K element, and the loss of Li leads to a significant decrease in its gram capacity.
  • the value of n in the chemical formula of the positive electrode material is different in different delithiation states, including the positive electrode sheet of the positive electrode material before sorting, the value of n in the positive electrode material in the powder state is 0.95-1.02; the positive electrode sheet of the positive electrode material after sorting (voltage range is 3.6V-4.0V), the value of n in the positive electrode material is 0.70-1.0.
  • the positive electrode material has an O2 phase stacking structure and belongs to the P63mc space group, which is a layered structure. Compared with the existing O3 phase stacking structure, it has a larger interlayer spacing, so it is easier to deintercalate and extract lithium ions.
  • the positive electrode material has a polycrystalline morphology or a single crystal morphology, the polycrystalline morphology has a more excellent rate performance, and the single crystal morphology has a greater compaction density.
  • the Dv50 of the positive electrode material is 12 ⁇ m to 20 ⁇ m, for example, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m or 20 ⁇ m.
  • the Dv50 of the positive electrode material can be tested using a laser particle size analyzer.
  • Dv50 refers to the particle size corresponding to when the cumulative volume particle size distribution percentage of a sample reaches 50%.
  • the packing density of the positive electrode material can be increased, thereby increasing the capacity of the battery.
  • m ⁇ 2 for example, 2 to 8, such as 2 to 5, such as 2, 3, 4, 5, 6, 7 or 8.
  • the gram capacity of the positive electrode material is ⁇ 210 mAh/g (button cell, upper voltage limit ⁇ 4.50 V (relative to lithium)).
  • the present disclosure also provides a method for preparing the above-mentioned positive electrode material, the method comprising the following steps:
  • the first step is to synthesize a compound Na x K z Co 1-ab A a M b O 2 containing Co, Na, K, optionally A and optionally M, wherein 0.68 ⁇ x ⁇ 0.74, and the definitions of z, a, b, A and M are as described above;
  • the method for preparing the positive electrode material comprises the following steps:
  • step 2) calcining the mixture of step 1) at high temperature to obtain a compound with a chemical formula of Na x K z Co 1-ab A a M b O 2 ;
  • step 3 mixing the compound of step 2 ) with the lithium - containing compound in a solvent to carry out an ion exchange reaction, and washing and drying the reaction product after the reaction is completed to obtain the positive Extreme material.
  • step 1) the mixing time is ⁇ 4h.
  • the mixing is, for example, at least one of high-speed stirring, ball milling, and sand milling.
  • step 1) the mixing is performed using, for example, a high-speed mixing device, a sand mill, a ball mill, a plowshare mixing device, or an oblique mixing device. If a medium (such as water or alcohol or other solvent medium) is added during the ball milling or sand milling process, a drying process is required after the mixing.
  • a medium such as water or alcohol or other solvent medium
  • the cobalt-containing compound is selected from cobalt hydroxide, cobalt trioxide, doped cobalt trioxide, cobaltous oxide, cobalt oxyhydroxide, cobalt nitrate, cobalt sulfate and the like.
  • the sodium-containing compound is selected from sodium oxide, sodium carbonate, sodium nitrate, sodium hydroxide, sodium bicarbonate, sodium sulfate, and the like.
  • the potassium-containing compound is selected from potassium oxide, potassium carbonate, potassium nitrate, potassium hydroxide, potassium bicarbonate, potassium sulfate and the like.
  • the compound containing A is selected from an oxide of B, an oxide of P, a hydroxide of B, a hydroxide of P, an acid of B, an acid of P, a salt of B or a salt of P.
  • the compound containing A is selected from boric acid and phosphoric acid.
  • the compound containing M is selected from oxides, hydroxides or salts of Al, Mg, Ti, Mn, Te, Ni, W, Nb, Zr, La and Y.
  • the compound containing M is selected from basic magnesium carbonate, magnesium hydroxide, zirconium oxide, aluminum oxide, aluminum hydroxide, yttrium oxide, lanthanum oxide, aluminum phosphate, sodium pyrophosphate, sodium tungstate, lanthanum fluoride, etc.
  • the calcination temperature is 700-900° C.
  • the calcination time is 8-50 hours
  • the calcination is carried out in air or oxygen atmosphere.
  • the high temperature calcination is to put the mixed material into the crucible, Place it in a muffle furnace, tunnel furnace, roller kiln, tubular furnace or other high temperature sintering equipment for high temperature calcination.
  • the lithium-containing compound is selected from lithium fluoride, lithium chloride, lithium bromide, lithium iodide, lithium hydroxide, lithium nitrate, lithium carbonate, and the like.
  • the solvent is selected from water or an organic solution.
  • the mass ratio of the lithium-containing compound to the compound having the chemical formula Na x K z Co 1-ab A a M b O 2 is ⁇ 1, preferably 1-3.
  • the mass ratio of the solvent to the compound of the chemical formula Na x K z Co 1-ab A a M b O 2 is ⁇ 5, preferably 20-150.
  • the reaction equipment for carrying out the ion exchange reaction comprises a closed container equipment with a sealing function and a stirring capability, such as a wet coating reaction equipment and a coprecipitation reaction equipment.
  • step 3 the ion exchange reaction is carried out under stirring conditions, the stirring speed is 10 rpm to 200 rpm, the reaction temperature is 70 to 125° C., and the reaction time is ⁇ 5 hours, such as 10 to 15 hours.
  • the drying temperature is 80-180° C.
  • the drying time is ⁇ 10 hours.
  • the equipment used in the drying process may be a blast oven, a vacuum drying oven, a rotary kiln, a disc dryer, an oven, etc.
  • the present disclosure also provides a positive electrode sheet, which includes the positive electrode material mentioned above.
  • the positive electrode sheet includes a positive electrode current collector and an active material layer, wherein the active material layer is coated on at least one side surface of the positive electrode current collector, and the active material layer includes the above-mentioned positive electrode material.
  • the positive electrode sheet includes a positive electrode current collector, a safety layer and an active material layer
  • the safety layer is coated on at least one side surface of the positive electrode current collector
  • the active material layer is coated on the surface of the safety layer
  • the active material layer includes the above-mentioned positive electrode material
  • the safety coating includes an iron-containing compound (such as lithium iron phosphate, Lithium phosphate), aluminum-containing compounds (such as alumina ceramics) and other non-conductive safety dielectric materials.
  • an iron-containing compound such as lithium iron phosphate, Lithium phosphate
  • aluminum-containing compounds such as alumina ceramics
  • the active material layer further includes a conductive agent and a binder.
  • the mass percentage of each component in the active material layer is: 70wt% to 99wt% of positive electrode material, 0.5wt% to 15wt% of conductive agent, and 0.5wt% to 15wt% of binder.
  • the mass percentage of each component in the active material layer is: 80wt% to 98wt% of positive electrode material, 1wt% to 10wt% of conductive agent, and 1wt% to 10wt% of binder.
