CN115181961A - 选择性原子层处理设备及方法 - Google Patents

选择性原子层处理设备及方法 Download PDF

Info

Publication number
CN115181961A
CN115181961A CN202210835723.8A CN202210835723A CN115181961A CN 115181961 A CN115181961 A CN 115181961A CN 202210835723 A CN202210835723 A CN 202210835723A CN 115181961 A CN115181961 A CN 115181961A
Authority
CN
China
Prior art keywords
substrate
reaction chamber
gas
atomic layer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210835723.8A
Other languages
English (en)
Inventor
张洪国
刘磊
唐继远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Pengju Semiconductor Equipment Technology Co ltd
Original Assignee
Jiangsu Pengju Semiconductor Equipment Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Pengju Semiconductor Equipment Technology Co ltd filed Critical Jiangsu Pengju Semiconductor Equipment Technology Co ltd
Priority to CN202210835723.8A priority Critical patent/CN115181961A/zh
Publication of CN115181961A publication Critical patent/CN115181961A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Abstract

本申请提供一种选择性原子层处理设备及方法,其包括反应室、基座、集成模块以及处理头,所述反应室包括进气口及排气口;所述基座设置在所述反应室内,用于承载基片;所述集成模块连接至所述反应室,并能够将反应气体经所述进气口输送至所述反应室内;所述处理头能够对所述基片的预设部分进行表面处理;其中,所述处理头对所述基片进行选择性表面处理后,所述集成模块将反应气体输送至所述反应室内,以解决原子层刻蚀无法高选择性去除或蚀刻芯片结构中材料的技术问题。

