WO2022055103A1 - 선택성 부여제를 이용한 영역 선택적 박막 형성 방법 - Google Patents

선택성 부여제를 이용한 영역 선택적 박막 형성 방법 Download PDF

Info

Publication number
WO2022055103A1
WO2022055103A1 PCT/KR2021/008734 KR2021008734W WO2022055103A1 WO 2022055103 A1 WO2022055103 A1 WO 2022055103A1 KR 2021008734 W KR2021008734 W KR 2021008734W WO 2022055103 A1 WO2022055103 A1 WO 2022055103A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
chamber
selectivity
substrate
imparting agent
Prior art date
Application number
PCT/KR2021/008734
Other languages
English (en)
French (fr)
Inventor
김재민
김하나
최웅진
Original Assignee
주식회사 이지티엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지티엠 filed Critical 주식회사 이지티엠
Priority to CN202180061551.7A priority Critical patent/CN116113724A/zh
Priority to JP2023515391A priority patent/JP2023545619A/ja
Priority to US18/044,562 priority patent/US20230366080A1/en
Publication of WO2022055103A1 publication Critical patent/WO2022055103A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Definitions

  • the present invention relates to a method for forming a thin film, and more particularly, to a method for forming a region-selective thin film using a selectivity imparting agent.
  • DRAM devices continue to be miniaturized with the development of innovative technologies, reaching the 10nm era. Accordingly, in order to improve performance and reliability, high capacitance and low leakage current characteristics must be sufficiently maintained even when the size of the capacitor is reduced, and a breakdown voltage must be high.
  • a crystal structure having a high dielectric constant can be formed even at a relatively low temperature, but there is a problem in that a seed layer is deposited even where a dielectric film should not be deposited, resulting in leakage current.
  • An object of the present invention is to provide a method for forming a thin film having a high capacitance.
  • Another object of the present invention is to provide a method for forming a thin film capable of minimizing leakage current.
  • Another object of the present invention is to provide a method for forming a thin film that can be selected according to an area.
  • a method for forming a region-selective thin film includes: supplying a selectivity-imparting agent into a chamber in which a substrate is placed, and adsorbing the selectivity-imparting agent to a non-growth region of the substrate; purging the interior of the chamber; a precursor supply step of supplying a precursor to the inside of the chamber and adsorbing it to the growth region of the substrate; purging the interior of the chamber; and supplying a reactant into the chamber to react with the adsorbed precursor to form a thin film.
  • the growth region may be a titanium nitride film or a niobium nitride film.
  • the non-growth region may be a silicon nitride layer.
  • the silicon nitride layer may be at least one selected from among SiN, SiCN, C-doped SiN, and SiON.
  • the selectivity imparting agent may be represented by the following ⁇ Formula 1>.
  • n is each independently an integer of 0 to 8 8
  • R1 to R3 are independently an alkyl group having 1 to 8 carbon atoms
  • R4 is hydrogen, an alkyl group having 1 to 8 carbon atoms
  • the number of carbons is selected from 1 to 8 alkoxy groups.
  • the reactant may be any one of O3, O2, and H2O.
  • the precursor may be a compound including at least one of a trivalent metal including Al, a tetravalent metal including Zr and Hf, and a pentavalent metal including Nb and Ta.
  • the thin film may be formed by metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • the subsequently supplied precursor in a state in which the selectivity imparting agent is adsorbed to the non-growth region, the subsequently supplied precursor is prevented from being adsorbed to the non-growth region, thereby preventing the formation of a thin film in the non-growth region. can In addition, it is possible to minimize the leakage current through this.
  • FIG. 1 is a flowchart schematically illustrating a method for forming a thin film according to an embodiment of the present invention.
  • FIG. 2 is a graph schematically illustrating a supply cycle according to FIG. 1 .
  • FIG. 3 is a diagram schematically illustrating a process of forming a thin film according to FIG. 1 .
  • FIG. 4 is a graph showing the Nb content by X-ray photoelectron spectroscopy (XPS) analysis according to an embodiment and Comparative Example 1 of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • alkyl or “alkyl group” refers to 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 5 carbon atoms, 1 to 3 carbon atoms, straight or branched alkyl groups having from 3 to 8 carbon atoms, or from 3 to 5 carbon atoms.
  • the alkyl group includes a methyl group, an ethyl group, an n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), a tert-butyl group ( t Bu), an iso- Butyl group ( i Bu), sec-butyl group ( s Bu), n-pentyl group, tert-pentyl group, iso-pentyl group, sec-pentyl group, neopentyl group, 3-pentyl group, hexyl group, isohexyl group Sil group, heptyl group, 4,4-dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, and isomers thereof, etc., but are limited thereto. it may not be
  • film may include, but is not limited to, “membrane” or “thin film”.
  • a dielectric film is deposited on a non-growth region, for example, a non-metal thin film such as a silicon nitride film, resulting in leakage current.
  • a non-metal thin film such as a silicon nitride film