  • the conductive agent is selected from at least one of conductive carbon black, acetylene black, Ketjen black, conductive graphite, carbon nanotubes (single-walled carbon nanotubes and/or multi-walled carbon nanotubes), and carbon fibers (such as conductive carbon fibers).
  • the binder is selected from at least one of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyacrylate lithium (PAA-Li).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAA-Li polyacrylate lithium
  • the present disclosure also provides a battery, wherein the battery comprises the above-mentioned positive electrode material, or the battery comprises the above-mentioned positive electrode sheet.
  • the battery further includes a negative electrode sheet, a separator and an electrolyte.
  • the electrolyte includes a lithium salt and an organic solvent.
  • the organic solvent is selected from at least one of ethylene carbonate (abbreviated as EC), diethyl carbonate (abbreviated as DEC), propylene carbonate (abbreviated as PC), and fluoroethylene carbonate (abbreviated as FEC).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • the electrolyte further includes an additive, and the additive includes 2,4-butane sultone.
  • the chemical structural formula of the 2,4-butane sultone is:
  • the content of 2,4-butane sultone accounts for 0.1wt% to 10wt% of the total content of the electrolyte, for example, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.1wt%, 1.2wt%, 1.3wt%, 1.4wt%, 1.5wt%, 1.6wt%, 1.7wt%, 1.8wt%, 1.9wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt%, 5wt%, 6wt%, 7wt%,
  • the additive helps to form a film, so that the cycle performance of the battery is improved to a certain extent.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, wherein the negative electrode active material layer is coated on at least one side surface of the negative electrode current collector, and the negative electrode active material layer includes a negative electrode active material, a conductive agent, and a binder.
  • the mass percentage of each component in the negative electrode active material layer is: 70wt% to 99wt% of negative electrode active material, 0.5wt% to 15wt% of conductive agent, and 0.5wt% to 15wt% of binder.
  • the mass percentage of each component in the negative electrode active material layer is: 80wt% to 98wt% of negative electrode active material, 1wt% to 10wt% of conductive agent, and 1wt% to 10wt% of binder.
  • the negative electrode active material is selected from one or a combination of artificial graphite, natural graphite, hard carbon, mesophase carbon microbeads, lithium titanate, silicon carbon, and silicon oxide.
  • the diaphragm is selected from a material with polypropylene as the base material, or a rubber-coated diaphragm with ceramic coated on one side or both sides thereof.
  • the discharge capacity obtained is defined as C 0 mAh/g
  • the discharge capacity in the voltage range from the start of discharge to 4.4V is defined as C 1 mAh/g
  • the capacity in the voltage range of 3.8V-3.7V is defined as C 2
  • the discharge capacity of this positive electrode material at 0.1C satisfies C 1 /C 0 ⁇ 9%, C 2 /C 0 ⁇ 25%.
  • the present disclosure provides a positive electrode material and a positive electrode sheet and a battery including the positive electrode material.
  • the positive electrode material has a special phase structure that is significantly different from conventional lithium cobalt oxide materials.
  • the positive electrode material can show multiple small charge and discharge platforms during the charge and discharge process.
  • the positive electrode material provided by the present disclosure has advantages in electrochemical performance, including: under the same charge and discharge cut-off voltage and charge and discharge rate conditions, the positive electrode material has higher gram capacity and cycle performance.
  • the positive electrode material compound disclosed in the present disclosure has a higher gram capacity and better cycle performance.
  • the battery disclosed herein due to the use of the positive electrode material disclosed herein, can have good cycle stability and higher gram capacity under higher voltage conditions such as 4.50V, and can meet the demand for lightweight use of high-end digital products.
  • FIG. 1 is an XRD diagram of the positive electrode material of Example 1.
  • FIG. 2 is a SEM image of the positive electrode material of Example 1.
  • FIG. 3 is a SEM image of the positive electrode material of Example 6.
  • FIG. 4 is a charge and discharge curve diagram of the button cell of Example 1.
  • the cathode material provided in the present disclosure is used to characterize the characteristic peaks of the cathode material by X-ray diffraction (XRD), and is used to characterize the molar content of each element in the chemical formula by inductively coupled plasma spectrometer (ICP).
  • XRD X-ray diffraction
  • ICP inductively coupled plasma spectrometer
  • the positive electrode material provided in the present disclosure is characterized by being assembled with a negative electrode sheet and an electrolyte into a full battery or a button battery.
  • the preparation method of the positive electrode material comprises the following steps:
  • the preparation method of the positive electrode active material comprises the following steps:
  • the two substances were placed in a high-speed mixing device using the same stirring equipment as in the embodiment.
  • the mixing program was set to mix at 300 rpm for 3 minutes, at 500 rpm for 5 minutes, and at 1000 rpm for 10 minutes.
  • the mixture was taken out and it was confirmed that there were no white lithium carbonate spots in the mixture.
  • the mixture was considered to be uniform;
  • the preparation method of the positive electrode active material includes the following steps:
  • the two substances were placed in a high-speed mixing device using the same stirring device as in the embodiment.
  • the mixing program was set to mix at 300 rpm for 3 minutes, at 500 rpm for 5 minutes, and at 1000 rpm for 10 minutes. The mixture was taken out and it was confirmed that there were no white spots of lithium carbonate in the mixture. The mixture was considered to be uniform.
  • step 1 The preparation method of the positive electrode material sample 18# is the same as that of Example 1, which will not be repeated here. The only difference is step 1:
  • step 1 The preparation method of the positive electrode material sample 19# is the same as that of Example 1, which will not be repeated here. The only difference is step 1:
  • Table 1 Chemical composition ratios of positive electrode materials and the amounts of raw materials used in Examples 1-11 and Comparative Examples 3-4
  • the positive electrode materials prepared in the above embodiments and comparative examples are assembled into a lithium ion battery, which includes a positive electrode sheet, a negative electrode sheet, a separator between the positive electrode sheet and the negative electrode sheet, and an electrolyte.
  • the charging cut-off voltage of the battery disclosed in the present invention is 4.5V.
  • the preparation process of the lithium ion battery is as follows:
  • the positive electrode material, conductive carbon black and PVDF were mixed in a weight ratio of 96%:2%:2% to obtain a positive electrode slurry by dispersion.
  • the slurry was coated on an aluminum foil current collector and rolled to obtain a positive electrode sheet.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • LiPF 6 lithium hexafluorophosphate
  • 2,4-butane sultone 2%.
  • the prepared lithium-ion battery is subjected to a cycle performance test, and the cycle performance test process is as follows:
  • the lithium-ion battery is charged to 4.50V at a constant current of 1C, then charged to 4.50V at a constant voltage of 0.05C, and then discharged to 3.0V at a discharge rate of 1C.
  • This charge and discharge cycle is repeated 500 times.