Description

选择性原子层处理设备及方法
技术领域
本申请涉及原子层刻蚀技术领域,具体涉及一种选择性原子层处理设备及方法。
背景技术
原子层刻蚀是指通过一系列的自限制反应去除单个原子层,从而能够精密控制被去除的材料量的先进半导体生产工艺,并且原子层刻蚀不会触及和破坏底层以及周围材料。等离子体原子层刻蚀可以执行定向蚀刻(各向异性),该刻蚀方式可以在某种程度上进行选择性刻蚀,但其功能有限,无法在集成电路生产过程中去除或刻蚀出微小芯片结构中的材料,且无法在先进节点上创建全新的器件结构。
发明内容
本申请提供一种选择性原子层处理设备及方法,以解决原子层刻蚀无法高选择性去除或蚀刻芯片结构中材料的技术问题。
本申请提供一种选择性原子层处理设备包括反应室、基座、集成模块以及处理头,所述反应室包括进气口及排气口;所述基座设置在所述反应室内,用于承载基片;所述集成模块连接至所述反应室,并能够将反应气体经所述进气口输送至所述反应室内;所述处理头能够对所述基片的预设部分进行表面处理;其中,所述处理头对所述基片进行选择性表面处理后,所述集成模块将反应气体输送至所述反应室内。
可选的,选择性原子层处理设备还包括三维滑轨,所述三维滑轨设置在所述反应室内;其中,所述集成模块包括至少一个气体管道,所述处理头与所述气体管道均连接至所述三维滑轨,使得所述处理头与所述气体管道能够相对于所述基片调整位置。
可选的,所述集成模块包括至少两个气体管道时,所述气体管道阵列式连接至所述三维滑轨;每一所述气体管道的中心轴与竖直方向形成一夹角。
可选的,当所述处理头被驱动至所述基座的上方时,所述处理头对所述基片进行选择性表面处理;当所述基片表面处理后,所述处理头被驱动至所述反应室的外部时,所述反应室密闭,且所述集成模块将反应气体输送至所述反应室内。
可选的,选择性原子层处理设备还包括辅助室,所述处理头能够由所述反应室被驱动至所述辅助室内。
可选的,选择性原子层处理设备还包括连通孔以及密封门,所述反应室与所述辅助室邻接,并经所述连通孔与所述辅助室连通;所述密封门可移动式连接至所述反应室或所述辅助室,并能够打开和封闭所述连通孔;其中,当所述处理头经所述连通孔被驱动至所述辅助室内时,所述密封门封闭所述连通孔,使得所述反应室密闭。
可选的,选择性原子层处理设备还包括六轴机器人,所述六轴机器人设置于所述辅助室内,且所述六轴机器人连接并驱动所述处理头。
可选的,所述集成模块包括一个以上第一供应器以及第二供应器,所述第一供应器能够将反应气体经所述进气口输送至所述反应室内;所述第二供应器能够将惰性气体经所述进气口输送至所述反应室内。
可选的,选择性原子层处理设备还包括角度调整装置,所述角度调整装置连接至所述基座,以调整所述基座相对于竖直方向的角度;所述角度调整装置包括蜗杆、蜗轮以及联动臂,所述蜗杆可转动式连接至所述反应室;所述蜗轮与所述蜗杆啮合,并可转动式连接至所述反应室;所述联动臂的一端连接至所述基座,其另一端连接至所述蜗轮;其中,当所述蜗杆被驱动时,与其啮合的所述蜗轮通过所述联动臂调整所述基座。
可选的,选择性原子层处理设备还包括真空泵以及传输装置,所述真空泵连通至所述排气口;所述传输装置连接至所述反应室,用以将所述基片传送至所述反应室。
可选的,所述反应腔包括检修口及检修门,所述检修门能够打开和封闭所述检修口。
本申请提供一种选择性原子层处理方法,包括以下步骤:
对基片的预设部分进行表面处理;
将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分;和/或
将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层。
可选的,在所述将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分的步骤之后,还包括:
将所述基片暴露于惰性气体中,以去除多余的所述第一反应气体;
在所述将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层的步骤之后,还包括:
将所述基片暴露于惰性气体中,以去除多余的所述第二反应气体。