  • the selectivity-imparting agent described below is adsorbed to a non-metal thin film (eg, silicon nitride film) at a higher density than the metal thin film, and the selectivity-imparting agent prevents adsorption of the metal precursor to be added later, so that a seed layer is applied only to the metal thin film.
  • FIG. 1 is a flowchart schematically illustrating a method for forming a thin film according to an embodiment of the present invention
  • FIG. 2 is a graph schematically illustrating a supply cycle according to FIG. 1
  • FIG. 3 is a diagram schematically illustrating a process of forming a thin film according to FIG. 1 .
  • the substrate is loaded into the process chamber, and the following ALD process conditions are adjusted.
  • the ALD process conditions may include a temperature of a substrate or a process chamber, a chamber pressure, and a gas flow rate, and the temperature is 10 to 900°C.
  • the substrate is exposed to the selectivity-imparting agent supplied to the interior of the chamber, and the selectivity-imparting agent is adsorbed to the surface of the non-growth region of the substrate.
  • the non-growth region may be a silicon nitride layer, and may be at least one selected from among SiN, SiCN, C-doped SiN, and SiON.
  • the selectivity imparting agent is adsorbed at a high density on the surface of the non-growth region, and prevents adsorption of the metal precursor in a subsequent process.
  • the selectivity imparting agent may be represented by the following ⁇ Formula 1>.
  • n is each independently an integer of 0 to 8 8
  • R1 to R3 are independently an alkyl group having 1 to 8 carbon atoms
  • R4 is hydrogen, an alkyl group having 1 to 8 carbon atoms
  • the number of carbons is selected from 1 to 8 alkoxy groups.
  • a purge gas eg, an inert gas such as Ar
  • an inert gas such as Ar
  • the metal precursor may include Group 3, such as Al, or Group 4, such as Zr or Hf, or Group 5, such as Nb or Ta.
  • a purge gas eg, an inert gas such as Ar
  • an inert gas such as Ar
  • the substrate is exposed to the reactant supplied into the chamber, and a thin film is formed on the surface of the substrate.
  • the reactive material reacts with the metal precursor layer to form a thin film, and the reactive material may be O3, O2, or H2O gas, and a metal oxide layer may be formed through the reactive material.
  • the reactant oxidizes the adsorbed surface protection material, and is removed from the surface of the substrate.
  • a purge gas eg, an inert gas such as Ar
  • an inert gas such as Ar
  • the selectivity-imparting agent is supplied before the metal precursor
  • the selectivity-imparting agent may be supplied after the metal precursor or both before and after the metal precursor.
  • Trimethyl orthoformate was used as a selectivity imparting agent to form a niobium oxide layer on a metal thin film (TiN) substrate and a non-metal thin film (SiN) substrate, respectively.
  • a niobium oxide film was formed through the ALD process, the ALD process temperature was 290°C, and O3 gas was used as the reactant.
  • the niobium oxide film formation process through the ALD process is as follows, and the following process was performed as one cycle (refer to FIGS. 1 to 3).
  • the niobium precursor TBTDEN tert-butylimido tris(diethylamido) niobium
  • the niobium precursor is adsorbed on the substrate
  • a niobium oxide layer was respectively formed on a metal thin film (TiN) substrate and a non-metal thin film (SiN) substrate without using the selectivity imparting agent described above.
  • a niobium oxide film was formed through the ALD process, the ALD process temperature was 290°C, and O3 gas was used as the reactant.
  • the process of forming a niobium oxide film through the ALD process is as follows, and the following process was carried out as one cycle.
  • the niobium precursor TBTDEN tert-butylimido tris(diethylamido) niobium
  • the niobium precursor is adsorbed on the substrate
  • Example 4 is a graph showing the Nb content by X-ray photoelectron spectroscopy (XPS) analysis according to an embodiment of the present invention and Comparative Example 1 (based on 30 cycles).
  • the selectivity was increased. This result can be interpreted as that the selectivity imparting agent adsorbed on the SiN substrate and suppressed the deposition of the niobium precursor.
  • Example 5 is a table showing the thickness reduction rate for an embodiment of the present invention based on Comparative Example 1. As shown in FIG. 5 , the thickness of the niobium oxide film of Example 1 decreased by 42% on the TiN substrate, whereas the thickness decreased by 82% on the SiN substrate, and it was confirmed that the selectivity increased.
  • the reason the selectivity imparting agent has selectivity in Example 1 is that it is structurally compatible with the SiN substrate to enhance the adsorption force, which is interpreted as delaying the nuclear growth of the metal thin film on the SiN substrate. can get
  • the selectivity imparting agent exhibits a high thickness reduction effect through selective adsorption to the non-metal thin film, and through this, it is possible to impart selectivity so that the dielectric film is deposited on a desired area of the substrate, as well as to prevent the formation of a thin film in an unnecessary area. This can be prevented to minimize leakage current.
  • the present invention can be applied to various types of semiconductor manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명의 일 실시예에 의하면, 영역 선택적 박막 형성 방법은, 선택성 부여제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역에 흡착시키는 선택성 부여제 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 상기 챔버의 내부에 금속 전구체를 공급하여, 상기 기판의 성장영역에 흡착시키는 금속 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.