  • the discharge capacity at the first cycle and the discharge capacity at the 500th cycle are measured, and the capacity retention rate after the cycle is calculated.
  • the calculation formula is:
  • Capacity retention rate after cycles (discharge capacity at the 500th cycle)/(discharge capacity at the first cycle) ⁇ 100%.
  • buttons-type batteries were assembled into button-type batteries after XRD testing.
  • the preparation method of button cells is as follows:
  • the positive electrode material is mixed with conductive carbon black (SP) and PVDF in a weight ratio of 80%:10%:10%, and a positive electrode slurry is obtained by dispersion.
  • the slurry is coated on an aluminum foil current collector, and a positive electrode sheet is prepared by rolling.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Fluorinated ethylene carbonate (abbreviated as FEC) accounting for 5% of the total mass of the electrolyte
  • LiPF 6 lithium hexafluorophosphate
  • 2,4-butane sultone accounting for 2% of the total content of the electrolyte
  • Example 16a 2,4-butane sultone accounts for 0.1 wt% of the total content of the electrolyte
  • Example 16b 2,4-butane sultone accounts for 10 wt% of the total content of the electrolyte
  • Example 16d 2,4-Butane sultone accounts for 15 wt% of the total content of the electrolyte.
  • the button cell After the button cell is made, it is left to stand for 4 hours under normal conditions, and then the first charge and discharge capacity test is carried out.
  • the test conditions are: 0.1C charging to 4.5V, constant voltage charging to 0.025C, and then standing for 3 minutes, and then 0.1C discharge to 3.0V, and the first discharge capacity, first charge capacity, and first efficiency are recorded respectively.
  • the discharge capacity obtained is defined as C 0 mAh/g
  • the discharge capacity in the voltage range from the beginning of discharge to 4.4V is defined as C 1 mAh/g
  • the capacity in the voltage range of 3.8V-3.7V is defined as C 2 in the discharge capacity
  • C 1 /C 0 and C 2 /C 0 are calculated.
  • the lithium-ion battery assembled with the positive electrode material prepared in the present disclosure can enable the lithium-ion battery to achieve a higher discharge capacity per gram under high voltage while taking into account excellent cycle performance, and can meet people's demand for thinner lithium-ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种正极材料及包括该正极材料的正极片和电池,所述正极材料具有特殊的明显区别于常规钴酸锂材料的相结构,所述正极材料在充放电过程中可以展现出多个充放电小平台,跟常规的高电压钴酸锂材料相比,该正极材料在电化学性能方面表现出的优势是在相同的充放电截止电压和充放电倍率条件下,该正极材料具有更高的克容量发挥和循环性能。具体地,跟未掺杂的属于P63mc空间群,具有O2相堆积结构化合物相比,由于钾元素的作用,该化合物具有更高的克容量和更优的循环性能。

Description

一种正极材料及包括该正极材料的正极片和电池 技术领域
本公开属于电池技术领域,具体涉及一种正极材料及包括该正极材料的正极片和电池。
背景技术
随着锂离子电池技术的发展和进步,对其容量提出了越来越高的要求。在锂离子电池的组成中,正极材料容量的高低,对锂离子电池的容量起着至关重要的作用。为了提高锂离子电池的容量,一个重要的途径就是提高其充放电电压,但是随着电压的提高,正极材料会面临晶体结构不稳定、容量快速衰减和循环性能大幅降低等一系列不好的变化。因此,开发出一种具有高比容量、高电压平台、循环性能好且在高电压下界面稳定的锂离子电池正极材料一个非常关键的任务。
发明内容
针对现有技术中存在的问题,本公开提供一种正极材料及包括该正极材料的正极片和电池,所述正极材料属于P63mc空间群,具有O2相堆积结构。所述正极材料在高电压下具有高比容量、良好的界面稳定性以及循环稳定性,使用该正极材料能够提高电池的克容量、循环性能、倍率性能和能量密度。
本公开目的是通过如下技术方案实现的:
一种正极材料,所述正极材料为包括Li元素、Na元素、K元素、Co元素以及可选地包括A元素和/或M元素的锂过渡金属氧化物,所述A元素选自B和P中的至少一种,所述M元素选自Al、Mg、Ti、Mn、Te、Ni、W、Nb、Zr、La和Y中的至少一种。
根据本公开的实施方式,单位摩尔正极材料中K元素的摩尔量为z,单位摩尔正极材料中Co元素的摩尔量为1-a-b,单位摩尔正极材料中A元素的摩尔量a,单位摩尔正极材料中M元素的摩尔量为b,所述z和1-a的比值为0<z/1-a<0.05。
根据本公开的实施方式,所述可选地为可以选择,也可以不选择。