可选的,将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分为自限性反应;将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层为自限性反应。
本申请提供一种选择性原子层处理设备及方法,利用处理头对基座表面的预设部分的表面进行处理,待处理头对基座的表面进行选择性处理后,集成模块将反应气体通过自限法吸附在刻蚀表面上形成化学吸附层,利用处理头与集成模块的配合可以在基片的局部经过处理头特殊处理的预设部分的表面保持原貌,同时在未经过特殊处理的表面发生化学反应,使得原子被一层层剥离。因而利用程序设计图案,通过在基片的不同区域做处理或不做处理,可以获得所需的选择性的刻蚀效果,从而实现更高选择性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的选择性原子层处理设备的主视图;
图2是本申请实施例一提供的选择性原子层处理设备的部分结构示意图;
图3是本申请实施例一提供的选择性原子层处理设备的结构示意图一;
图4是本申请实施例一提供的选择性原子层处理设备的结构示意图二;
图5是三甲基铝和氟化氢刻蚀氧化铝的反应示意图;
图6a是经处理头选择性表面处理后的基片示意图;
图6b是经集成模块刻蚀处理后的基片示意图;
图7是本申请实施例二提供的选择性原子层处理设备的部分结构示意图;
图8是本申请实施例二提供的选择性原子层处理设备的剖视图。
附图标记说明:
100、反应室;110、排气口;120、传输装置;130、检修门;140、检修口;200、基座;300、角度调整装置;310、蜗杆;320、蜗轮;330、联动臂;400、集成模块;500、辅助室;510、六轴机器人;520、处理头;600、连通孔;610、密封门;700、三维滑轨;800、气体管道。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”、“下”、“左”、“右”通常是指装置实际使用或工作状态下的上、下、左和右,具体为附图中的图面方向。
本申请提供一种选择性原子层处理设备及方法,以下分别进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。且在以下实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
实施例一
请参阅图1-图4,本申请提供一种选择性原子层处理设备,其具有各向同性能够在任何方向上去除材料,同时具有各向异性能够在一个方向上去除材料。上述选择性原子层处理设备包括反应室100以及辅助室500,反应室100与辅助室500相邻并且连接。反应室100包括基座200以及集成模块400,基座200设置在反应室100的内部,以用于承载待刻蚀的基片。集成模块400连接至反应室100,其中该集成模块400包括至少一个第一供应器(图中未示出)以及第二供应器(图中未示出),上述第一供应器能够将反应气体(本申请中为前驱体蒸汽)通过自限法输送至反应室100的内部,使得前驱体蒸汽的至少一部分自限吸附在基片的表面。上述第二供应器能够将惰性气体输送至反应室100的内部,以对去除多余的前驱体以及反应副产物。
请参阅图1-图4,反应室100包括进气口(图中未示出)、排气口110以及真空泵(图中未示出),上述第一供应器(图中未示出)和第二供应器(图中未示出)分别通过进气口将前驱体蒸汽以及惰性气体输送至反应室100内部,同时多余的前驱体蒸汽、反应副产物以及惰性气体可以经由排气口110排出至反应室100的外部。反应室100的底部设置有法兰,上述法兰可以外接真空泵,使得真空泵连通至上述排气口110,用以辅助对反应室100进行抽真空处理,以便于多余的前驱体蒸汽、反应副产物以及惰性气体排出。
刻蚀的原理为通入第一种前驱体,在基片表面发生选择性化学反应,再用惰性气体清扫基片表面,去除多余的前驱体和反应副产物,然后再通入第二种前驱体,在基片表面发生化学反应,再用惰性气体清扫基片表面,去除多余的前驱体和反应副产物。