Description

선택성 부여제를 이용한 영역 선택적 박막 형성 방법
본 발명은 박막 형성 방법에 관한 것으로, 더욱 상세하게는 선택성 부여제를 이용한 영역 선택적인 박막의 형성 방법에 관한 것이다.
DRAM 소자는 혁신적인 기술 개발로 계속 미세화되어 10nm 시대에 도달하였다. 이에 따라, 성능 및 신뢰성을 개선하기 위하여 커패시터의 크기가 작아지더라도 높은 정전용량과 낮은 누설전류 특성은 충분하게 유지되어야 하고, 항복 전압(breakdown voltage)도 높아야 한다.
종래의 high-k 물질의 정전용량을 높이기 위해 다양한 연구가 진행되고 있으며, 그 중 유전막의 결정화를 돕기 위해 seed layer를 이용하는 방법이 있다.
이를 통해 상대적으로 낮은 온도에서도 높은 유전상수를 갖는 결정 구조를 형성할 수 있지만, 유전막이 증착되지 않아야 하는 곳에도 seed layer가 증착되어 누설전류가 발생하는 문제가 있다.
본 발명의 목적은 높은 정전용량을 가진 박막을 형성하는 방법을 제공하는 데 있다.
본 발명의 다른 목적은 누설전류를 최소화할 수 있는 박막 형성 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 영역에 따른 선택이 가능한 박막 형성 방법을 제공하는 데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 영역 선택적 박막 형성 방법은, 선택성 부여제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역에 흡착시키는 선택성 부여제 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 상기 챔버의 내부에 전구체를 공급하여, 상기 기판의 성장영역에 흡착시키는 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.
상기 성장영역은 티타늄 질화막 또는 나이오븀 질화막일 수 있다.
상기 비성장영역은 실리콘 질화막일 수 있다.
상기 실리콘 질화막은 SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상일 수 있다.
상기 선택성 부여제는 하기 <화학식 1>로 표시될 수 있다.
<화학식 1>
Figure PCTKR2021008734-appb-img-000001
상기 <화학식 1>에서, n은 각각 독립적으로 0 내지 8의 정수이며, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 8인 알킬기 이며, R4는 수소, 탄소 개수가 1 내지 8인 알킬기, 탄소 개수가 1 내지 8인 알콕시기 중에서 선택된다.
상기 반응 물질은 O3, O2, H2O 중 어느 하나일 수 있다.
상기 전구체는 Al을 포함하는 3가 금속, Zr 및 Hf을 포함하는 4가 금속, Nb 및 Ta을 포함하는 5가 금속 중 하나 이상을 포함하는 화합물일 수 있다.
상기 박막은 화학기상 증착법(Metal Organic Chemical Vapor Deposition, MOCVD) 또는 원자층 증착법(Atomic layer Deposition, ALD)에 의해 형성될 수 있다.
본 발명의 일 실시예에 의하면, 선택성 부여제가 비성장영역에 흡착된 상태에서 후속적으로 공급되는 전구체가 비성장영역에 흡착되는 것을 방지하며, 이를 통해 비성장영역에 박막이 형성되는 것을 방지할 수 있다. 또한, 이를 통해 누설전류를 최소화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이다.
도 2는 도 1에 따른 공급 주기를 개략적으로 나타내는 그래프이다.
도 3은 도 1에 따른 박막 형성 과정을 개략적으로 나타내는 도면이다.
도 4는 본 발명의 일 실시예 및 비교예 1에 따른 XPS(X-ray photoelectron spectroscopy) 분석에 의한 Nb 함량을 나타내는 그래프이다.
도 5는 비교예1을 기준으로, 본 발명의 일 실시예에 대한 두께 감소율을 나타내는 표이다.