根据本公开的实施方式,单位摩尔正极材料中K元素的摩尔量z为0<z<0.05,例如z为0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.010、0.012、0.015、0.018、0.020、0.022、0.024、0.025、0.026、0.028、0.030、0.032、0.034、0.035、0.036、0.038、0.04、0.042、0.043、0.045、0.046、0.048或0.049。
根据本公开的实施方式,通过控制掺杂元素K的掺杂量可以提高充放电过程中电化学动力学性能和倍率性能,并减小极化现象,使电池具有较高的克容量、库伦效率、倍率性能和循环性能。
根据本公开的实施方式,单位摩尔正极材料中A元素的摩尔量a为0≤a<0.05,例如a为0、0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.010、0.012、0.015、0.018、0.020、0.022、0.024、0.025、0.026、0.028、0.030、0.032、0.034、0.035、0.036、0.038、0.04、0.042、0.043、0.045、0.046、0.048或0.049。
根据本公开的实施方式,所述A元素选自B和P中的至少一种,优选为B。B元素和P元素具有助熔作用,使正极材料的形貌为大粒径的单晶或多晶球形形貌。特别地,所述A元素选自B元素时,所述正极材料的形貌为单晶形貌。此外,B元素可以使得正极材料的结构更加稳定,能够稳定充放电过程中正极材料与电解液之间的界面,有利于改善电池的循环性能。同时,B和P元素可以显著地增加正极材料的克容量和压实密度,有利于提高电池的能量密度和倍率性能。
根据本公开的实施方式,单位摩尔正极材料中M元素的摩尔量b为0≤b<0.1,例如b为0、0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.010、0.012、0.015、0.018、0.020、0.022、0.024、0.025、0.026、0.028、0.030、0.032、0.034、0.035、0.04、0.045、0.05、0.055、0.06、0.065、0.07、0.075、0.08、0.085、0.09或0.095。
根据本公开的实施方式,M元素为替代部分Co元素,通过控制M元素的掺杂量可以稳定钴层的架构,改善正极材料整体结构的稳定性。
根据本公开的实施方式,单位摩尔正极材料中Na元素的摩尔量y为0<y<0.03,例如y为0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.010、0.012、0.015、0.018、0.020、0.022、0.024、0.025、0.026或0.028。
根据本公开的实施方式,通过控制Na元素的掺杂量可以对正极材料的层状结构起到支撑作用,有利于锂离子的脱嵌。
根据本公开的实施方式,所述正极材料的化学式为:
Lin-y-zNayKzCo1-a-bAaMbO2,其中,0.7≤n≤1.02,0<y<0.03,0<z<0.05,0≤a<0.05,0≤b<0.1,且0<z/1-a<0.05,A、M的定义如上所述。当z/1-a在本发明规定的范围内,代表K元素的掺杂量限定在一定的范围,在此范围内下K离子的半径>Li离子的半径,其对层状的结构的骨架起一定的支撑作用,促进Li离子的脱嵌,利于克容量的发挥和循环性能改善。当z/1-a超出范围内,意味着较多Li被K元素替代,失去了Li导致其克容量发挥有明显降低。
根据本公开的实施方式,所述正极材料的化学式中的n在不同脱锂状态下其值不一样,包括所述正极材料的正极片在分选前,粉料状态的正极材料中n的值为0.95~1.02;包括所述正极材料的正极片在分选(电压范围在3.6V~4.0V)后,正极材料中n的值为0.70~1.0。这主要是由于在电池首次充放电的过程中,一部分的锂离子用于形成正负极表面的保护层,即CEI膜与SEI膜,造成不可逆的一部分Li+的损失,因此经过化成分选后的正极片中正极材料中的Li含量明显比分选前的粉料状态的正极材料中的Li含量低。
根据本公开的实施方式,所述正极材料具有O2相堆积结构,属于P63mc空间群,该空间群属于一种层状结构,跟现有O3相堆积结构相比,其具有更大的层间距,因此其更容易进行锂离子的脱嵌。
根据本公开的实施方式,所述正极材料具有多晶形貌或具有单晶形貌,多晶形貌具有更优异的倍率性能,而单晶形貌具有更大的压实密度。
根据本公开的实施方式,所述正极材料的Dv50为12μm~20μm,例如为13μm、14μm、15μm、16μm、17μm、18μm、19μm或20μm。正极材料的Dv50可以使用激光粒度仪进行测试。Dv50指一个样品的累计体积粒度分布百分数达到50%时所对应的粒径。正极材料的Dv50在上述范围时,能够提高正极材料的堆积密度,提高电池的容量。
根据本公开的实施方式,通过X射线衍射测试,所述正极材料至少包括002晶面(2θ=18.6°±0.5°)特征峰、102晶面(2θ=41.7°±0.5°)特征峰和103晶面(2θ=47.1°±0.5°)特征峰。由此可以说明,所述正极材料具有O2相堆积结构。
根据本公开的实施方式,通过X射线衍射测试,所述正极材料的101晶面(2θ=38.2°±0.2°)特征峰和004晶面(2θ=37.6°±0.2°)特征峰的峰强度的比值m≥2,例如为2~8,如2~5,如2、3、4、5、6、7或8。具有此特征时,意味着其层状化合物的层间距更大,同时层结构的有序度更高,利于结构的稳定性。
根据本公开的实施方式,所述正极材料的克容量为≥210mAh/g(扣式电池,电压上限≥4.50V(相对锂))。
本公开还提供上述正极材料的制备方法,所述方法包括以下步骤:
第一步合成含Co元素、Na元素、K元素、可选地A元素、可选地M元素的化合物NaxKzCo1-a-bAaMbO2,其中0.68<x<0.74,z、a、b、A、M的定义如上所述;
第二步用溶液法将NaxKzCo1-a-bAaMbO2中大部分Na离子置换成Li离子后得到化学式为Lin-y-zNayKzCo1-a-bAaMbO2的正极材料。
根据本公开的实施方式,所述正极材料的制备方法包括如下步骤:
1)将含钴的化合物、含钠的化合物、含钾的化合物、含A的化合物以及含M的化合物按化学计量比称重后,混合,得到混合料;
2)将步骤1)的混合料进行高温煅烧,得到化学式为NaxKzCo1-a-bAaMbO2的化合物;
3)将步骤2)的化学式为NaxKzCo1-a-bAaMbO2的化合物与含锂化合物混合于溶剂中,进行离子交换反应,反应完毕后将反应产物洗涤和烘干,得到所述正 极材料。
根据本公开的实施方式,步骤1)中,所述混合的时间≤4h。
根据本公开的实施方式,步骤1)中,所述混合例如是高速搅拌、球磨、砂磨中的至少一种。
根据本公开的实施方式,步骤1)中,所述混合例如是使用高速混料设备、砂磨设备、球磨设备、犁刀混料设备、斜式混料设备进行混合。其中,在球磨或砂磨过程中加介质(如水或者酒精或者其它溶剂介质),则混合后需要进行烘干处理。
根据本公开的实施方式,步骤1)中,所述含钴化合物选自氢氧化钴、四氧化三钴、掺杂型四氧化三钴、氧化亚钴、羟基氧化钴、硝酸钴、硫酸钴等化合物。
根据本公开的实施方式,步骤1)中,所述含钠的化合物选自氧化钠、碳酸钠、硝酸钠、氢氧化钠、碳酸氢钠、硫酸钠等。
根据本公开的实施方式,步骤1)中,所述含钾的化合物选自氧化钾、碳酸钾、硝酸钾、氢氧化钾、碳酸氢钾、硫酸钾等。
根据本公开的实施方式,步骤1)中,所述含A的化合物选自B的氧化物、P的氧化物、B的氢氧化物、P的氢氧化物、B的酸、P的酸、B的盐或P的盐。
根据本公开的实施方式,步骤1)中,所述含A的化合物选自硼酸、磷酸。
根据本公开的实施方式,步骤1)中,所述含M的化合物选自Al、Mg、Ti、Mn、Te、Ni、W、Nb、Zr、La、Y的氧化物、氢氧化物或盐。
根据本公开的实施方式,步骤1)中,所述含M的化合物选自碱式碳酸镁、氢氧化镁、氧化锆、氧化铝、氢氧化铝、氧化钇、氧化镧、磷酸铝、焦磷酸钠、钨酸钠、氟化镧等。
根据本公开的实施方式,步骤2)中,所述煅烧的温度为700~900℃,所述煅烧的时间为8~50h,所述煅烧是在空气或者是氧气气氛下进行的。
根据本公开的实施方式,步骤2)中,所述高温煅烧是将混合料装入坩埚后, 放入马弗炉、隧道炉、辊道窑炉、管式炉等高温烧结设备中进行高温煅烧。
根据本公开的实施方式,步骤3)中,所述含锂化合物选自氟化锂、氯化锂、溴化锂、碘化锂、氢氧化锂、硝酸锂、碳酸锂等。
根据本公开的实施方式,步骤3)中,所述溶剂选自水或者有机溶液。
根据本公开的实施方式,步骤3)中,所述含锂化合物与化学式为NaxKzCo1-a-bAaMbO2的化合物的质量比为≥1,优选1~3。
根据本公开的实施方式,步骤3)中,所述溶剂与化学式为NaxKzCo1-a-bAaMbO2的化合物的质量比为≥5,优选20~150。
根据本公开的实施方式,步骤3)中,进行所述离子交换反应的反应设备包含带有密闭功能和搅拌能力的密闭容器设备,如湿法包覆反应设备,共沉淀反应设备。
根据本公开的实施方式,步骤3)中,所述离子交换反应是在搅拌条件下进行的,搅拌的速度为10rpm~200rpm,反应的温度为70~125℃,反应的时间为≥5小时,如10~15小时。
根据本公开的实施方式,步骤3)中,所述烘干的温度为80~180℃,烘干的时间为≥10小时。
根据本公开的实施方式,步骤3)中,烘干工序所使用到的设备如鼓风烘箱、真空干燥烘箱、回转窑、盘式干燥机、烤箱等。
本公开还提供一种正极片,所述正极片包括上述的正极材料。
根据本公开的实施方式,所述正极片包括正极集流体和活性物质层,所述活性物质层涂布在正极集流体的至少一侧表面上,所述活性物质层包括上述的正极材料。
根据本公开的实施方式,所述正极片包括正极集流体、安全层以及活性物质层,所述安全层涂布在正极集流体的至少一侧表面上,所述活性物质层涂布在安全层的表面上,所述活性物质层包括上述的正极材料。
根据本公开的实施方式,所述安全涂层包括含铁的化合物(如磷酸铁锂、 磷酸锂)、含铝的化合物(如氧化铝陶瓷)以及其它的一些非导电性安全介质材料。
根据本公开的实施方式,所述活性物质层还包括导电剂和粘结剂。
根据本公开的实施方式,所述活性物质层中各组分的质量百分含量为:70wt%~99wt%的正极材料、0.5wt%~15wt%的导电剂、0.5wt%~15wt%的粘结剂。
根据本公开的实施方式,所述活性物质层中各组分的质量百分含量为:80wt%~98wt%的正极材料、1wt%~10wt%的导电剂、1wt%~10wt%的粘结剂。
根据本公开的实施方式,所述导电剂选自导电炭黑、乙炔黑、科琴黑、导电石墨、碳纳米管(单壁碳纳米管和/或多壁碳纳米管)、碳纤维(例如导电碳纤维)中的至少一种。
根据本公开的实施方式,所述粘结剂选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚丙烯酸锂(PAA-Li)中的至少一种。
本公开还提供一种电池,所述电池包括上述的正极材料,或者,所述电池包括上所述的正极片。
根据本公开的实施方式,所述电池还包括负极片、隔膜和电解液。
根据本公开的实施方式,所述电解液包括锂盐和有机溶剂。
根据本公开的实施方式,所述有机溶剂选自碳酸乙烯酯(简写为EC)、碳酸二乙酯(简写为DEC)、碳酸丙烯酯(简写为PC)、氟代碳酸乙烯酯(简写为FEC)中的至少一种。
根据本公开的实施方式,所述电解液还包括添加剂,所述添加剂包括2,4-丁烷磺内酯。
根据本公开的实施方式,所述2,4-丁烷磺内酯的化学结构式为:
根据本公开的实施方式,所述2,4-丁烷磺内酯的含量占电解液总含量的0.1wt%~10wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.1wt%、1.2wt%、1.3wt%、1.4wt%、1.5wt%、1.6wt%、1.7wt%、1.8wt%、1.9wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%。当所述方案含有如上电解液添加剂2,4-丁烷磺内酯,且2,4-丁烷磺内酯的含量在方案范围时,该添加剂有助于成膜,使得电池的循环性能得到一定的改善。
根据本公开的实施方式,所述负极片包括负极集流体和负极活性物质层,所述负极活性物质层涂布在负极集流体的至少一侧表面上,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
根据本公开的实施方式,所述负极活性物质层中各组分的质量百分含量为:70wt%~99wt%的负极活性物质、0.5wt%~15wt%的导电剂、0.5wt%~15wt%的粘结剂。
根据本公开的实施方式,所述负极活性物质层中各组分的质量百分含量为:80wt%~98wt%的负极活性物质、1wt%~10wt%的导电剂、1wt%~10wt%的粘结剂。
根据本公开的实施方式,所述负极活性物质选自人造石墨、天然石墨、硬炭、中间相碳微球、钛酸锂、硅碳、氧化亚硅中的一种或几种的组合。
根据本公开的实施方式,所述隔膜选自聚丙烯为基材的材料,或在此基础上单面或双面涂覆陶瓷的涂胶隔膜。
根据本公开的实施方式,所述电池在3.0~4.5V电压下,首次进行0.1C充放电时,得到的放电容量定义为C0mAh/g,从放电开始到4.4V电压范围内的放电容量定义为C1mAh/g,放电容量中3.8V~3.7V电压范围内的容量定义为C2,则此正极材料0.1C下的放电容量满足C1/C0≥9%,C2/C0≥25%。
有益效果:
本公开提供了一种正极材料及包括该正极材料的正极片和电池,所述正极材料具有特殊的明显区别于常规钴酸锂材料的相结构,所述正极材料在充放电过程中可以展现出多个充放电小平台,跟常规的高电压钴酸锂材料相比,本公开提供的正极材料在电化学性能方面表现出的优势包括:在相同的充放电截止电压和充放电倍率条件下,该正极材料具有更高的克容量发挥和循环性能。具体地,跟未掺杂的属于P63mc空间群,具有O2相堆积结构化合物相比,由于钾元素掺杂的作用,本公开的正极材料化合物具有更高的克容量和更优的循环性能。
综上,相对于现有技术,本公开的电池由于使用了本公开的正极材料,能够在4.50V等更高电压使用条件下具有良好的循环稳定性和较高的克容量发挥,可满足高端数码产品轻薄化的使用需求。
附图说明
图1为实施例1的正极材料的XRD图。
图2为实施例1的正极材料的SEM图。
图3为实施例6的正极材料的SEM图。
图4为实施例1的扣式电池的充放电曲线图。
具体实施方式
下文将结合具体实施例对本公开的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
本公开提供的正极材料通过X射线衍射(XRD),用于表征正极材料的特征峰,通过电感耦合等离子光谱发生仪(ICP),用于表征化学式中的各元素的摩尔含量。
本公开提供的正极材料通过与负极片和电解液组装成全电池或扣式电池进行表征。
实施例1
该正极材料的制备方法包括如下步骤:
(1)称取重量为36.56g的碳酸钠粉末、0.21g的碳酸钾粉末、282.32g的六水合硝酸钴粉末和1.53g的纳米氧化铝粉末,将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸钠小白点存在后,认为混料均匀;
(2)取30g左右混合均匀的混合料,均匀装入陶瓷坩埚中,使用设备型号为VBF-1200X的井式马弗炉进行高温烧结,烧结的升温曲线为5℃/min,升温至750℃时进行恒温烧结10h,烧结后自然降温至常温后将样品取出,得到烧结后的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,即正极材料样品1#;
(3)取一个反应容器里面加入200ml的去离子水,先称取重量为10.49g的一水合氢氧化锂和质量为10.59g的氯化锂颗粒,将两种锂的化合物分别加入反应容器中,在水温为78℃的温度下,在转速为20rpm条件下,搅拌5min钟后,称取质量为10g的第(2)步骤合成的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,倒入反应容器中;持续保持78℃温度下,转速控制在20rpm条件下,持续反应8小时;
(4)反应完成后的材料取出后,经过3次去离子水抽滤洗涤后,在鼓风干燥烘箱或者真空干燥烘箱中设定90℃,干燥8小时后得到样品1#;将合成得到的样品1#粉末进行XRD测试,并组装成扣式电池和全电池进行测试。
实施例2-11
正极材料样品2#-11#的制备方法与实施例1相同,这里不再复述,不同之处 仅在于步骤(1):
称取不同化学计量(如下表1所示)的碳酸钠粉末、碳酸钾粉末、六水合硝酸钴粉末以及不同类型的不同质量的添加剂化合物(如下表1所示),将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸钠小白点存在后,认为混料均匀。
实施例12
该正极材料样品12#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤(3):
(3)取一个反应容器里面加入300ml的去离子水,先称取重量为10.49g的一水合氢氧化锂和质量为10.59g的氯化锂颗粒,将两种锂的化合物分别加入反应容器中,在水温为78℃的温度下,在转速为20rpm条件下,搅拌5min钟后,称取质量为10g的第(2)步骤合成的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,倒入反应容器中;持续保持78℃温度下,转速控制在20rpm条件下,持续反应8小时。
实施例13
该正极材料样品13#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤(3):
(3)取一个反应容器里面加入400ml的去离子水,先称取重量为10.49g的一水合氢氧化锂和质量为10.59g的氯化锂颗粒,将两种锂的化合物分别加入反应容器中,在水温为78℃的温度下,在转速为20rpm条件下,搅拌5min钟后,称取质量为10g的第(2)步骤合成的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,倒入反应容器中;持续保持78℃温度下,转速控制在20rpm条件下,持续反应8小时。
实施例14
该正极材料样品14#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤(3):
(3)取一个反应容器里面加入200ml的去离子水,先称取重量为10.49g的一水合氢氧化锂和质量为10.59g的氯化锂颗粒,将两种锂的化合物分别加入反应容器中,在水温为78℃的温度下,在转速为30rpm条件下,搅拌5min钟后,称取质量为10g的第(2)步骤合成的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,倒入反应容器中;持续保持78℃温度下,转速控制在30rpm条件下,持续反应8小时。
实施例15
该正极材料样品15#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤(3):
(3)取一个反应容器里面加入200ml的去离子水,先称取重量为10.49g的一水合氢氧化锂和质量为10.59g的氯化锂颗粒,将两种锂的化合物分别加入反应容器中,在水温为78℃的温度下,在转速为35rpm条件下,搅拌5min钟后,称取质量为10g的第(2)步骤合成的含钴、钠化合物Na0.69K0.003Co0.97Al0.03O2,倒入反应容器中;持续保持78℃温度下,转速控制在35rpm条件下,持续反应8小时。
对比例1
常规无掺杂钴酸锂正极材料合成,其化学组成为Li1.0025CoO2
该正极活性物质的制备方法包括如下步骤:
(1)按摩尔比例Li:Co=100.25:100称取碳酸锂和市面上购买的常规的非掺杂的球形Co3O4颗粒,将两种物质使用与实施例相同的搅拌设备,将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸锂小白点存在后,认为混料均匀;
(2)取30g左右混合均匀的混合料,均匀装入陶瓷坩埚中,使用设备型号为VBF-1200X的井式马弗炉进行高温烧结,烧结的升温曲线为5℃/min,升温至1050℃时进行恒温烧结10h,烧结后自然降温至常温后将样品取出,得到烧结后的含钴、锂化合物Li1.0025CoO2
(3)按烧结得到的常规钴酸锂进行粉碎研磨处理后,再次将粉末置于马弗炉中在950℃,烧结时间为8h,然后对烧结产物进行粉碎处理,得到Dv50为15.2μm的未有任何掺杂包覆的Li1.0025CoO2,即正极材料样品16#。
对比例2
常规高电压掺杂包覆钴酸锂正极材料合成,其化学组成为Li1.0027Co0.966Al0.03Mg0.002La0.002O2,属于O3相;该正极活性物质的制备方法包括如下步骤:
(1)按摩尔比例Li:Co:Mg=100.27:96.6:0.2称取碳酸锂和市面上购买的常规的带有掺杂Al和La的球形Co3O4颗粒以及氧化镁颗粒,该Co3O4颗粒的化学计量比为Co:Al:La=96.6:3.0:0.2,将两种物质使用与实施例相同的搅拌设备,将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸锂小白点存在后,认为混料均匀;
(2)取30g左右混合均匀的混合料,均匀装入陶瓷坩埚中,使用设备型号为VBF-1200X的井式马弗炉进行高温烧结,烧结的升温曲线为5℃/min,升温至1030℃时进行恒温烧结10h,烧结后自然降温至常温后将样品取出,得到烧结后的含钴、锂化合物Li1.0027Co0.966Al0.03Mg0.002La0.002O2
(3)按烧结得到的上述烧结得到的钴酸锂进行粉碎研磨处理后,与二氧化钛按摩尔比例Co:Ti=96.6:0.2进行称取,然后将两种物料放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,再次将粉末置于马弗炉中在950℃,烧结时间为8h,然后 对烧结产物进行粉碎处理,得到Dv50为14.8μm的掺杂包覆型的高电压钴酸锂材料,其化学式为Li1.0027Co0.966Al0.03Mg0.002La0.002Ti0.002O2,即正极材料样品17#。
对比例3
该正极材料样品18#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤1:
(1)称取重量为36.56g的碳酸钠粉末和291.05g的六水合硝酸钴粉末,不添加任何添加剂,将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸钠小白点存在后,认为混料均匀;重复其它步骤,合成得到对比例3的物质Li0.97Na0.025CoO2,属于未进行任何掺杂的O2结构。
对比例4
该正极材料样品19#的制备方法与实施例1相同,这里不再复述,不同之处仅在于步骤1:
(1)称取重量为36.56g的碳酸钠粉末、282.32g的六水合硝酸钴粉末和1.53g的纳米氧化铝粉末,将其放入高速混料设备中,设定混料程序,用300rpm混料3分钟后,用500rpm混料5分钟,再用1000rpm混料10分钟后取出混合料,确认混合料中没有白色的碳酸钠小白点存在后,认为混料均匀;重复其它步骤,合成得到对比例3的物质Li0.97Na0.025Co0.97Al0.03O2,属于O2结构。
表1:实施例1-11、对比例3-4的正极材料化学组分比例和所使用的原料添加量

将上述实施例以及对比例制备的正极材料组装成锂离子电池,所述锂离子电池包括正极片、负极片、间隔于正极片和负极片之间的隔膜以及电解液,本公开的电池的充电截止电压为4.5V。
所述锂离子电池的制备过程如下:
将人造石墨、苯乙烯二烯橡胶(SBR)、羧甲基纤维素钠、导电碳黑以94%:3%:2%:1%的重量比混合,将混合物分散于水中通过双行星混合后得到负极浆液。将该浆液涂覆于铜集流体上,接着进行辊压及干燥,得到负极片。
将正极材料与导电碳黑、PVDF按照96%:2%:2%的重量比混合,通过分散得到正极浆料。将该浆料涂布在铝箔集流体上,辊压制备得到正极片。
将正极片、负极片和隔膜组装成锂离子电池,并注入电解液(按碳酸乙烯酯(简写为EC):碳酸二乙酯(简写为DEC):碳酸丙烯酯(简写为PC)=2:5:3的质量比混合后,加入占电解液总质量的5%的氟代碳酸乙烯酯(简写为FEC)、加入占电解液总质量的13%的六氟磷酸锂(简写为LiPF6),占电解液总含量的2%的2,4-丁烷磺内酯。
对制备出的锂离子电池进行循环性能测试,循环性能测试过程为:
在25℃下,对锂离子电池以1C的充电倍率恒流充电至4.50V,再以0.05C的充电倍率恒压充电至4.50V,然后以1C的放电倍率放电至3.0V,反复500次这种充放电循环,测定第一次循环时的放电容量和第500次循环时的放电容量,求出循环后的容量保持率,计算公式为:
循环后的容量保持率=(第500次循环时的放电容量)/(第一次循环时的放电容量)×100%。
将实施例和对比例制备的正极材料进行XRD测试后组装成扣式电池,并进 行容量测试,扣式电池的制备方法如下:
将正极材料与导电碳黑(SP)、PVDF按照80%:10%:10%的重量比混合,通过分散得到正极浆料。将该浆料涂布在铝箔集流体上,辊压制备得到正极片,然后将正极片用膜具冲型直径为12mm的小圆片,烘干称重处理后,在Ar保护气氛下的手套箱中,使用2025的扣式电池壳,用Li金属圆片作负极,电解液(按碳酸乙烯酯(简写为EC):碳酸二乙酯(简写为DEC):碳酸丙烯酯(简写为PC)=2:5:3的质量比混合后,加入占电解液总质量的5%的氟代碳酸乙烯酯(简写为FEC)、加入占电解液总质量的13%的六氟磷酸锂(简写为LiPF6),占电解液总含量的2%的2,4-丁烷磺内酯,组装成扣式电池。
实施例16组
参照实施例1进行,不同之处在于电解液中2,4-丁烷磺内酯的加入量不同:
实施例16a:2,4-丁烷磺内酯占电解液总含量的0.1wt%;
实施例16b:2,4-丁烷磺内酯占电解液总含量的10wt%;
实施例16c:不加入2,4-丁烷磺内酯;
实施例16d:2,4-丁烷磺内酯占电解液总含量的15wt%。
扣式电池制作完成后,常规环境下静置4小时后,进行首次充放电容量测试,测试条件为:0.1C充电至4.5V,恒压充电至0.025C截止后,静置3min钟后,0.1C放电至3.0V,分别记录首次放电容量、首次充电容量、首次效率。具体地,所述电池在3.0~4.5V电压下,首次进行0.1C充放电时,得到的放电容量定义为C0mAh/g,从放电开始到4.4V电压范围内的放电容量定义为C1mAh/g,放电容量中3.8V~3.7V电压范围内的容量定义为C2,计算C1/C0和C2/C0
表2实施例和对比例的正极材料和电池的性能测试结果


注:表2中“-”表示未进行测量该参数。
实施例1-11中数据显示,在第一部分的烧结合成中,制备原料的组成和含量均会对合成新结构含钠钾钴化合物的相峰位置和峰强度有一定的影响,与对比例3-4相比,其首次放电容量和循环性能都有一定的提升。
实施例1、12-15中数据显示,不同的反应参数如搅拌速度、水含量等,对新材料的电化学性能有一定的影响,搅拌速度和水含量增加,克容量发挥有一定增加的趋势。
从实施例1-15与对比例1-4的测试结果可以看出:采用本公开的正极材料作为锂离子电池正极活性物质时,在本公开实施例中4.5V及以上电压体系下有较高的首次放电容量,与常规的结构的钴酸锂材料相比放电容量有明显的提高,经过循环500次后的容量保持率均至少为85%以上;同时掺杂元素K元素能明显提升正极材料的扣式电池的容量和循环性能,随着K掺杂量的提升,循环性能和克容量逐步提升,分析认为K原子半径大于Li和Na,在新结构中K原子占位起支撑作用,有利于Li离子的脱嵌,从而利于循环性能和首次放电容量。
从实施例16组的测试结果可以看出,2,4-丁烷磺内酯的含量在本公开的方案范围时,该添加剂有助于成膜,使得电池的循环性能得到一定的改善。
总之,本公开制备的正极材料组装的锂离子电池在高电压下可以使锂离子电池实现较高放电克容量同时兼顾优异的循环性能,能够满足人们对锂离离子电池薄型化的需求。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种正极材料,其特征在于,所述正极材料为包括Li元素、Na元素、K元素、Co元素以及可选地包括A元素和/或M元素的锂过渡金属氧化物,所述A元素选自B和P中的至少一种,所述M元素选自Al、Mg、Ti、Mn、Te、Ni、W、Nb、Zr、La和Y中的至少一种。
  2. 根据权利要求1所述的正极材料,其特征在于,单位摩尔正极材料中K元素的摩尔量为z,单位摩尔正极材料中Co元素的摩尔量为1-a-b,单位摩尔正极材料中A元素的摩尔量a,单位摩尔正极材料中M元素的摩尔量为b,所述z和1-a的比值为0<z/1-a<0.05。
  3. 根据权利要求1或2所述的正极材料,其特征在于,单位摩尔正极材料中K元素的摩尔量z为0<z<0.05;
    和/或,单位摩尔正极材料中Na元素的摩尔量y为0<y<0.03。
  4. 根据权利要求1-3任一项所述的正极材料,其特征在于,单位摩尔正极材料中A元素的摩尔量a为0≤a<0.05;
    和/或,单位摩尔正极材料中M元素的摩尔量b为0≤b<0.1。
  5. 根据权利要求1-4任一项所述的正极材料,其特征在于,所述正极材料的化学式为:Lin-y-zNayKzCo1-a-bAaMbO2,其中,0.95≤n≤1.02,0<y<0.03,0<z<0.05,0≤a<0.05,0≤b<0.1,且0<z/1-a<0.05。
  6. 根据权利要求1-5任一项所述的正极材料,其特征在于,所述正极材料具有O2相堆积结构,属于P63mc空间群。
  7. 根据权利要求1-6任一项所述的正极材料,其特征在于,所述正极材料具有多晶形貌或具有单晶形貌。
  8. 根据权利要求1-6任一项所述的正极材料,其特征在于,通过X射线衍射测试,所述正极材料至少包括002晶面(2θ=18.6°±0.5°)特征峰、102晶面(2θ=41.7°±0.5°)特征峰和103晶面(2θ=47.1°±0.5°)特征峰。
  9. 根据权利要求1-6任一项所述的正极材料,其特征在于,通过X射线衍射测试,所述正极材料的101晶面(2θ=38.2°±0.2°)特征峰和004晶面(2θ=37.6°±0.2°)特征峰的峰强度的比值m≥2。
  10. 根据权利要求1-9任一项所述的正极材料,其特征在于,所述正极材料的Dv50为12μm~20μm。
  11. 根据权利要求1-10任一项所述的正极材料,其特征在于,所述正极材料的克容量为≥210mAh/g。
  12. 一种正极片,所述正极片包括权利要求1-11任一项所述的正极材料。
  13. 一种电池,其特征在于,所述电池包括权利要求1-11任一项所述的正极材料,或者,所述电池包括权利要求12所述的正极片。
  14. 根据权利要求13所述的电池,其特征在于,所述电池在3.0~4.5V电压下,首次进行0.1C充放电时,得到的放电容量定义为C0mAh/g,从放电开始到4.4V电压范围内的放电容量定义为C1mAh/g,放电容量中3.8V~3.7V电压范围内的容量定义为C2,则此正极材料0.1C下的放电容量满足C1/C0≥9%,C2/C0≥25%。
  15. 根据权利要求13或14所述的电池,其特征在于,所述电池还包括电解液,所述电解液还包括添加剂,所述添加剂包括2,4-丁烷磺内酯;
    优选地,所述2,4-丁烷磺内酯的含量占电解液总含量的0.1wt%~10wt%。
PCT/CN2023/125242 2022-11-01 2023-10-18 一种正极材料及包括该正极材料的正极片和电池 WO2024093679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211358612.9A CN116093271A (zh) 2022-11-01 2022-11-01 一种正极材料及包括该正极材料的正极片和电池
CN202211358612.9 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093679A1 true WO2024093679A1 (zh) 2024-05-10

Family

ID=86199821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125242 WO2024093679A1 (zh) 2022-11-01 2023-10-18 一种正极材料及包括该正极材料的正极片和电池

Country Status (2)

Country Link
CN (1) CN116093271A (zh)
WO (1) WO2024093679A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747808A (zh) * 2022-09-13 2024-03-22 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294241A (ja) * 1999-04-09 2000-10-20 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
JP2000323140A (ja) * 1999-05-17 2000-11-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
CN105518912A (zh) * 2013-07-11 2016-04-20 株式会社三德 用于非水电解质二次电池的正极活性材料以及使用所述正极活性材料的正极和二次电池
US20160141606A1 (en) * 2014-11-19 2016-05-19 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
US20160276665A1 (en) * 2013-11-22 2016-09-22 Mitsui Mining & Smelting Co., Ltd. Spinel-Type Lithium Metal Composite Oxide
CN112768687A (zh) * 2021-01-21 2021-05-07 中国科学院长春应用化学研究所 锂位掺杂改性的锂离子电池用高镍低钴三元正极材料及其制备方法
CN113517418A (zh) * 2021-06-25 2021-10-19 倪尔福 钠离子二次电池及其制备方法
CN114141999A (zh) * 2021-10-26 2022-03-04 华中科技大学 耐高温高电压复合钴酸锂正极材料及其制备方法和应用
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294241A (ja) * 1999-04-09 2000-10-20 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
JP2000323140A (ja) * 1999-05-17 2000-11-24 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
CN105518912A (zh) * 2013-07-11 2016-04-20 株式会社三德 用于非水电解质二次电池的正极活性材料以及使用所述正极活性材料的正极和二次电池
US20160276665A1 (en) * 2013-11-22 2016-09-22 Mitsui Mining & Smelting Co., Ltd. Spinel-Type Lithium Metal Composite Oxide
US20160141606A1 (en) * 2014-11-19 2016-05-19 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
CN112768687A (zh) * 2021-01-21 2021-05-07 中国科学院长春应用化学研究所 锂位掺杂改性的锂离子电池用高镍低钴三元正极材料及其制备方法
CN113517418A (zh) * 2021-06-25 2021-10-19 倪尔福 钠离子二次电池及其制备方法
CN114141999A (zh) * 2021-10-26 2022-03-04 华中科技大学 耐高温高电压复合钴酸锂正极材料及其制备方法和应用
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Also Published As

Publication number Publication date
CN116093271A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11996555B2 (en) Ternary cathode material, preparation method therefor, and lithium ion battery
JP6380608B2 (ja) リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法
KR101964726B1 (ko) 구형 또는 구형-유사 리튬 이온 배터리 캐소드 재료 및 이의 제조 방법 및 적용
CN108390022B (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2024093679A1 (zh) 一种正极材料及包括该正极材料的正极片和电池
KR20180070435A (ko) 리튬 배터리용 구형 또는 구형-유사 캐소드 재료, 이의 배터리 및 제조 방법 및 적용
JP6650956B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法
JP2009081130A (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその噴霧乾燥工程で得られる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011003551A (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2022199389A1 (zh) 硅氧复合负极材料及其制备方法、锂离子电池
WO2024046046A1 (zh) 一种正极活性材料及其应用
JP2015122299A (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP2011134708A (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2023155930A1 (zh) 锂离子电池正极材料及其制备方法
US20230307631A1 (en) Positive electrode material, battery, and electronic device
WO2024119936A1 (zh) 一种正极活性材料及其应用
US20100273055A1 (en) Lithium-ion electrochemical cell
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
CN115995550A (zh) 一种正极活性材料及其应用
WO2024146611A1 (zh) 一种锂离子电池
Cao et al. Influence of different lithium sources on the morphology, structure and electrochemical performances of lithium-rich layered oxides
JP2006196293A (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP2012116746A (ja) スピネル型リチウム・マンガン複合酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884611

Country of ref document: EP

Kind code of ref document: A1