请参阅图1-图4,辅助室500内设置有六轴机器人510以及处理头520,上述处理头520能够连接至六轴机器人510,以利用六轴机器人510将处理头520在辅助室500与反应室100之间移动。上述处理头520可以通过反应气体、光、电等对基片的表面的预设部分进行处理,使得基片的表面具有不同化学键,或者呈现不同的导电性,或者具有不同的表面极性,或者具备不同的表面张力,从而使得预设部分不参与原子层刻蚀的相关反应。
请参阅图1-图4,反应室100与辅助室500邻接,本申请中通过一隔板将壳体直接分隔为反应室100与辅助室500,上述隔板上开设有一连通孔600,使得反应室100通过该连通孔600与辅助室500连通。同时反应室100或者辅助室500上可以设置一密封门610,用以打开和封闭上述连通孔600。
请参阅图1-图4,首先利用六轴机器人510驱动处理头520经连通孔600运动至反应室100的内部,并且位于基座200待处理的基片的上方,然后利用处理头520对基座200表面的预设部分的表面进行处理。待处理头520对基座200的表面进行选择性处理后,六轴机器人510驱动处理头520运动至辅助室500的内部,并利用封闭门封闭连通孔600,使得反应室100处于密闭的状态。集成模块400中的第一供应器将前驱体蒸汽通过自限法吸附在刻蚀表面上形成化学吸附层,待反应结束后第二供应器将惰性气体输送至反应室100内部,并利用真空泵将反应室100内剩余的前驱体蒸汽、反应副产物以及惰性气体经排气口110排出至反应室100的外部。
本申请中利用前驱体蒸汽自限吸附在刻蚀表面形成化学吸附层的循环包括以下四个步骤:表面吸附、过量反应物的排出、表面去除、挥发性反应产物排出。其中,表面吸附和表面去除是关键的表面自限制步骤。过量反应物的排出和挥发性反应产物排出是受速度限制的疏散步骤,取决于反应物和产物在反应室100中的停留时间。同比于原子层沉积的GPC(growth per cycle生长周期),由于自限制反应,原子层刻蚀的EPC(etch per cycle蚀刻周期)保持不变。当前驱体暴露时间或反应物压力达到一定临界值时,EPC不会随着刻蚀工艺参数而变化。原子层刻蚀同样存在窗口的概念,多数原子层刻蚀明显依赖于温度。对于热ALE(原子层刻蚀)的过程,分离的半反应有助于阻止表面改性和表面去除之间相互作用,控制表面反应的顺序,使得自限制反应成为可能,并产生ALE的窗口。“非连续”避免了连续等离子体刻蚀中形成厚厚的混合层以及由此产生的不受限制的反应性。
参照图5,具体以TMA(三甲基铝)和HF(氟化氢)刻蚀氧化铝为例说明:
Al2O3(氧化铝)薄膜的腐蚀采用HF和trimethylaluminum(Al(CH3)3,TMA)作为反应物。Al2O3薄膜的腐蚀通过序列化、自限制的氟化、配体交换反应实现。
总反应式如下:
Al2O3(s)+6HF(g)+4Al(CH3)3(g)→6AlF(CH3)2(g)+3H2O(g)
这个总反应式可以分成两个半反应:A和B
A:
Figure BDA0003748009680000071
B:
Figure BDA0003748009680000072
如图6a-图6b所示,基座200上放置有A、B两个基底,先利用处理头520对A基底的表面做了特殊处理,或具有不同的化学键,或呈现不同的导电性,或具有不同的表面极性,或具备不同的表面张力。同时,B基底的表面不做特殊处理。
如图6a-图6b所示,利用前驱体对原子层刻蚀后,经过特殊处理的A基座200部发生化学反应,未经过特殊处理的B基座200发生化学反应,并且经过两个半反应后,表层原子层被刻蚀掉。
原子层刻蚀配体交换的结果是基片表面的原子参与了化学反应,转化为气态物质而被排出,而且这种原子层的去除和反应的周期数直接关联,所以就导致原子被一层层的刻蚀掉。同时,表面做过处理,不能成键的部分不能被刻蚀,这样就实现了选择性原子层刻蚀。本申请利用处理头520与集成模块400的配合可以在基片的局部经过处理头520特殊处理的预设部分的表面保持原貌,同时在未经过特殊处理的表面发生化学反应,使得原子被一层层剥离。因而利用程序设计图案,通过在基片的不同区域做处理或不做处理,可以获得所需的选择性的刻蚀效果。并且上述原子层刻蚀方式相较于利用掩膜版刻蚀具有更高选择性。