이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 5를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 용어 "알킬"또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 1 내지 5 개의 탄소 원자, 1 내지 3 개의 탄소 원자, 3 내지 8 개의 탄소 원자, 또는 3 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기를 포함한다. 예를 들어, 상기 알킬기로는 메틸기, 에틸기, n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), tert-부틸기(tBu), iso-부틸기(iBu), sec-부틸기(sBu), n-펜틸기, tert-펜틸기, iso-펜틸기, sec-펜틸기, 네오펜틸기, 3-펜틸기, 헥실기, 이소헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "막"은 "막" 또는 "박막"을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
종래의 공정은 비성장영역, 예를 들어 실리콘 질화막과 같은 비금속 박막에 유전막이 증착되어 누설전류가 발생하는 문제가 있다. 그러나, 이하에서 설명하는 선택성 부여제는 금속 박막 보다 비금속 박막(예를 들어 실리콘 질화막)에 더 높은 밀도로 흡착되며, 선택성 부여제는 이후에 투입되는 금속 전구체의 흡착을 막아 금속 박막에만 seed layer를 형성할 수 있다.
도 1은 본 발명의 일 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이며, 도 2는 도 1에 따른 공급 주기를 개략적으로 나타내는 그래프이다. 도 3은 도 1에 따른 박막 형성 과정을 개략적으로 나타내는 도면이다.
기판은 공정챔버의 내부로 로드되며, 이하의 ALD 공정 조건은 조정된다. ALD 공정 조건은 기판 또는 공정챔버의 온도, 챔버 압력, 가스 유동률을 포함할 수 있으며, 온도는 10 내지 900℃이다.
기판은 챔버의 내부에 공급된 선택성 부여제에 노출되며, 선택성 부여제는 기판의 비성장영역 표면에 흡착된다. 비성장영역은 실리콘 질화막일 수 있으며, SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상일 수 있다. 선택성 부여제는 비성장영역의 표면에 높은 밀도로 흡착되며, 후속 공정에서 금속 전구체가 흡착되는 것을 방해한다.
선택성 부여제는 하기 <화학식 1>로 표시될 수 있다.
<화학식 1>
Figure PCTKR2021008734-appb-img-000002
상기 <화학식 1>에서, n은 각각 독립적으로 0 내지 8의 정수이며, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 8인 알킬기 이며, R4는 수소, 탄소 개수가 1 내지 8인 알킬기, 탄소 개수가 1 내지 8인 알콕시기 중에서 선택된다.
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 선택성 부여제 또는 부산물을 제거하거나 정화한다.
이후, 기판은 챔버의 내부에 공급된 금속 전구체에 노출되며, 금속 전구체는 성장영역의 표면에 흡착되고 비성장영역의 표면에는 선택성 부여제로 인해 흡착되지 않는다. 금속 전구체는 Al과 같은 3족을 포함하거나 Zr, Hf과 같은 4족을 포함하거나, Nb, Ta과 같은 5족을 포함할 수 있다.
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 금속 전구체 또는 부산물을 제거하거나 정화한다.
이후, 기판은 챔버의 내부에 공급된 반응 물질에 노출되며, 기판의 표면에 박막이 형성된다. 반응 물질은 금속 전구체층과 반응하여 박막을 형성하며, 반응 물질은 O3, O2, H2O 가스 일 수 있고 반응 물질을 통해 금속 산화막이 형성될 수 있다. 이때, 반응 물질은 흡착된 표면 보호 물질을 산화시키며, 기판의 표면으로부터 분리하여 제거한다.
이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미반응 물질 또는 부산물을 제거하거나 정화한다.