参照图2和图3,选择性原子层处理设备还包括角度调整装置300,基座200通过该角度调整装置300连接至反应室100,可以调整基座200相对于竖直方向的角度,从而调整基片相对于处理头520的位置和角度。上述角度调整装置300包括蜗杆310、蜗轮320以及联动臂330,其中蜗杆310可转动连接至反应室100,蜗杆310的一端连接有驱动电机。蜗轮320可转动连接至反应室100,并且蜗杆310与蜗轮320相互啮合。联动臂330的一端连接至基座200,其另一端连接至蜗轮320。当驱动电机带动蜗杆310转动时,通过蜗轮320与蜗杆310的配合带动蜗轮320转动,并且蜗轮320通过联动臂330将扭矩传递给基座200,从而调整基片的角度。
参照图4,选择性原子层处理设备还包括传输装置120,该传输装置120连接至反应室100,用以向反应室100内传送基片。
参照图4,反应室100开设有一检修口140(参照图7),以便于对反应室100内的基座200以及其他部件进行维修和更换。同时反应室100位于该检修口140处设置有一检修门130,利用检修门130可以打开和关闭上述检修口140,以保证在刻蚀原子层时反应室100保持密闭。
一种选择性原子层处理方法,包括以下步骤:
S100、对基片的预设部分进行表面处理;
利用设置在辅助室500内的六轴机器人510以及处理头520对基片的预设部分进行表面处理,上述处理头520可以通过反应气体、光、电等对基片的表面的预设部分进行处理,使得基片的表面具有不同化学键,或者呈现不同的导电性,或者具有不同的表面极性,或者具备不同的表面张力,从而使得预设部分不参与原子层刻蚀的相关反应。
S210、将基片暴露于第一反应气体中,以刻蚀基片未经表面处理的部分;
一个第一供应器将第一反应气体(本申请中为前驱体蒸汽)通过进气口输送至反应室100内部,由于基片的预设部分经处理头进行表面处理,使得预设部分不参与原子层刻蚀的相关反应,因而上述第一反应气体与基片未经表面处理的部分发生化学反应,以对基片未经表面处理的部分进行刻蚀处理。
S220、将所述基片暴露于惰性气体中,以去除多余的所述第一反应气体;
第二供应器将惰性气体通过进气口输送至反应室100内部,并利用真空泵将反应室100内剩余的第一反应气体、反应副产物以及惰性气体经排气口110排出至反应室100的外部。
和/或
S310、将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层;
一个第一供应器将第二反应气体(本申请中为前驱体蒸汽)通过进气口输送至反应室100内部,由于基片的预设部分经处理头进行表面处理,使得预设部分不参与原子层沉积的相关反应,因而上述第二反应气体与基片未经表面处理的部分发生化学反应,以在基片未经表面处理的部分进行生长。
S320、将所述基片暴露于惰性气体中,以去除多余的所述第二反应气体;
第二供应器将惰性气体通过进气口输送至反应室100内部,并利用真空泵将反应室100内剩余的第二反应气体、反应副产物以及惰性气体经排气口110排出至反应室100的外部。
其中,上述选择性原子层处理方法可以仅包括步骤S210,利用选择性原子层处理设备对基片进行刻蚀处理。上述选择性原子层处理方法可以仅包括步骤S310,利用选择性原子层处理设备对基片进行沉积处理。上述选择性原子层处理方法可以包括步骤S210和步骤S310,利用选择性原子层处理设备对基片进行刻蚀处理以及沉积处理,并且刻蚀处理与沉积处理的顺序不做限制。
实施例二
参照图7和图8,一种选择性原子层处理设备包括反应室100,反应室100的内部设置有基座200以及集成模块400(参照图2),基座200设置在反应室100的内部,以用于承载待刻蚀的基片。同时,反应室100的内部还设置有处理头520和三维滑轨700,上述三维滑轨700可以设置在反应室100的底座上,其包括X轴滑轨、Y轴滑轨以及Z轴滑轨。处理头520连接至三维滑轨700上,从而利用三维滑轨700驱动处理头520运动至基片表面的预设部分,使得处理头520可以通过反应气体、光、电等对基片的表面的预设部分进行处理,使得基片的表面具有不同化学键,或者呈现不同的导电性,或者具有不同的表面极性,或者具备不同的表面张力,从而使得预设部分不参与原子层刻蚀的相关反应。