한편, 앞서 선택성 부여제가 금속 전구체 보다 먼저 공급되는 것으로 설명하였으나, 이와 달리, 선택성 부여제는 금속 전구체 이후에 공급되거나 금속 전구체가 이전 및 이후에 모두 공급될 수 있다.
- 실시예 1
선택성 부여제로 Trimethyl orthoformate를 사용하여 금속 박막(TiN) 기판, 비금속 박막(SiN) 기판 상에 각각 나이오븀 산화막을 형성하였다. ALD 공정을 통해 나이오븀 산화막을 형성하였으며, ALD 공정 온도는 290℃, 반응 물질은 O3 가스를 사용하였다.
ALD 공정을 통한 나이오븀 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다(도 1 내지 3 참고).
1) 반응 챔버 내에 선택성 부여제를 공급하여 기판에 흡착
2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 선택성 부여제 또는 부산물을 제거
3) Ar을 캐리어 가스로 하여, 나이오븀 전구체 TBTDEN(Tert-butylimido tris(diethylamido) niobium)를 반응 챔버에 공급하고 기판에 나이오븀 전구체를 흡착
4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 나이오븀 전구체 또는 부산물을 제거
5) O3 가스를 반응 챔버에 공급하여 나이오븀 산화막을 형성
6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거
- 비교예 1
앞서 설명한 선택성 부여제를 사용하지 않고 금속 박막(TiN) 기판, 비금속 박막(SiN) 기판 상에 각각 나이오븀 산화막을 형성하였다. ALD 공정을 통해 나이오븀 산화막을 형성하였으며, ALD 공정 온도는 290℃, 반응 물질은 O3 가스를 사용하였다.
ALD 공정을 통한 나이오븀 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.
1) Ar을 캐리어 가스로 하여, 나이오븀 전구체 TBTDEN(Tert-butylimido tris(diethylamido) niobium)를 반응 챔버에 공급하고 기판에 나이오븀 전구체를 흡착
2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 나이오븀 전구체 또는 부산물을 제거
3) O3 가스를 반응 챔버에 공급하여 나이오븀 산화막을 형성
4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거
도 4는 본 발명의 일 실시예 및 비교예 1에 따른 XPS(X-ray photoelectron spectroscopy) 분석에 의한 Nb 함량을 나타내는 그래프이다(30 cycle 기준). 비교예 1에서, Nb 함량은 SiN 기판 : TiN 기판 = 1 : 1.2인 반면, 실시예 1에서, Nb 함량은 SiN : TiN = 1 : 3.2 로 선택성이 증가했다. 이와 같은 결과는 선택성 부여제가 SiN 기판에 흡착하여 나이오븀 전구체 증착을 억제한 것으로 해석할 수 있다.
도 5는 비교예1을 기준으로, 본 발명의 일 실시예에 대한 두께 감소율을 나타내는 표이다. 도 5에 도시한 바와 같이, 실시예 1의 나이오븀 산화막은 TiN 기판에서 두께가 42% 감소한 반면 SiN 기판에서 두께가 82% 감소하였으며, 선택성이 증가한 것을 확인할 수 있다. 실시예 1에서 선택성 부여제가 선택성을 가지는 이유는 SiN 기판과 구조적으로 적합하여 흡착력이 강화되고, 이로 인해 SiN 기판에서 금속 박막의 핵 성장을 지연시키는 것으로 해석되며 기타 복합적인 원인에 의한 결과로 원하는 선택성을 얻을 수 있다.
결론적으로, 선택성 부여제는 비금속 박막에 대한 선택적인 흡착을 통해 높은 두께 감소 효과를 보이며, 이를 통해 원하는 기판의 영역에 유전막이 증착되도록 선택성을 부여할 수 있을 뿐만 아니라, 불필요한 영역에 박막이 형성되는 것을 방지하여 누설전류를 최소화할 수 있다.
이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.
본 발명은 다양한 형태의 반도체 제조방법에 응용될 수 있다.

Claims (8)

  1. 선택성 부여제를 기판이 놓여진 챔버의 내부에 공급하여, 상기 기판의 비성장영역에 흡착시키는 선택성 부여제 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계;
    상기 챔버의 내부에 전구체를 공급하여, 상기 기판의 성장영역에 흡착시키는 전구체 공급 단계;
    상기 챔버의 내부를 퍼지하는 단계; 및
    상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하는, 영역 선택적 박막 형성 방법.
  2. 제1항에 있어서,
    상기 성장영역은 티타늄 질화막 또는 나이오븀 질화막인, 영역 선택적 박막 형성 방법.
  3. 제1항에 있어서,
    상기 비성장영역은 실리콘 질화막인, 영역 선택적 박막 형성 방법.
  4. 제3항에 있어서,
    상기 실리콘 질화막은 SiN, SiCN, C-doped SiN, SiON 중 선택된 하나 이상인, 영역 선택적 박막 형성 방법.
  5. 제1항에 있어서,
    상기 선택성 부여제는 하기 <화학식 1>로 표시되는, 영역 선택적 박막 형성 방법.
    <화학식 1>
    Figure PCTKR2021008734-appb-img-000003
    상기 <화학식 1>에서, n은 각각 독립적으로 0 내지 8의 정수이며, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 8인 알킬기 이며, R4는 수소, 탄소 개수가 1 내지 8인 알킬기, 탄소 개수가 1 내지 8인 알콕시기 중에서 선택된다.
  6. 제1항에 있어서,
    상기 반응 물질은 O3, O2, H2O 중 어느 하나인, 영역 선택적 박막 형성 방법.
  7. 제1항에 있어서,
    상기 전구체는 Al을 포함하는 3가 금속, Zr 및 Hf을 포함하는 4가 금속, Nb 및 Ta을 포함하는 5가 금속 중 하나 이상을 포함하는 화합물인, 영역 선택적 박막 형성 방법.
  8. 제1항에 있어서,
    상기 박막은 화학기상 증착법(Metal Organic Chemical Vapor Deposition, MOCVD) 또는 원자층 증착법(Atomic layer Deposition, ALD)에 의해 형성되는, 증착 방법.
PCT/KR2021/008734 2020-09-08 2021-07-08 선택성 부여제를 이용한 영역 선택적 박막 형성 방법 WO2022055103A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180061551.7A CN116113724A (zh) 2020-09-08 2021-07-08 用选择剂形成区域选择性薄膜的方法
JP2023515391A JP2023545619A (ja) 2020-09-08 2021-07-08 選択性付与剤を用いた領域選択的薄膜形成方法
US18/044,562 US20230366080A1 (en) 2020-09-08 2021-07-08 Method for forming region-selective thin film using selectivating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200114669A KR102406174B1 (ko) 2020-09-08 2020-09-08 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
KR10-2020-0114669 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022055103A1 true WO2022055103A1 (ko) 2022-03-17

Family

ID=80631914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008734 WO2022055103A1 (ko) 2020-09-08 2021-07-08 선택성 부여제를 이용한 영역 선택적 박막 형성 방법

Country Status (6)