参照图7和图8,集成模块400包括供应器(图中未示出)以及至少一个气体管道800,气体管道800的一端连通至供应器,其另一端伸入反应室100的内部。上述气体管道800连接至三维滑轨700上,从而利用三维滑轨700带动气体管道800运动至基座200的上方。供应器通过气体管道800将前驱体蒸汽以及惰性气体输送至反应室100内部,同时多余的前驱体蒸汽、反应副产物以及惰性气体可以经由排气口110排出至反应室100的外部。
参照图7和图8,当集成模块400包括至少两个气体管道800时,全部的气体管道800阵列式连接至三维滑轨700上,具体排布方式可以根据基座200上放置的基片进行调整,本申请中气体管道800沿一直线排布。
参照图8,每一个气体管道800的中心轴与竖直方向形成一夹角θ,上述夹角θ的范围优选30°-60°,利用相对于竖直方向倾斜一角度的气体管道800可以扩大前驱体蒸汽自限吸附在基片表面的范围,同时使得前驱体蒸汽更易在基片表面发生化学反应,从而提高原子层刻蚀的效果。
本实施例相较于实施例一中的选择性原子层处理设备,处理头520设置在三维滑轨700上,从而利用三维滑轨700实现处理头520相对于基片位置的调整。同时当供应器内的前驱体蒸汽经气体管道800在基片表面发生化学反应时,处理头520仍然位于反应室100的内部,无需利用实施例一中的六轴机器人510移动至辅助室500中。此外,实施例一中供应器内的前驱体蒸汽经进气口输送至反应室100的内部,并扩散至基片表面,本实施例中供应器内的前驱体蒸汽经气体管道800直接输送至基片的表面进行化学反应。实施例二中选择性原子层处理设备中的其余技术特征与实施例一中的技术特征相同,在此不做赘述。
一种选择性原子层处理方法,参照图7和图8,包括以下步骤:
S100、对基片的预设部分进行表面处理;
利用设置在三维滑轨700上的处理头520对基片的预设部分进行表面处理,上述处理头520可以通过反应气体、光、电等对基片的表面的预设部分进行处理,使得基片的表面具有不同化学键,或者呈现不同的导电性,或者具有不同的表面极性,或者具备不同的表面张力,从而使得预设部分不参与原子层刻蚀的相关反应。
S210、将基片暴露于第一反应气体中,以刻蚀基片未经表面处理的部分;
供应器将第一反应气体(本申请中为前驱体蒸汽)通过气体管道800输送至反应室100内部,由于基片的预设部分经处理头520进行表面处理,使得预设部分不参与原子层刻蚀的相关反应,因而上述第一反应气体与基片未经表面处理的部分发生化学反应,以对基片未经表面处理的部分进行刻蚀处理。
S220、将所述基片暴露于惰性气体中,以去除多余的所述第一反应气体;
供应器将惰性气体通过气体管道800输送至反应室100内部,并利用真空泵将反应室100内剩余的第一反应气体、反应副产物以及惰性气体经排气口110排出至反应室100的外部。
和/或
S310、将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层;
供应器将第二反应气体(本申请中为前驱体蒸汽)通过气体管道800输送至反应室100内部,由于基片的预设部分经处理头520进行表面处理,使得预设部分不参与原子层沉积的相关反应,因而上述第二反应气体与基片未经表面处理的部分发生化学反应,以在基片未经表面处理的部分进行生长。
S320、将所述基片暴露于惰性气体中,以去除多余的所述第二反应气体;
供应器将惰性气体通过气体管道800输送至反应室100内部,并利用真空泵将反应室100内剩余的第二反应气体、反应副产物以及惰性气体经排气口110排出至反应室100的外部。
其中,上述选择性原子层处理方法可以仅包括步骤S210,利用选择性原子层处理设备对基片进行刻蚀处理。上述选择性原子层处理方法可以仅包括步骤S310,利用选择性原子层处理设备对基片进行沉积处理。上述选择性原子层处理方法可以包括步骤S210和步骤S310,利用选择性原子层处理设备对基片进行刻蚀处理以及沉积处理,并且刻蚀处理与沉积处理的顺序不做限制。
以上对本申请提供一种选择性原子层处理设备与方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (14)

1.一种选择性原子层处理设备,其特征在于,包括:
反应室(100),其包括进气口及排气口(110);
基座(200),其设置在所述反应室(100)内,用于承载基片;
集成模块(400),其连接至所述反应室(100),并能够将反应气体经所述进气口输送至所述反应室(100)内,以对所述基片进行刻蚀和/或沉积;以及
处理头(520),其能够对所述基片的预设部分进行表面处理;
其中,所述处理头(520)对所述基片进行选择性表面处理后,所述集成模块(400)将反应气体输送至所述反应室(100)内。
2.根据权利要求1所述的选择性原子层处理设备,其特征在于,还包括:
三维滑轨(700),其设置在所述反应室(100)内;
其中,所述集成模块(400)包括至少一个气体管道(800),所述处理头(520)与所述气体管道(800)均连接至所述三维滑轨(700),使得所述处理头(520)与所述气体管道(800)能够相对于所述基片调整位置。
3.根据权利要求2所述的选择性原子层处理设备,其特征在于,
所述集成模块(400)包括至少两个气体管道(800)时,所述气体管道(800)阵列式连接至所述三维滑轨(700);
每一所述气体管道(800)的中心轴与竖直方向形成一夹角。
4.根据权利要求1所述的选择性原子层处理设备,其特征在于,
当所述处理头(520)被驱动至所述基座(200)的上方时,所述处理头(520)对所述基片进行选择性表面处理;当所述基片表面处理后,所述处理头(520)被驱动至所述反应室(100)的外部时,所述反应室(100)密闭,且所述集成模块(400)将反应气体输送至所述反应室(100)内。
5.根据权利要求4所述的选择性原子层处理设备,其特征在于,还包括:
辅助室(500),所述处理头(520)能够由所述反应室(100)被驱动至所述辅助室(500)内。
6.根据权利要求5所述的选择性原子层处理设备,其特征在于,还包括:
连通孔(600),所述反应室(100)与所述辅助室(500)邻接,并经所述连通孔(600)与所述辅助室(500)连通;以及
密封门(610),其可移动式连接至所述反应室(100)或所述辅助室(500),并能够打开和封闭所述连通孔(600);
其中,当所述处理头(520)经所述连通孔(600)被驱动至所述辅助室(500)内时,所述密封门(610)封闭所述连通孔(600),使得所述反应室(100)密闭。
7.根据权利要求5所述的选择性原子层处理设备,其特征在于,还包括:
六轴机器人(510),其设置于所述辅助室(500)内,且所述六轴机器人(510)连接并驱动所述处理头(520)。
8.根据权利要求4所述的选择性原子层处理设备,其特征在于,所述集成模块(400)包括:
一个以上第一供应器,其能够将反应气体经所述进气口输送至所述反应室(100)内,以对所述基片进行刻蚀和/或沉积;以及
第二供应器,其能够将惰性气体经所述进气口输送至所述反应室(100)内。
9.根据权利要求1所述的选择性原子层处理设备,其特征在于,还包括:
角度调整装置(300),其连接至所述基座(200),以调整所述基座(200)相对于竖直方向的角度;
所述角度调整装置(300)包括:
蜗杆(310),其可转动式连接至所述反应室(100);
蜗轮(320),其与所述蜗杆(310)啮合,并可转动式连接至所述反应室(100);以及
联动臂(330),其一端连接至所述基座(200),其另一端连接至所述蜗轮(320);
其中,当所述蜗杆(310)被驱动时,与其啮合的所述蜗轮(320)通过所述联动臂(330)调整所述基座(200)。
10.根据权利要求1所述的选择性原子层处理设备,其特征在于,还包括:
真空泵,其连通至所述排气口(110);以及
传输装置(120),其连接至所述反应室(100),用以将所述基片传送至所述反应室(100)。
11.根据权利要求1所述的选择性原子层处理设备,其特征在于,所述反应腔包括检修口(140)及检修门(130),所述检修门(130)能够打开和封闭所述检修口(140)。
12.一种选择性原子层处理方法,其特征在于,包括以下步骤:
对基片的预设部分进行表面处理;
将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分;和/或
将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层。
13.根据权利要求12所述的选择性原子层处理方法,其特征在于,
在所述将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分的步骤之后,还包括:
将所述基片暴露于惰性气体中,以去除多余的所述第一反应气体;
在所述将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层的步骤之后,还包括:
将所述基片暴露于惰性气体中,以去除多余的所述第二反应气体。
14.根据权利要求12所述的选择性原子层处理方法,其特征在于,
将所述基片暴露于第一反应气体中,以刻蚀所述基片未经表面处理的部分为自限性反应;
将所述基片暴露于第二反应气体中,以在所述基片未经表面处理的部分沉积膜层为自限性反应。
CN202210835723.8A 2022-07-15 2022-07-15 选择性原子层处理设备及方法 Pending CN115181961A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210835723.8A CN115181961A (zh) 2022-07-15 2022-07-15 选择性原子层处理设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210835723.8A CN115181961A (zh) 2022-07-15 2022-07-15 选择性原子层处理设备及方法