Country Link
US (1) US20230366080A1 (ko)
JP (1) JP2023545619A (ko)
KR (1) KR102406174B1 (ko)
CN (1) CN116113724A (ko)
TW (1) TWI798816B (ko)
WO (1) WO2022055103A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366555B1 (ko) * 2021-01-05 2022-02-23 주식회사 이지티엠 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
CN115181961A (zh) * 2022-07-15 2022-10-14 江苏鹏举半导体设备技术有限公司 选择性原子层处理设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009528A (ko) * 2006-07-24 2008-01-29 삼성전자주식회사 박막 형성 방법
KR20090101437A (ko) * 2006-10-05 2009-09-28 에이에스엠 아메리카, 인코포레이티드 금속 규산염 막의 원자층 증착
KR20180004650A (ko) * 2016-07-04 2018-01-12 삼성전자주식회사 반도체 장치 제조 방법 및 반도체 장치 제조 설비
KR20180106933A (ko) * 2017-03-17 2018-10-01 램 리써치 코포레이션 실리콘 나이트라이드의 선택적 성장
KR102138149B1 (ko) * 2019-08-29 2020-07-27 솔브레인 주식회사 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229405B2 (en) 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
US8293658B2 (en) * 2010-02-17 2012-10-23 Asm America, Inc. Reactive site deactivation against vapor deposition
US9981286B2 (en) * 2016-03-08 2018-05-29 Asm Ip Holding B.V. Selective formation of metal silicides
US10242866B2 (en) * 2017-03-08 2019-03-26 Lam Research Corporation Selective deposition of silicon nitride on silicon oxide using catalytic control
US10157740B1 (en) * 2017-06-15 2018-12-18 Applied Materials, Inc. Selective deposition process utilizing polymer structure deactivation process
TWI762194B (zh) * 2017-07-18 2022-04-21 美商應用材料股份有限公司 在金屬材料表面上沉積阻擋層的方法
WO2019023001A1 (en) * 2017-07-23 2019-01-31 Applied Materials, Inc. METHODS FOR SELECTIVE DEPOSITION ON SILICON-BASED DIELECTRICS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009528A (ko) * 2006-07-24 2008-01-29 삼성전자주식회사 박막 형성 방법
KR20090101437A (ko) * 2006-10-05 2009-09-28 에이에스엠 아메리카, 인코포레이티드 금속 규산염 막의 원자층 증착
KR20180004650A (ko) * 2016-07-04 2018-01-12 삼성전자주식회사 반도체 장치 제조 방법 및 반도체 장치 제조 설비
KR20180106933A (ko) * 2017-03-17 2018-10-01 램 리써치 코포레이션 실리콘 나이트라이드의 선택적 성장
KR102138149B1 (ko) * 2019-08-29 2020-07-27 솔브레인 주식회사 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판

Also Published As

Publication number Publication date
JP2023545619A (ja) 2023-10-31
KR102406174B1 (ko) 2022-06-08
TWI798816B (zh) 2023-04-11
CN116113724A (zh) 2023-05-12
TW202225443A (zh) 2022-07-01
KR20220032850A (ko) 2022-03-15
US20230366080A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2022055103A1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2012018210A2 (ko) 사이클릭 박막 증착 방법
WO2017026676A1 (ko) 플라즈마 원자층 증착법을 이용한 실리콘 질화 박막의 제조방법
WO2021060860A1 (ko) 박막 제조 방법
WO2015016412A1 (ko) MoS2 박막 및 이의 제조방법
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
JP2024503820A (ja) 核成長遅延を利用した領域選択的薄膜形成方法
WO2020130216A1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2021141324A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2019066179A1 (ko) 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
WO2022139535A1 (ko) 상부 표면 개질제를 이용하는 박막 형성 방법
WO2021137595A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2021137594A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2022245039A1 (ko) 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.
WO2022108034A1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2021261890A1 (ko) 박막 형성용 프리커서, 이의 제조방법 및 이를 포함하는 박막 제조 방법
JP2022062709A (ja) 表面保護物質を用いた薄膜形成方法
WO2014073892A1 (ko) 실리콘-함유 박막의 제조 방법
WO2021045385A2 (ko) 금속 질화물 박막의 형성 방법
WO2021162240A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2024117809A1 (ko) 이트륨 또는 스칸듐 함유 박막 형성용 전구체, 이를 이용한 이트륨 또는 스칸듐 함유 박막 형성 방법 및 상기 이트륨 또는 스칸듐 함유 박막을 포함하는 반도체 소자.
JP7496634B2 (ja) 表面保護物質を用いた薄膜形成方法
WO2024117712A1 (ko) 반도체 소자 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866971

Country of ref document: EP

Kind code of ref document: A1