Publications (1)

Publication Number Publication Date
CN115181961A true CN115181961A (zh) 2022-10-14

Family

ID=83518935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210835723.8A Pending CN115181961A (zh) 2022-07-15 2022-07-15 选择性原子层处理设备及方法

Country Status (1)

Country Link
CN (1) CN115181961A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809195A (zh) * 2007-09-26 2010-08-18 伊斯曼柯达公司 无机材料的选择区域沉积法
CN102517566A (zh) * 2011-12-16 2012-06-27 姜谦 用喷头装置实现选择性原子层沉积成膜的方法
US20160343580A1 (en) * 2014-12-04 2016-11-24 Lam Research Corporation Technique to deposit sidewall passivation for high aspect ratio cylinder etch
CN114664631A (zh) * 2022-04-21 2022-06-24 江苏鹏举半导体设备技术有限公司 一种原子层刻蚀设备及刻蚀方法
TW202225443A (zh) * 2020-09-08 2022-07-01 南韓商Egtm股份有限公司 選擇性材料及使用選擇性材料之選擇性形成薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809195A (zh) * 2007-09-26 2010-08-18 伊斯曼柯达公司 无机材料的选择区域沉积法
CN102517566A (zh) * 2011-12-16 2012-06-27 姜谦 用喷头装置实现选择性原子层沉积成膜的方法
US20160343580A1 (en) * 2014-12-04 2016-11-24 Lam Research Corporation Technique to deposit sidewall passivation for high aspect ratio cylinder etch
TW202225443A (zh) * 2020-09-08 2022-07-01 南韓商Egtm股份有限公司 選擇性材料及使用選擇性材料之選擇性形成薄膜的方法
CN114664631A (zh) * 2022-04-21 2022-06-24 江苏鹏举半导体设备技术有限公司 一种原子层刻蚀设备及刻蚀方法

Similar Documents

Publication Publication Date Title
JP7414891B2 (ja) 半導体基板を処理するための装置および方法
US10903071B2 (en) Selective deposition of silicon oxide
US10490413B2 (en) Selective growth of silicon nitride
CN108597983B (zh) 利用催化剂控制在氧化硅上选择性沉积氮化硅
CN111247269A (zh) 介电膜的几何选择性沉积
CN106057637A (zh) 通过原子层沉积和原子层蚀刻沉积共形膜
TW201618189A (zh) 矽氧化物之沉積方法
TW201629253A (zh) 含矽膜之原子層沉積中的選擇性抑制
JP2017008412A5 (zh)
WO2016130238A1 (en) Selectively lateral growth of silicon oxide thin film
JP2017008412A (ja) 順次cvdプロセスによる低フッ素タングステンの堆積
KR100819639B1 (ko) 기판 처리 장치 및 반도체 디바이스의 제조 방법
US20210384029A1 (en) Modifying hydrophobicity of a wafer surface using an organosilicon precursor
CN113424300A (zh) 在3d nand结构上的原子层沉积
TWI773446B (zh) 氮化矽膜之多層沉積及處理
CN113710830A (zh) 高台阶覆盖率钨沉积
JP2023521755A (ja) 原子層堆積中の損失防止
CN115181961A (zh) 选择性原子层处理设备及方法
CN115836380A (zh) 低电阻脉冲式cvd钨
JP2023500828A (ja) 継ぎ目のない高品質のギャップフィルを可能にする方法
WO2019190783A1 (en) Atomic layer deposition of carbon films
US20230098270A1 (en) Precursors for high-temperature deposition of silicon-containing films
CN115769343A (zh) 非金属掺入介电表面的钼中

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination