WO2022050313A1 - 有機層パターンの製造方法、及び、半導体デバイスの製造方法 - Google Patents

有機層パターンの製造方法、及び、半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2022050313A1
WO2022050313A1 PCT/JP2021/032133 JP2021032133W WO2022050313A1 WO 2022050313 A1 WO2022050313 A1 WO 2022050313A1 JP 2021032133 W JP2021032133 W JP 2021032133W WO 2022050313 A1 WO2022050313 A1 WO 2022050313A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
intermediate layer
preferable
water
Prior art date
Application number
PCT/JP2021/032133
Other languages
English (en)
French (fr)
Inventor
英希 高桑
光司 吉林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP21864370.8A priority Critical patent/EP4210089A4/en
Priority to KR1020237007178A priority patent/KR20230044294A/ko
Publication of WO2022050313A1 publication Critical patent/WO2022050313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a method for manufacturing an organic layer pattern and a method for manufacturing a semiconductor device.
  • organic semiconductor devices In recent years, devices using a patterned organic layer (organic layer pattern), such as semiconductor devices using organic semiconductors, have been widely used.
  • an organic semiconductor device has an advantage that it can be manufactured by a simple process as compared with a conventional electronic device using an inorganic semiconductor such as silicon.
  • the material properties of organic semiconductors can be easily changed by changing their molecular structures.
  • Organic semiconductors can be applied to electronic devices such as organic solar cells, organic electroluminescence displays, organic optical detectors, organic field effect transistors, organic field light emitting devices, gas sensors, organic rectifying elements, organic inverters, and information recording elements. There is sex.
  • Such an organic layer pattern of an organic semiconductor or the like is manufactured by etching using a laminate including an organic layer and a layer such as a photosensitive layer (for example, a resist layer) and using the pattern composed of the photosensitive layer as a mask. It has been known.
  • Patent Document 1 describes a method for manufacturing a device having a first pattern-formed device layer at a first position on a substrate and a second pattern-formed device layer at a second position on the substrate.
  • the step of laminating the device layer, the step of laminating the second intermediate layer, and the second intermediate layer and its lower layer in order to remove the second intermediate layer and its lower layer at the second position.
  • a step of laminating a second device layer, and later, a first pattern-formed device layer at a first position and a second pattern-formed device layer at a second position Describes a method comprising: having a first device layer and a step of patterning a second device layer.
  • an etching residue for example, a residue of a resist layer, an intermediate layer or an organic layer which is a layer removed by etching, for example, a residue in the form of particles. May occur.
  • An object of the present invention is to provide a method for manufacturing an organic layer pattern and a method for manufacturing an electronic device in which the generation of etching residues is suppressed.
  • a method for producing an organic layer pattern which comprises a step of cleaning the laminate after the step of insolubilizing with water or a water-soluble solvent.
  • ⁇ 2> The method for producing an organic layer pattern according to ⁇ 1>, which comprises a step of removing the surface of the insolubilized intermediate layer in the insolubilizing step.
  • ⁇ 3> The organic layer pattern according to ⁇ 2>, wherein the step of removing the surface of the intermediate layer is a step of performing dry etching with an etching gas having an oxygen partial pressure of 50 to 100% with respect to the total pressure.
  • ⁇ 5> The method for producing an organic layer pattern according to any one of ⁇ 1> to ⁇ 4>, wherein the insolubilizing step is a step of plasma-treating the surface of the intermediate layer.
  • ⁇ 6> The method for producing an organic layer pattern according to ⁇ 5>, wherein the plasma treatment is performed with a gas containing Ar.
  • ⁇ 7> The method for producing an organic layer pattern according to ⁇ 6>, wherein the plasma treatment is performed with a gas containing Ar and N 2 .
  • ⁇ 8> The method for producing an organic layer pattern according to ⁇ 7>, wherein the partial pressure of N 2 in the gas containing Ar and N 2 is 10 to 50% with respect to the total pressure of the gas.
  • the method for producing an organic layer pattern according to ⁇ 8> which comprises a step of removing the intermediate layer.
  • a step of further forming a second organic layer and a step of further forming a second organic layer A step of forming a second intermediate layer dissolved in water or a water-soluble solvent and a second resist layer in this order on the second organic layer to obtain a laminate.
  • the step of insolubilizing the surface of the second intermediate layer in water or a water-soluble solvent and
  • the method for producing an organic layer pattern according to any one of ⁇ 1> to ⁇ 9> which comprises a step of washing the insolubilized laminate with water or a water-soluble solvent.
  • a method for manufacturing a semiconductor device which comprises the method for manufacturing an organic layer pattern according to any one of ⁇ 1> to ⁇ 10>.
  • a method for manufacturing an organic layer pattern and a method for manufacturing an electronic device in which the generation of etching residues is suppressed.
  • the numerical range represented by the symbol "-" means a range including the numerical values before and after "-” as the lower limit value and the upper limit value, respectively.
  • the term "process” means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended action of the process can be achieved.
  • the notation that does not describe substitution or non-substitution means to include those having a substituent as well as those having no substituent. For example, when simply described as "alkyl group”, this includes both an alkyl group having no substituent (unsubstituted alkyl group) and an alkyl group having a substituent (substituted alkyl group).
  • alkyl group when simply described as “alkyl group”, this means that it may be chain-like or cyclic, and in the case of chain-like, it may be linear or branched. These are also synonymous with other groups such as “alkenyl group”, “alkylene group” and “alkenylene group”.
  • exposure means not only drawing using light but also drawing using particle beams such as an electron beam and an ion beam, unless otherwise specified. Examples of energy rays used for drawing include emission line spectra of mercury lamps, far ultraviolet rays typified by excimer lasers, active rays such as extreme ultraviolet rays (EUV light) and X rays, and particle beams such as electron beams and ion beams. Be done.
  • light includes not only light having wavelengths in the ultraviolet, near-ultraviolet, far-ultraviolet, visible, and infrared regions, and electromagnetic waves, but also radiation, unless otherwise specified.
  • Radiation includes, for example, microwaves, electron beams, extreme ultraviolet (EUV), and X-rays.
  • laser light such as a 248 nm excimer laser, a 193 nm excimer laser, and a 172 nm excimer laser can also be used.
  • monochrome light single wavelength light
  • light containing a plurality of wavelengths composite light
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacrylic", or.
  • Any, and “(meth) acryloyl” means both “acryloyl” and “methacrylic", or either.
  • the solid content in the composition means other components other than the solvent, and the content (concentration) of the solid content in the composition is, unless otherwise specified, based on the total mass of the composition. It is expressed by the mass percentage of other components excluding the solvent.
  • the temperature is 23 ° C.
  • the atmospheric pressure is 101325 Pa (1 atmospheric pressure)
  • the relative humidity is 50% RH.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are shown as polystyrene-equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise specified.
  • GPC measurement gel permeation chromatography
  • Mw and Mn for example, HLC-8220 (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, and TSKgel are used as columns. It can be obtained by using Super HZ3000 and TSKgel Super HZ2000 (manufactured by Tosoh Corporation).
  • each layer constituting the laminated body is described as "upper” or “lower”, the other layer is on the upper side or the lower side of the reference layer among the plurality of layers of interest. All you need is. That is, a third layer or element may be further interposed between the reference layer and the other layer, and the reference layer and the other layer need not be in contact with each other.
  • the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a resist layer, the direction from the base material to the resist layer is referred to as “upper”.
  • the opposite direction is referred to as "down”. It should be noted that such a vertical setting is for convenience in the present specification, and in an actual embodiment, the "up" direction in the present specification may be different from the vertical upward direction.
  • the method for producing an organic layer pattern of the present invention comprises a step of forming an intermediate layer soluble in water or a water-soluble solvent and a resist layer in this order on the organic layer to obtain a laminate, and a pattern of the resist layer.
  • a step of producing a step of etching the organic layer using the pattern of the resist layer as a mask, a step of insolubilizing the surface of the intermediate layer in water or a water-soluble solvent after the etching, and a step of insolubilizing the surface of the intermediate layer with water or a water-soluble solvent. It includes a step of cleaning the laminated body after the step of insolubilizing.
  • etching residue for example, a residue of a resist layer, an intermediate layer or an organic layer, for example, a residue in the form of particles
  • Patent Document 1 does not describe the step of insolubilizing and the step of cleaning.
  • the method for producing an organic layer pattern of the present invention is a step of forming an intermediate layer dissolved in water or a water-soluble solvent and a resist layer in this order on the organic layer to obtain a laminate (simply, a step of obtaining a laminate). Also called.) Includes.
  • the organic layer is a layer containing an organic material.
  • the specific organic material is appropriately selected according to the use and function of the organic layer. Assumed functions of the organic layer include, for example, semiconductor characteristics, light emission characteristics, photoelectric conversion characteristics, light absorption characteristics, electrical insulation, ferroelectricity, transparency, insulation and the like.
  • the organic layer may be contained above the base material in the laminate, and the base material may be in contact with the organic layer, or the organic layer and the base material may be in contact with each other. Further layers may be included in between.
  • the thickness of the organic layer is not particularly limited and varies depending on the type of electronic device used and the like, but is preferably 1 nm to 50 ⁇ m, more preferably 1 nm to 5 ⁇ m, and further preferably 1 nm to 500 nm.
  • the organic layer is an organic semiconductor layer
  • the organic semiconductor layer is a layer containing an organic material exhibiting the characteristics of a semiconductor.
  • the organic semiconductor layer is an organic layer containing an organic semiconductor, and the organic semiconductor is an organic compound exhibiting the characteristics of the semiconductor. Similar to the case of semiconductors made of inorganic compounds, organic semiconductors include p-type semiconductors that conduct holes as carriers and n-type semiconductors that conduct electrons as carriers.
  • the ease of carrier flow in the organic semiconductor layer is expressed by carrier mobility ⁇ . Although it depends on the application, in general, the carrier mobility is better, preferably 10-7 cm 2 / Vs or more, more preferably 10-6 cm 2 / Vs or more, and 10-5 cm 2 or more. It is more preferably / Vs or more.
  • the carrier mobility can be obtained based on the characteristics when the field effect transistor (FET) element is manufactured and the measured value of the flight time measurement (TOF) method.
  • FET field effect transistor
  • TOF flight time measurement
  • the p-type organic semiconductor that can be used for the organic semiconductor layer, any material may be used as long as it has hole transportability.
  • the p-type organic semiconductor is preferably any one of a p-type ⁇ -conjugated polymer, a condensed polycyclic compound, a triarylamine compound, a hetero 5-membered ring compound, a phthalocyanine compound, a porphyrin compound, carbon nanotubes, and graphene. Further, as the p-type organic semiconductor, a plurality of kinds of compounds among these compounds may be used in combination.
  • the p-type organic semiconductor is more preferably at least one of a p-type ⁇ -conjugated polymer, a condensed polycyclic compound, a triarylamine compound, a hetero 5-membered ring compound, a phthalocyanine compound, and a porphyrin compound, and more preferably. It is at least one of a p-type ⁇ -conjugated polymer and a condensed polycyclic compound.
  • the p-type ⁇ -conjugated polymer is, for example, substituted or unsubstituted polythiophene (for example, poly (3-hexylthiophene) (P3HT, manufactured by Sigma Aldrich Japan LLC)), polyselenophene, polypyrrole, polyparaphenylene, poly. Paraphenylene vinylene, polythiophene vinylene, polyaniline, etc.
  • Condensed polycyclic compounds are, for example, substituted or unsubstituted anthracene, tetracene, pentacene, anthradithiophene, hexabenzocoronene and the like.
  • the triarylamine compound is, for example, m-MTDATA (4,4', 4''-Tris [(3-methylphenyl) phenyllamino] triphenyllamine), 2-TNATA (4,4', 4''-Tris [2- naphthyl (phenyl) amineo] triphenyllamine), NPD (N, N'-Di (1-naphthyl) -N, N'-diphenyl- (1,1'-biphenyl) -4,4'-diamine), TPD (N) , N'-Diphenyl-N, N'-di (m-polyl) benzidine), mCP (1,3-bis (9-carbazolyl) benzene), CBP (4,4'-bis (9-carbazolyl) -2 , 2'-biphenyl) and the like.
  • m-MTDATA 4,4', 4''-Tris [(3-methylphenyl)
  • the hetero 5-membered ring compound is, for example, a substituted or unsubstituted oligothiophene, TTF (Tetrathiafulvalene), or the like.
  • the phthalocyanine compound is a substituted or unsubstituted phthalocyanine having various central metals, naphthalocyanine, anthracyanine, tetrapyrazinoporphyrazine and the like.
  • Porphyrin compounds are substituted or unsubstituted porphyrins having various central metals.
  • the carbon nanotube may be a carbon nanotube whose surface is modified with a semiconductor polymer.
  • n-type organic semiconductor that can be used for the organic semiconductor layer, any material may be used as long as it has electron transportability.
  • the n-type organic semiconductor is preferably a fullerene compound, an electron-deficient phthalocyanine compound, a condensed ring polycyclic compound (naphthalenetetracarbonyl compound, perylenetetracarbonyl compound, etc.), a TCNQ compound (tetracyanoquinodimethane compound), and a polythiophene-based compound.
  • n-type organic semiconductor a plurality of kinds of compounds among these compounds may be used in combination.
  • the n-type organic semiconductor is more preferably at least one of a fullerene compound, an electron-deficient phthalocyanine compound, a condensed ring polycyclic compound, and an n-type ⁇ -conjugated polymer, and particularly preferably a fullerene compound and a condensed ring polycycle. It is at least one of a compound and an n-type ⁇ -conjugated polymer.
  • the fullerene compound means substituted or unsubstituted fullerene, and the fullerenes are C 60 , C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90 , C 96 . , C 116 , C 180 , C 240 , C 540 and the like.
  • the fullerene compound is preferably substituted or unsubstituted C 60 , C 70 , C 86 fullerene, and particularly preferably PCBM ([6,6] -phenyl-C61-butyric acid methyl ester, manufactured by Sigma Aldrich Japan GK.
  • Etc. and their analogs (eg, C 60 moiety substituted with C 70 , C 86 , etc., benzene ring of substituent substituted with another aromatic ring or hetero ring, methyl ester replaced with n-butyl ester, etc. It is replaced with i-butyl ester or the like).
  • the electron-deficient phthalocyanine compound is a substituted or unsubstituted phthalocyanine, naphthalocyanine, anthracyanine, tetrapyrazinoporphyrazine and the like having four or more electron-withdrawing groups bonded and having various central metals.
  • the electron-deficient phthalocyanine compound is, for example, fluorinated phthalocyanine (F 16 MPc), chlorinated phthalocyanine (Cl 16 MPc), and the like.
  • F 16 MPc fluorinated phthalocyanine
  • Cl 16 MPc chlorinated phthalocyanine
  • M represents a central metal
  • Pc represents a phthalocyanine.
  • naphthalene tetracarbonyl compound Any naphthalene tetracarbonyl compound may be used, but naphthalene tetracarboxylic acid anhydride (NTCDA), naphthalene bisimide compound (NTCDI), perinone pigment (Pigment Orange 43, Pigment Red 194, etc.) are preferable.
  • NTCDA naphthalene tetracarboxylic acid anhydride
  • NTCDI naphthalene bisimide compound
  • perinone pigment Pigment Orange 43, Pigment Red 194, etc.
  • perylenetetracarbonyl compound Any perylenetetracarbonyl compound may be used, but perylenetetracarboxylic dianhydride (PTCDA), perylenebisimide compound (PTCDI), and benzoimidazole condensed ring (PV) are preferable.
  • PTCDA perylenetetracarboxylic dianhydride
  • PTCDI perylenebisimide compound
  • PV benzoimidazole condensed ring
  • the TCNQ compound is a substituted or unsubstituted TCNQ in which the benzene ring portion of TCNQ is replaced with another aromatic ring or heterocycle.
  • the TCNQ compounds include, for example, TCNQ, TCNAQ (tetracyanoquinodimethane), TCN3T (2,2'-((2E, 2''E) -3', 4'-Alkyl substationed-5H, 5''H. -[2,2': 5', 2''-terthiophene] -5,5''-diylidene) dimalononirile derivatives) and the like.
  • the polythiophene-based compound is a compound having a polythiophene structure such as poly (3,4-ethylenedioxythiophene).
  • the polythiophene-based compound is, for example, PEDOT: PSS (complex composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)).
  • a benzidine compound is a compound having a benzidine structure in the molecule.
  • the benzidine compound is, for example, N, N'-bis (3-methylphenyl) -N, N'-diphenylbenzidine (TPD), N, N'-di-[(1-naphthyl) -N, N'-. Diphenyl] -1,1'-biphenyl) -4,4'-diamine (NPD) and the like.
  • a carbazole-based compound is a compound having a carbazole ring structure in the molecule.
  • the carbazole-based compound is, for example, 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP).
  • the phenanthroline-based compound is a compound having a phenanthroline ring structure in the molecule, and is, for example, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • the pyridinephenyl ligand iridium-based compound is a compound having an iridium complex structure having a phenylpyridine structure as a ligand.
  • Examples of the pyridinephenyl ligand iridium compound include bis (3,5-difluoro-2- (2-pyridylphenyl- (2-carboxypyridyl) iridium (III) (FIrpic)) and tris (2-phenylpyridinato). ) Iridium (III) (Ir (ppy) 3 ) and the like.
  • the quinolinol ligand alumnium-based compound is a compound having an aluminum complex structure having a quinolinol structure as a ligand, and is, for example, tris (8-quinolinolat) aluminum or the like.
  • the R in the formula may be any, but is hydrogen atom, substituted or unsubstituted, branched or linear alkyl group (preferably 1 to 18, more preferably 1 to 12, more preferably 1 to 12 carbon atoms). 1 to 8), substituted or unsubstituted aryl group (preferably 6 to 30, more preferably 6 to 20, still more preferably 6 to 14).
  • Me represents a methyl group and M represents a metal atom.
  • the organic semiconductor contained in the organic semiconductor layer may be one type or two or more types. Further, the organic semiconductor layer may be a laminated or mixed layer of a p-type layer and an n-type layer.
  • the organic layer may be formed by either a vapor phase method or a liquid phase method.
  • a physical vapor deposition (PVD) method such as a vapor deposition method (vacuum vapor deposition method, molecular beam epitaxy method, etc.), a sputtering method, an ion plating method, or a chemical vapor deposition method such as a plasma polymerization method.
  • PVD physical vapor deposition
  • a growth (CVD) method can be used, and a vapor deposition method is particularly preferred.
  • the organic material is blended in a solvent to form a composition for forming an organic layer (composition for forming an organic layer). Then, this composition is supplied onto the substrate and dried to form an organic layer.
  • coating is preferable.
  • feeding methods include slit coating method, casting method, blade coating method, wire bar coating method, spray coating method, dipping coating method, bead coating method, air knife coating method, curtain coating method, and inkjet method.
  • examples thereof include a spin coat method, a Langmuir-Blodgett (LB) method, and an edge cast method (for details, see Japanese Patent No. 6179930). It is more preferable to use a casting method, a spin coating method, and an inkjet method.
  • LB Langmuir-Blodgett
  • Such a process makes it possible to produce an organic layer having a smooth surface and a large area at low cost.
  • an organic solvent is preferable.
  • the organic solvent include hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, ethylbenzene, 1-methylnaphthalene and 1,2-dichlorobenzene; for example, acetone, methylethylketone, methylisobutylketone, cyclohexanone and the like.
  • Ketone solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, etc .; esters such as ethyl acetate, butyl acetate, amyl acetate, etc.
  • Solvents include alcohol-based solvents such as, for example, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol; eg, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole; for example. , N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, 1-methyl-2-imidazolidinone, dimethylsulfoxide and other polar solvents. Only one kind of these solvents may be used, or two or more kinds may be used.
  • the proportion of the organic material in the composition for forming an organic layer is preferably 1 to 95% by mass, more preferably 5 to 90% by mass, whereby a film having an arbitrary thickness can be formed.
  • a resin binder may be added to the composition for forming an organic layer.
  • the material forming the film and the binder resin are dissolved or dispersed in the above-mentioned suitable solvent to prepare a coating liquid, and a thin film can be formed by various coating methods.
  • Resin binders include insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulphon, polymethylmethacrylate, polymethylacrylate, cellulose, polyethylene, and polypropylene, and their co-weights.
  • Examples thereof include photoconductive polymers such as coalescing, polyvinylcarbazole and polysilane, and conductive polymers such as polythiophene, polypyrrole, polyaniline and polyparaphenylene vinylene.
  • the resin binder may be used alone or in combination of two or more. Considering the mechanical strength of the thin film, a resin binder having a high glass transition temperature is preferable, and considering charge mobility, a resin binder having a structure containing no polar group or a conductive polymer is preferable.
  • the blending amount thereof is preferably 0.1 to 30% by mass in the organic layer.
  • the resin binder may be used alone or in combination of a plurality of types. In the case of a combination of a plurality of types, it is preferable that the total amount thereof is within the above range.
  • the organic layer may be a blended film composed of a plurality of material types, depending on the intended use, using a single solution or a mixed solution containing various organic materials and additives.
  • a mixed solution using a plurality of types of semiconductor materials can be used.
  • the base material may be heated or cooled at the time of film formation, and it is possible to control the film quality and the packing of molecules in the film by changing the temperature of the base material.
  • the temperature of the base material is not particularly limited, but is preferably ⁇ 200 ° C. to 400 ° C., more preferably ⁇ 100 ° C. to 300 ° C., and even more preferably 0 ° C. to 200 ° C.
  • the characteristics of the formed organic layer can be adjusted by post-treatment. For example, it is possible to improve the properties by changing the morphology of the membrane and the packing of molecules in the membrane by heat treatment or exposure to a vaporized solvent. Further, by exposing to an oxidizing or reducing gas, solvent, substance or the like, or by using these methods in combination, an oxidation or reduction reaction can occur and the carrier density in the membrane can be adjusted.
  • the intermediate layer is a layer that dissolves in water or a water-soluble solvent.
  • the dissolution rate in water or a water-soluble solvent is preferably 100 nm / s or more, more preferably 120 nm / s or more, and further preferably 150 nm / s or more.
  • the upper limit of the dissolution rate is not particularly limited, and can be, for example, 1,000 nm / s or less.
  • the details of the water-soluble solvent are the same as those of the water-soluble solvent contained in the removal liquid described later.
  • the intermediate layer preferably has a dissolution rate in water of 100 nm / s or more, more preferably 120 nm / s or more, and further preferably 150 nm / s or more.
  • the upper limit of the dissolution rate is not particularly limited, and can be, for example, 1,000 nm / s or less.
  • the dissolution rate is measured, for example, by the following method.
  • the resist layer is removed from the laminate to prepare a laminate from which the resist layer has been removed.
  • the resist layer can be removed, for example, by removing the resist layer with a developing solution without performing either exposure or heating.
  • the film thickness (film thickness A) of the laminate from which the resist layer has been removed is measured.
  • the laminate from which the resist light layer has been removed is immersed in the removal liquid for 5 seconds and then taken out, and the film thickness (film thickness B) of the laminate is measured again.
  • the dissolution rate (nm / s) of the intermediate layer with respect to the removal liquid is calculated.
  • the dissolution rate of the intermediate layer can be measured, for example, by the above method.
  • the dissolution rate of the resist layer in a certain solvent or composition can be similarly measured by immersing the laminate in the solvent or composition without removing the resist layer.
  • the thickness of the intermediate layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1.0 ⁇ m or more, and even more preferably 2.0 ⁇ m or more.
  • the upper limit of the thickness of the intermediate layer is preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, still more preferably 3.0 ⁇ m or less.
  • the intermediate layer in the present invention is preferably a layer having a dissolution rate in a developing solution of 10 nm / s or less, and more preferably 1 nm / s or less.
  • the lower limit of the dissolution rate is not particularly limited, and may be more than 0 nm / s.
  • the intermediate layer in the present invention preferably contains a polymer compound.
  • the intermediate layer preferably contains a water-soluble polymer compound, and more preferably contains a water-soluble resin.
  • the water-soluble resin means a resin that dissolves 1 g or more in 100 g of water at 23 ° C.
  • the water-soluble resin is preferably a resin that dissolves 5 g or more in 100 g of water at 23 ° C., more preferably a resin that dissolves 10 g or more, and further preferably a resin that dissolves 30 g or more.
  • the water-soluble resin is preferably a resin containing a hydrophilic group, and examples of the hydrophilic group include a hydroxyl group, a carboxy group, a sulfonic acid group, a phosphoric acid group, an amide group, and an imide group.
  • water-soluble resin examples include polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and water-soluble polysaccharides (water-soluble cellulose (methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxy).
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • water-soluble polysaccharides water-soluble cellulose (methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxy).
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • water-soluble polysaccharides water-soluble cellulose (methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxy).
  • pullulan or pullulan derivatives
  • the intermediate layer preferably contains at least one selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, water-soluble polysaccharides, pullulan and pullulan derivatives among these resins, and polyvinylpyrrolidone and polyvinyl alcohol. It is more preferable to contain at least one selected from the group consisting of water-soluble polysaccharides and water-soluble polysaccharides.
  • the water-soluble polysaccharide is particularly preferably cellulose, more preferably hydroxyethyl cellulose.
  • the intermediate layer contains polyvinyl alcohol because the intermediate layer insolubilization step can be easily performed by, for example, plasma treatment.
  • the water-soluble resin contained in the intermediate layer is a resin containing a repeating unit represented by any of the formulas (P1-1) to (P4-1).
  • RP1 represents a hydrogen atom or a methyl group
  • RP2 represents a hydrogen atom or a methyl group
  • R p31 to R p33 independently represent a substituent or a hydrogen.
  • R p41 to R p49 independently represent a substituent or a hydrogen atom.
  • Resin containing a repeating unit represented by the formula (P1-1) is preferably a hydrogen atom.
  • the resin containing the repeating unit represented by the formula (P1-1) may further contain a repeating unit different from the repeating unit represented by the formula (P1-1).
  • the resin containing the repeating unit represented by the formula (P1-1) preferably contains the repeating unit represented by the formula (P1-1) in an amount of 10 mol% to 100 mol% with respect to all the repeating units of the resin. , 30 mol% to 70 mol% is more preferable.
  • Examples of the resin containing the repeating unit represented by the formula (P1-1) include a resin containing two repeating units represented by the following formula (P1-2).
  • RP11 independently represents a hydrogen atom or a methyl group
  • RP12 represents a substituent
  • np1 and np2 represent the composition ratio in the molecule on a mass basis.
  • RP11 is synonymous with RP1 in the formula (P1-1), and the preferred embodiment is also the same.
  • RP12 a group represented by ⁇ LP ⁇ TP can be mentioned.
  • LP is a single bond or a linking group L described later.
  • T P is a substituent, and examples of the substituent T described later can be mentioned.
  • an alkyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms are more preferable.
  • 2 to 3 are more preferable
  • an alkynyl group preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 3 carbon atoms
  • an aryl group preferably 6 to 22 carbon atoms, 6 to 18 carbon atoms.
  • np1 and np2 represent the composition ratio in the molecule on a mass basis, and each is independently 10% by mass or more and less than 100% by mass. However, np1 + np2 does not exceed 100% by mass. When np1 + np2 is less than 100% by mass, it means that the copolymer contains other repeating units.
  • Resin containing a repeating unit represented by the formula (P2-1) is preferably a hydrogen atom.
  • the resin containing the repeating unit represented by the formula (P2-1) may further contain a repeating unit different from the repeating unit represented by the formula (P2-1).
  • the resin containing the repeating unit represented by the formula (P2-1) preferably contains the repeating unit represented by the formula (P2-1) in an amount of 10% by mass to 100% by mass with respect to the total mass of the resin. It is more preferable to contain 30% by mass to 70% by mass.
  • Examples of the resin containing the repeating unit represented by the formula (P2-1) include a resin containing two repeating units represented by the following formula (P2-2).
  • RP21 independently represents a hydrogen atom or a methyl group
  • RP22 represents a substituent
  • mp1 and mp2 represent the composition ratio in the molecule on a mass basis.
  • RP21 is synonymous with RP2 in the formula ( P2-1 ), and the preferred embodiment is also the same.
  • RP22 a group represented by ⁇ LP ⁇ TP can be mentioned.
  • LP is a single bond or a linking group L described later.
  • T P is a substituent, and examples of the substituent T described later can be mentioned.
  • an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms are more preferable).
  • 2 to 3 are more preferable
  • an alkynyl group preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 3 carbon atoms
  • an aryl group preferably 6 to 22 carbon atoms, 6 to 18 carbon atoms.
  • mp1 and mp2 represent the composition ratios in the molecule on a mass basis, and are independently 10% by mass or more and less than 100% by mass. However, mp1 + mp2 does not exceed 100% by mass. When mp1 + mp2 is less than 100% by mass, it means that the copolymer contains other repeating units.
  • R p31 to R p33 are each independently a hydrocarbon group or an acyl group which may have a substituent,-(CH 2 CH 2 O) ma H, -CH 2 COONa or hydrogen. It is preferable to represent an atom, a hydrocarbon group, a hydrocarbon group having a hydroxy group as a substituent, an acyl group or a hydrogen atom is more preferable, and a hydrogen atom is further preferable.
  • ma is or 2.
  • the number of carbon atoms of the hydrocarbon group which may have the above-mentioned substituent is preferably 1 to 10, more preferably 1 to 4.
  • hydrocarbon group having a hydroxy group as a substituent a hydrocarbon group having one hydroxy group and having 1 to 10 carbon atoms is preferable, and a hydrocarbon group having one hydroxy group and having 1 to 4 carbon atoms is more preferable.
  • -CH 2 (OH), -CH 2 CH 2 (OH) or -CH 2 CH (OH) CH 3 is more preferable.
  • acyl group an alkylcarbonyl group having 1 to 4 carbon atoms is preferable, and an acetyl group is more preferable.
  • the resin containing the repeating unit represented by the formula (P3-1) may further contain a repeating unit different from the repeating unit represented by the formula (P3-1).
  • the resin containing the repeating unit represented by the formula (P3-1) preferably contains the repeating unit represented by the formula (P3-1) in an amount of 10% by mass to 100% by mass with respect to the total mass of the resin. It is more preferable to contain 30% by mass to 70% by mass.
  • the hydroxy group described in the formula (P3-1) may be appropriately substituted with a substituent T or a group in which the linking group L is combined. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the ring in the formula with or without the linking group L to form a ring.
  • RP41 to RP49 are each independently a hydrocarbon group, an acyl group, which may have a substituent,-(CH 2 CH 2 O) ma H, -CH 2 COONa or hydrogen. It is preferable to represent an atom, a hydrocarbon group, a hydrocarbon group having a hydroxy group as a substituent, an acyl group or a hydrogen atom is more preferable, and a hydrogen atom is further preferable.
  • ma is 1 or 2.
  • the number of carbon atoms of the hydrocarbon group which may have the above-mentioned substituent is preferably 1 to 10, more preferably 1 to 4.
  • the resin containing the repeating unit represented by the formula (P4-1) may further contain a repeating unit different from the repeating unit represented by the formula (P4-1).
  • the resin containing the repeating unit represented by the formula (P4-1) preferably contains the repeating unit represented by the formula (P4-1) in an amount of 10% by mass to 100% by mass with respect to the total mass of the resin.
  • the hydroxy group described in the formula (P4-1) may be appropriately substituted with a substituent T or a group in which the linking group L is combined. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the ring in the formula with or without the linking group L to form a ring.
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms
  • an arylalkyl group preferably 7 to 21 carbon atoms, more preferably 7 to 15 carbon atoms. , 7-11 is more preferred
  • an alkenyl group preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms
  • an alkynyl group preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms.
  • 2 to 3 is more preferable
  • a hydroxyl group an amino group (preferably 0 to 24 carbon atoms, more preferably 0 to 12 and even more preferably 0 to 6), a thiol group, a carboxy group, an aryl group (the number of carbon atoms is preferable).
  • 6 to 22 is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), an alkoxyl group (1 to 12 carbon atoms is preferable, 1 to 6 is more preferable, 1 to 3 is more preferable), and an aryloxy group.
  • acyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 3 carbon atoms).
  • An acyloxy group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 3), an allylloyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, still more preferably 7 to 11 carbon atoms).
  • Allyloyloxy group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, further preferably 7 to 11), carbamoyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms 1 to 1 to 6). 3 is more preferable), sulfamoyl group (preferably 0 to 12 carbon atoms, more preferably 0 to 6 and even more preferably 0 to 3), sulfo group, alkylsulfonyl group (preferably 1 to 12 carbon atoms 1 to 6).
  • an arylsulfonyl group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), and a heteroaryl group (1 to 12 carbon atoms is preferable).
  • 1 to 8 are more preferable, 2 to 5 are more preferable, and a 5-membered ring or a 6-membered ring is preferably contained), a (meth) acryloyl group, a (meth) acryloyloxy group, a halogen atom (for example, a fluorine atom, etc.).
  • RN is a hydrogen atom or an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), and a hydrogen atom, a methyl group, an ethyl group, or a propyl group is preferable.
  • the alkyl moiety, alkenyl moiety, and alkynyl moiety contained in each substituent may be chain or cyclic, and may be linear or branched.
  • the substituent T When the substituent T is a group capable of taking a substituent, it may further have a substituent T.
  • the alkyl group may be an alkyl halide group, a (meth) acryloyloxyalkyl group, an aminoalkyl group or a carboxyalkyl group.
  • the substituent is a group capable of forming a salt such as a carboxy group or an amino group, the group may form a salt.
  • an alkylene group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms
  • an alkenylene group preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms are more preferable.
  • 2-3 is more preferred
  • alkynylene group preferably 2-12 carbon atoms, more preferably 2-6)
  • (oligo) alkyleneoxy group alkylene group in one repeating unit.
  • the number of carbon atoms is preferably 1 to 12, more preferably 1 to 6, further preferably 1 to 3, and the number of repetitions is preferably 1 to 50, more preferably 1 to 40, still more preferably 1 to 30), an arylene group (preferably 1 to 30).
  • the "(oligo) alkyleneoxy group” means a divalent linking group having one or more "alkyleneoxy" as a constituent unit.
  • the carbon number of the alkylene chain in the structural unit may be the same or different for each structural unit.
  • the alkylene group may have a substituent T.
  • the alkylene group may have a hydroxyl group.
  • the number of atoms contained in the linking group L is preferably 1 to 50, more preferably 1 to 40, and even more preferably 1 to 30, excluding hydrogen atoms.
  • the number of connected atoms is preferably 1 to 24, more preferably 1 to 12, and even more preferably 1 to 6.
  • the alkylene group, alkenylene group, alkynylene group, and (oligo) alkyleneoxy group may be chain-like or cyclic, and may be linear or branched.
  • the linking group is a group capable of forming a salt such as —NR N— , the group may form a salt.
  • water-soluble resin examples include polyethylene oxide, hydroxyethyl cellulose, carboxymethyl cellulose, water-soluble methylol melamine, polyacrylamide, phenol resin, styrene / maleic acid semi-ester, poly-N-vinylacetamide and the like.
  • a commercially available product may be used as the water-soluble resin, and as the commercially available product, the Pittscol series (K-30, K-50, K-90, etc.) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. and LUBITEC manufactured by BASF.
  • the weight average molecular weight of the water-soluble resin is appropriately selected according to the type of the water-soluble resin.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble resin are the values converted to polyether oxide by GPC measurement.
  • the weight average molecular weight is 10,000 to 100,000. Is preferable.
  • the upper limit of this numerical range is preferably 80,000 or less, and more preferably 60,000 or less. Further, the lower limit of this numerical range is preferably 13,000 or more, and more preferably 15,000 or more.
  • the weight average molecular weight is preferably 20,000 to 2,000,000.
  • the upper limit of this numerical range is preferably 1,800,000 or less, and more preferably 1,500,000 or less. Further, the lower limit of this numerical range is preferably 30,000 or more, and more preferably 40,000 or more.
  • the weight average molecular weight is 50,000 to 2 It is preferably 000,000.
  • the upper limit of this numerical range is preferably 1,500,000 or less, and more preferably 1,300,000 or less. Further, the lower limit of this numerical range is preferably 70,000 or more, and more preferably 90,000 or more.
  • the molecular weight dispersion of the water-soluble resin is preferably 1.0 to 5.0, more preferably 2.0 to 4.0.
  • the intermediate layer is a water-soluble resin having a high molecular weight resin (for example, a water-soluble resin having a weight average molecular weight of 10,000 or more) and a weight average molecular weight smaller than the weight average molecular weight of the high molecular weight resin. It is also preferable that the weight average molecular weight of the low molecular weight resin is half or less of the weight average molecular weight of the high molecular weight resin. As a result, the low molecular weight resin is rapidly eluted in the removing liquid (particularly water), and the high molecular weight resin is easily removed starting from the portion where the low molecular weight resin is eluted. The effect of further reduction can be obtained. Further, when the intermediate layer is used to form the intermediate layer, it is possible to suppress the occurrence of cracks in the intermediate layer.
  • a high molecular weight resin for example, a water-soluble resin having a weight average molecular weight of 10,000 or more
  • the intermediate layer contains the high molecular weight resin and the low molecular weight resin has two peak tops (maximum values) when, for example, the molecular weight distribution of the entire intermediate layer or the water-soluble resin is measured. It can be judged based on whether or not the above can be confirmed.
  • the weight average molecular weight of the high molecular weight resin is preferably 20,000 or more, and preferably 45,000 or more.
  • the weight average molecular weight of the high molecular weight resin is preferably 2,000,000 or less, and may be 1,500,000 or less.
  • the upper limit of the molecular weight ratio is more preferably 0.3 or less, and further preferably 0.2 or less.
  • the lower limit of the molecular weight ratio is not particularly limited, but is preferably 0.001 or more, and may be 0.01 or more.
  • the molecular weight corresponding to one peak top is the other one. It is also preferable that the molecular weight is less than half of the molecular weight corresponding to the peak top. As a result, the same effect as when the weight average molecular weight of the low molecular weight resin is half or less of the weight average molecular weight of the high molecular weight resin can be obtained.
  • the water-soluble resin having the above-mentioned molecular weight distribution can be obtained, for example, by mixing the above-mentioned high-molecular-weight resin and the above-mentioned low-molecular-weight resin.
  • two sets of peak tops are selected from those peak tops, and for at least one set of peak tops, the molecular weight corresponding to one peak top is determined. It may be less than half of the molecular weight corresponding to the other peak top.
  • the larger one is preferably 20,000 or more, and preferably 45,000 or more. Further, the one having the larger peak top molecular weight is preferably 2,000,000 or less, and may be 1,500,000 or less.
  • the upper limit of the molecular weight ratio is more preferably 0.3 or less, and further preferably 0.2 or less.
  • the lower limit of the molecular weight ratio is not particularly limited, but is preferably 0.001 or more, and may be 0.01 or more.
  • the difference between the weight average molecular weight of the high molecular weight resin and the weight average molecular weight of the low molecular weight resin is when PVA is included as the high molecular weight resin. It is preferably 10,000 to 80,000, more preferably 20,000 to 60,000.
  • PVP is contained as the high molecular weight resin
  • the above difference is preferably 50,000 to 1,500,000, more preferably 100,000 to 1,200,000.
  • the high molecular weight resin contains a water-soluble polysaccharide
  • the above difference is preferably 50,000 to 1,500,000, more preferably 100,000 to 1,200,000.
  • the water-soluble resin preferably contains PVA having a weight average molecular weight of 20,000 or more as the high molecular weight resin.
  • the weight average molecular weight is more preferably 30,000 or more, and further preferably 40,000 or more.
  • the water-soluble resin preferably contains PVP having a weight average molecular weight of 300,000 or more as the high molecular weight resin.
  • the weight average molecular weight is more preferably 400,000 or more, and further preferably 500,000 or more.
  • the water-soluble resin preferably contains a water-soluble polysaccharide having a weight average molecular weight of 300,000 or more as the high molecular weight resin. In this case, the weight average molecular weight is more preferably 400,000 or more, and further preferably 500,000 or more.
  • Preferred combinations of high molecular weight resin and low molecular weight resin are as follows, for example.
  • the water-soluble resin may satisfy only one requirement of the following combinations, but may also satisfy the requirements of two or more combinations at the same time.
  • PVP high molecular weight resin
  • PVP low molecular weight resin
  • the content of the high molecular weight resin is preferably 50% by mass or less with respect to the total water-soluble resin.
  • the upper limit of this numerical range is more preferably 40% by mass or less, and further preferably 30% by mass or less. Further, the lower limit of this numerical value range is more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the water-soluble resin may be in a mode that does not substantially contain the low molecular weight resin.
  • substantially free of low molecular weight resin means that the content of the low molecular weight resin is 3% by mass or less with respect to the total water-soluble resin. In this embodiment, the content of the low molecular weight resin is preferably 1% by mass or less with respect to the total water-soluble resin.
  • the content of the polymer compound in the intermediate layer may be appropriately adjusted as necessary, but is preferably 20% by mass or more, more preferably 50% by mass or more, based on the total mass of the intermediate layer. , 70% by mass or more is more preferable.
  • the upper limit of the content is preferably 100% by mass or less, more preferably 99% by mass or less, and further preferably 98% by mass or less.
  • the intermediate layer may contain only one kind of polymer compound, or may contain two or more kinds of polymer compounds. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the intermediate layer preferably contains a surfactant containing an acetylene group. It is considered that the inclusion of the surfactant containing the acetylene group in the intermediate layer suppresses the adsorption of the polymer compound to the organic layer and is effective in removing the residue of the intermediate layer after removal with the removing liquid.
  • the number of acetylene groups in the molecule in the surfactant containing an acetylene group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, still more preferably 1 to 3, and 1 to 2. Is more preferable.
  • the molecular weight of the surfactant containing an acetylene group is preferably relatively small, preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 1,000 or less. There is no particular lower limit, but it is preferably 200 or more.
  • the surfactant containing an acetylene group is preferably a compound represented by the following formula (9).
  • R 91 and R 92 are independently an alkyl group having 3 to 15 carbon atoms, an aromatic hydrocarbon group having 6 to 15 carbon atoms, or an aromatic heterocyclic group having 4 to 15 carbon atoms. ..
  • the aromatic heterocyclic group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the aromatic heterocycle is preferably a 5-membered ring or a 6-membered ring.
  • the hetero atom contained in the aromatic heterocycle is preferably a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 91 and R 92 may each independently have a substituent, and examples of the substituent include the above-mentioned substituent T.
  • R 93 to R 96 are each independently a hydrocarbon group having 1 to 24 carbon atoms, n9 is an integer of 1 to 6, m9 is an integer twice n9, and n10 is an integer of 1 to 6. It is an integer, m10 is an integer twice n10, and l9 and l10 are independently numbers of 0 or more and 12 or less.
  • R 93 to R 96 are hydrocarbon groups, and among them, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms) and an alkenyl group (2 to 12 carbon atoms are preferable).
  • 2 to 6 are more preferable, 2 to 3 are more preferable), an alkynyl group (2 to 12 carbon atoms are preferable, 2 to 6 are more preferable, 2 to 3 are more preferable), and an aryl group (6 to 3 carbon atoms is more preferable).
  • 22 is preferable, 6 to 18 is more preferable, 6 to 10 is more preferable), and an arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable, and 7 to 11 is further preferable).
  • the alkyl group, alkenyl group, and alkynyl group may be linear or cyclic, and may be linear or branched.
  • R 93 to R 96 may have a substituent T as long as the effect of the present invention is exhibited. Further, R 93 to R 96 may be bonded to each other or form a ring via the above-mentioned linking group L. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the hydrocarbon group in the formula with or without the following linking group L to form a ring.
  • R 93 and R 94 are preferably alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms). Of these, the methyl group is preferable.
  • R 95 and R 96 are preferably alkyl groups (preferably 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 3 to 6 carbon atoms). Of these, ⁇ (C n11 R 98 m11 ) -R 97 is preferable. R 95 and R 96 are particularly preferably isobutyl groups. n11 is an integer of 1 to 6, and an integer of 1 to 3 is preferable. m11 is twice the number of n11. It is preferable that R 97 and R 98 are independently hydrogen atoms or alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms).
  • n9 is an integer of 1 to 6, and an integer of 1 to 3 is preferable.
  • m9 is an integer that is twice n9.
  • n10 is an integer of 1 to 6, and an integer of 1 to 3 is preferable.
  • m10 is an integer that is twice n10.
  • l9 and l10 are independently numbers from 0 to 12. However, l9 + l10 is preferably a number of 0 to 12, more preferably a number of 0 to 8, more preferably a number of 0 to 6, further preferably a number of more than 0 and less than 6, and more than 0. A number of 3 or less is even more preferred.
  • the compound of the formula (91) may be a mixture of compounds different in the number, in which case the number of l9 and l10, or l9 + l10 is the number including the decimal point. You may.
  • R 93 , R 94 , and R 97 to R 100 are each independently a hydrocarbon group having 1 to 24 carbon atoms, and l11 and l12 are each independently a number of 0 or more and 12 or less.
  • R 93 , R 94 , and R 97 to R 100 are alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), and alkenyl groups (preferably 2 to 12 carbon atoms).
  • alkyl group, alkenyl group, and alkynyl group may be chain or cyclic, and may be linear or branched.
  • R 93 , R 94 , and R 97 to R 100 may have a substituent T as long as the effects of the present invention are exhibited. Further, R 93 , R 94 , and R 97 to R 100 may be bonded to each other or form a ring via the linking group L. When there are a plurality of substituents T, they may be bonded to each other, or may be bonded to the hydrocarbon group in the formula with or without the linking group L to form a ring. It is preferable that R 93 , R 94 , and R 97 to R 100 are each independently an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms).
  • the methyl group is preferable.
  • the number of l11 + l12 is preferably 0 to 12, more preferably 0 to 8, more preferably 0 to 6, more preferably more than 0 and less than 6, more preferably more than 0 and 5 or less.
  • the number of is even more preferable, the number of more than 0 and less than 4 is even more preferable, the number of more than 0 and less than 3 may be, and the number of more than 0 and less than 1 may be used.
  • the compound of the formula (92) may be a mixture of compounds different in the number, in which case the number of l11 and l12, or l11 + l12 is the number including the decimal point. May be good.
  • Surfactants containing an acetylene group include Surfynol 104 series (trade name, Nisshin Kagaku Kogyo Co., Ltd.), Acetyrenol E00, E40, E13T, and 60 (all trade names, Kawa). (Manufactured by Ken Fineke Chemical Co., Ltd.), among which Surfinol 104 series, acetylenol E00, E40 and E13T are preferable, and acetylenol E40 and E13T are more preferable.
  • the Surfinol 104 series and acetylenol E00 are surfactants having the same structure.
  • the intermediate layer may contain other surfactants other than the above-mentioned surfactant containing an acetylene group for the purpose of improving the coatability of the composition for forming an intermediate layer described later.
  • the other surfactant any one such as nonionic type, anion type, amphoteric fluorine type and the like may be used as long as it lowers the surface tension.
  • other surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether and polyoxyethylene stearyl ether, polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether.
  • Polyoxyethylene alkylaryl ethers such as polyoxyethylene stearate, sorbitan monolaurate, sorbitan monostearate, sorbitan distearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan triole.
  • Nonionic surfactants such as sorbitan alkyl esters such as ate, monoglyceride alkyl esters such as glycerol monostearate and glycerol monooleate, oligomers containing fluorine or silicon; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate.
  • Alkylnaphthalene sulfonates such as sodium butylnaphthalene sulfonate, sodium pentylnaphthalene sulfonate, sodium hexylnaphthalene sulfonate, sodium octylnaphthalene sulfonate, alkyl sulfates such as sodium lauryl sulphate, alkyl sulfonic acid such as sodium dodecyl sulfonate.
  • Anionic surfactants such as salts and sulfosuccinic acid ester salts such as sodium dilauryl sulfosuccinate; and amphoteric surfactants such as alkyl betaines such as lauryl betaine and stearyl betaine and amino acids can be used.
  • the total amount of the surfactant containing the acetylene group and the other surfactant is the total amount of the surfactant added.
  • It is preferably 0.05 to 20% by mass, more preferably 0.07 to 15% by mass, and further preferably 0.1 to 10% by mass with respect to the total mass of the intermediate layer.
  • These surfactants may be used alone or in combination of two or more. When using a plurality of items, the total amount is within the above range. Further, in the present invention, it is possible to make the structure substantially free of other surfactants.
  • substantially free means that the content of the other surfactant is 5% by mass or less of the content of the surfactant containing an acetylene group, preferably 3% by mass or less, and 1% by mass or less. Is more preferable.
  • the surface tension of the 0.1% by mass aqueous solution of the other surfactant at 23 ° C. is preferably 45 mN / m or less, more preferably 40 mN / m or less, and more preferably 35 mN / m or less. More preferred. As the lower limit, it is preferably 5 mN / m or more, more preferably 10 mN / m or more, and further preferably 15 mN / m or more.
  • the surface tension of the surfactant may be appropriately selected depending on the type of other surfactant selected.
  • the intermediate layer contains an antiseptic or antifungal agent.
  • the preservative and antifungal agent (hereinafter, preservative and the like), it is preferable to contain at least one additive having an antibacterial or antifungal action and selected from water-soluble or water-dispersible organic compounds. ..
  • the additive having an antibacterial or antifungal action such as an antiseptic include an organic antibacterial agent or an antifungal agent, an inorganic antibacterial agent or an antifungal agent, a natural antibacterial agent or an antifungal agent and the like.
  • antibacterial or antifungal agent those described in "Antibacterial / Antifungal Technology" published by Toray Research Center Co., Ltd. can be used.
  • the effect of suppressing the increase of coating defects due to the growth of bacteria inside the solution after long-term storage at room temperature is more effectively exhibited.
  • preservatives include phenol ether compounds, imidazole compounds, sulfone compounds, N-haloalkylthio compounds, anilide compounds, pyrrol compounds, quaternary ammonium salts, arsine compounds, pyridine compounds, and triazine compounds.
  • Benzoisothiazolin-based compounds isothiazolin-based compounds and the like.
  • chitosan As a natural antibacterial agent or antifungal agent, there is chitosan, which is a basic polysaccharide obtained by hydrolyzing chitin contained in crab or shrimp crustacean. Nikko's "trade name Holon Killer Bees Cera", which consists of an amino metal in which a metal is compounded on both sides of an amino acid, is preferable.
  • the content of the preservative or the like in the intermediate layer is preferably 0.005 to 5% by mass, more preferably 0.01 to 3% by mass, and 0.05 to 0.05% by mass with respect to the total mass of the intermediate layer. It is more preferably 2% by mass, and even more preferably 0.1 to 1% by mass.
  • the preservative or the like one kind or a plurality of preservatives may be used. When using a plurality of items, the total amount is within the above range.
  • the antibacterial effect of preservatives and the like can be evaluated in accordance with JIS Z 2801 (antibacterial processed product-antibacterial test method / antibacterial effect). Further, the antifungal effect can be evaluated in accordance with JIS Z 2911 (mold resistance test).
  • the intermediate layer may contain a light-shielding agent.
  • a light-shielding agent for example, a known colorant or the like can be used, and examples thereof include organic or inorganic pigments or dyes, preferably inorganic pigments, and more preferably carbon black, titanium oxide, titanium nitride and the like. ..
  • the content of the light-shielding agent is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and further preferably 5 to 25% by mass with respect to the total mass of the intermediate layer.
  • the light-shielding agent one kind or a plurality of kinds may be used. When using a plurality of items, the total amount is within the above range.
  • composition for forming an intermediate layer is a composition used for forming an intermediate layer contained in the laminate used in the present invention.
  • the composition for forming an intermediate layer preferably contains a polymer compound.
  • the composition for forming an intermediate layer may contain the above-mentioned surfactant containing an acetylene group, other surfactants, preservatives, antifungal agents and light-shielding agents.
  • the composition for forming an intermediate layer preferably contains a water-soluble resin and a surfactant.
  • the surfactant may be the above-mentioned surfactant containing an acetylene group or the above-mentioned other surfactant, but a surfactant containing an acetylene group is preferable.
  • the content of the components contained in the intermediate layer forming composition may be read as the content of each component with respect to the total mass of the intermediate layer as described above with respect to the content with respect to the solid content of the intermediate layer forming composition. preferable.
  • the composition for forming an intermediate layer contains a solvent described later.
  • the intermediate layer can be formed, for example, by applying a composition for forming an intermediate layer onto an organic layer and drying it.
  • a method of applying the composition for forming an intermediate layer coating is preferable.
  • application methods include slit coating method, casting method, blade coating method, wire bar coating method, spray coating method, dipping coating method, bead coating method, air knife coating method, curtain coating method, and inkjet method.
  • spin coat method the Langmuir-Blodgett (LB) method, and the like. It is more preferable to use a casting method, a spin coating method, and an inkjet method.
  • LB Langmuir-Blodgett
  • composition for forming an intermediate layer can also be formed by a method of transferring a coating film previously applied onto a temporary support by the above-mentioned application method or the like onto an application target (for example, an organic layer).
  • application target for example, an organic layer.
  • the description in paragraphs 0023, 0036 to 0051 of JP-A-2006-023696, paragraphs 096 to 0108 of JP-A-2006-047592, and the like can be referred to.
  • the solvent contained in the composition for forming the intermediate layer examples include the above-mentioned aqueous solvent, and water or a mixture of water and a water-soluble solvent is preferable, and water is more preferable.
  • the aqueous solvent is a mixed solvent, it is preferably a mixed solvent of an organic solvent having a solubility in water at 23 ° C. of 1 g or more and water.
  • the solubility of the organic solvent in water at 23 ° C. is more preferably 10 g or more, further preferably 30 g or more.
  • a fluorine-based solvent can also be used as the solvent.
  • the fluorine-based solvent is an organic solvent containing a fluorine atom.
  • the fluorine atom content in the fluorine-based solvent used in the present invention is preferably 10 to 80%, more preferably 15 to 75%, and even more preferably 20 to 70%.
  • the fluorine atom content here is represented by (the number of fluorine atoms constituting the fluorine-based solvent / the number of all atoms constituting the fluorine solvent) ⁇ 100 (%).
  • the boiling point of the fluorinated solvent used in the present invention is 101325 Pa, preferably 40 to 250 ° C., more preferably 50 to 200 ° C., and even more preferably 55 to 180 ° C.
  • the fluorine-based solvent is preferably an alcohol, and more preferably an alcohol composed of an alkyl group and an OH group substituted with at least one fluorine atom.
  • alcohol a resin having polarity and not containing a fluorine atom such as resin A1 can be easily dissolved.
  • the number of carbon atoms of the alkyl group substituted with at least one fluorine atom is preferably 1 to 18, more preferably 1 to 12, and even more preferably 1 to 10.
  • the number of fluorine atoms in the alkyl group substituted with at least one fluorine atom is preferably 1 to 30, more preferably 3 to 20, and even more preferably 4 to 12.
  • fluorine-based solvent examples include 2,2,3,3-tetrafluoro-1-propanol, 2,2,3,3,4,5,5-octafluoro-1-pentanol, 2, 2,3,3,3-pentafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,4,4,4-heptafluoro- Examples thereof include 1-butanol, 1H, 1H, 7H-dodecafluoro-1-heptanol, nonafluorobutylethyl ether, perfluorotributylamine and the like.
  • the solid content concentration of the intermediate layer forming composition is preferably 0.5 to 30% by mass from the viewpoint that the thickness is closer to uniform when the intermediate layer forming composition is applied and it is easy to apply. It is more preferably 0 to 20% by mass, and even more preferably 2.0 to 14% by mass.
  • the laminate used in the present invention includes a resist layer.
  • the resist layer is a layer used for development using a developing solution.
  • the development is preferably a negative type development.
  • a known resist layer for example, a photoresist layer
  • the resist layer may be a negative resist layer or a positive resist layer.
  • the exposed portion of the resist layer is sparingly soluble in a developing solution containing an organic solvent.
  • the poorly soluble means that the exposed portion is difficult to dissolve in the developing solution.
  • the dissolution rate of the resist layer in the exposed portion in the developing solution is smaller (difficult to dissolve) than the dissolution rate of the resist layer in the developing solution in the unexposed portion.
  • the polarity is changed by exposing light having at least one wavelength having a wavelength of 365 nm (i line), a wavelength of 248 nm (KrF line) and a wavelength of 193 nm (ArF line) at an irradiation amount of 50 mJ / cm 2 or more.
  • the solubility parameter (solubility parameter) is poorly soluble in a solvent less than 19.0 (MPa) 1/2 , and it is poorly soluble in a solvent of 18.5 (MPa) 1/2 or less. It is more preferable that the solubility is poorly dissolved in a solvent of 18.0 (MPa) 1/2 or less.
  • the solubility parameter (sp value) is a value [unit: (MPa) 1/2 ] obtained by the Okitsu method.
  • the Okitsu method is one of the well-known methods for calculating the sp value. For example, Vol. 29, No. 6 (1993) The method described in detail on pages 249-259.
  • the polarity can be changed as described above. It is more preferable to change.
  • the resist layer preferably has photosensitivity to i-ray irradiation.
  • the photosensitivity means that the dissolution rate in an organic solvent (preferably butyl acetate) is changed by irradiation with at least one of active light rays and radiation (irradiation with i-rays if the photosensitivity is with respect to i-ray irradiation). To do.
  • the resist layer examples include a resist layer containing a resin whose dissolution rate in a developing solution changes due to the action of an acid (hereinafter, also referred to as “specific resin for resist layer”).
  • the change in the dissolution rate in the specific resin for the resist layer is preferably a decrease in the dissolution rate.
  • the dissolution rate of the specific resin for the resist layer in an organic solvent having an sp value of 18.0 (MPa) 1/2 or less before the dissolution rate changes is more preferably 40 nm / sec or more.
  • the dissolution rate of the specific resin for the resist layer in an organic solvent having an sp value of 18.0 (MPa) 1/2 or less after the dissolution rate is changed is more preferably less than 1 nm / sec.
  • the specific resin for the resist layer is also soluble in an organic solvent having an sp value (solubility parameter) of 18.0 (MPa) 1/2 or less before the dissolution rate changes, and the dissolution rate changes. After that, it is preferable that the resin is sparingly soluble in an organic solvent having an sp value of 18.0 (MPa) 1/2 or less.
  • "soluble in an organic solvent having an sp value (solubility parameter) of 18.0 (MPa) 1/2 or less” means that a solution of a compound (resin) is applied on a substrate and the temperature is 100 ° C. for 1 minute.
  • the dissolution rate of a coating film (thickness 1 ⁇ m) of a compound (resin) formed by heating when immersed in a developing solution at 23 ° C. is 20 nm / sec or more, which means that the “sp value”. Is sparingly soluble in an organic solvent of 18.0 (MPa) 1/2 or less ”is a compound (resin) formed by applying a solution of the compound (resin) on a substrate and heating at 100 ° C for 1 minute. )
  • the solubility rate of the coating film (thickness 1 ⁇ m) in the developing solution at 23 ° C. is less than 10 nm / sec.
  • the resist layer examples include a resist layer containing a specific resin for a resist layer and a photoacid generator, a resist layer containing a polymerizable compound, a photopolymerization initiator, and the like. Further, the resist layer is preferably a chemically amplified resist layer from the viewpoint of achieving both high storage stability and fine pattern formation.
  • a resist layer containing a specific resin for a resist layer and a photoacid generator will be described.
  • the resist layer in the present invention preferably contains a specific resin for a resist layer.
  • the specific resin for the resist layer is preferably an acrylic polymer.
  • the "acrylic polymer” is an addition polymerization type resin, which is a polymer containing a repeating unit derived from (meth) acrylic acid or an ester thereof, and is other than a repeating unit derived from (meth) acrylic acid or an ester thereof.
  • the repeating unit of the above for example, a repeating unit derived from styrenes, a repeating unit derived from a vinyl compound, and the like may be included.
  • the acrylic polymer preferably contains 50 mol% or more, more preferably 80 mol% or more, of the repeating units derived from (meth) acrylic acid or an ester thereof, based on all the repeating units in the polymer. It is particularly preferable that the polymer consists only of repeating units derived from (meth) acrylic acid or an ester thereof.
  • a resin having a repeating unit having a structure in which the acid group is protected by an acid-decomposable group is preferably mentioned.
  • the structure in which the acid group is protected by the acid-degradable group include a structure in which the carboxy group is protected by the acid-degradable group, a structure in which the phenolic hydroxy group is protected by the acid-degradable group, and the like.
  • the repeating unit having a structure in which the acid group is protected by the acid-degradable group a repeating unit having a structure in which the carboxy group in the monomer unit derived from (meth) acrylic acid is protected by the acid-degradable group, p.
  • Examples thereof include a repeating unit having a structure in which a phenolic hydroxy group in a monomer unit derived from hydroxystyrenes such as -hydroxystyrene and ⁇ -methyl-p-hydroxystyrene is protected by an acid-degradable group.
  • Examples of the repeating unit having a structure in which the acid group is protected by an acid-degradable group include a repeating unit containing an acetal structure, and a repeating unit containing a cyclic ether ester structure in the side chain is preferable.
  • the cyclic ether ester structure it is preferable that the oxygen atom in the cyclic ether structure and the oxygen atom in the ester bond are bonded to the same carbon atom to form an acetal structure.
  • the repeating unit represented by the following formula (1) is preferable.
  • the "repetition unit represented by the equation (1)” and the like are also referred to as “repetition unit (1)” and the like.
  • R 8 represents a hydrogen atom or an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms)
  • L 1 represents a carbonyl group or a phenylene group.
  • R 1 to R 7 independently represent a hydrogen atom or an alkyl group.
  • R8 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • L 1 represents a carbonyl group or a phenylene group, and is preferably a carbonyl group.
  • R 1 to R 7 independently represent a hydrogen atom or an alkyl group.
  • the alkyl groups in R 1 to R 7 are synonymous with R 8 and the preferred embodiments are also the same. Further, it is preferable that one or more of R 1 to R 7 are hydrogen atoms, and it is more preferable that all of R 1 to R 7 are hydrogen atoms.
  • repeating unit (1) a repeating unit represented by the following formula (1-A) or a repeating unit represented by the following formula (1-B) is preferable.
  • the radically polymerizable monomer used to form the repeating unit (1) a commercially available one may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting (meth) acrylic acid with a dihydrofuran compound in the presence of an acid catalyst. Alternatively, it can also be formed by polymerizing with a precursor monomer and then reacting a carboxy group or a phenolic hydroxy group with a dihydrofuran compound.
  • the repeating unit represented by the following formula (2) is also preferably mentioned.
  • A represents a group desorbed by the action of a hydrogen atom or an acid.
  • an alkyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms
  • an alkoxyalkyl group preferably 2 to 12 carbon atoms.
  • R 10 represents a substituent, and an example of the substituent T is given.
  • R 9 represents a group synonymous with R 8 in the formula (1).
  • nx represents an integer of 0 to 3.
  • repeating unit (2) Specific examples of the repeating unit (2) are shown below, but the present invention is not construed as being limited thereto.
  • the content of the repeating unit (preferably the repeating unit (1) or the repeating unit (2)) having a structure in which the acid group is protected by the acid-degradable group contained in the specific resin for the resist layer is 5 to 80 mol. % Is preferred, 10-70 mol% is more preferred, and 10-60 mol% is even more preferred.
  • the acrylic polymer may contain only one type of repeating unit (1) or repeating unit (2), or may contain two or more types. When two or more types are used, it is preferable that the total amount is within the above range.
  • the specific resin for the resist layer may contain a repeating unit containing a crosslinkable group.
  • the specific resin for the resist layer preferably contains a repeating unit (repeating unit (3)) containing a crosslinkable group, but preferably has a configuration that does not substantially contain the repeating unit (3) containing a crosslinkable group. .. With such a configuration, the resist layer can be removed more effectively after patterning.
  • substantially free means, for example, 3 mol% or less, preferably 1 mol% or less, of all the repeating units of the specific resin for the resist layer.
  • the specific resin for the resist layer may contain other repeating units (repeating units (4)).
  • the radically polymerizable monomer used for forming the repeating unit (4) include the compounds described in paragraphs 0021 to 0024 of JP-A-2004-246623.
  • a preferred example of the repeating unit (4) is a repeating derived from at least one selected from the group consisting of a hydroxy group-containing unsaturated carboxylic acid ester, an alicyclic structure-containing unsaturated carboxylic acid ester, styrene, and an N-substituted maleimide. The unit is mentioned.
  • benzyl (meth) acrylate, tricyclo (meth) acrylate [5.2.1.0 2,6 ] decane-8-yl, tricyclo (meth) acrylate [5.2.1.0 2, 6 ] (Meta) acrylic acid esters containing an alicyclic structure such as decane-8-yloxyethyl, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methylcyclohexyl (meth) acrylate, or Hydrophobic monomers such as styrene are preferred.
  • the repetition unit (4) can be used alone or in combination of two or more.
  • the content of the monomer unit forming the repeating unit (4) when the repeating unit (4) is contained is preferably 1 to 60 mol%, preferably 5 to 50 mol%. % Is more preferred, and 5-40 mol% is even more preferred. When two or more types are used, the total amount is preferably in the above range.
  • a radically polymerizable monomer mixture containing a body can be synthesized by polymerizing in an organic solvent with a radical polymerization initiator.
  • 2,3-dihydrofuran is added to the acid anhydride group in the precursor copolymer obtained by copolymerizing unsaturated polyvalent carboxylic acid anhydrides at room temperature in the absence of an acid catalyst.
  • BzMA / THFMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA / THFAA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA / THPMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA / PEES / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA is benzyl methacrylate
  • THFMA is tetrahydrofuran-2-yl methacrylate
  • t-BuMA is t-butyl methacrylate
  • THFAA is tetrahydrofuran-2-yl acrylate
  • THPMA is tetrahydro-2H.
  • PEES is p-ethoxyeth
  • the content of the specific resin for the resist layer is preferably 20 to 99% by mass and 40 to 99% by mass with respect to the total mass of the resist layer. Is more preferable, and 70 to 99% by mass is further preferable.
  • the specific resin for the resist layer may contain only one kind, or may contain two or more kinds. When two or more types are used, the total amount is preferably in the above range.
  • the content of the specific resin for the resist layer is preferably 10% by mass or more, more preferably 50% by mass or more, and 90% by mass or more, based on the total mass of the resin components contained in the resist layer. Is more preferable.
  • the weight average molecular weight of the specific resin for the resist layer is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 35,000 or more.
  • the upper limit is not particularly specified, but is preferably 100,000 or less, and may be 70,000 or less, or 50,000 or less.
  • the amount of the component having a weight average molecular weight of 1,000 or less contained in the specific resin for the resist layer is preferably 10% by mass or less, preferably 5% by mass or less, based on the total mass of the specific resin for the resist layer. Is more preferable.
  • the molecular weight dispersion (weight average molecular weight / number average molecular weight) of the specific resin for the resist layer is preferably 1.0 to 4.0, more preferably 1.1 to 2.5.
  • the resist layer preferably further contains a photoacid generator.
  • the photoacid generator is preferably a photoacid generator that decomposes by 80 mol% or more when the resist layer is exposed to an exposure amount of 100 mJ / cm 2 at a wavelength of 365 nm.
  • the degree of decomposition of the photoacid generator can be determined by the following method. The details of the composition for forming the resist layer below will be described later.
  • a resist layer is formed on a silicon wafer substrate using a resist layer forming composition, heated at 100 ° C. for 1 minute, and after heating, the resist layer is exposed to 100 mJ / cm 2 using light having a wavelength of 365 nm. To expose.
  • the thickness of the resist layer after heating is 700 nm.
  • THF methanol / tetrahydrofuran
  • the extract extracted into the solution is analyzed by HPLC (high performance liquid chromatography) to calculate the decomposition rate of the photoacid generator from the following formula.
  • Decomposition rate (%) decomposition product amount (mol) / amount of photoacid generator contained in the resist layer before exposure (mol) x 100
  • the photoacid generator preferably decomposes by 85 mol% or more when the resist layer is exposed to an exposure amount of 100 mJ / cm 2 at a wavelength of 365 nm.
  • the photoacid generator is preferably a compound containing an oxime sulfonate group (hereinafter, also simply referred to as "oxime sulfonate compound").
  • the oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group, but the following formula (OS-1), the formula (OS-103) described later, the formula (OS-104), or the formula (OS-). It is preferably the oxime sulfonate compound represented by 105).
  • X3 represents an alkyl group, an alkoxyl group, or a halogen atom.
  • the alkyl group and the alkoxyl group in X3 may have a substituent.
  • a linear or branched alkyl group having 1 to 4 carbon atoms is preferable.
  • a linear or branched alkoxyl group having 1 to 4 carbon atoms is preferable.
  • a halogen atom in X3 a chlorine atom or a fluorine atom is preferable.
  • m3 represents an integer of 0 to 3, and 0 or 1 is preferable.
  • R 34 represents an alkyl group or an aryl group, which is an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms, and carbon. It is preferably an alkoxyl group of numbers 1 to 5, a phenyl group which may be substituted with W, a naphthyl group which may be substituted with W, or an anthranyl group which may be substituted with W.
  • W is a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms or an alkoxyl halide having 1 to 5 carbon atoms.
  • m3 is 3
  • X3 is a methyl group
  • the substitution position of X3 is the ortho position
  • R34 is a linear alkyl group having 1 to 10 carbon atoms, 7,
  • a compound having a 7-dimethyl-2-oxonorbornylmethyl group or a p-tolyl group is particularly preferable.
  • R s1 represents an alkyl group, an aryl group or a heteroaryl group
  • R s2, which may be present in a plurality of R s2 independently represents a hydrogen atom, an alkyl group and an aryl group.
  • R s6 which represents a group or a halogen atom and may be present in a plurality, independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group, and Xs represents O or S.
  • ns represents 1 or 2
  • ms represents an integer from 0 to 6.
  • an alkyl group represented by R s1 preferably 1 to 30 carbon atoms
  • an aryl group preferably 6 to 30 carbon atoms
  • a heteroaryl group carbon
  • R s2 is preferably a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms) or an aryl group (preferably 6 to 30 carbon atoms). , Hydrogen atom or alkyl group is more preferable.
  • the Rs2 that may be present in two or more in the compound, one or two are preferably an alkyl group, an aryl group or a halogen atom, and one is more preferably an alkyl group, an aryl group or a halogen atom. It is particularly preferable that one is an alkyl group and the rest is a hydrogen atom.
  • the alkyl group or aryl group represented by R s2 may have a substituent T.
  • Xs represents O or S, and is preferably O.
  • the ring containing Xs as a ring member is a 5-membered ring or a 6-membered ring.
  • ns represents 1 or 2, and when Xs is O, ns is preferably 1, and when Xs is S, ns is. It is preferably 2.
  • the alkyl group represented by R s6 preferably having 1 to 30 carbon atoms
  • the alkyloxy group preferably having 1 to 30 carbon atoms
  • ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0. Is particularly preferable.
  • the compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), formula (OS-110) or formula (OS-111).
  • the compound represented by the formula (OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is a compound represented by the following formula (OS-105). -108) or a compound represented by the formula (OS-109) is particularly preferable.
  • R t1 represents an alkyl group, an aryl group or a heteroaryl group
  • R t7 represents a hydrogen atom or a bromine atom
  • R t8 represents a hydrogen atom and the number of carbon atoms.
  • R t7 represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
  • R t8 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, and a phenyl group.
  • it represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms.
  • R t9 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
  • R t2 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the three-dimensional structure (E, Z) of the oxime may be either one or a mixture.
  • oxime sulfonate compound represented by the above formulas (OS-103) to (OS-105) include paragraph numbers 008 to 0995 of JP2011-209692 and paragraphs of JP-A-2015-194674.
  • the compounds of Nos. 0168 to 0194 are exemplified and their contents are incorporated herein.
  • oxime sulfonate compound containing at least one oxime sulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
  • Ru9 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxyl group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, and the like. Represents an aryl group or a heteroaryl group.
  • R u9 is a cyano group or an aryl group
  • Ru2a represents an alkyl group or an aryl group.
  • Xu is -O-, -S-, -NH-, -NR u5- , -CH 2- , -CR u6 H- or CR u6 R u7.
  • R u5 to R u7 independently represent an alkyl group or an aryl group.
  • Ru1 to Ru4 are independently hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxyl group, amino group, alkoxycarbonyl group and alkylcarbonyl group, respectively. , Arylcarbonyl group, amide group, sulfo group, cyano group or aryl group.
  • Two of R u1 to R u4 may be bonded to each other to form a ring. At this time, the ring may be condensed to form a condensed ring together with the benzene ring.
  • R u1 to Ru4 a hydrogen atom, a halogen atom or an alkyl group is preferable, and an embodiment in which at least two of Ru1 to Ru4 are bonded to each other to form an aryl group is also preferable. Above all, it is preferable that all of Ru1 to Ru4 are hydrogen atoms. Any of the above-mentioned substituents may further have a substituent.
  • the compound represented by the above formula (OS-101) is more preferably a compound represented by the formula (OS-102).
  • the three-dimensional structure (E, Z, etc.) of the oxime and the benzothiazole ring may be either one or a mixture.
  • Specific examples of the compound represented by the formula (OS-101) include the compounds described in paragraph numbers 0102 to 0106 of JP2011-209692 and paragraph numbers 0195 to 0207 of JP2015-194674. And these contents are incorporated herein.
  • b-9, b-16, b-31, and b-33 are preferable.
  • Examples of commercially available products include WPAG-336 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), WPAG-443 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), MBZ-101 (manufactured by Midori Kagaku Co., Ltd.), and the like. Can be done.
  • the photoacid generator that is sensitive to active light
  • those that do not contain the 1,2-quinonediazide compound are preferable.
  • the 1,2-quinonediazide compound produces a carboxy group by a sequential photochemical reaction, but its quantum yield is 1 or less, and its sensitivity is lower than that of an oxime sulfonate compound.
  • the oxime sulfonate compound acts as a catalyst for the deprotection of the protected acid group by the acid generated in response to the active light, so that a large number of acids are generated by the action of one photon.
  • the quantum yield exceeds 1, and becomes a large value such as a power of 10, and it is presumed that high sensitivity is obtained as a result of so-called chemical amplification.
  • the oxime sulfonate compound has a broad ⁇ -conjugated system, it has absorption even on the long wavelength side, and not only far ultraviolet rays (DUV), ArF rays, KrF rays, and i-rays, but also It also shows very high sensitivity in the g-line.
  • the oxime sulfonate compound which is a photoacid generator in combination, the sulfonic acid generation rate is increased, so that the acid production is promoted and the decomposition of the acid-degradable group of the resin is promoted.
  • the acid obtained by decomposing the oxime sulfonate compound is a sulfonic acid having a small molecule, it has high diffusivity in the cured membrane and can be made more sensitive.
  • the photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, and 0.5 to 10% by mass with respect to the total mass of the resist layer. It is more preferable to use 0.5 to 3% by mass, and even more preferably 0.5 to 1.2% by mass.
  • the photoacid generator may be used alone or in combination of two or more. When two or more types are used, the total amount is preferably in the above range.
  • the resist layer preferably contains a basic compound from the viewpoint of liquid storage stability of the resist layer forming composition described later.
  • a basic compound it can be arbitrarily selected and used from those used in known chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids. Examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine and dicyclohexylamine.
  • Dicyclohexylmethylamine and the like Dicyclohexylmethylamine and the like.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine and N-methyl-4-phenylpyridine.
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide and the like.
  • Examples of the quaternary ammonium salt of the carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
  • the content of the basic compound is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the specific resin for the resist layer, and 0.002 to 0. It is more preferably 5 parts by mass.
  • the basic compound one type may be used alone or two or more types may be used in combination, but it is preferable to use two or more types in combination, more preferably two types in combination, and a heterocyclic amine. It is more preferable to use two kinds in combination. When two or more types are used, the total amount is preferably in the above range.
  • the resist layer preferably contains a surfactant from the viewpoint of improving the coatability of the composition for forming a resist layer, which will be described later.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but the preferred surfactant is a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, polyoxyethylene glycol higher fatty acid diesters, fluorine-based and silicone-based surfactants. .. It is more preferable to include a fluorine-based surfactant or a silicone-based surfactant as the surfactant.
  • fluorine-based surfactants or silicone-based surfactants for example, JP-A-62-036663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950. , JP-A-63-034540, JP-A-07-230165, JP-A-08-062834, JP-A09-054432, JP-A09-005988, JP-A-2001-330953.
  • Activators can be mentioned, and commercially available surfactants can also be used.
  • Ftop EF301, EF303 above, manufactured by Shin-Akita Kasei Co., Ltd.
  • Florard FC430, 431 above, manufactured by Sumitomo 3M Co., Ltd.
  • Megafuck F171, F173, F176 As commercially available surfactants that can be used, for example, Ftop EF301, EF303 (above, manufactured by Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (above, manufactured by Sumitomo 3M Co., Ltd.), Megafuck F171, F173, F176.
  • the surfactant contains a repeating unit A and a repeating unit B represented by the following formula (41), and the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography when tetrahydrofuran (THF) is used as a solvent.
  • a copolymer having (Mw) of 1,000 or more and 10,000 or less can be mentioned as a preferable example.
  • R 41 and R 43 independently represent a hydrogen atom or a methyl group
  • R 42 represents a linear alkylene group having 1 or more and 4 or less carbon atoms
  • R 44 represents a hydrogen atom or 1 carbon atom.
  • L4 represents an alkylene group having 3 or more carbon atoms and 6 or less
  • p4 and q4 are mass percentages representing a polymerization ratio
  • p4 is a numerical value of 10% by mass or more and 80% by mass or less.
  • q4 represents a numerical value of 20% by mass or more and 90% by mass or less
  • r4 represents an integer of 1 or more and 18 or less
  • n4 represents an integer of 1 or more and 10 or less.
  • L4 is preferably a branched alkylene group represented by the following formula (42).
  • R 45 in the formula (42) represents an alkyl group having 1 or more and 4 or less carbon atoms, and an alkyl group having 1 or more and 3 or less carbon atoms is preferable in terms of wettability to the surface to be coated, and an alkyl having 2 or 3 carbon atoms is preferable. Groups are more preferred.
  • -CH 2 -CH (R 45 )-(42) The weight average molecular weight of the copolymer is more preferably 1,500 or more and 5,000 or less.
  • the amount of the surfactant added is preferably 10 parts by mass or less, preferably 0.01 to 10 parts by mass, based on 100 parts by mass of the specific resin for the resist layer. Is more preferable, and 0.01 to 1 part by mass is further preferable.
  • the surfactant one type may be used alone, or two or more types may be mixed and used. When two or more types are used, the total amount is preferably in the above range.
  • the resist layer contains an antioxidant, a plasticizer, a thermal radical generator, a thermoacid generator, an acid proliferation agent, an ultraviolet absorber, a thickener, and an organic or inorganic precipitation inhibitor.
  • a known additive such as 1 or 2 or more can be added, respectively.
  • the thickness (thickness) of the resist layer in the present invention is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.75 ⁇ m or more, and particularly preferably 0.8 ⁇ m or more from the viewpoint of improving the resolving power. ..
  • the upper limit of the thickness of the resist layer is preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, still more preferably 2.0 ⁇ m or less.
  • the total thickness of the resist layer and the intermediate layer is preferably 0.2 ⁇ m or more, more preferably 1.0 ⁇ m or more, and further preferably 2.0 ⁇ m or more.
  • the upper limit is preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and further preferably 5.0 ⁇ m or less.
  • the resist layer in the present invention is preferably subjected to development using a developing solution.
  • a developing solution containing an organic solvent is preferable.
  • the content of the organic solvent with respect to the total mass of the developing solution is preferably 90 to 100% by mass, more preferably 95 to 100% by mass.
  • the developer may be a developer consisting only of an organic solvent. The method of developing the resist layer using a developing solution will be described later.
  • the sp value of the organic solvent contained in the developing solution is preferably less than 19 MPa 1/2 , more preferably 18 MPa 1/2 or less.
  • the organic solvent contained in the developing solution include polar solvents such as ketone solvents, ester solvents and amide solvents, and hydrocarbon solvents.
  • the ketone solvent include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 2-heptanone (methylamylketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutylketone, cyclohexanone, and the like.
  • Examples thereof include methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, propylene carbonate and the like.
  • ester solvent examples include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl.
  • the amide solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be used.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the organic solvent may be used alone or in combination of two or more. Further, it may be used by mixing with an organic solvent other than the above.
  • it is preferable that the content of water with respect to the total mass of the developing solution is less than 10% by mass, and it is more preferable that the developer contains substantially no water.
  • substantially free of water as used herein means that, for example, the content of water with respect to the total mass of the developing solution is 3% by mass or less, and more preferably it is not more than the measurement limit.
  • the amount of the organic solvent used with respect to the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less with respect to the total amount of the developing solution.
  • the organic developer preferably contains at least one organic solvent selected from the group consisting of a ketone solvent, an ester solvent and an amide solvent.
  • the organic developer may contain an appropriate amount of a basic compound, if necessary. Examples of the basic compound include those described in the above section of the basic compound.
  • the vapor pressure of the organic developer is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less at 23 ° C.
  • solvents having a vapor pressure of 5 kPa or less include 1-octanone, 2-octanone, 1-nonanonone, 2-nonanonone, 2-heptanone (methylamylketone), 4-heptanone, 2-hexanone, and diisobutyl.
  • Ketone solvents such as ketones, cyclohexanone, methylcyclohexanone, phenylacetone, methylisobutylketone, butyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol Ester solvents such as monoethyl ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formic acid, propyl formic acid, ethyl lactate, butyl lactate, propyl lactate, etc.
  • Amido-based solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as octane and decane.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • aliphatic hydrocarbon solvents such as octane and decane.
  • Specific examples of the solvent having a vapor pressure of 2 kPa or less, which is a particularly preferable range, include 1-octanone, 2-octanone, 1-nonanonone, 2-nonanonone, 4-heptanone, 2-hexanone, diisobutylketone, cyclohexanone, and the like.
  • Ketone solvents such as methylcyclohexanone and phenylacetone, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, Ester solvents such as 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethyl Examples thereof include amide-based solvents such as formamide, aromatic hydrocarbon-based solvents such as xylene, and aliphatic hydrocarbon-based solvents such as octane and decane.
  • amide-based solvents such as formamide, aromatic hydrocarbon
  • the developer may contain a surfactant.
  • the surfactant is not particularly limited, but for example, the surfactant described in the above section of the intermediate layer is preferably used.
  • the amount thereof is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0, based on the total amount of the developer. It is 0.01 to 0.5% by mass.
  • composition for forming a resist layer is a composition used for forming a resist layer contained in the laminate used in the present invention.
  • the resist layer can be formed, for example, by applying a resist layer forming composition onto an intermediate layer and drying it.
  • the application method for example, the description of the application method of the composition for forming an intermediate layer in the intermediate layer described above can be referred to.
  • the composition for forming a resist layer includes the above-mentioned components contained in the resist layer (for example, a specific resin for a resist layer, a photoacid generator, a basic compound, a surfactant, and other components), a solvent, and the like. It is preferable to include.
  • the components contained in these resist layers are preferably dissolved or dispersed in a solvent, and more preferably dissolved.
  • the content of the components contained in the resist layer forming composition the content of each component with respect to the total mass of the resist layer may be read as the content with respect to the solid content of the resist layer forming composition. preferable.
  • organic solvent used in the composition for forming the resist layer known organic solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, and propylene glycol monoalkyl.
  • Ethers propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ethers Examples thereof include acetates, esters, ketones, amides, lactones and the like.
  • Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and ethylene glycol monobutyl ether
  • Ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dipropyl ether
  • Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, and ethylene glycol monobutyl ether acetate
  • Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether
  • the composition for forming the resist layer contains an organic solvent
  • the content of the organic solvent is preferably 1 to 3,000 parts by mass per 100 parts by mass of the specific resin for the resist layer, and 5 to 2,000 parts by mass. It is more preferably 10 to 1,500 parts by mass.
  • These organic solvents may be used alone or in admixture of two or more. When two or more types are used, the total amount is preferably in the above range.
  • the laminate used in the present invention may include a base material.
  • the substrate is located on the side opposite to the intermediate layer of the organic layer.
  • the base material that may be contained in the laminate is formed of, for example, various materials such as silicon, quartz, ceramic, glass, polyester film such as polyethylene terephthalate (PEN) and polyethylene terephthalate (PET), and polyimide film. Any base material may be selected depending on the intended use.
  • PEN polyethylene terephthalate
  • PET polyethylene terephthalate
  • Any base material may be selected depending on the intended use.
  • a base material formed of a flexible material can be used.
  • the base material may be a composite base material formed of a plurality of materials or a laminated base material in which a plurality of materials are laminated.
  • the shape of the base material is not particularly limited and may be selected according to the intended use, and examples thereof include a plate-shaped base material (substrate).
  • the thickness of the substrate and the like are not particularly limited.
  • the laminate may be obtained by means such as purchase, or may be obtained by manufacturing by a method for manufacturing an organic layer pattern.
  • a method for manufacturing an organic layer pattern may be obtained by means such as purchase, or may be obtained by manufacturing by a method for manufacturing an organic layer pattern.
  • steps (1) and (2) When producing a laminate, it is preferable to include the following steps (1) and (2) in the step of obtaining the laminate.
  • the method for producing an organic layer pattern of the present invention preferably includes a step of forming an intermediate layer on the organic layer.
  • this step is performed after forming an organic layer on the base material.
  • the intermediate layer is formed on the surface of the organic layer opposite to the surface of the organic layer on the substrate side.
  • the intermediate layer is preferably formed so as to be in direct contact with the organic layer, but other layers may be provided in between so as not to deviate from the gist of the present invention. Examples of the other layer include a fluorine-based undercoat layer and the like.
  • the intermediate layer may be provided with only one layer, or may be provided with two or more layers.
  • the intermediate layer is preferably formed using a composition for forming an intermediate layer. For details of the forming method, refer to the method of applying the composition for forming an intermediate layer.
  • Step (1) it is preferable to form a resist layer on the side opposite to the surface of the intermediate layer on the organic layer side (preferably on the surface).
  • the resist layer is preferably formed using a composition for forming a resist layer.
  • the forming method refer to the method of applying the composition for forming a resist layer.
  • the method for producing an organic layer pattern of the present invention includes a step of producing the pattern of the resist layer (also referred to as a "resist pattern producing step").
  • the resist pattern forming step is not particularly limited, but preferably includes the following steps (3) and (4).
  • the resist pattern manufacturing step preferably includes a step of exposing the resist layer. Specifically, for example, at least a part of the resist layer is irradiated (exposed) with active light rays. It is preferable that the exposure is performed so as to have a predetermined pattern. Further, the exposure may be performed via a photomask, or a predetermined pattern may be directly drawn.
  • the wavelength of the active ray at the time of exposure it is possible to use an active ray having a wavelength of preferably 180 nm or more and 450 nm or less, more preferably 365 nm (i line), 248 nm (KrF line) or 193 nm (ArF line). can.
  • a low-pressure mercury lamp As the light source of the active light, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a laser generator, a light emitting diode (LED) light source, or the like can be used.
  • a mercury lamp When a mercury lamp is used as a light source, active rays having wavelengths such as g-ray (436 nm), i-ray (365 nm), and h-line (405 nm) can be preferably used, and i-ray is more preferable.
  • an active light having a wavelength of 343 nm and 355 nm is preferably used for a solid-state (YAG) laser, and 193 nm (ArF line), 248 nm (KrF line), and 351 nm (KrF line) for an excimer laser.
  • An active ray having a wavelength of (Xe ray) is preferably used, and further, an active ray having a wavelength of 375 nm or 405 nm is preferably used for a semiconductor laser.
  • active rays having a wavelength of 355 nm or 405 nm are more preferable from the viewpoint of stability, cost and the like.
  • the laser can irradiate the resist layer once or in a plurality of times.
  • the exposure amount is preferably 40 to 120 mJ, more preferably 60 to 100 mJ.
  • the energy density per pulse of the laser is preferably 0.1 mJ / cm 2 or more and 10,000 mJ / cm 2 or less.
  • 0.3 mJ / cm 2 or more is more preferable, and 0.5 mJ / cm 2 or more is further preferable.
  • the exposure amount is preferably 1,000 mJ / cm 2 or less, and more preferably 100 mJ / cm 2 or less.
  • the pulse width is preferably 0.1 nanosecond (hereinafter referred to as “ns”) or more and 30,000 ns or less.
  • ns 0.1 nanosecond
  • 0.5 ns or more is more preferable, and 1 ns or more is more preferable.
  • 1,000 ns or less is more preferable, and 50 ns or less is further preferable.
  • the frequency of the laser is preferably 1 Hz or more and 50,000 Hz or less, and more preferably 10 Hz or more and 1,000 Hz or less. Further, in order to shorten the exposure processing time, the laser frequency is more preferably 10 Hz or higher, further preferably 100 Hz or higher, and further preferably 10,000 Hz or lower in order to improve the matching accuracy during scan exposure. It is more preferably 000 Hz or less.
  • a laser is preferable in that it is easier to focus than a mercury lamp, and it is possible to omit the use of a photomask in pattern formation in an exposure process.
  • the exposure apparatus is not particularly limited, but commercially available ones include Calristo (manufactured by V Technology Co., Ltd.), AEGIS (manufactured by V Technology Co., Ltd.), and DF2200G (Dainippon Screen Mfg. Co., Ltd.). It is possible to use (manufactured) and so on. Further, devices other than the above are also preferably used. Further, if necessary, the amount of irradiation light can be adjusted through a spectroscopic filter such as a long wavelength cut filter, a short wavelength cut filter, and a bandpass filter. Further, after the above exposure, a post-exposure heating step (PEB) may be performed if necessary.
  • PEB post-exposure heating step
  • Negative type is preferable for development.
  • the details of the developer are as described in the description of the resist layer.
  • Examples of the developing method include a method of immersing the laminate in a tank filled with a developer for a certain period of time (dip method), and a method of developing by raising the developer on the surface of the laminate by surface tension and allowing it to stand still for a certain period of time.
  • the discharge pressure of the discharged developer (flow velocity per unit area of the discharged developer) is determined. It is preferably 2 mL / sec / mm 2 or less, more preferably 1.5 mL / sec / mm 2 or less, and further preferably 1 mL / sec / mm 2 or less. There is no particular lower limit to the discharge pressure, but 0.2 mL / sec / mm 2 or more is preferable in consideration of throughput.
  • the details of this mechanism are not clear, but probably, by setting the discharge pressure in the above range, the pressure applied to the resist layer by the developer becomes small, and the resist pattern on the resist layer is inadvertently scraped or broken. It is thought that this is because it is suppressed.
  • the discharge pressure of the developer (mL / sec / mm 2 ) is a value at the outlet of the developing nozzle in the developing device. Examples of the method of adjusting the discharge pressure of the developer include a method of adjusting the discharge pressure with a pump and the like, a method of adjusting the pressure by supplying from a pressure tank, and the like.
  • a step of stopping the development while substituting with another organic solvent may be carried out.
  • the method for producing an organic layer pattern of the present invention includes a step of etching an organic layer using the resist layer pattern as a mask (also referred to as an “organic layer etching step”).
  • the organic layer etching step preferably includes the step shown in (5) below. (5) Step of removing the intermediate layer and the organic layer of the non-masked portion
  • Step of removing the intermediate layer and the organic layer of the non-masked portion It is preferable to remove at least the intermediate layer and the organic layer in the non-masked portion by etching using the pattern of the resist layer as a mask.
  • the non-masked portion refers to a region (a region in which the resist layer has been removed by development) that is not masked by a pattern (mask pattern) of the resist layer formed by developing the resist layer.
  • the intermediate layer is exposed after etching in the mask portion. By exposing the intermediate layer by the etching process, it becomes possible to easily perform the subsequent intermediate layer insolubilization step and the like.
  • the resist layer (resist layer pattern) of the masked portion may be removed by wet etching, dry etching or the like to expose the intermediate layer.
  • the etching process may be performed in a plurality of stages.
  • the intermediate layer and the organic layer may be removed by a single etching treatment, or after at least a part of the intermediate layer is removed by the etching treatment, the organic layer (and, if necessary, the intermediate layer) may be removed.
  • the balance may be removed by an etching process.
  • the etching process may be a dry etching process or a wet etching process, or may be an embodiment in which the etching is divided into a plurality of times and the dry etching process and the wet etching process are performed.
  • the removal of the intermediate layer may be by dry etching or wet etching.
  • a method for removing the intermediate layer and the organic layer for example, a method A for removing the intermediate layer and the organic layer by a single dry etching process, at least a part of the intermediate layer is removed by a wet etching process.
  • a method such as a method B for removing the organic layer (and, if necessary, the rest of the intermediate layer) by dry etching can be mentioned.
  • the dry etching process in the method A, the wet etching process and the dry etching process in the method B can be performed according to a known etching method.
  • the intermediate layer and the organic layer of the non-masked portion can be removed by performing dry etching using the resist pattern as an etching mask (mask pattern).
  • etching mask mask pattern
  • Typical examples of dry etching are JP-A-59-126506, JP-A-59-406628, JP-A-58-009108, JP-A-58-002809, and JP-A-57.
  • JP-A-59-126506, JP-A-59-406628, JP-A-58-009108, JP-A-58-002809, and JP-A-57 There is a method described in Japanese Patent Application Laid-Open No. -148076 and Japanese Patent Application Laid-Open No. 61-041102.
  • the dry etching can be performed in the following form from the viewpoint of forming the cross section of the pattern of the formed organic layer closer to a rectangle and further reducing the damage to the organic layer.
  • a first-stage etching that uses a mixed gas of a fluorine-based gas and an oxygen gas (O 2 ) to etch to a region (depth) where the organic layer is not exposed, and after this first-stage etching, nitrogen gas ()
  • a second-stage etching that uses a mixed gas of N 2 ) and an oxygen gas (O 2 ), preferably etching to the vicinity of the region (depth) where the organic layer is exposed, and over-etching that is performed after the organic layer is exposed.
  • the etching conditions in the dry etching are performed while calculating the etching time by the following method.
  • A The etching rate (nm / min) in the first stage etching and the etching rate (nm / min) in the second stage etching are calculated respectively.
  • B The time for etching the desired thickness in the first stage etching and the time for etching the desired thickness in the second stage etching are calculated respectively.
  • C) The first-stage etching is performed according to the etching time calculated in (B) above.
  • the second stage etching is performed according to the etching time calculated in (B) above.
  • the etching time may be determined by endpoint detection, and the second stage etching may be performed according to the determined etching time.
  • the overetching time is calculated with respect to the total time of the above (C) and (D), and the overetching is performed.
  • the mixed gas used in the first-stage etching preferably contains a fluorine-based gas and an oxygen gas (O 2 ) from the viewpoint of processing the organic material to be etched into a rectangular shape. Further, in the first-stage etching, the laminated body is etched to a region where the organic layer is not exposed. Therefore, it is considered that the organic layer is not damaged or the damage is slight at this stage.
  • the etching process using a mixed gas of nitrogen gas and oxygen gas from the viewpoint of avoiding damage to the organic layer.
  • the ratio of the etching amount in the second stage etching to the total etching amount is larger than 0% and 50% or less. Is preferable, and 10 to 20% is more preferable.
  • the etching amount is an amount calculated from the difference between the remaining film thickness of the film to be etched and the film thickness before etching.
  • the etching includes an over-etching process.
  • the overetching process is preferably performed by setting the overetching ratio.
  • the over-etching ratio can be set arbitrarily, but it is preferably 30% or less of the total etching treatment time in the etching process in terms of the etching resistance of the photoresist and the maintenance of the rectangularity of the pattern to be etched (organic layer). It is more preferably 25%, and particularly preferably 10 to 15%.
  • the method for producing an organic layer pattern of the present invention includes a step of insolubilizing the surface of the intermediate layer with water or a water-soluble solvent (also referred to as "intermediate layer insolubilization step") after the etching.
  • the step of insolubilizing the surface of the intermediate layer the surface of the intermediate layer may be insoluble in water or a water-soluble solvent used in the laminate cleaning step described later.
  • insolubilizing the surface of the intermediate layer means that the surface of the intermediate layer may not be dissolved in the laminating body cleaning step.
  • the surface of the intermediate layer itself may be altered and insolubilized, or the surface of the intermediate layer may be insolubilized.
  • the dissolution rate of the surface of the intermediate layer obtained after the intermediate layer insolubilization step in water or a water-soluble solvent used in the laminate washing step is preferably 10 nm / s or less at 23 ° C., and 5 nm / s. It is more preferable that it is as follows.
  • the lower limit of the dissolution rate is not particularly limited and may be 0 nm / s.
  • the surface of the intermediate layer means the surface of the intermediate layer on the side opposite to the side where the organic layer exists.
  • the intermediate layer insolubilization step at least a part of the region from the surface of the intermediate layer may be insolubilized, and the entire intermediate layer may be insolubilized, but a part of the region from the surface of the intermediate layer is insolubilized. Is preferable.
  • the thickness of the insolubilized region formed on the surface of the intermediate layer is preferably 0.2 to 100 nm, for example.
  • the intermediate layer insolubilization step is preferably a step of plasma-treating the surface of the intermediate layer.
  • the resin contained in the intermediate layer forms a crosslink, so that the intermediate layer is insoluble in water or a water-soluble solvent used in the laminate cleaning step.
  • the plasma treatment is not particularly limited, but is preferably performed with a gas containing an inert gas, and more preferably performed with a gas containing Ar.
  • the gas containing Ar may further contain a rare gas other than Ar such as N 2 or He, Ne, and preferably contains Ar and N 2 .
  • the partial pressure of N 2 in the gas containing Ar and N 2 is preferably 10 to 50%, more preferably 20 to 50%, based on the total pressure of the gas.
  • the partial pressure can be adjusted, for example, as a gas flow rate ratio during plasma processing. It is also one of the preferred embodiments of the present invention that the plasma treatment is carried out with a gas containing only Ar and N 2 . Within the above range, the intermediate layer may be effectively insolubilized and the step of removing the surface of the intermediate layer described later may be facilitated.
  • the plasma treatment conditions, etc. may be determined with reference to known surface treatment methods in consideration of the resin type, etching gas type, etc.
  • the intermediate layer insolubilization step may be performed by forming a layer having low solubility in water or a water-soluble solvent used in the laminate cleaning step on the surface of the intermediate layer.
  • a method such as forming a resin layer containing a resin such as parylene on the surface of the intermediate layer by a method such as thin film deposition can be mentioned.
  • the intermediate layer insolubilization step can be performed by a method such as containing a curable compound in the intermediate layer and curing the surface.
  • a method in which a polymerizable compound and a photopolymerization initiator are contained in an intermediate layer to expose the surface with a low exposure amount can be mentioned.
  • the method for producing an organic layer pattern of the present invention includes a step of cleaning the laminate after the intermediate layer insolubilization step (also referred to as a “laminate cleaning step”) with water or a water-soluble solvent. Etching residues (eg, particulate residues) are removed by the laminate cleaning step. Further, since the intermediate layer is insolubilized by the intermediate layer insolubilization step, it is difficult to remove the intermediate layer even after the laminate cleaning step, and it is considered that the intermediate layer remains after the laminate cleaning step.
  • Water or water-soluble solvent (also referred to as "cleaning solution") used in the laminate cleaning step includes water and alcohol (for example, methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-.
  • alcohol for example, methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-.
  • the cleaning method is not particularly limited, and a known cleaning method can be used. For example, a rotary discharge method, a dip method, a spray method, or a method using a combination thereof can be mentioned. Further, the temperature at the time of washing is not particularly limited and may be 15 ° C to 40 ° C or the like.
  • the method for producing an organic layer pattern of the present invention preferably further includes a step of increasing the solubility of the surface of the intermediate layer in water or a water-soluble solvent (also referred to as "water-soluble recovery step").
  • the water-soluble recovery step is preferably performed after the laminate cleaning step, and more preferably performed after the laminate cleaning step and before the intermediate layer removing step. It is preferable that the water-soluble recovery step improves the solubility of the intermediate layer in the removing liquid used in the intermediate layer removing step described later.
  • the intermediate layer after the water solubility recovery step preferably has a dissolution rate of 100 nm / s or more, more preferably 120 nm / s or more, and more preferably 150 nm / s or more in the removing liquid. More preferred.
  • the upper limit of the dissolution rate is not particularly limited, and can be, for example, 1,000 nm / s or less.
  • the water-soluble recovery step is preferably a step of removing the surface of the intermediate layer insolubilized in the intermediate layer insolubilization step (also referred to as “intermediate layer surface removal step”).
  • intermediate layer surface removal step it is preferable that at least the insolubilized surface in the intermediate layer is removed. Further, the non-insolubilized region of the intermediate layer may be further removed.
  • the intermediate layer surface removing step is preferably a step of performing dry etching, and more preferably a step of performing dry etching with an etching gas having an oxygen partial pressure of 50 to 100% with respect to the total pressure.
  • the gas other than oxygen contained in the etching gas include N2 gas, CF4 gas, Ar gas and the like.
  • the surface of the insolubilized intermediate layer is removed by the dry etching.
  • Known methods can be adopted for the detailed conditions of dry etching. The conditions can also be determined with reference to the description of dry etching of the resist layer described above.
  • the method for producing an organic layer pattern of the present invention preferably includes a step of removing the intermediate layer (intermediate layer removing step).
  • the intermediate layer removing step is preferably performed after the laminate washing step, and more preferably after the water solubility recovery step.
  • the intermediate layer removing step is preferably a step of removing the intermediate layer with a removing liquid. Further, when the insolubilized region remains on the surface of the intermediate layer (for example, when the water solubility recovery step is not performed), the intermediate layer can be removed by dry etching or the like.
  • the removing liquid examples include a removing liquid containing water or a water-soluble solvent.
  • the content of water with respect to the total mass of the removing liquid is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. preferable.
  • the upper limit of the content is not particularly limited, but may be 99.95% by mass or less.
  • the content of water with respect to the total mass of water and the water-soluble solvent is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. Is more preferable.
  • the upper limit of the content is not particularly limited, but may be 100% by mass or less.
  • the removing liquid may contain a water-soluble solvent.
  • the removing liquid may further contain a water-soluble solvent.
  • water, a mixture of water and a water-soluble solvent, and a water-soluble solvent may be collectively referred to as an aqueous solvent.
  • the water-soluble solvent an organic solvent having a solubility in water at 23 ° C. of 1 g or more is preferable, an organic solvent having a solubility of 10 g or more is more preferable, and an organic solvent having a solubility of 30 g or more is further preferable.
  • the water-soluble solvent include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol and glycerin; ketone solvents such as acetone; and amide solvents such as formamide.
  • the removing liquid contains a surfactant.
  • the surfactant include the above-mentioned surfactant containing an acetylene group in the intermediate layer, and the same components as other surfactants.
  • the removing liquid may also be in an embodiment that does not substantially contain components other than the solvent and the surfactant.
  • the total content of the solvent and the surfactant is preferably 98% by mass or more, more preferably 99% by mass or more, and 99.9% by mass or more with respect to the total mass of the removing liquid. Is more preferable.
  • the upper limit of the content is not particularly limited and may be 100% by mass. Further, in the embodiment in which the removing liquid contains water, the embodiment may be such that it does not substantially contain components other than water and a surfactant.
  • the total content of water and the surfactant is preferably 98% by mass or more, more preferably 99% by mass or more, and 99.9% by mass or more with respect to the total mass of the removing liquid. Is more preferable.
  • the upper limit of the content is not particularly limited and may be 100% by mass.
  • the removing liquid preferably has a viscosity of 1.0 mPa ⁇ s or less, more preferably 0.8 mPa ⁇ s or less, further preferably 0.75 mPa ⁇ s or less, and has a viscosity of 0.75 mPa ⁇ s or less. It is particularly preferable that it is 0.72 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited and may be, for example, 0.10 mPa ⁇ s or more.
  • the viscosity can be measured by a known method, and is measured by, for example, a RE-80L type rotational viscometer manufactured by Toki Sangyo Co., Ltd.
  • the rotation speed may be set as appropriate, but may be, for example, 100 rpm.
  • the viscosity of the removal liquid is adjusted, for example, by the structure of the compound contained in the removal liquid, the temperature of the removal liquid, the mixing ratio of the solvent contained in the removal liquid, and the like.
  • the temperature of the removal liquid may be adjusted for the purpose of keeping the viscosity of the removal liquid in the above range.
  • the temperature of the removing liquid is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, further preferably 40 ° C. or higher, and particularly preferably 50 ° C. or higher.
  • the upper limit of the temperature can be, for example, 100 ° C. or lower, preferably 90 ° C. or lower, and more preferably 80 ° C. or lower.
  • a method of removing the intermediate layer with a removing liquid for example, a method of injecting a removing liquid from a spray-type or shower-type injection nozzle to remove the intermediate layer can be mentioned.
  • the injection nozzle include an injection nozzle in which the entire surface of the laminated body is included in the injection range, and a movable injection nozzle in which the movable range includes the entire surface of the laminated body. ..
  • Another embodiment is to mechanically remove the intermediate layer and then dissolve and remove the residue of the intermediate layer remaining on the organic layer.
  • the resist pattern is removed more effectively by moving from the center of the laminate to the end of the laminate more than once during the process of removing the intermediate layer and injecting the removal liquid.
  • the drying temperature is preferably 80 to 120 ° C. Further, after removing the intermediate layer, a step of rinsing with pure water or the like may be included.
  • the method for producing an organic layer pattern of the present invention may include a step of forming the organic layer pattern a plurality of times. Specifically, the method for producing an organic layer pattern of the present invention includes a step of further forming a second organic layer after the washing step and a step of dissolving the organic layer pattern on the second organic layer in water or a water-soluble solvent. A step of forming a second intermediate layer and a second resist layer in this order to obtain a laminate (a step of obtaining a second laminate) and a second pattern of the second resist layer are formed.
  • Second organic layer etching step the step of etching the second organic layer using the second pattern as a mask
  • second organic layer etching step the step of etching the second organic layer using the second pattern as a mask
  • second intermediate layer etching step the step of etching the second organic layer using the second pattern as a mask
  • second intermediate layer insolubilization step A step of insolubilizing the surface of the layer in water or a water-soluble solvent
  • second laminate cleaning step a step of cleaning the insolubilized laminate with water or a water-soluble solvent
  • a second organic layer or the like is formed on a substrate having the organic layer pattern obtained by the method for producing an organic layer pattern of the present invention.
  • the step of obtaining the second laminate, the second resist pattern manufacturing step, the second organic layer etching step, the second intermediate layer insolubilization step, and the second laminate cleaning step are the above-mentioned laminates. It can be carried out by the methods described in the step of obtaining the above, the step of producing the resist pattern, the step of etching the organic layer, the step of insolubilizing the intermediate layer, and the step of cleaning the laminate.
  • the steps (A) to (F) are repeated.
  • Examples thereof include a mode in which the step (G) is repeated and finally the step (G) is performed.
  • Each step can be performed according to the above description. Further, each step performed a plurality of times may be the same step or may be a different step.
  • the organic layer is an organic layer containing an organic substance of a different type from the organic layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the method for producing an organic layer pattern of the present invention.
  • the organic layer 3 for example, the organic semiconductor layer
  • the intermediate layer 2 that protects the organic layer 3 is arranged on the surface of the intermediate layer 2 in contact with the intermediate layer 2.
  • another layer may be provided between the organic layer 3 and the intermediate layer 2, it is preferable that the organic layer 3 and the intermediate layer 2 are in direct contact with each other from the viewpoint of appropriately protecting the organic layer. ..
  • a resist layer 1 that functions as a photoresist is arranged on the intermediate layer.
  • the resist layer 1 and the intermediate layer 2 may be in direct contact with each other, or another layer may be provided between the resist layer 1 and the intermediate layer 2, but from the viewpoint of suppressing pattern peeling, the resist may be provided. It is preferable that the layer 1 and the intermediate layer 2 are in direct contact with each other.
  • FIG. 1B shows an example of a state in which a part of the resist layer 1 is exposed and developed.
  • the resist layer 1 is partially exposed by a method such as using a predetermined mask, and after the exposure, the resist layer 1 in the removing unit 5 is removed and exposed by developing with a developing solution such as an organic solvent.
  • the resist layer 1a after development is formed.
  • the resist layer 1 is a resist layer in which acid is generated by exposure
  • the solubility of the exposed part in the developing solution changes due to the generation of acid in the exposed part of the resist layer 1, for example, at the time of exposure.
  • the resist layer 1 can be developed.
  • the intermediate layer 2 remains because it is difficult to be removed by the developer, and the organic layer 3 is protected from damage by the developer by the remaining intermediate layer 2.
  • the resist layer 1a may be further heated or exposed.
  • FIG. 1 (c) shows an example of a state in which a part of the intermediate layer 2 and the organic layer 3 is removed.
  • the removing portion 5a is formed in the intermediate layer 2 and the organic layer 3. Will be done.
  • the organic layer 3 can be removed in the removing portion 5a. That is, the organic layer 3 can be patterned.
  • the etching residue 6 is generated in the removed portion 5a.
  • the etching residue 6 is described as spherical particles, but the shape is not particularly limited.
  • FIG. 1 describes an embodiment in which the resist layer 1a is temporarily removed by a dry etching process or the like, the resist layer 1a may remain.
  • FIG. 1D shows an example of a state in which the surface of the intermediate layer 2 is insolubilized.
  • 2a shows the insolubilized surface of the intermediate layer.
  • the side surface of the intermediate layer 2 may be further insolubilized.
  • FIG. 1 (e) shows an example of the state after the laminating body cleaning step.
  • the etching residue 6 has been removed by the laminate cleaning step. Further, since the intermediate layer is insolubilized, the intermediate layer 2 is difficult to be removed and remains in the laminate cleaning step, so that damage to the organic layer 3 is suppressed.
  • FIG. 1 (f) shows an example of the state after the water solubility recovery step.
  • the insolubilized surface 2a of the intermediate layer is removed by the water-soluble recovery step.
  • FIG. 2 is a schematic cross-sectional view showing an example of a base material on which the organic layer patterns of the first organic layer, the second organic layer, and the third organic layer are formed, respectively.
  • a substrate having three different organic layer patterns can be produced.
  • an embodiment in which the organic layer 3 is red, the second organic layer 7 is green, and the third organic layer 11 is blue is an organic EL (electro-luminescence) material.
  • the method for manufacturing a semiconductor device of the present invention includes the method for manufacturing an organic layer pattern of the present invention.
  • the semiconductor device obtained by the method for manufacturing a semiconductor device of the present invention preferably contains an organic layer pattern obtained by the method for manufacturing an organic layer pattern of the present invention.
  • the semiconductor device of the present invention preferably contains a pattern in which the intermediate layer is removed from the organic layer pattern by a removing liquid. That is, in the semiconductor device obtained by the method for manufacturing a semiconductor device, the intermediate layer may be removed by the removing liquid, and the intermediate layer may not remain in the semiconductor device.
  • the semiconductor device is a device that contains a semiconductor and has two or more electrodes, and controls the current flowing between the electrodes and the generated voltage by electricity, light, magnetism, chemical substances, or the like. It is a device that generates light, electric field, magnetic field, etc. by the applied voltage and current.
  • Examples include organic photoelectric conversion elements, organic field effect transistors, organic electroluminescent elements, gas sensors, organic rectifying elements, organic inverters, information recording elements, and the like.
  • the organic photoelectric conversion element can be used for both optical sensor applications and energy conversion applications (solar cells). Among these, an organic field effect transistor, an organic photoelectric conversion element, and an organic electric field light emitting element are preferable, an organic field effect transistor and an organic photoelectric conversion element are more preferable, and an organic electric field effect transistor is particularly preferable.
  • HLC-8220 (manufactured by Tosoh Corporation) was used, and TSKgel Super AWM-H (manufactured by Tosoh Co., Ltd., 6.0 mm ID ⁇ 15.0 cm) was used as a column.
  • Example 1 Manufacturing of organic semiconductor substrates> An organic semiconductor coating liquid having the following composition was spin-coated on a 5 cm square glass substrate and dried at 130 ° C. for 10 minutes to form an organic semiconductor film (organic layer). The film thickness of the organic semiconductor film obtained after drying was 150 nm.
  • composition of organic semiconductor coating liquid ⁇ P3HT (manufactured by Sigma-Aldrich Japan GK) 10% by mass ⁇ PCBM (manufactured by Sigma-Aldrich Japan GK) 10% by mass ⁇ Chloroform (manufactured by Wako Pure Chemical Industries, Ltd.) 80% by mass
  • composition for forming an intermediate layer Each raw material was mixed so as to have the compounding ratio (part by mass) shown in the column of "Composition for forming an intermediate layer" in the table below.
  • the composition for forming the intermediate layer was stirred using a stirrer (hot magnet stirrer, C-MAG HS4, manufactured by IKA) under the following stirring conditions.
  • a PVDF (polyvinylidene fluoride) membrane filter (Durapore, manufactured by Merck) with a pore diameter of 5 ⁇ m is installed in a stainless pressure filter holder (manufactured by Sartorius), and the pressure is applied at 2 MPa using this. While filtering each composition.
  • Atmosphere Atmosphere
  • Stirring time 240 minutes
  • Stirring temperature 50 ° C -Rotation speed of stirring member: 500 rpm (revolutions per minutes)
  • the composition for forming an intermediate layer was spin-coated on the organic semiconductor film formed on the glass substrate and dried at 100 ° C. for 1 minute to form a water-soluble resin film (intermediate layer).
  • the film thickness of the intermediate layer after the film formation was 2.0 ⁇ m.
  • composition for forming a resist layer (chemically amplified photosensitive resin composition)> The following components were mixed to prepare a composition for forming a resist layer.
  • -Resin A-1 30.09 parts by mass-Photoacid generator (Compound X (structure below), R 11 represents a tolyl group, R 18 represents a methyl group.
  • Synchronizationd by Daito Chemix Co., Ltd. 0.26 parts by mass.
  • a resist layer forming composition (chemically amplified photosensitive resin composition) having the composition shown above was spin-coated on the formed water-soluble resin film (intermediate layer), and dried at 100 ° C. for 1 minute. The film thickness after drying was 1700 nm.
  • Plasma treatment was performed under the following conditions, and a step of imparting solvent resistance to the intermediate layer was carried out.
  • the evaluation result is "remaining of the intermediate layer after cleaning", where A is the case where the intermediate layer remains on the entire surface after the above cleaning, and B is the case where the intermediate layer is removed and the organic layer is exposed at least in a part. Described in the column of.
  • etching 2 The substrate after cleaning was dry-etched under the following conditions, and a water-soluble recovery step of the intermediate layer was carried out.
  • Examples 2 to 11, 13 to 14, Comparative Example 1 The composition of the composition for forming the intermediate layer, the conditions of each plasma treatment (plasma treatment 1, etching 2), and the cleaning liquid and the cleaning liquid discharge port in the step of cleaning the laminate after the step of insolubilizing with water or a water-soluble solvent are shown in the table.
  • plasma treatment 1, etching 2 plasma treatment 1, etching 2
  • cleaning liquid and the cleaning liquid discharge port in the step of cleaning the laminate after the step of insolubilizing with water or a water-soluble solvent are shown in the table.
  • "Preparation of organic semiconductor substrate” to "evaluation of light emitting device” were carried out by the same method as in Example 1 except for the changes as described. The light emitting device worked fine.
  • Example 12 In Example 1, instead of the plasma treatment 1, polyparaxylylene having a film thickness of 10 nm was deposited only on the intermediate layer formed on the organic semiconductor layer through a metal mask. The subsequent step of washing the laminate after the step of insolubilizing with water or a water-soluble solvent was carried out using pure water in the same manner as in Example 1. Then, instead of the water-soluble recovery step, parylene was removed by plasma treatment (10 seconds) under the conditions of O 2 flow rate of 500 ml / min, N 2 flow rate of 25 ml / min, and source power of 800 W. Other steps and evaluations were carried out in the same manner as in Example 1. The results of each evaluation are listed in the table.
  • Comparative Example 2 Using the composition for forming an intermediate layer having the composition described in the table below, the steps up to the step of etching the organic layer using the pattern of the resist layer as a mask were performed in the same manner as in Example 1. The etching of the organic layer was performed. When the processing was stopped when the process to be performed was completed and the number of particles was counted, 74 particles were confirmed.
  • ⁇ resin ⁇ ⁇ T-1 PXP-05 manufactured by Japan Vam & Poval Co., Ltd.
  • ⁇ T-2 Pitzcall K-90 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • ⁇ T-3 2-Hydroxyethyl cellulose
  • T-4 Kuraray Co., Ltd. Kuraray Poval 5-88

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

有機層上に、水又は水溶性溶剤に溶解する中間層、及び、レジスト層をこの順に形成して積層体を得る工程と、上記レジスト層のパターンを作製する工程と、上記レジスト層のパターンをマスクとして有機層のエッチングを行う工程と、上記エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程とを含む有機層パターンの製造方法、及び、半導体デバイスの製造方法。

Description

有機層パターンの製造方法、及び、半導体デバイスの製造方法
 本発明は、有機層パターンの製造方法、及び、半導体デバイスの製造方法に関する。
 近年、有機半導体を用いた半導体デバイスなど、パターニングされた有機層(有機層パターン)を利用したデバイスが広く用いられている。
 例えば有機半導体デバイスは、従来のシリコンなどの無機半導体を用いた電子デバイスと比べて簡単なプロセスにより製造できるというメリットがある。更に、有機半導体は、その分子構造を変化させることで容易に材料特性を変化させることが可能である。また、材料のバリエーションが豊富であり、無機半導体では成し得なかったような機能や素子を実現することが可能になると考えられている。有機半導体は、例えば、有機太陽電池、有機エレクトロルミネッセンスディスプレイ、有機光ディテクター、有機電界効果トランジスタ、有機電界発光素子、ガスセンサ、有機整流素子、有機インバータ、情報記録素子等の電子機器に応用される可能性がある。
 このような有機半導体等の有機層パターンの製造を、有機層と、感光層(例えば、レジスト層)等の層と、を含む積層体を用い、感光層からなるパターンをマスクとしてエッチングにより行うことが知られている。
 例えば、特許文献1には、基板上の第1の位置に第1のパターン形成済デバイス層、および基板上の第2の位置に第2のパターン形成済デバイス層を備えたデバイスを製造する方法であって、基板上に第1の中間層を積層するステップと、第1の位置にある第1の中間層を除去するために、第1の中間層をパターン形成するステップと、第1のデバイス層を積層するステップと、第2の中間層を積層するステップと、第2の位置にある第2の中間層およびその下位層を除去するために、第2の中間層およびその下位層をパターン形成するステップと、第2のデバイス層を積層するステップと、後に、第1の位置に第1のパターン形成済デバイス層および第2の位置に第2のパターン形成済デバイス層を形成するために、第1のデバイス層および第2のデバイス層をパターン形成するステップとを有することを特徴とする方法が記載されている。
国際公開第2015/144930号
 上述のように、有機層パターンの製造をエッチングにより行う場合、エッチング残渣(例えば、エッチングにより除去される層であるレジスト層、中間層又は有機層の残渣であって、例えばパーティクル状である残渣)が発生する場合がある。
 本発明は、エッチング残渣の発生が抑制された有機層パターンの製造方法及び電子デバイスの製造方法を提供することを目的とする。
 本発明の代表的な実施態様を以下に示す。
<1> 有機層上に、水又は水溶性溶剤に溶解する中間層、及び、レジスト層をこの順に形成して積層体を得る工程と、
 上記レジスト層のパターンを作製する工程と、
 上記レジスト層のパターンをマスクとして有機層のエッチングを行う工程と、
 上記エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、
 水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程とを含む
 有機層パターンの製造方法。
<2> 上記不溶化する工程において不溶化された中間層の表面を除去する工程を含む、<1>に記載の有機層パターンの製造方法。
<3> 上記中間層の表面を除去する工程が、酸素分圧が全圧に対して50~100%であるエッチングガスによりドライエッチングを実施する工程である、<2>に記載の有機層パターンの製造方法。
<4> 上記中間層がポリビニルアルコールを含む、<1>~<3>のいずれか1つに記載の有機層パターンの製造方法。
<5> 上記不溶化する工程が、中間層の表面をプラズマ処理する工程である、<1>~<4>のいずれか1つに記載の有機層パターンの製造方法。
<6> 上記プラズマ処理が、Arを含むガスにより行われる、<5>に記載の有機層パターンの製造方法。
<7> 上記プラズマ処理が、Ar及びNを含むガスにより行われる、<6>に記載の有機層パターンの製造方法。
<8> 上記Ar及びNを含むガスにおけるNの分圧が、ガスの全圧に対して10~50%である、<7>に記載の有機層パターンの製造方法。
<9> 上記中間層を除去する工程を含む、<8>に記載の有機層パターンの製造方法。
<10> 上記洗浄する工程後に、第2の有機層を更に形成する工程と、
 上記第2の有機層上に、水又は水溶性溶剤に溶解する第2の中間層、及び、第2のレジスト層をこの順に形成して積層体を得る工程と、
 上記第2のレジスト層の第2のパターンを形成する工程と、上記第2のパターンをマスクとして第2の有機層のエッチングを行う工程と、
 上記エッチング後に、第2の中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、
 水又は水溶性溶剤により上記不溶化後の積層体を洗浄する工程とを含む、<1>~<9>のいずれか1つに記載の有機層パターンの製造方法。
<11> <1>~<10>のいずれか1つに記載の有機層パターンの製造方法を含む、半導体デバイスの製造方法。
 本発明によれば、エッチング残渣の発生が抑制された有機層パターンの製造方法及び電子デバイスの製造方法が提供される。
有機層パターンの製造方法の一例を示す概略断面図である。 第1の有機層、第2の有機層及び第3の有機層の有機層パターンがそれぞれ形成された基材の一例を示す概略断面図である。
 以下、本発明の代表的な実施形態について説明する。各構成要素は、便宜上、この代表的な実施形態に基づいて説明されるが、本発明は、そのような実施形態に限定されるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記について、置換及び無置換を記していない表記は、置換基を有さないものと共に、置換基を有するものをも包含する意味である。例えば、単に「アルキル基」と記載した場合には、これは、置換基を有さないアルキル基(無置換アルキル基)、及び、置換基を有するアルキル基(置換アルキル基)の両方を包含する意味である。また、単に「アルキル基」と記載した場合には、これは、鎖状でも環状でもよく、鎖状の場合には、直鎖でも分岐でもよい意味である。これらのことは、「アルケニル基」、「アルキレン基」及び「アルケニレン基」等の他の基についても同義とする。
 本明細書において「露光」とは、特に断らない限り、光を用いた描画のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む意味である。描画に用いられるエネルギー線としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)及びX線などの活性光線、ならびに、電子線及びイオン線などの粒子線が挙げられる。
 本明細書において、「光」には、特に断らない限り、紫外、近紫外、遠紫外、可視、赤外等の領域の波長の光や、電磁波だけでなく、放射線も含まれる。放射線には、例えばマイクロ波、電子線、極端紫外線(EUV)、X線が含まれる。また248nmエキシマレーザー、193nmエキシマレーザー、172nmエキシマレーザーなどのレーザー光も用いることができる。これらの光は、光学フィルターを通したモノクロ光(単一波長光)を用いてもよいし、複数の波長を含む光(複合光)でもよい。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、組成物中の固形分は、溶剤を除く他の成分を意味し、組成物中の固形分の含有量(濃度)は、特に述べない限り、その組成物の総質量に対する、溶剤を除く他の成分の質量百分率によって表される。
 本明細書において、特に述べない限り、温度は23℃、気圧は101325Pa(1気圧)、相対湿度は50%RHである。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC測定)に従い、ポリスチレン換算値として示される。この重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000及びTSKgel Super HZ2000(東ソー(株)製)を用いることによって求めることができる。また、特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。また、特に述べない限り、GPC測定における検出には、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。また、特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、レジスト層がある場合には、基材からレジスト層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
(有機層パターンの製造方法)
 本発明の有機層パターンの製造方法は、有機層上に、水又は水溶性溶剤に溶解する中間層、及び、レジスト層をこの順に形成して積層体を得る工程と、上記レジスト層のパターンを作製する工程と、上記レジスト層のパターンをマスクとして有機層のエッチングを行う工程と、上記エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程とを含む。
 従来から、有機半導体等の有機層のパターニングを、有機層と、中間層と、レジスト層と、を含む積層体を用いて行うことが知られている。
 具体的には、従来から、上記パターニングにおいては、レジスト層をパターニングしてパターンを形成した後に、上記レジスト層のパターンをマスクとしてエッチングを行い、エッチング後に中間層を除去する方法が行われている。
 ここで、上記エッチングにより、エッチング残渣(例えば、レジスト層、中間層又は有機層の残渣であって、例えばパーティクル状である残渣)が発生することが分かった。
 本発明者らは、鋭意検討した結果、エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程とを行うことにより、上記エッチング残渣の除去が可能であることを見出した。
 上記効果が得られるメカニズムは不明であるが、水又は水溶性溶剤により積層体を洗浄することにより、効果的にエッチング残渣が除去されるものと推測される。
 またこの洗浄の際に、積層体には不溶化された中間層が残存しているため、洗浄による有機層へのダメージも軽減されると考えられる。
 ここで、特許文献1には、上記不溶化する工程、及び、上記洗浄する工程を行うことについては、記載されていない。
<積層体を得る工程>
 本発明の有機層パターンの製造方法は、有機層上に、水又は水溶性溶剤に溶解する中間層、及び、レジスト層をこの順に形成して積層体を得る工程(単に「積層体を得る工程」ともいう。)を含む。
〔有機層〕
 有機層は、有機材料を含む層である。具体的な有機材料は、有機層の用途や機能に応じて、適宜選択される。有機層の想定される機能としては、例えば、半導体特性、発光特性、光電変換特性、光吸収特性、電気絶縁性、強誘電性、透明性、絶縁性などが挙げられる。積層体が基材を含む場合、積層体において、有機層は基材よりも上に含まれていればよく、基材と有機層とが接していてもよいし、有機層と基材との間に別の層が更に含まれていてもよい。
 有機層の厚さは、特に制限されず、用いられる電子デバイスの種類などにより異なるが、好ましくは1nm~50μm、より好ましくは1nm~5μm、更に好ましくは1nm~500nmである。
以下では、特に、有機層が有機半導体層である例について詳しく説明する。有機半導体層は、半導体の特性を示す有機材料を含む層である。
 有機半導体層は、有機半導体を含む有機層であり、有機半導体は、半導体の特性を示す有機化合物である。有機半導体には、無機化合物からなる半導体の場合と同様に、ホール(正孔)をキャリアとして伝導するp型半導体と、電子をキャリアとして伝導するn型半導体がある。有機半導体層中のキャリアの流れやすさはキャリア移動度μで表される。用途にもよるが、一般にキャリア移動度は高い方がよく、10-7cm/Vs以上であることが好ましく、10-6cm/Vs以上であることがより好ましく、10-5cm/Vs以上であることが更に好ましい。キャリア移動度は、電界効果トランジスタ(FET)素子を作製したときの特性や飛行時間計測(TOF)法の測定値に基づいて求めることができる。
 有機半導体層に使用し得るp型有機半導体としては、ホール輸送性を有する材料であれば、いかなる材料を用いてもよい。p型有機半導体は、好ましくは、p型π共役高分子、縮合多環化合物、トリアリールアミン化合物、ヘテロ5員環化合物、フタロシアニン化合物、ポルフィリン化合物、カーボンナノチューブ、及びグラフェンのいずれかである。また、p型有機半導体として、これらの化合物のうち複数種の化合物を組み合わせて使用してもよい。p型有機半導体は、より好ましくは、p型π共役高分子、縮合多環化合物、トリアリールアミン化合物、ヘテロ5員環化合物、フタロシアニン化合物、及びポルフィリン化合物の少なくとも1種であり、更に好ましくは、p型π共役高分子及び縮合多環化合物の少なくとも1種である。
 p型π共役高分子は、例えば、置換又は無置換のポリチオフェン(例えば、ポリ(3-ヘキシルチオフェン)(P3HT、シグマ アルドリッチ ジャパン合同会社製)など)、ポリセレノフェン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリチオフェンビニレン、ポリアニリンなどである。縮合多環化合物は、例えば、置換又は無置換のアントラセン、テトラセン、ペンタセン、アントラジチオフェン、ヘキサベンゾコロネンなどである。
 トリアリールアミン化合物は、例えば、m-MTDATA(4,4’,4’’-Tris[(3-methylphenyl)phenylamino]triphenylamine)、2-TNATA(4,4’,4’’-Tris[2-naphthyl(phenyl)amino]triphenylamine)、NPD(N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine)、TPD(N,N’-Diphenyl-N,N’-di(m-tolyl)benzidine)、mCP(1,3-bis(9-carbazolyl)benzene)、CBP(4,4’-bis(9-carbazolyl)-2,2’-biphenyl)などである。
 ヘテロ5員環化合物は、例えば、置換又は無置換のオリゴチオフェン、TTF(Tetrathiafulvalene)などである。
 フタロシアニン化合物は、各種中心金属を有する置換又は無置換のフタロシアニン、ナフタロシアニン、アントラシアニン、テトラピラジノポルフィラジンなどである。ポルフィリン化合物は、各種中心金属を有する置換又は無置換のポルフィリンである。また、カーボンナノチューブは、半導体ポリマーが表面に修飾されたカーボンナノチューブでもよい。
 有機半導体層に使用し得るn型有機半導体としては、電子輸送性を有する材料であれば、いかなる材料を用いてもよい。n型有機半導体は、好ましくは、フラーレン化合物、電子欠乏性フタロシアニン化合物、縮環多環化合物(ナフタレンテトラカルボニル化合物、ペリレンテトラカルボニル化合物など)、TCNQ化合物(テトラシアノキノジメタン化合物)、ポリチオフェン系化合物、ベンジジン系化合物、カルバゾール系化合物、フェナントロリン系化合物、ピリジンフェニル配位子イリジウム系化合物、キノリノール配位子アルムニウム系化合物、n型π共役高分子、及びグラフェンのいずれかである。また、n型有機半導体として、これらの化合物のうち複数種の化合物を組み合わせて使用してもよい。n型有機半導体は、より好ましくは、フラーレン化合物、電子欠乏性フタロシアニン化合物、縮環多環化合物、及びn型π共役高分子の少なくとも1種であり、特に好ましくは、フラーレン化合物、縮環多環化合物及びn型π共役高分子の少なくとも1種である。
 フラーレン化合物とは、置換又は無置換のフラーレンを意味し、フラーレンとしてはC60、C70、C76、C78、C80、C82、C84、C86、C88、C90、C96、C116、C180、C240、C540などで表されるフラーレンのいずれでもよい。フラーレン化合物は、好ましくは、置換又は無置換のC60、C70、C86フラーレンであり、特に好ましくは、PCBM([6,6]-フェニル-C61-酪酸メチルエステル、シグマ アルドリッチ ジャパン合同会社製など)及びその類縁体(例えば、C60部分をC70、C86等に置換したもの、置換基のベンゼン環を他の芳香環又はヘテロ環に置換したもの、メチルエステルをn-ブチルエステル、i-ブチルエステル等に置換したもの)である。
 電子欠乏性フタロシアニン化合物とは、電子求引性基が4つ以上結合しかつ各種中心金属を有する置換又は無置換のフタロシアニン、ナフタロシアニン、アントラシアニン、テトラピラジノポルフィラジンなどである。電子欠乏性フタロシアニン化合物は、例えば、フッ素化フタロシアニン(F16MPc)、及び塩素化フタロシアニン(Cl16MPc)などである。ここで、Mは中心金属を、Pcはフタロシアニンを表す。
 ナフタレンテトラカルボニル化合物としてはいかなるものでもよいが、好ましくはナフタレンテトラカルボン酸無水物(NTCDA)、ナフタレンビスイミド化合物(NTCDI)、ペリノン顔料(Pigment Orange 43、Pigment Red 194など)である。
 ペリレンテトラカルボニル化合物としてはいかなるものでもよいが、好ましくはペリレンテトラカルボン酸無水物(PTCDA)、ペリレンビスイミド化合物(PTCDI)、ベンゾイミダゾール縮環体(PV)である。
 TCNQ化合物とは、置換又は無置換のTCNQ及び、TCNQのベンゼン環部分を別の芳香環やヘテロ環に置き換えたものである。TCNQ化合物は、例えば、TCNQ、TCNAQ(テトラシアノアントラキノジメタン)、TCN3T(2,2’-((2E,2’’E)-3’,4’-Alkyl substituted-5H,5’’H-[2,2’:5’,2’’-terthiophene]-5,5’’-diylidene)dimalononitrile derivatives)などである。
 ポリチオフェン系化合物とは、ポリ(3,4-エチレンジオキシチオフェン)等のポリチオフェン構造を有する化合物である。ポリチオフェン系化合物は、例えば、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)及びポリスチレンスルホン酸(PSS)からなる複合物)などである。
 ベンジジン系化合物とは、分子内にベンジジン構造を有する化合物である。ベンジジン系化合物は、例えば、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニルベンジジン(TPD)、N,N’-ジ-[(1-ナフチル)-N,N’-ジフェニル]-1,1’-ビフェニル)-4,4’-ジアミン(NPD)などである。
 カルバゾール系化合物とは、分子内にカルバゾール環構造を有する化合物である。カルバゾール系化合物は、例えば、4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル(CBP)などである。
 フェナントロリン系化合物とは、分子内にフェナントロリン環構造を有する化合物であり、例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)などである。
 ピリジンフェニル配位子イリジウム系化合物とは、フェニルピリジン構造を配位子とするイリジウム錯体構造を有する化合物である。ピリジンフェニル配位子イリジウム系化合物は、例えば、ビス(3,5-ジフルオロ-2-(2-ピリジルフェニル-(2-カルボキシピリジル)イリジウム(III)(FIrpic)、トリス(2-フェニルピリジナト)イリジウム(III)(Ir(ppy))などである。
 キノリノール配位子アルムニウム系化合物とは、キノリノール構造を配位子とするアルミニウム錯体構造を有する化合物であり、例えば、トリス(8-キノリノラト)アルミニウムなどである。
 n型有機半導体材料の特に好ましい例を以下に示す。なお、式中のRとしては、いかなるものでも構わないが、水素原子、置換又は無置換で分岐又は直鎖のアルキル基(好ましくは炭素数1~18、より好ましくは1~12、更に好ましくは1~8のもの)、置換又は無置換のアリール基(好ましくは炭素数6~30、より好ましくは6~20、更に好ましくは6~14のもの)のいずれかであることが好ましい。構造式中のMeはメチル基を表し、Mは金属原子を表す。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 有機半導体層に含まれる有機半導体は、1種でもよいし、2種以上であってもよい。また、有機半導体層は、p型の層とn型の層の積層又は混合層でもよい。
 有機層の形成方法は、気相法でも液相法でもよい。気相法の場合には、蒸着法(真空蒸着法、分子線エピタキシー法など)、スパッタリング法、及びイオンプレーティング法などの物理気相成長(PVD)法や、プラズマ重合法などの化学気相成長(CVD)法が使用でき、特に蒸着法が好ましい。
 一方、液相法の場合には、例えば、有機材料は溶剤中に配合され、有機層を形成する組成物(有機層形成用組成物)とされる。そして、この組成物を基材上に供給し乾燥して、有機層が形成される。供給方法としては、塗布が好ましい。供給方法の例としては、スリットコート法、キャスト法、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スピンコート法、ラングミュア-ブロジェット(Langmuir-Blodgett)(LB)法、エッジキャスト法(詳細は、特許第6179930号公報)などを挙げることができる。キャスト法、スピンコート法、及びインクジェット法を用いることが更に好ましい。このようなプロセスにより、表面が平滑で大面積の有機層を低コストで生産することが可能となる。
 また、有機層形成用組成物に使用する溶剤としては、有機溶剤が好ましい。有機溶剤としては、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1-メチルナフタレン、1,2-ジクロロベンゼン等の炭化水素系溶剤;例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン化炭化水素系溶剤;例えば、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶剤;例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶剤;例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶剤;例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン、ジメチルスルフォキサイド等の極性溶剤などが挙げられる。これらの溶剤は1種のみを用いてもよいし、2種以上を用いてもよい。有機層形成用組成物における有機材料の割合は、好ましくは1~95質量%、より好ましくは5~90質量%であり、これにより任意の厚さの膜を形成できる。
 また、有機層形成用組成物には、樹脂バインダーを配合してもよい。この場合、膜を形成する材料とバインダー樹脂とを前述の適当な溶剤に溶解させ、又は分散させて塗布液とし、各種の塗布法により薄膜を形成することができる。樹脂バインダーとしては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレン等の絶縁性ポリマー、及びこれらの共重合体、ポリビニルカルバゾール、ポリシラン等の光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレン等の導電性ポリマーなどを挙げることができる。樹脂バインダーは、単独で使用してもよく、あるいは複数併用してもよい。薄膜の機械的強度を考慮するとガラス転移温度の高い樹脂バインダーが好ましく、電荷移動度を考慮すると極性基を含まない構造の光伝導性ポリマー又は導電性ポリマーよりなる樹脂バインダーが好ましい。
 樹脂バインダーを配合する場合、その配合量は、有機層中、好ましくは0.1~30質量%で用いられる。樹脂バインダーは、1種単独で使用されても、複数種の組み合わせで使用されてもよい。複数種の組み合わせの場合には、それらの合計量が上記範囲にあることが好ましい。
 有機層は、用途によっては単独及び種々の有機材料や添加剤を添加した混合溶液を用いた、複数の材料種からなるブレンド膜でもよい。例えば、光電変換層を作製する場合、複数種の半導体材料を使用した混合溶液を用いることなどができる。
 また、成膜の際、基材を加熱又は冷却してもよく、基材の温度を変化させることで膜質や膜中での分子のパッキングを制御することが可能である。基材の温度としては特に制限はないが、好ましくは-200℃~400℃、より好ましくは-100℃~300℃、更に好ましくは0℃~200℃である。
 形成された有機層は、後処理により特性を調整することができる。例えば、加熱処理や蒸気化した溶剤に暴露することにより膜のモルホロジーや膜中での分子のパッキングを変化させることで特性を向上させることが可能である。また、酸化性又は還元性のガスや溶剤、物質などに曝す、あるいはこれらの手法を併用することで酸化あるいは還元反応を起こし、膜中でのキャリア密度などを調整することができる。
〔中間層〕
 中間層は、水又は水溶性溶剤に溶解する層である。具体的には、水又は水溶性溶剤に対する溶解速度が100nm/s以上であることが好ましく、120nm/s以上であることがより好ましく、150nm/s以上であることが更に好ましい。上記溶解速度の上限は特に限定されず、例えば、1,000nm/s以下とすることができる。
 水溶性溶剤の詳細は、後述する除去液に含まれる水溶性溶剤と同様である。
 また、中間層は、水に対する溶解速度が100nm/s以上であることが好ましく、120nm/s以上であることがより好ましく、150nm/s以上であることが更に好ましい。上記溶解速度の上限は特に限定されず、例えば、1,000nm/s以下とすることができる。
 上記溶解速度は、例えば下記の方法により測定される。
 積層体からレジスト層を除去し、レジスト層が除去された積層体を作製する。
 上記レジスト層の除去は、例えば、露光及び加熱のいずれをも行わずにレジスト層を現像液により除去することにより行うことができる。
 上記レジスト層が除去された積層体の膜厚(膜厚A)を測定する。
 上記レジスト光層が除去された積層体を除去液に5秒間浸漬した後取り出し、再度積層体の膜厚(膜厚B)を測定する。
 上記膜厚Aと上記膜厚Bの差を浸漬時間(5秒間)で除することにより、中間層の除去液に対する溶解速度(nm/s)を算出する。
 本明細書において、中間層の溶解速度は例えば上記方法により測定することができる。
 また、ある溶剤又は組成物に対するレジスト層の溶解速度は、レジスト層の除去を行わずに溶剤又は組成物に積層体を浸漬することにより、同様に測定することができる。
 中間層の厚さは、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1.0μm以上であることが更に好ましく、2.0μm以上が一層好ましい。中間層の厚さの上限値としては、10μm以下が好ましく、5.0μm以下がより好ましく、3.0μm以下が更に好ましい。
 また、本発明における中間層は、現像液に対する溶解速度が23℃において10nm/s以下の層であることが好ましく、1nm/s以下の層であることがより好ましい。上記溶解速度の下限は特に限定されず、0nm/s超であればよい。
 本発明における中間層は、高分子化合物を含むことが好ましい。
 中間層は、水溶性高分子化合物を含むことが好ましく、水溶性樹脂を含むことがより好ましい。
-水溶性樹脂-
 水溶性樹脂とは、23℃における水100gに対して1g以上溶解する樹脂をいう。水溶性樹脂は、23℃における水100gに対して5g以上溶解する樹脂であることが好ましく、10g以上溶解する樹脂であることがより好ましく、30g以上溶解する樹脂であることが更に好ましい。溶解量の上限は特にないが、100g程度であることが実際的である。
 水溶性樹脂は、親水性基を含む樹脂が好ましく、親水性基としては、水酸基、カルボキシ基、スルホン酸基、リン酸基、アミド基、イミド基などが例示される。
 水溶性樹脂としては、具体的には、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、水溶性多糖類(水溶性のセルロース(メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、プロピルメチルセルロース等)、プルラン又はプルラン誘導体、デンプン(ヒドロキシプロピルデンプン、カルボキシメチルデンプン等)、キトサン、シクロデキストリン)、ポリエチレンオキシド、ポリエチルオキサゾリン、メチロールメラミン、ポリアクリルアミド、フェノール樹脂、スチレン/マレイン酸半エステル等を挙げることができる。また、これらの中から、2種以上を選択して使用してもよく、共重合体として使用してもよい。本発明において、中間層は、これらの樹脂の中でも、ポリビニルピロリドン、ポリビニルアルコール、水溶性多糖類、プルラン及びプルラン誘導体からなる群から選択された少なくとも1種を含むことが好ましく、ポリビニルピロリドン、ポリビニルアルコール及び水溶性多糖類からなる群から選択された少なくとも1種を含むことがより好ましい。水溶性多糖類は、特にセルロースであることが好ましく、ヒドロキシエチルセルロースであることがより好ましい。
 これらの中でも、中間層不溶化工程を例えばプラズマ処理等により容易に行うことができる点等から、中間層はポリビニルアルコールを含むことが好ましい。
 具体的には、本発明では、中間層に含まれる水溶性樹脂が、式(P1-1)~式(P4-1)のいずれかで表される繰返し単位を含む樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(P1-1)~(P4-1)中、RP1は水素原子又はメチル基を表し、RP2は水素原子又はメチル基を表し、Rp31~Rp33はそれぞれ独立に、置換基又は水素原子を表し、Rp41~Rp49はそれぞれ独立に、置換基又は水素原子を表す。
<<式(P1-1)で表される繰返し単位を含む樹脂>>
 式(P1-1)中、RP1は水素原子が好ましい。
 式(P1-1)で表される繰返し単位を含む樹脂は、式(P1-1)で表される繰返し単位とは異なる繰返し単位を更に含んでもよい。
 式(P1-1)で表される繰返し単位を含む樹脂は、式(P1-1)で表される繰返し単位を、樹脂の全繰り返し単位に対して10モル%~100モル%含むことが好ましく、30モル%~70モル%含むことがより好ましい。
 式(P1-1)で表される繰返し単位を含む樹脂としては、下記式(P1-2)で表される2つの繰返し単位を含む樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(P1-2)中、RP11はそれぞれ独立に、水素原子又はメチル基を表し、RP12は置換基を表し、np1及びnp2は質量基準での分子中の構成比率を表す。
 式(P1-2)中、RP11は式(P1-1)におけるRP1と同義であり、好ましい態様も同様である。
 式(P1-2)中、RP12としては-L-Tで表される基が挙げられる。Lは単結合又は後述する連結基Lである。Tは置換基であり、後述する置換基Tの例が挙げられる。なかでも、RP12としては、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、又はアリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)等の炭化水素基が好ましい。これらのアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基は本発明の効果を奏する範囲で更に置換基Tで規定される基を有していてもよい。
 式(P1-2)中、np1及びnp2は質量基準での分子中の構成比率を表し、それぞれ独立に、10質量%以上100質量%未満である。ただしnp1+np2が100質量%を超えることはない。np1+np2が100質量%未満の場合、その他の繰返し単位を含むコポリマーであることを意味する。
<<式(P2-1)で表される繰返し単位を含む樹脂>>
 式(P2-1)中、RP2は水素原子が好ましい。
 式(P2-1)で表される繰返し単位を含む樹脂は、式(P2-1)で表される繰返し単位とは異なる繰返し単位を更に含んでもよい。
 式(P2-1)で表される繰返し単位を含む樹脂は、式(P2-1)で表される繰返し単位を、樹脂の全質量に対して10質量%~100質量%含むことが好ましく、30質量%~70質量%含むことがより好ましい。
 式(P2-1)で表される繰返し単位を含む樹脂としては、下記式(P2-2)で表される2つの繰返し単位を含む樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(P2-2)中、RP21はそれぞれ独立に、水素原子又はメチル基を表し、RP22は置換基を表し、mp1及びmp2は質量基準での分子中の構成比率を表す。
 式(P2-2)中、RP21は式(P2-1)におけるRP2と同義であり、好ましい態様も同様である。
 式(P2-2)中、RP22としては-L-Tで表される基が挙げられる。Lは単結合又は後述する連結基Lである。Tは置換基であり、後述する置換基Tの例が挙げられる。なかでも、RP22としては、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、又はアリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)等の炭化水素基が好ましい。これらのアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基は本発明の効果を奏する範囲で更に置換基Tで規定される基を有していてもよい。
 式(P2-2)中、mp1及びmp2は質量基準での分子中の構成比率を表し、それぞれ独立に、10質量%以上100質量%未満である。ただしmp1+mp2が100質量%を超えることはない。mp1+mp2が100質量%未満の場合、その他の繰返し単位を含むコポリマーであることを意味する。
<<式(P3-1)で表される繰返し単位を含む樹脂>>
 式(P3-1)中、Rp31~Rp33はそれぞれ独立に、置換基を有してもよい炭化水素基、アシル基、-(CHCHO)maH、-CHCOONa又は水素原子を表すことが好ましく、炭化水素基、ヒドロキシ基を置換基として有する炭化水素基、アシル基又は水素原子がより好ましく、水素原子が更に好ましい。maは又は2である。
 上記置換基を有してもよい炭化水素基の炭素数は、1~10が好ましく、1~4がより好ましい。
 ヒドロキシ基を置換基として有する炭化水素基としては、ヒドロキシ基を1つ有する炭素数1~10の炭化水素基が好ましく、ヒドロキシ基を1つ有する炭素数1~4の炭化水素基がより好ましく、-CH(OH)、-CHCH(OH)又は-CHCH(OH)CHが更に好ましい。
 アシル基としては、アルキル基の炭素数が1~4であるアルキルカルボニル基が好ましく、アセチル基が更に好ましい。
 式(P3-1)で表される繰返し単位を含む樹脂は、式(P3-1)で表される繰返し単位とは異なる繰返し単位を更に含んでもよい。
 式(P3-1)で表される繰返し単位を含む樹脂は、式(P3-1)で表される繰返し単位を、樹脂の全質量に対して10質量%~100質量%含むことが好ましく、30質量%~70質量%含むことがより好ましい。
 また、式(P3-1)に記載されたヒドロキシ基は適宜置換基T又はそれと連結基Lを組み合わせた基で置換されていてもよい。置換基Tは複数あるとき互いに結合して、あるいは連結基Lを介して又は介さずに式中の環と結合して環を形成していてもよい。
<<式(P4-1)で表される繰返し単位を含む樹脂>>
 式(P4-1)中、RP41~RP49はそれぞれ独立に、置換基を有してもよい炭化水素基、アシル基、-(CHCHO)maH、-CHCOONa又は水素原子を表すことが好ましく、炭化水素基、ヒドロキシ基を置換基として有する炭化水素基、アシル基又は水素原子がより好ましく、水素原子が更に好ましい。maは1又は2である。
 上記置換基を有してもよい炭化水素基の炭素数は、1~10が好ましく、1~4がより好ましい。
 上記ヒドロキシ基を置換基として有する炭化水素基としては、ヒドロキシ基を1つ有する炭素数1~10の炭化水素基が好ましく、ヒドロキシ基を1つ有する炭素数1~4の炭化水素基がより好ましく、-CH(OH)、-CHCH(OH)又は-CHCH(OH)CHが更に好ましい。
 式(P4-1)で表される繰返し単位を含む樹脂は、式(P4-1)で表される繰返し単位とは異なる繰返し単位を更に含んでもよい。
 式(P4-1)で表される繰返し単位を含む樹脂は、式(P4-1)で表される繰返し単位を、樹脂の全質量に対して10質量%~100質量%含むことが好ましく、30質量%~70質量%含むことがより好ましい。
 また、式(P4-1)に記載されたヒドロキシ基は適宜置換基T又はそれと連結基Lを組み合わせた基で置換されていてもよい。置換基Tは複数あるとき互いに結合して、あるいは連結基Lを介して又は介さずに式中の環と結合して環を形成していてもよい。
 置換基Tとしては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が更に好ましい)、アリールアルキル基(炭素数7~21が好ましく、7~15がより好ましく、7~11が更に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、水酸基、アミノ基(炭素数0~24が好ましく、0~12がより好ましく、0~6が更に好ましい)、チオール基、カルボキシ基、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アルコキシル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アシル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アシルオキシ基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリーロイル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)、アリーロイルオキシ基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)、カルバモイル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、スルファモイル基(炭素数0~12が好ましく、0~6がより好ましく、0~3が更に好ましい)、スルホ基、アルキルスルホニル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アリールスルホニル基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、ヘテロアリール基(炭素数1~12が好ましく、1~8がより好ましく、2~5が更に好ましく、5員環又は6員環を含むことが好ましい)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、オキソ基(=O)、イミノ基(=NR)、アルキリデン基(=C(R)などが挙げられる。Rは水素原子又はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であり、水素原子、メチル基、エチル基、又はプロピル基が好ましい。各置換基に含まれるアルキル部位、アルケニル部位、及びアルキニル部位は鎖状でも環状でもよく、直鎖でも分岐でもよい。上記置換基Tが置換基を取りうる基である場合には更に置換基Tを有してもよい。例えば、アルキル基はハロゲン化アルキル基となってもよいし、(メタ)アクリロイルオキシアルキル基、アミノアルキル基やカルボキシアルキル基になっていてもよい。置換基がカルボキシ基やアミノ基などの塩を形成しうる基の場合、その基が塩を形成していてもよい。
 連結基Lとしては、アルキレン基(炭素数1~24が好ましく、1~12がより好ましく、1~6が更に好ましい)、アルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、(オリゴ)アルキレンオキシ基(1つの繰返し単位中のアルキレン基の炭素数は1~12が好ましく、1~6がより好ましく、1~3が更に好ましい;繰返し数は1~50が好ましく、1~40がより好ましく、1~30が更に好ましい)、アリーレン基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、酸素原子、硫黄原子、スルホニル基、カルボニル基、チオカルボニル基、-NR-、及びそれらの組み合わせにかかる連結基が挙げられる。本明細書において、「(オリゴ)アルキレンオキシ基」は、構成単位である「アルキレンオキシ」を1以上有する2価の連結基を意味する。構成単位中のアルキレン鎖の炭素数は、構成単位ごとに同一であっても異なっていてもよい。アルキレン基は置換基Tを有していてもよい。例えば、アルキレン基が水酸基を有していてもよい。連結基Lに含まれる原子数は水素原子を除いて1~50が好ましく、1~40がより好ましく、1~30が更に好ましい。連結原子数は連結に関与する原子団のうち最短の道程に位置する原子数を意味する。例えば、-CH-(C=O)-O-だと、連結に関与する原子は6個であり、水素原子を除いても4個である。一方連結に関与する最短の原子は-C-C-O-であり、3つとなる。この連結原子数として、1~24が好ましく、1~12がより好ましく、1~6が更に好ましい。なお、上記アルキレン基、アルケニレン基、アルキニレン基、(オリゴ)アルキレンオキシ基は、鎖状でも環状でもよく、直鎖でも分岐でもよい。連結基が-NR-などの塩を形成しうる基の場合、その基が塩を形成していてもよい。
 その他、水溶性樹脂としては、ポリエチレンオキシド、ヒドロキシエチルセルロース、カルボキシメチルセルロース、水溶性メチロールメラミン、ポリアクリルアミド、フェノール樹脂、スチレン/マレイン酸半エステル、ポリ-N-ビニルアセトアミド等が挙げられる。
 また、水溶性樹脂としては市販品を用いてもよく、市販品としては、第一工業製薬(株)製 ピッツコールシリーズ(K-30、K-50、K-90など)、BASF社製LUVITECシリーズ(VA64P、VA6535Pなど)、日本酢ビ・ポバール(株)製PXP-05、JL-05E、JP-03、JP-04、AMPS(2-アクリルアミド-2-メチルプロパンスルホン酸共重合体)、アルドリッチ社製Nanoclay等が挙げられる。
 これらの中でも、ピッツコールK-90、又は、PXP-05を用いることが好ましい。
 水溶性樹脂については、国際公開第2016/175220号に記載の樹脂を引用し、本明細書に組み込まれる。
 水溶性樹脂の重量平均分子量は、水溶性樹脂の種類に応じて適宜選択される。本明細書において、水溶性樹脂の重量平均分子量(Mw)及び数平均分子量(Mn)は、GPC測定によるポリエーテルオキサイド換算値とする。特に、水溶性樹脂が式(p1-1)で表される繰返し単位を含む樹脂(例えば、ポリビニルアルコール(PVA))である場合には、重量平均分子量は、10,000~100,000であることが好ましい。この数値範囲の上限は、80,000以下であることが好ましく、60,000以下であることがより好ましい。また、この数値範囲の下限は、13,000以上であることが好ましく、15,000以上であることがより好ましい。水溶性樹脂が式(p2-2)で表される樹脂(例えば、ポリビニルピロリドン(PVP))である場合には、重量平均分子量は、20,000~2,000,000であることが好ましい。この数値範囲の上限は、1,800,000以下であることが好ましく、1,500,000以下であることがより好ましい。また、この数値範囲の下限は、30,000以上であることが好ましく、40,000以上であることがより好ましい。水溶性樹脂が式(P3-1)又は式(p4-1)で表される繰返し単位を含む樹脂(例えば、水溶性多糖類)である場合には、重量平均分子量は、50,000~2,000,000であることが好ましい。この数値範囲の上限は、1,500,000以下であることが好ましく、1,300,000以下であることがより好ましい。また、この数値範囲の下限は、70,000以上であることが好ましく、90,000以上であることがより好ましい。
 水溶性樹脂の分子量分散度(重量平均分子量/数平均分子量、単に「分散度」ともいう。)は、1.0~5.0が好ましく、2.0~4.0がより好ましい。
 更に、本発明において、中間層は、水溶性樹脂として、高分子量樹脂(例えば、重量平均分子量が10,000以上の水溶性樹脂)と、この高分子量樹脂の重量平均分子量よりも小さい重量平均分子量を有する低分子量樹脂とを含み、かつ、低分子量樹脂の重量平均分子量が、高分子量樹脂の重量平均分子量の半分以下であることも好ましい。これにより、低分子量樹脂が除去液(特に水)に速やかに溶出し、低分子量樹脂が溶出した部分を起点にして高分子量樹脂も除去されやすくなるため、中間層除去後の中間層の残渣がより低減する効果が得られる。また、中間層を使用して中間層を形成する際に、中間層にクラックが発生することを抑制できる。
 本発明において、中間層が上記高分子量樹脂及び上記低分子量樹脂を含むか否かは、例えば、中間層又は水溶性樹脂全体の分子量分布を測定した際に、ピークトップ(極大値)が2つ以上確認できるか否かに基づいて判断できる。
 上記高分子量樹脂の重量平均分子量は、20,000以上であることが好ましく、45,000以上であることが好ましい。また、上記高分子量樹脂の重量平均分子量は、2,000,000以下であることが好ましく、1,500,000以下でもよい。上記高分子量樹脂に対する上記低分子量樹脂の分子量比(=低分子量樹脂の重量平均分子量/高分子量樹脂の重量平均分子量)は、0.4以下であることが好ましい。この分子量比の上限は、0.3以下であることがより好ましく、0.2以下であることが更に好ましい。また、上記分子量比の下限は、特に制限されないが、0.001以上であることが好ましく、0.01以上であってもよい。
 また、本発明で使用する水溶性樹脂全体の分子量分布において、2つ以上のピークトップが存在し、この2つ以上のピークトップのうち、1つのピークトップに対応する分子量が、他の1つのピークトップに対応する分子量の半分以下であることも好ましい。これにより、低分子量樹脂の重量平均分子量が高分子量樹脂の重量平均分子量の半分以下である場合と同様の効果が得られる。上記のような分子量分布を有する水溶性樹脂は、例えば、上記高分子量樹脂及び上記低分子量樹脂を混合することにより得られる。分子量分布中に複数のピークが確認される場合には、それらピークトップの中から2つ1組のピークトップを選択し、少なくとも1組のピークトップについて、一方のピークトップに対応する分子量が、他方のピークトップに対応する分子量の半分以下であればよい。
 上記ピークトップが対応する分子量(ピークトップ分子量)のうち大きい方は、20,000以上であることが好ましく、45,000以上であることが好ましい。また、上記ピークトップ分子量の大きい方は、2,000,000以下であることが好ましく、1,500,000以下でもよい。上記ピークトップ分子量の大きい方に対する小さい方の分子量比(=ピークトップ分子量の小さい方/ピークトップ分子量の大きい方)は、0.4以下であることが好ましい。この分子量比の上限は、0.3以下であることがより好ましく、0.2以下であることが更に好ましい。また、上記分子量比の下限は、特に制限されないが、0.001以上であることが好ましく、0.01以上であってもよい。
 高分子量樹脂の重量平均分子量と低分子量樹脂の重量平均分子量の差(水溶性樹脂全体の分子量分布をとった場合には、ピーク間の分子量距離)は、高分子量樹脂としてPVAを含む場合には、10,000~80,000であることが好ましく、20,000~60,000であることがより好ましい。高分子量樹脂としてPVPを含む場合には、上記差は、50,000~1,500,000であることが好ましく、100,000~1,200,000であることがより好ましい。高分子量樹脂として水溶性多糖類を含む場合には、上記差は、50,000~1,500,000であることが好ましく、100,000~1,200,000であることがより好ましい。
 特に、本発明において、水溶性樹脂は、高分子量樹脂として、重量平均分子量が20,000以上であるPVAを含むことが好ましい。この場合、重量平均分子量は、30,000以上であることがより好ましく、40,000以上であることが更に好ましい。また、本発明において、水溶性樹脂は、高分子量樹脂として、重量平均分子量が300,000以上であるPVPを含むことも好ましい。この場合、重量平均分子量は、400,000以上であることがより好ましく、500,000以上であることが更に好ましい。更に、本発明において、水溶性樹脂は、高分子量樹脂として、重量平均分子量が300,000以上である水溶性多糖類を含むことも好ましい。この場合、重量平均分子量は、400,000以上であることがより好ましく、500,000以上であることが更に好ましい。
 高分子量樹脂と低分子量樹脂の好ましい組み合わせは、例えば下記のとおりである。水溶性樹脂は、下記の組み合わせの1つの要件を満たすのみでもよいが、2つ以上の組み合わせの要件を同時に満たす態様でもよい。
・重量平均分子量Mwが30,000~100,000のPVA(高分子量樹脂)と、Mwが10,000~40,000のPVA(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000のPVP(高分子量樹脂)と、Mwが30,000~600,000のPVP(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000の水溶性多糖類(高分子量樹脂)と、Mwが50,000~600,000の水溶性多糖類(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000のPVP(高分子量樹脂)と、Mwが10,000~100,000のPVA(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000の水溶性多糖類(高分子量樹脂)と、Mwが10,000~100,000のPVA(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000のPVP(高分子量樹脂)と、Mwが50,000~600,000の水溶性多糖類(低分子量樹脂)の組み合わせ。
・Mwが500,000~1,500,000の水溶性多糖類(高分子量樹脂)と、Mwが30,000~600,000のPVP(低分子量樹脂)の組み合わせ。
 高分子量樹脂の含有量は、全水溶性樹脂に対し50質量%以下であることが好ましい。この数値範囲の上限は、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。また、この数値範囲の下限は、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。
 一方、水溶性樹脂は、低分子量樹脂を実質的に含まない態様でもよい。本発明において、「低分子量樹脂を実質的に含まない」とは、低分子量樹脂の含有量が、全水溶性樹脂に対し3質量%以下であることを意味する。この態様において、低分子量樹脂の含有量は、全水溶性樹脂に対し1質量%以下であることが好ましい。
 中間層における高分子化合物の含有量は、必要に応じて適宜調節すればよいが、中間層の全質量に対し、20質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。上記含有量の上限としては、100質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることが更に好ましい。
 中間層は、高分子化合物を1種のみ含んでいてもよく、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
-アセチレン基を含む界面活性剤-
 残渣の除去に有効である観点から、中間層は、アセチレン基を含む界面活性剤を含むことが好ましい。
 中間層がアセチレン基を含む界面活性剤を含むことにより、高分子化合物が有機層へと吸着することが抑制され、除去液による除去後における中間層の残渣除去に有効であると考えられる。
 アセチレン基を含む界面活性剤における、分子内のアセチレン基の数は、特に制限されないが、1~10個が好ましく、1~5個がより好ましく、1~3個が更に好ましく、1~2個が一層好ましい。
 アセチレン基を含む界面活性剤の分子量は比較的小さいことが好ましく、2,000以下であることが好ましく、1,500以下であることがより好ましく、1,000以下であることが更に好ましい。下限値は特にないが、200以上であることが好ましい。
<<式(9)で表される化合物>>
 アセチレン基を含む界面活性剤は下記式(9)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、R91及びR92は、それぞれ独立に、炭素数3~15のアルキル基、炭素数6~15の芳香族炭化水素基、又は、炭素数4~15の芳香族複素環基である。芳香族複素環基の炭素数は、1~12が好ましく、2~6がより好ましく、2~4が更に好ましい。芳香族複素環は5員環又は6員環が好ましい。芳香族複素環が含むヘテロ原子は窒素原子、酸素原子、又は硫黄原子が好ましい。
 R91及びR92は、それぞれ独立に、置換基を有していてもよく、置換基としては上述の置換基Tが挙げられる。
-式(91)で表される化合物-
 式(9)で表される化合物としては、下記式(91)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 R93~R96は、それぞれ独立に、炭素数1~24の炭化水素基であり、n9は1~6の整数であり、m9はn9の2倍の整数であり、n10は1~6の整数であり、m10はn10の2倍の整数であり、l9及びl10は、それぞれ独立に、0以上12以下の数である。
 R93~R96は炭化水素基であるが、なかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であることが好ましい。アルキル基、アルケニル基、アルキニル基は直鎖状でも環状でもよく、直鎖でも分岐でもよい。R93~R96は本発明の効果を奏する範囲で置換基Tを有していてもよい。また、R93~R96は互いに結合して、又は上述の連結基Lを介して環を形成していてもよい。置換基Tは、複数あるときは互いに結合して、あるいは下記連結基Lを介して又は介さずに式中の炭化水素基と結合して環を形成していてもよい。
 R93及びR94はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。なかでもメチル基が好ましい。
 R95及びR96はアルキル基(炭素数1~12が好ましく、2~6がより好ましく、3~6が更に好ましい)であることが好ましい。なかでも、-(Cn1198 m11)-R97が好ましい。R95、R96はとくにイソブチル基であることが好ましい。
 n11は1~6の整数であり、1~3の整数が好ましい。m11はn11の2倍の数である。
 R97及びR98は、それぞれ独立に、水素原子又はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。
 n9は1~6の整数であり、1~3の整数が好ましい。m9はn9の2倍の整数である。
 n10は1~6の整数であり、1~3の整数が好ましい。m10はn10の2倍の整数である。
 l9及びl10は、それぞれ独立に、0~12の数である。ただし、l9+l10は0~12の数であることが好ましく、0~8の数であることがより好ましく、0~6の数が更に好ましく、0を超え6未満の数が一層好ましく、0を超え3以下の数がより一層好ましい。なお、l9、l10については、式(91)の化合物がその数において異なる化合物の混合物となる場合があり、そのときはl9及びl10の数、あるいはl9+l10が、小数点以下が含まれた数であってもよい。
-式(92)で表される化合物-
 式(91)で表される化合物は、下記式(92)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 R93、R94、R97~R100は、それぞれ独立に、炭素数1~24の炭化水素基であり、l11及びl12は、それぞれ独立に、0以上12以下の数である。
 R93、R94、R97~R100はなかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アルキニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であることが好ましい。アルキル基、アルケニル基、アルキニル基は鎖状でも環状でもよく、直鎖でも分岐でもよい。R93、R94、R97~R100は本発明の効果を奏する範囲で置換基Tを有していてもよい。また、R93、R94、R97~R100は互いに結合して、又は連結基Lを介して環を形成していてもよい。置換基Tは、複数あるときは互いに結合して、あるいは連結基Lを介して又は介さずに式中の炭化水素基と結合して環を形成していてもよい。
 R93、R94、R97~R100は、それぞれ独立に、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)であることが好ましい。なかでもメチル基が好ましい。
 l11+l12は0~12の数であることが好ましく、0~8の数であることがより好ましく、0~6の数が更に好ましく、0を超え6未満の数が一層好ましく、0を超え5以下の数がより一層好ましく、0を超え4以下の数が更に一層好ましく、0を超え3以下の数であってもよく、0を超え1以下の数であってもよい。なお、l11、l12は、式(92)の化合物がその数において異なる化合物の混合物となる場合があり、そのときはl11及びl12の数、あるいはl11+l12が、小数点以下が含まれた数であってもよい。
 アセチレン基を含む界面活性剤としては、サーフィノール(Surfynol)104シリーズ(商品名、日信化学工業株式会社)、アセチレノール(Acetyrenol)E00、同E40、同E13T、同60(いずれも商品名、川研ファインケケミカル社製)が挙げられ、中でも、サーフィノール104シリーズ、アセチレノールE00、同E40、同E13Tが好ましく、アセチレノールE40、同E13Tがより好ましい。なお、サーフィノール104シリーズとアセチレノールE00とは同一構造の界面活性剤である。
-他の界面活性剤-
 中間層は、後述する中間層形成用組成物の塗布性を向上させる等の目的のため、上記アセチレン基を含む界面活性剤以外の、他の界面活性剤を含んでいてもよい。
 他の界面活性剤としては、表面張力を低下させるものであれば、ノニオン系、アニオン系、両性フッ素系など、どのようなものでもかまわない。
 他の界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンステアレート等のポリオキシエチレンアルキルエステル類、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート、ソルビタントリオレエート等のソルビタンアルキルエステル類、グリセロールモノステアレート、グリセロールモノオレエート等のモノグリセリドアルキルエステル類等、フッ素あるいはケイ素を含むオリゴマー等のノニオン系界面活性剤;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩類、ブチルナフタレンスルホン酸ナトリウム、ペンチルナフタレンスルホン酸ナトリウム、ヘキシルナフタレンスルホン酸ナトリウム、オクチルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸塩類、ドデシルスルホン酸ナトリウム等のアルキルスルホン酸塩類、ジラウリルスルホコハク酸ナトリウム等のスルホコハク酸エステル塩類等の、アニオン系界面活性剤;ラウリルベタイン、ステアリルベタイン等のアルキルベタイン類、アミノ酸類等の、両性界面活性剤が使用可能である。
 中間層がアセチレン基を含む界面活性剤、及び、他の界面活性剤の少なくとも一方を含む場合、アセチレン基を含む界面活性剤と他の界面活性剤との総量で、界面活性剤の添加量は、中間層の全質量に対し、好ましくは0.05~20質量%、より好ましくは0.07~15質量%、更に好ましくは0.1~10質量%である。これらの界面活性剤は、1種を用いても複数のものを用いてもよい。複数のものを用いる場合はその合計量が上記の範囲となる。
 また、本発明では他の界面活性剤を実質的に含まない構成とすることもできる。実質的に含まないとは、他の界面活性剤の含有量が、アセチレン基を含む界面活性剤の含有量の5質量%以下であることをいい、3質量%以下が好ましく、1質量%以下が更に好ましい。
 他の界面活性剤の、23℃における、0.1質量%水溶液の表面張力は45mN/m以下であることが好ましく、40mN/m以下であることがより好ましく、35mN/m以下であることが更に好ましい。下限としては、5mN/m以上であることが好ましく、10mN/m以上であることがより好ましく、15mN/m以上であることが更に好ましい。界面活性剤の表面張力は選択される他の界面活性剤の種類により適宜選択されればよい。
-防腐剤、防カビ剤(防腐剤等)-
 中間層が防腐剤又は防カビ剤を含有することも好ましい態様である。
 防腐剤、防カビ剤(以下、防腐剤等)としては、抗菌又は防カビ作用を含む添加剤であって、水溶性又は水分散性である有機化合物から選ばれる少なくとも1つを含むことが好ましい。防腐剤等抗菌又は防カビ作用を含む添加剤としては有機系の抗菌剤又は防カビ剤、無機系の抗菌剤又は防カビ剤、天然系の抗菌剤又は防カビ剤等を挙げることができる。例えば抗菌又は防カビ剤は(株)東レリサーチセンター発刊の「抗菌・防カビ技術」に記載されているものを用いることができる。
 本発明において、中間層に防腐剤等を配合することにより、長期室温保管後の溶液内部の菌増殖による、塗布欠陥増加を抑止するという効果がより効果的に発揮される。
 防腐剤等としては、フェノールエーテル系化合物、イミダゾール系化合物、スルホン系化合物、N・ハロアルキルチオ化合物、アニリド系化合物、ピロール系化合物、第四級アンモニウム塩、アルシン系化合物、ピリジン系化合物、トリアジン系化合物、ベンゾイソチアゾリン系化合物、イソチアゾリン系化合物などが挙げられる。具体的には、例えば2(4チオシアノメチル)ベンズイミダゾール、1,2ベンゾチアゾロン、1,2-ベンズイソチアゾリン-3-オン、N-フルオロジクロロメチルチオ-フタルイミド、2,3,5,6-テトラクロロイソフタロニトリル、N-トリクロロメチルチオ-4-シクロヘキセン-1,2-ジカルボキシイミド、8-キノリン酸銅、ビス(トリブチル錫)オキシド、2-(4-チアゾリル)ベンズイミダゾール、2-ベンズイミダゾールカルバミン酸メチル、10,10'-オキシビスフェノキシアルシン、2,3,5,6-テトラクロロ-4-(メチルスルフォン)ピリジン、ビス(2-ピリジルチオ-1-オキシド)亜鉛、N,N-ジメチル-N'-(フルオロジクロロメチルチオ)-N’-フェニルスルファミド、ポリ-(ヘキサメチレンビグアニド)ハイドロクロライド、ジチオ-2-2'-ビス、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オン、2-ブロモ-2-ニトロ-1,3-プロパンジオール、ヘキサヒドロ-1,3-トリス-(2-ヒドロキシエチル)-S-トリアジン、p-クロロ-m-キシレノール、1,2-ベンズイソチアゾリン-3-オン、メチルフェノール等が挙げられる。
 天然系抗菌剤又は防カビ剤としては、カニやエビの甲殻等に含まれるキチンを加水分解して得られる塩基性多糖類のキトサンがある。アミノ酸の両側に金属を複合させたアミノメタルから成る日鉱の「商品名ホロンキラービースセラ」が好ましい。
 中間層における防腐剤等の含有量は、中間層の全質量に対し、0.005~5質量%であることが好ましく、0.01~3質量%であることがより好ましく、0.05~2質量%であることが更に好ましく、0.1~1質量%であることが一層好ましい。防腐剤等とは1種を用いても複数のものを用いてもよい。複数のものを用いる場合はその合計量が上記の範囲となる。
 防腐剤等の抗菌効果の評価は、JIS Z 2801(抗菌加工製品-抗菌性試験方法・抗菌効果)に準拠して行うことができる。また、防カビ効果の評価は、JIS Z 2911(カビ抵抗性試験)に準拠して行うことができる。
-遮光剤-
 中間層は遮光剤を含んでもよい。遮光剤を配合することにより、有機層などへの光によるダメージ等の影響がより抑制される。
 遮光剤としては、例えば公知の着色剤等を用いることができ、有機又は無機の顔料又は染料が挙げられ、無機顔料が好ましく挙げられ、中でもカーボンブラック、酸化チタン、窒化チタン等がより好ましく挙げられる。
 遮光剤の含有量は、中間層の全質量に対し、好ましくは1~50質量%、より好ましくは3~40質量%、更に好ましくは5~25質量%である。遮光剤は、1種を用いても複数のものを用いてもよい。複数のものを用いる場合はその合計量が上記の範囲となる。
-中間層形成用組成物-
 中間層形成用組成物は、本発明において用いられる積層体に含まれる中間層の形成に用いられる組成物である。
 中間層形成用組成物は、高分子化合物を含むことが好ましい。また、中間層形成用組成物は、上述のアセチレン基を含む界面活性剤、他の界面活性剤、防腐剤、防カビ剤遮光剤等を含んでもよい。
 これらの中でも、中間層形成用組成物は、水溶性樹脂、及び、界面活性剤を含むことが好ましい。また、上記界面活性剤は、上述のアセチレン基を含む界面活性剤でもよいし、上述の他の界面活性剤であってもよいが、アセチレン基を含む界面活性剤であることが好ましい。
 中間層形成用組成物に含まれる成分の含有量は、上述した各成分の中間層の全質量に対する含有量を、中間層形成用組成物の固形分量に対する含有量に読み替えたものとすることが好ましい。
 また、中間層形成用組成物は、後述する溶剤を含むことが好ましい。
 本発明において用いられる積層体において、中間層は、例えば、中間層形成用組成物を有機層の上に適用し、乾燥させることよって形成することができる。
 中間層形成用組成物の適用方法としては、塗布が好ましい。適用方法の例としては、スリットコート法、キャスト法、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スピンコート法、ラングミュア-ブロジェット(Langmuir-Blodgett)(LB)法などを挙げることができる。キャスト法、スピンコート法、及びインクジェット法を用いることが更に好ましい。このようなプロセスにより、表面が平滑で大面積の中間層を低コストで生産することが可能となる。
 また、中間層形成用組成物は、あらかじめ仮支持体上に上記付与方法等によって付与して形成した塗膜を、適用対象(例えば、有機層)上に転写する方法により形成することもできる。
 転写方法に関しては、特開2006-023696号公報の段落0023、0036~0051、特開2006-047592号公報の段落0096~0108等の記載を参酌することができる。
 中間層形成用組成物に含まれる溶剤としては、上述の水系溶剤が挙げられ、水又は水と水溶性溶剤との混合物が好ましく、水がより好ましい。
 水系溶剤が混合溶剤である場合は、23℃における水への溶解度が1g以上の有機溶剤と水との混合溶剤であることが好ましい。有機溶剤の23℃における水への溶解度は10g以上がより好ましく、30g以上が更に好ましい。
 また、中間層形成用組成物に含まれる高分子化合物が、上述のフッ素原子を含む樹脂、又は、上述のフッ素原子を含む高分子化合物である場合、溶剤としてフッ素系溶剤を用いることもできる。
 フッ素系溶剤とは、フッ素原子を含む有機溶剤である。
 本発明で用いるフッ素系溶剤におけるフッ素原子含有率は、10~80%であることが好ましく、15~75%であることがより好ましく、20~70%であることがさらに好ましい。ここでのフッ素原子含有率とは、(フッ素系溶剤を構成するフッ素原子の数/フッ素溶媒構成する全原子の数)×100(%)で示される。
 本発明で用いるフッ素系溶剤の沸点は、101325Paで、40~250℃であることが好ましく、50~200℃であることがより好ましく、55~180℃であることがさらに好ましい。
 フッ素系溶剤はアルコールであることが好ましく、少なくとも1つのフッ素原子で置換されたアルキル基とOH基からなるアルコールであることがより好ましい。アルコールを用いることにより、極性を有し、樹脂A1のようなフッ素原子を含まない樹脂も容易に溶解させることができる。上記少なくとも1つのフッ素原子で置換されたアルキル基の炭素原子数は、1~18であることが好ましく、1~12であることがより好ましく、1~10であることがさらに好ましい。上記少なくとも1つのフッ素原子で置換されたアルキル基におけるフッ素原子数は、1~30であることが好ましく、3~20であることがより好ましく、4~12であることがさらに好ましい。
 上記フッ素系溶剤の具体例としては、2,2,3,3-テトラフロロ-1-プロパノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、2,2,3,3,3-ペンタフロロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、1H,1H,7H-ドデカフルオロ-1-ヘプタノール、ノナフルオロブチルエチルエーテル、パーフルオロトリブチルアミン等が挙げられる。
 中間層形成用組成物の固形分濃度は、中間層形成用組成物の適用時により均一に近い厚さで適用しやすい観点からは、0.5~30質量%であることが好ましく、1.0~20質量%であることがより好ましく、2.0~14質量%であることが更に好ましい。
〔レジスト層〕
 本発明において用いられる積層体はレジスト層を含む。
 本発明において、レジスト層は現像液を用いた現像に供される層である。
 上記現像は、ネガ型現像であることが好ましい。
 レジスト層としては、本技術分野で使用される公知のレジスト層(例えば、フォトレジスト層)を適宜利用することができる。
 本発明において用いられる積層体において、レジスト層は、ネガ型レジスト層であっても、ポジ型レジスト層であってもよい。
 レジスト層は、その露光部が有機溶剤を含む現像液に対して難溶であることが好ましい。難溶とは、露光部が現像液に溶けにくいことをいう。
 露光部におけるレジスト層の現像液に対する溶解速度は、未露光部におけるレジスト層の現像液に対する溶解速度よりも小さくなる(難溶となる)ことが好ましい。
 具体的には、波長365nm(i線)、波長248nm(KrF線)及び波長193nm(ArF線)の少なくとも1つの波長の光を50mJ/cm以上の照射量で露光することによって極性が変化し、sp値(溶解度パラメータ)が19.0(MPa)1/2未満の溶剤に対して難溶となることが好ましく、18.5(MPa)1/2以下の溶剤に対して難溶となることがより好ましく、18.0(MPa)1/2以下の溶剤に対して難溶となることが更に好ましい。
 本発明において、溶解度パラメーター(sp値)は、沖津法によって求められる値〔単位:(MPa)1/2〕である。沖津法は、従来周知のsp値の算出方法の一つであり、例えば、日本接着学会誌Vol.29、No.6(1993年)249~259頁に詳述されている方法である。
 更に、波長365nm(i線)、波長248nm(KrF線)及び波長193nm(ArF線)の少なくとも1つの波長の光を50~250mJ/cmの照射量で露光することによって、上記のとおり極性が変化することがより好ましい。
 レジスト層は、i線の照射に対して感光能を有することが好ましい。
 感光能とは、活性光線及び放射線の少なくとも一方の照射(i線の照射に対して感光能を有する場合は、i線の照射)により、有機溶剤(好ましくは、酢酸ブチル)に対する溶解速度が変化することをいう。
 レジスト層としては、酸の作用により現像液に対する溶解速度が変化する樹脂(以下、「レジスト層用特定樹脂」ともいう。)を含むレジスト層が挙げられる。
 レジスト層用特定樹脂における溶解速度の変化は、溶解速度の低下であることが好ましい。
 レジスト層用特定樹脂の、溶解速度が変化する前の、sp値が18.0(MPa)1/2以下の有機溶剤への溶解速度は、40nm/秒以上であることがより好ましい。
 レジスト層用特定樹脂の、溶解速度が変化した後の、sp値が18.0(MPa)1/2以下の有機溶剤への溶解速度は、1nm/秒未満であることがより好ましい。
 レジスト層用特定樹脂は、また、溶解速度が変化する前には、sp値(溶解度パラメータ)が18.0(MPa)1/2以下の有機溶剤に可溶であり、かつ、溶解速度が変化した後には、sp値が18.0(MPa)1/2以下の有機溶剤に難溶である樹脂であることが好ましい。
 ここで、「sp値(溶解度パラメータ)が18.0(MPa)1/2以下の有機溶剤に可溶」とは、化合物(樹脂)の溶液を基材上に塗布し、100℃で1分間加熱することによって形成される化合物(樹脂)の塗膜(厚さ1μm)の、23℃における現像液に対して浸漬した際の溶解速度が、20nm/秒以上であることをいい、「sp値が18.0(MPa)1/2以下の有機溶剤に難溶」とは、化合物(樹脂)の溶液を基材上に塗布し、100℃で1分間加熱することによって形成される化合物(樹脂)の塗膜(厚さ1μm)の、23℃における現像液に対する溶解速度が、10nm/秒未満であることをいう。
 レジスト層としては、例えば、レジスト層用特定樹脂及び光酸発生剤を含むレジスト層、重合性化合物及び光重合開始剤等を含むレジスト層等が挙げられる。
 また、レジスト層は、高い保存安定性と微細なパターン形成性を両立する観点からは、化学増幅型レジスト層であることが好ましい。
 以下、レジスト層用特定樹脂及び光酸発生剤を含むレジスト層の例について説明する。
-レジスト層用特定樹脂-
 本発明におけるレジスト層は、レジスト層用特定樹脂を含むことが好ましい。
 レジスト層用特定樹脂は、アクリル系重合体であることが好ましい。
 「アクリル系重合体」は、付加重合型の樹脂であり、(メタ)アクリル酸又はそのエステルに由来する繰返し単位を含む重合体であり、(メタ)アクリル酸又はそのエステルに由来する繰返し単位以外の繰返し単位、例えば、スチレン類に由来する繰返し単位やビニル化合物に由来する繰返し単位等を含んでいてもよい。アクリル系重合体は、(メタ)アクリル酸又はそのエステルに由来する繰返し単位を、重合体における全繰返し単位に対し、50モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、(メタ)アクリル酸又はそのエステルに由来する繰返し単位のみからなる重合体であることが特に好ましい。
 レジスト層用特定樹脂としては、酸基が酸分解性基により保護された構造を有する繰返し単位を有する樹脂が好ましく挙げられる。
 上記酸基が酸分解性基により保護された構造としては、カルボキシ基が酸分解性基により保護された構造、フェノール性ヒドロキシ基が酸分解性基により保護された構造等が挙げられる。
 また、酸基が酸分解性基により保護された構造を有する繰返し単位としては、(メタ)アクリル酸に由来するモノマー単位におけるカルボキシ基が酸分解性基により保護された構造を有する繰返し単位、p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン等のヒドロキシスチレン類に由来するモノマー単位におけるフェノール性ヒドロキシ基が酸分解性基により保護された構造を有する繰返し単位等が挙げられる。
 酸基が酸分解性基により保護された構造を有する繰返し単位としては、アセタール構造を含む繰返し単位等が挙げられ、側鎖に環状エーテルエステル構造を含む繰返し単位が好ましい。環状エーテルエステル構造としては、環状エーテル構造における酸素原子とエステル結合における酸素原子とが同一の炭素原子に結合し、アセタール構造を形成していることが好ましい。
 また、酸基が酸分解性基により保護された構造を有する繰返し単位としては、下記式(1)で表される繰返し単位が好ましい。
 以下、「式(1)で表される繰返し単位」等を、「繰返し単位(1)」等ともいう。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Rは水素原子又はアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)を表し、Lはカルボニル基又はフェニレン基を表し、R~Rはそれぞれ独立に、水素原子又はアルキル基を表す。
 式(1)中、Rは、水素原子又はメチル基であることが好ましく、メチル基であることがより好ましい。
 式(1)中、Lは、カルボニル基又はフェニレン基を表し、カルボニル基であることが好ましい。
 式(1)中、R~Rはそれぞれ独立に、水素原子又はアルキル基を表す。R~Rにおけるアルキル基は、Rと同義であり、好ましい態様も同様である。また、R~Rのうち、1つ以上が水素原子であることが好ましく、R~Rの全てが水素原子であることがより好ましい。
 繰返し単位(1)としては、下記式(1-A)で表される繰返し単位、又は、下記式(1-B)で表される繰返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000010
 繰返し単位(1)を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、(メタ)アクリル酸を酸触媒の存在下でジヒドロフラン化合物と反応させることにより合成することができる。あるいは、前駆体モノマーと重合した後に、カルボキシ基又はフェノール性ヒドロキシ基をジヒドロフラン化合物と反応させることによっても形成することができる。
 また、酸基が酸分解性基により保護された構造を有する繰返し単位としては、下記式(2)で表される繰返し単位も好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(2)中、Aは、水素原子又は酸の作用により脱離する基を表す。酸の作用により脱離する基としては、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルコキシアルキル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリールオキシアルキル基(総炭素数7~40が好ましく、7~30がより好ましく、7~20が更に好ましい)、アルコキシカルボニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリールオキシカルボニル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)が好ましい。Aは更に置換基を有していてもよく、置換基として上記置換基Tの例が挙げられる。
 式(2)中、R10は置換基を表し、置換基Tの例が挙げられる。Rは式(1)におけるRと同義の基を表す。
 式(2)中、nxは、0~3の整数を表す。
 酸の作用によって脱離する基としては、特開2008-197480号公報の段落番号0039~0049に記載の化合物のうち、酸によって脱離する基を含む繰返し単位も好ましく、また、特開2012-159830号公報(特許第5191567号)の段落番号0052~0056に記載の化合物も好ましく、これらの内容は本明細書に組み込まれる。
 繰返し単位(2)の具体的な例を以下に示すが、本発明がこれにより限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 レジスト層用特定樹脂に含まれる、酸基が酸分解性基により保護された構造を有する繰返し単位(好ましくは、繰返し単位(1)又は繰返し単位(2))の含有量は、5~80モル%が好ましく、10~70モル%がより好ましく、10~60モル%が更に好ましい。アクリル系重合体は、繰返し単位(1)又は繰返し単位(2)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 レジスト層用特定樹脂は、架橋性基を含む繰返し単位を含有してもよい。架橋性基の詳細については、特開2011-209692号公報の段落番号0032~0046の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 レジスト層用特定樹脂は、架橋性基を含む繰返し単位(繰返し単位(3))を含む態様も好ましいが、架橋性基を含む繰返し単位(3)を実質的に含まない構成とすることが好ましい。このような構成とすることにより、パターニング後に、レジスト層をより効果的に除去することが可能になる。ここで、実質的に含まないとは、例えば、レジスト層用特定樹脂の全繰返し単位の3モル%以下をいい、好ましくは1モル%以下をいう。
 レジスト層用特定樹脂は、その他の繰返し単位(繰返し単位(4))を含有してもよい。繰返し単位(4)を形成するために用いられるラジカル重合性単量体としては、例えば、特開2004-264623号公報の段落番号0021~0024に記載の化合物を挙げることができる。繰返し単位(4)の好ましい例としては、ヒドロキシ基含有不飽和カルボン酸エステル、脂環構造含有不飽和カルボン酸エステル、スチレン、及び、N置換マレイミドからなる群から選ばれる少なくとも1種に由来する繰返し単位が挙げられる。これらの中でも、ベンジル(メタ)アクリレート、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルオキシエチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-メチルシクロヘキシルのよう脂環構造含有の(メタ)アクリル酸エステル類、又は、スチレンのような疎水性のモノマーが好ましい。
 繰返し単位(4)は、1種又は2種以上を組み合わせて使用することができる。レジスト層用特定樹脂を構成する全モノマー単位中、繰返し単位(4)を含有させる場合における繰返し単位(4)を形成するモノマー単位の含有率は、1~60モル%が好ましく、5~50モル%がより好ましく、5~40モル%が更に好ましい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 レジスト層用特定樹脂の合成法については様々な方法が知られているが、一例を挙げると、少なくとも繰返し単位(1)、繰返し単位(2)等を形成するために用いられるラジカル重合性単量体を含むラジカル重合性単量体混合物を、有機溶剤中、ラジカル重合開始剤を用いて重合することにより合成することができる。
 レジスト層用特定樹脂としては、不飽和多価カルボン酸無水物類を共重合させた前駆共重合体中の酸無水物基に、2,3-ジヒドロフランを、酸触媒の不存在下、室温(25℃)~100℃程度の温度で付加させることにより得られる共重合体も好ましい。
 以下の樹脂もレジスト層用特定樹脂の好ましい例として挙げられる。
BzMA/THFMA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/THFAA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/THPMA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/PEES/t-BuMA(モル比:20~60:35~65:5~30)
 BzMAは、ベンジルメタクリレートであり、THFMAは、テトラヒドロフラン-2-イル メタクリレートであり、t-BuMAは、t-ブチルメタクリレートであり、THFAAは、テトラヒドロフラン-2-イル アクリレートであり、THPMAは、テトラヒドロ-2H-ピラン-2-イル メタクリレートであり、PEESは、p-エトキシエトキシスチレンである。
 また、ポジ型現像に用いられるレジスト層用特定樹脂としては、特開2013-011678号公報に記載のものが例示され、これらの内容は本明細書に組み込まれる。
 現像時のパターン形成性を良好とする観点から、レジスト層用特定樹脂の含有量は、レジスト層の全質量に対し、20~99質量%であることが好ましく、40~99質量%であることがより好ましく、70~99質量%であることが更に好ましい。レジスト層用特定樹脂は1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 また、レジスト層用特定樹脂の含有量は、レジスト層に含まれる樹脂成分の全質量に対し、10質量%以上であることが好ましく、50質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 レジスト層用特定樹脂の重量平均分子量は、10,000以上であることが好ましく、20,000以上がより好ましく、35,000以上が更に好ましい。上限値としては、特に定めるものでは無いが、100,000以下であることが好ましく、70,000以下としてもよく、50,000以下としてもよい。
 また、レジスト層用特定樹脂に含まれる重量平均分子量1,000以下の成分の量が、レジスト層用特定樹脂の全質量に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 レジスト層用特定樹脂の分子量分散度(重量平均分子量/数平均分子量)は、1.0~4.0が好ましく、1.1~2.5がより好ましい。
-光酸発生剤-
 レジスト層は、光酸発生剤を更に含むことが好ましい。
 光酸発生剤は、波長365nmにおいて100mJ/cmの露光量でレジスト層が露光されると80モル%以上分解する光酸発生剤であることが好ましい。
 光酸発生剤の分解度は、以下の方法によって求めることができる。下記レジスト層形成用組成物の詳細については後述する。
 レジスト層形成用組成物を用い、シリコンウエハ基板上にレジスト層を製膜し、100℃で1分間加熱し、加熱後に上記レジスト層を波長365nmの光を用いて100mJ/cmの露光量で露光する。加熱後のレジスト層の厚さは700nmとする。その後、上記レジスト層が形成された上記シリコンウエハ基板を、メタノール/テトラヒドロフラン(THF)=50/50(質量比)溶液に超音波を当てながら10分浸漬させる。上記浸漬後に、上記溶液に抽出された抽出物をHPLC(高速液体クロマトグラフィ)を用いて分析することで光酸発生剤の分解率を以下の式より算出する。
 分解率(%)=分解物量(モル)/露光前のレジスト層に含まれる光酸発生剤量(モル)×100
 光酸発生剤としては、波長365nmにおいて、100mJ/cmの露光量でレジスト層を露光したときに、85モル%以上分解するものであることが好ましい。
-オキシムスルホネート化合物-
 光酸発生剤は、オキシムスルホネート基を含む化合物(以下、単に「オキシムスルホネート化合物」ともいう)であることが好ましい。
 オキシムスルホネート化合物は、オキシムスルホネート基を有していれば特に制限はないが、下記式(OS-1)、後述する式(OS-103)、式(OS-104)、又は、式(OS-105)で表されるオキシムスルホネート化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(OS-1)中、Xは、アルキル基、アルコキシル基、又は、ハロゲン原子を表す。Xが複数存在する場合は、それぞれ同一であってもよいし、異なっていてもよい。上記Xにおけるアルキル基及びアルコキシル基は、置換基を有していてもよい。上記Xにおけるアルキル基としては、炭素数1~4の、直鎖状又は分岐状アルキル基が好ましい。上記Xにおけるアルコキシル基としては、炭素数1~4の直鎖状又は分岐状アルコキシル基が好ましい。上記Xにおけるハロゲン原子としては、塩素原子又はフッ素原子が好ましい。
 式(OS-1)中、m3は、0~3の整数を表し、0又は1が好ましい。m3が2又は3であるとき、複数のXは同一でも異なっていてもよい。
 式(OS-1)中、R34は、アルキル基又はアリール基を表し、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数1~5のハロゲン化アルキル基、炭素数1~5のハロゲン化アルコキシル基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいナフチル基又はWで置換されていてもよいアントラニル基であることが好ましい。Wは、ハロゲン原子、シアノ基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数1~5のハロゲン化アルキル基又は炭素数1~5のハロゲン化アルコキシル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基を表す。
 式(OS-1)中、m3が3であり、Xがメチル基であり、Xの置換位置がオルト位であり、R34が炭素数1~10の直鎖状アルキル基、7,7-ジメチル-2-オキソノルボルニルメチル基、又は、p-トリル基である化合物が特に好ましい。
 式(OS-1)で表されるオキシムスルホネート化合物の具体例としては、特開2011-209692号公報の段落番号0064~0068、特開2015-194674号公報の段落番号0158~0167に記載された以下の化合物が例示され、これらの内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000015
 式(OS-103)~式(OS-105)中、Rs1はアルキル基、アリール基又はヘテロアリール基を表し、複数存在する場合のあるRs2はそれぞれ独立に、水素原子、アルキル基、アリール基又はハロゲン原子を表し、複数存在する場合のあるRs6はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基又はアルコキシスルホニル基を表し、XsはO又はSを表し、nsは1又は2を表し、msは0~6の整数を表す。
 式(OS-103)~式(OS-105)中、Rs1で表されるアルキル基(炭素数1~30が好ましい)、アリール基(炭素数6~30が好ましい)又はヘテロアリール基(炭素数4~30が好ましい)は、置換基Tを有していてもよい。
 式(OS-103)~式(OS-105)中、Rs2は、水素原子、アルキル基(炭素数1~12が好ましい)又はアリール基(炭素数6~30が好ましい)であることが好ましく、水素原子又はアルキル基であることがより好ましい。化合物中に2以上存在する場合のあるRs2のうち、1つ又は2つがアルキル基、アリール基又はハロゲン原子であることが好ましく、1つがアルキル基、アリール基又はハロゲン原子であることがより好ましく、1つがアルキル基であり、かつ残りが水素原子であることが特に好ましい。Rs2で表されるアルキル基又はアリール基は、置換基Tを有していてもよい。
 式(OS-103)、式(OS-104)、又は、式(OS-105)中、XsはO又はSを表し、Oであることが好ましい。上記式(OS-103)~(OS-105)において、Xsを環員として含む環は、5員環又は6員環である。
 式(OS-103)~式(OS-105)中、nsは1又は2を表し、XsがOである場合、nsは1であることが好ましく、また、XsがSである場合、nsは2であることが好ましい。
 式(OS-103)~式(OS-105)中、Rs6で表されるアルキル基(炭素数1~30が好ましい)及びアルキルオキシ基(炭素数1~30が好ましい)は、置換基を有していてもよい。
 式(OS-103)~式(OS-105)中、msは0~6の整数を表し、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることが特に好ましい。
 また、上記式(OS-103)で表される化合物は、下記式(OS-106)、式(OS-110)又は式(OS-111)で表される化合物であることが特に好ましく、上記式(OS-104)で表される化合物は、下記式(OS-107)で表される化合物であることが特に好ましく、上記式(OS-105)で表される化合物は、下記式(OS-108)又は式(OS-109)で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(OS-106)~式(OS-111)中、Rt1はアルキル基、アリール基又はヘテロアリール基を表し、Rt7は、水素原子又は臭素原子を表し、Rt8は水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基又はクロロフェニル基を表し、Rt9は水素原子、ハロゲン原子、メチル基又はメトキシ基を表し、Rt2は水素原子又はメチル基を表す。
 式(OS-106)~式(OS-111)中、Rt7は、水素原子又は臭素原子を表し、水素原子であることが好ましい。
 式(OS-106)~式(OS-111)中、Rt8は、水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基又はクロロフェニル基を表し、炭素数1~8のアルキル基、ハロゲン原子又はフェニル基であることが好ましく、炭素数1~8のアルキル基であることがより好ましく、炭素数1~6のアルキル基であることが更に好ましく、メチル基であることが特に好ましい。
 式(OS-106)~式(OS-111)中、Rt9は、水素原子、ハロゲン原子、メチル基又はメトキシ基を表し、水素原子であることが好ましい。
 Rt2は、水素原子又はメチル基を表し、水素原子であることが好ましい。
 また、上記オキシムスルホネート化合物において、オキシムの立体構造(E,Z)については、いずれか一方であっても、混合物であってもよい。
 上記式(OS-103)~式(OS-105)で表されるオキシムスルホネート化合物の具体例としては、特開2011-209692号公報の段落番号0088~0095、特開2015-194674号公報の段落番号0168~0194に記載の化合物が例示され、これらの内容は本明細書に組み込まれる。
 オキシムスルホネート基を少なくとも1つを含むオキシムスルホネート化合物の好適な他の態様としては、下記式(OS-101)、式(OS-102)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式(OS-101)又は式(OS-102)中、Ru9は、水素原子、アルキル基、アルケニル基、アルコキシル基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、スルホ基、シアノ基、アリール基又はヘテロアリール基を表す。Ru9がシアノ基又はアリール基である態様がより好ましく、Ru9がシアノ基、フェニル基又はナフチル基である態様が更に好ましい。
 式(OS-101)又は式(OS-102)中、Ru2aは、アルキル基又はアリール基を表す。
 式(OS-101)又は式(OS-102)中、Xuは、-O-、-S-、-NH-、-NRu5-、-CH-、-CRu6H-又はCRu6u7-を表し、Ru5~Ru7はそれぞれ独立に、アルキル基又はアリール基を表す。
 式(OS-101)又は式(OS-102)中、Ru1~Ru4はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシル基、アミノ基、アルコキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アミド基、スルホ基、シアノ基又はアリール基を表す。Ru1~Ru4のうちの2つがそれぞれ互いに結合して環を形成してもよい。このとき、環が縮環してベンゼン環ともに縮合環を形成していてもよい。Ru1~Ru4としては、水素原子、ハロゲン原子又はアルキル基が好ましく、また、Ru1~Ru4のうちの少なくとも2つが互いに結合してアリール基を形成する態様も好ましい。中でも、Ru1~Ru4がいずれも水素原子である態様が好ましい。上記した置換基は、いずれも、更に置換基を有していてもよい。
 上記式(OS-101)で表される化合物は、式(OS-102)で表される化合物であることがより好ましい。
 また、上記オキシムスルホネート化合物において、オキシムやベンゾチアゾール環の立体構造(E,Z等)についてはそれぞれ、いずれか一方であっても、混合物であってもよい。
 式(OS-101)で表される化合物の具体例としては、特開2011-209692号公報の段落番号0102~0106、特開2015-194674号公報の段落番号0195~0207に記載の化合物が例示され、これらの内容は本明細書に組み込まれる。
 上記化合物の中でも、b-9、b-16、b-31、b-33が好ましい。
 市販品としては、WPAG-336(富士フイルム和光純薬(株)製)、WPAG-443(富士フイルム和光純薬(株)製)、MBZ-101(みどり化学(株)製)等を挙げることができる。
 活性光線に感応する光酸発生剤として1,2-キノンジアジド化合物を含まないものが好ましい。その理由は、1,2-キノンジアジド化合物は、逐次型光化学反応によりカルボキシ基を生成するが、その量子収率は1以下であり、オキシムスルホネート化合物に比べて感度が低いためである。
 これに対して、オキシムスルホネート化合物は、活性光線に感応して生成する酸が保護された酸基の脱保護に対して触媒として作用するので、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られると推測される。
 また、オキシムスルホネート化合物は、広がりのあるπ共役系を有しているため、長波長側にまで吸収を有しており、遠紫外線(DUV)、ArF線、KrF線、i線のみならず、g線においても非常に高い感度を示す。
 レジスト層における酸分解性基としてテトラヒドロフラニル基を用いることにより、アセタール又はケタールに比べ同等又はそれ以上の酸分解性を得ることができる。これにより、より短時間のポストベークで確実に酸分解性基を消費することができる。更に、光酸発生剤であるオキシムスルホネート化合物を組み合わせて用いることで、スルホン酸発生速度が上がるため、酸の生成が促進され、樹脂の酸分解性基の分解が促進される。また、オキシムスルホネート化合物が分解することで得られる酸は、分子の小さいスルホン酸であることから、硬化膜中での拡散性も高く、より高感度化することができる。
 光酸発生剤は、レジスト層の全質量に対して、0.1~20質量%使用することが好ましく、0.5~18質量%使用することがより好ましく、0.5~10質量%使用することが更に好ましく、0.5~3質量%使用することが一層好ましく、0.5~1.2質量%使用することがより一層好ましい。
 光酸発生剤は、1種を単独で使用しても、2種以上を併用してもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
-塩基性化合物-
 レジスト層は、後述するレジスト層形成用組成物の液保存安定性の観点から、塩基性化合物を含むことが好ましい。
 塩基性化合物としては、公知の化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、及び、カルボン酸の第四級アンモニウム塩等が挙げられる。
 脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミンなどが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、シクロヘキシルモルホリノエチルチオウレア、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
 レジスト層が、塩基性化合物を含む場合、塩基性化合物の含有量は、レジスト層用特定樹脂100質量部に対して、0.001~1質量部であることが好ましく、0.002~0.5質量部であることがより好ましい。
 塩基性化合物は、1種を単独で使用しても、2種以上を併用してもよいが、2種以上を併用することが好ましく、2種を併用することがより好ましく、複素環式アミンを2種併用することが更に好ましい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
-界面活性剤-
 レジスト層は、後述するレジスト層形成用組成物の塗布性を向上する観点から、界面活性剤を含むことが好ましい。
 界面活性剤としては、アニオン系、カチオン系、ノニオン系、又は、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン系界面活性剤である。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、フッ素系、シリコーン系界面活性剤を挙げることができる。
 界面活性剤として、フッ素系界面活性剤、又はシリコーン系界面活性剤を含むことがより好ましい。
 これらのフッ素系界面活性剤、又は、シリコーン系界面活性剤として、例えば、特開昭62-036663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-034540号、特開平07-230165号、特開平08-062834号、特開平09-054432号、特開平09-005988号、特開2001-330953号の各公報に記載の界面活性剤を挙げることができ、市販の界面活性剤を用いることもできる。
 使用できる市販の界面活性剤として、例えば、エフトップEF301、EF303(以上、新秋田化成(株)製)、フロラードFC430、431(以上、住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(以上、DIC(株)製)、サーフロンS-382、SC101、102、103、104、105、106(以上、AGCセイミケミカル(株)製)、PF-6320等のPolyFoxシリーズ(OMNOVA社製)などのフッ素系界面活性剤又はシリコーン系界面活性剤を挙げることができる。また、ポリシロキサンポリマーKP-341(信越化学工業(株)製)も、シリコーン系界面活性剤として用いることができる。
 また、界面活性剤として、下記式(41)で表される繰返し単位A及び繰返し単位Bを含み、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 式(41)中、R41及びR43はそれぞれ独立に、水素原子又はメチル基を表し、R42は炭素数1以上4以下の直鎖アルキレン基を表し、R44は水素原子又は炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、p4及びq4は重合比を表す質量百分率であり、p4は10質量%以上80質量%以下の数値を表し、q4は20質量%以上90質量%以下の数値を表し、r4は1以上18以下の整数を表し、n4は1以上10以下の整数を表す。
 式(41)中、Lは、下記式(42)で表される分岐アルキレン基であることが好ましい。式(42)におけるR45は、炭素数1以上4以下のアルキル基を表し、被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2又は3のアルキル基がより好ましい。
 -CH-CH(R45)-   (42)
 上記共重合体の重量平均分子量は、1,500以上5,000以下であることがより好ましい。
 レジスト層が界面活性剤を含む場合、界面活性剤の添加量は、レジスト層用特定樹脂100質量部に対して、10質量部以下であることが好ましく、0.01~10質量部であることがより好ましく、0.01~1質量部であることが更に好ましい。
 界面活性剤は、1種を単独で、又は2種以上を混合して使用することができる。2種以上用いる場合、合計量が上記範囲となることが好ましい。
-その他の成分-
 レジスト層には、更に、必要に応じて、酸化防止剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、酸増殖剤、紫外線吸収剤、増粘剤、及び、有機又は無機の沈殿防止剤などの公知の添加剤を、それぞれ、1種又は2種以上加えることができる。これらの詳細は、特開2011-209692号公報の段落番号0143~0148の記載を参酌でき、これらの内容は本明細書に組み込まれる。
-厚さ-
 本発明におけるレジスト層の厚さ(膜厚)は、解像力向上の観点から、0.1μm以上が好ましく、0.5μm以上がより好ましく、0.75μm以上が更に好ましく、0.8μm以上が特に好ましい。レジスト層の厚さの上限値としては、10μm以下が好ましく、5.0μm以下がより好ましく、2.0μm以下が更に好ましい。
 レジスト層と中間層との厚さの合計は、0.2μm以上であることが好ましく、1.0μm以上であることがより好ましく、2.0μm以上であることが更に好ましい。上限値としては、20.0μm以下であることが好ましく、10.0μm以下であることがより好ましく、5.0μm以下であることが更に好ましい。
-現像液-
 本発明におけるレジスト層は、現像液を用いた現像に供されることが好ましい。
 現像液としては、有機溶剤を含む現像液が好ましい。
 現像液の全質量に対する有機溶剤の含有量は、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。また、現像液は有機溶剤のみからなる現像液であってもよい。
 現像液を用いたレジスト層の現像方法については後述する。
<<有機溶剤>>
 現像液に含まれる有機溶剤のsp値は、19MPa1/2未満であることが好ましく、18MPa1/2以下であることがより好ましい。
 現像液に含まれる有機溶剤としては、ケトン系溶剤、エステル系溶剤、アミド系溶剤等の極性溶剤、及び炭化水素系溶剤が挙げられる。
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等を挙げることができる。
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等を使用することができる。
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 上記有機溶剤は、1種のみでも、2種以上用いてもよい。また、上記以外の有機溶剤と混合して使用してもよい。但し、現像液の全質量に対する水の含有量が10質量%未満であることが好ましく、実質的に水を含有しないことがより好ましい。ここでの実質的に水を含有しないとは、例えば、現像液の全質量に対する水の含有量が3質量%以下であることをいい、より好ましくは測定限界以下であることをいう。
 すなわち、有機現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましい。
 特に、有機現像液は、ケトン系溶剤、エステル系溶剤及びアミド系溶剤からなる群より選択される少なくとも1種の有機溶剤を含むことが好ましい。
 また、有機現像液は、必要に応じて塩基性化合物を適当量含有していてもよい。塩基性化合物の例としては、上記の塩基性化合物の項で述べたものを挙げることができる。
 有機現像液の蒸気圧は、23℃において、5kPa以下であることが好ましく、3kPa以下がより好ましく、2kPa以下が更に好ましい。有機現像液の蒸気圧を5kPa以下にすることにより、現像液のレジスト層上あるいは現像カップ内での蒸発が抑制され、レジスト層の面内における温度均一性が向上し、結果として現像後のレジスト層の寸法均一性が改善する。
 5kPa以下の蒸気圧を有する溶剤の具体的な例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤、酢酸ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 特に好ましい範囲である2kPa以下の蒸気圧を有する溶剤の具体的な例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤、酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
<<界面活性剤>>
 現像液は、界面活性剤を含有してもよい。
 界面活性剤としては特に限定されないが、例えば、上記の中間層の項で述べた界面活性剤が好ましく用いられる。
 現像液に界面活性剤を配合する場合、その配合量は現像液の全量に対して、通常0.001~5質量%であり、好ましくは0.005~2質量%であり、より好ましくは0.01~0.5質量%である。
-レジスト層形成用組成物-
 レジスト層形成用組成物は、本発明において用いられる積層体に含まれるレジスト層の形成に用いられる組成物である。
 本発明において用いられる積層体において、レジスト層は、例えば、レジスト層形成用組成物を中間層の上に適用し、乾燥させることによって形成することができる。適用方法としては、例えば、上述した中間層における中間層形成用組成物の適用方法についての記載を参酌できる。
 レジスト層形成用組成物は、上述のレジスト層に含まれる成分(例えば、レジスト層用特定樹脂、光酸発生剤、塩基性化合物、界面活性剤、及び、その他の成分等)と、溶剤と、を含むことが好ましい。これらのレジスト層に含まれる成分は、溶剤に溶解又は分散していることが好ましく、溶解していることがより好ましい。
 レジスト層形成用組成物に含まれる成分の含有量は、上述した各成分のレジスト層の全質量に対する含有量を、レジスト層形成用組成物の固形分量に対する含有量に読み替えたものとすることが好ましい。
<<有機溶剤>>
 レジスト層形成用組成物に使用される有機溶剤としては、公知の有機溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。
 有機溶剤としては、例えば、
 (1)エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;
 (2)エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル等のエチレングリコールジアルキルエーテル類;
 (3)エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;
 (4)プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;
 (5)プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル等のプロピレングリコールジアルキルエーテル類;
 (6)プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
 (7)ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等のジエチレングリコールジアルキルエーテル類;
 (8)ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のジエチレングリコールモノアルキルエーテルアセテート類;
 (9)ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル等のジプロピレングリコールモノアルキルエーテル類;
 (10)ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールエチルメチルエーテル等のジプロピレングリコールジアルキルエーテル類;
 (11)ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート等のジプロピレングリコールモノアルキルエーテルアセテート類;
 (12)乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル、乳酸n-ブチル、乳酸イソブチル、乳酸n-アミル、乳酸イソアミル等の乳酸エステル類;
 (13)酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、酢酸n-ヘキシル、酢酸2-エチルヘキシル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸n-プロピル、酪酸イソプロピル、酪酸n-ブチル、酪酸イソブチル等の脂肪族カルボン酸エステル類;
 (14)ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチル酪酸エチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;
 (15)メチルエチルケトン、メチルプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;
 (16)N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;
 (17)γ-ブチロラクトン等のラクトン類等を挙げることができる。
 また、これらの有機溶剤に更に必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の有機溶剤を添加することもできる。
 上記した有機溶剤のうち、プロピレングリコールモノアルキルエーテルアセテート類、又は、ジエチレングリコールジアルキルエーテル類が好ましく、ジエチレングリコールエチルメチルエーテル、又は、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。
 レジスト層形成用組成物が、有機溶剤を含む場合、有機溶剤の含有量は、レジスト層用特定樹脂100質量部当たり、1~3,000質量部であることが好ましく、5~2,000質量部であることがより好ましく、10~1,500質量部であることが更に好ましい。
 これら有機溶剤は、1種を単独で、又は2種以上を混合して使用することができる。
 2種以上用いる場合、合計量が上記範囲となることが好ましい。
〔基材〕
 本発明において用いられる積層体は基材を含んでもよい。
 積層体において、基材は、有機層の中間層とは反対の側に位置する。
 積層体に含まれてもよい基材としては、例えば、シリコン、石英、セラミック、ガラス、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、ポリイミドフィルムなどの種々の材料により形成された基材が挙げられ、用途に応じていかなる基材を選択してもよい。例えば、フレキシブルな素子に用いる場合にはフレキシブルな材料により形成された基材を用いることができる。また、基材は複数の材料により形成された複合基材や、複数の材料が積層された積層基材であってもよい。また、基材の形状も特に限定されず、用途に応じて選択すればよく、例えば、板状の基材(基板)が挙げられる。基板の厚さ等についても、特に限定されない。
〔積層体の製造方法〕
 上記積層体は、購入等の手段により得てもよいし、有機層パターンの製造方法において製造することにより得てもよい。
 以下、積層体を製造する場合の詳細について説明する。
 積層体を製造する場合、積層体を得る工程において、下記工程(1)及び(2)を含むことが好ましい。
(1)有機層の上に中間層を形成する工程。
(2)中間層の上にレジスト層を形成する工程。
-(1)有機層の上に中間層を形成する工程-
 本発明の有機層パターンの製造方法は、有機層の上に中間層を形成する工程を含むことが好ましい。例えば、基材の上に有機層を形成した後に、本工程を行う。この場合、中間層は、有機層の基材側の面とは反対側の面に形成する。中間層は、有機層と直接接するように形成されることが好ましいが、本発明の趣旨を逸脱しない範囲で他の層が間に設けられてもよい。他の層としては、フッ素系の下塗り層等が挙げられる。また、中間層は1層のみ設けられてもよいし、2層以上設けられてもよい。中間層は、好ましくは、中間層形成用組成物を用いて形成される。形成方法の詳細は、中間層形成用組成物の適用方法を参照できる。
-(2)中間層の上にレジスト層を形成する工程-
 上記(1)の工程後、中間層の有機層側の面とは反対側の上(好ましくは表面上)に、レジスト層を形成することが好ましい。レジスト層は、好ましくは、レジスト層形成用組成物を用いて形成される。形成方法の詳細は、レジスト層形成用組成物の適用方法を参照できる。
<レジストパターン作製工程>
 本発明の有機層パターンの製造方法は、上記レジスト層のパターンを作製する工程(「レジストパターン作製工程」ともいう。)を含む。
 レジストパターン作製工程は、特に限定されないが、下記(3)及び(4)の工程を含むことが好ましい。
(3)レジスト層を露光する工程。
(4)有機溶剤を含む現像液を用いてレジスト層を現像しレジスト層のパターン(マスクパターン)を作製する工程。
〔(3)レジスト層を露光する工程〕
 レジストパターン作製工程において、レジスト層を露光する工程を含むことが好ましい。具体的には、例えば、レジスト層の少なくとも一部に活性光線を照射(露光)する。
 上記露光は所定のパターンとなるように行うことが好ましい。また、露光はフォトマスクを介して行ってもよいし、所定のパターンを直接描画してもよい。
 露光時の活性光線の波長としては、好ましくは180nm以上450nm以下の波長、より好ましくは365nm(i線)、248nm(KrF線)又は193nm(ArF線)の波長を有する活性光線を使用することができる。
 活性光線の光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、レーザ発生装置、発光ダイオード(LED)光源などを用いることができる。
 光源として水銀灯を用いる場合には、g線(436nm)、i線(365nm)、h線(405nm)などの波長を有する活性光線を好ましく使用することができ、i線を用いることがより好ましい。
 光源としてレーザ発生装置を用いる場合には、固体(YAG)レーザでは343nm、355nmの波長を有する活性光線が好適に用いられ、エキシマレーザでは、193nm(ArF線)、248nm(KrF線)、351nm(Xe線)の波長を有する活性光線が好適に用いられ、更に半導体レーザでは375nm、405nmの波長を有する活性光線が好適に用いられる。この中でも、安定性、コスト等の点から355nm、又は、405nmの波長を有する活性光線がより好ましい。レーザは、1回あるいは複数回に分けて、レジスト層に照射することができる。
 露光量は、40~120mJが好ましく、60~100mJがより好ましい。
 レーザの1パルス当たりのエネルギー密度は、0.1mJ/cm以上10,000mJ/cm以下であることが好ましい。塗膜を十分に硬化させるには、0.3mJ/cm以上がより好ましく、0.5mJ/cm以上が更に好ましい。アブレーション現象によるレジスト層等の分解を抑制する観点からは、露光量を1,000mJ/cm以下とすることが好ましく、100mJ/cm以下がより好ましい。
 また、パルス幅は、0.1ナノ秒(以下、「ns」と称する)以上30,000ns以下であることが好ましい。アブレーション現象によりレジスト層を分解させないようにするには、0.5ns以上がより好ましく、1ns以上が一層好ましい。スキャン露光の際に合わせ精度を向上させるには、1,000ns以下がより好ましく、50ns以下が更に好ましい。
 光源としてレーザ発生装置を用いる場合、レーザの周波数は、1Hz以上50,000Hz以下が好ましく、10Hz以上1,000Hz以下がより好ましい。
 更に、露光処理時間を短くするには、レーザの周波数は、10Hz以上がより好ましく、100Hz以上が更に好ましく、スキャン露光の際に合わせ精度を向上させるには、10,000Hz以下がより好ましく、1,000Hz以下が更に好ましい。
 レーザは、水銀灯と比べると焦点を絞ることが容易であり、また、露光工程でのパターン形成においてフォトマスクの使用を省略することができるという点でも好ましい。
 露光装置としては、特に制限はないが、市販されているものとしては、Callisto((株)ブイ・テクノロジー製)、AEGIS((株)ブイ・テクノロジー製)、DF2200G(大日本スクリーン製造(株)製)などを使用することが可能である。また上記以外の装置も好適に用いられる。
 また、必要に応じて、長波長カットフィルタ、短波長カットフィルタ、バンドパスフィルタのような分光フィルタを通して、照射光量を調整することもできる。
 また、上記露光の後、必要に応じて露光後加熱工程(PEB)を行ってもよい。
〔(4)有機溶剤を含む現像液を用いてレジスト層を現像しレジスト層のパターン(マスクパターン)を作製する工程〕
 (3)の工程で、フォトマスクを介してレジスト層を露光した後、現像液を用いてレジスト層を現像することが好ましい。
 現像はネガ型が好ましい。現像液の詳細は、レジスト層の説明において記載した通りである。
 現像方法としては、例えば、現像液が満たされた槽中に積層体を一定時間浸漬する方法(ディップ法)、積層体表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、積層体表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している積層体上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出し続ける方法(ダイナミックディスペンス法)などを適用することができる。
 上記各種の現像方法が、現像装置の現像ノズルから現像液をレジスト層に向けて吐出する工程を含む場合、吐出される現像液の吐出圧(吐出される現像液の単位面積あたりの流速)は、好ましくは2mL/秒/mm以下、より好ましくは1.5mL/秒/mm以下、更に好ましくは1mL/秒/mm以下である。吐出圧の下限は特に無いが、スループットを考慮すると0.2mL/秒/mm以上が好ましい。吐出される現像液の吐出圧を上記の範囲とすることにより、現像後のレジスト残渣に由来するパターンの欠陥を著しく低減することができる。
 このメカニズムの詳細は定かではないが、恐らくは、吐出圧を上記範囲とすることで、現像液がレジスト層に与える圧力が小さくなり、レジスト層上のレジストパターンが不用意に削られたり崩れたりすることが抑制されるためと考えられる。なお、現像液の吐出圧(mL/秒/mm)は、現像装置中の現像ノズル出口における値である。
 現像液の吐出圧を調整する方法としては、例えば、ポンプなどで吐出圧を調整する方法や、加圧タンクからの供給で圧力を調整することで変える方法などを挙げることができる。
 また、有機溶剤を含む現像液を用いて現像する工程の後に、他の有機溶剤に置換しながら、現像を停止する工程を実施してもよい。
<有機層エッチング工程>
 本発明の有機層パターンの製造方法は、上記レジスト層のパターンをマスクとして有機層のエッチングを行う工程(「有機層エッチング工程」ともいう。)を含む。
 有機層エッチング工程は、下記(5)に示す工程を含むことが好ましい。
 (5)非マスク部の中間層及び有機層を除去する工程
〔(5)非マスク部の中間層及び有機層を除去する工程〕
 上記レジスト層のパターンをマスクとしてエッチング処理にて少なくとも非マスク部の上記中間層及び上記有機層を除去することが好ましい。非マスク部とは、レジスト層を現像して形成されたレジスト層のパターン(マスクパターン)によりマスクされていない領域(レジスト層が現像により取り除かれた領域)をいう。
 また、エッチング処理においては、マスク部においてエッチング後に中間層が露出することが好ましい。
 エッチング処理により中間層が露出することにより、後の中間層不溶化工程等を容易に行うことが可能となる。
 また、非マスク部の有機層及び中間層をエッチング処理により除去した後に、ウェットエッチング、ドライエッチング等によりマスク部のレジスト層(レジスト層のパターン)を除去し、中間層を露出させてもよい。
 上記エッチング処理は複数の段階に分けて行われてもよい。例えば、上記中間層及び上記有機層は、一度のエッチング処理により除去されてもよいし、中間層の少なくとも一部がエッチング処理により除去された後に、有機層(及び、必要に応じて中間層の残部)がエッチング処理により除去されてもよい。
 また、上記エッチング処理はドライエッチング処理であってもウェットエッチング処理であってもよく、エッチングを複数回に分けてドライエッチング処理とウェットエッチング処理とを行う態様であってもよい。例えば、中間層の除去はドライエッチングによるものであってもウェットエッチングによるものであってもよい。
 上記中間層及び上記有機層を除去する方法としては、例えば、上記中間層及び上記有機層を一度のドライエッチング処理により除去する方法A、上記中間層の少なくとも一部をウェットエッチング処理により除去し、その後に上記有機層(及び、必要に応じて上記中間層の残部)をドライエッチングにより除去する方法B等の方法が挙げられる。
 上記方法Aにおけるドライエッチング処理、上記方法Bにおけるウェットエッチング処理及びドライエッチング処理等は、公知のエッチング処理方法に従い行うことが可能である。
 以下、上記方法Aの一態様の詳細について説明する。上記方法Bの具体例としては、特開2014-098889号公報の記載等を参酌することができる。
 上記方法Aにおいて、具体的には、レジストパターンをエッチングマスク(マスクパターン)として、ドライエッチングを行うことにより、非マスク部の中間層及び有機層を除去することができる。ドライエッチングの代表的な例としては、特開昭59-126506号公報、特開昭59-046628号公報、特開昭58-009108号公報、特開昭58-002809号公報、特開昭57-148706号公報、特開昭61-041102号公報に記載の方法がある。
 ドライエッチングとしては、形成される有機層のパターンの断面をより矩形に近く形成する観点や有機層へのダメージをより低減する観点から、以下の形態で行なうこともできる。
 フッ素系ガスと酸素ガス(O)との混合ガスを用い、有機層が露出しない領域(深さ)までエッチングを行なう第1段階のエッチングと、この第1段階のエッチングの後に、窒素ガス(N)と酸素ガス(O)との混合ガスを用い、好ましくは有機層が露出する領域(深さ)付近までエッチングを行う第2段階のエッチングと、有機層が露出した後に行うオーバーエッチングとを含む形態が好ましい。以下、ドライエッチングの具体的手法、並びに第1段階のエッチング、第2段階のエッチング、及びオーバーエッチングについて説明する。
 また、第1段階のエッチングを行わず、例えば窒素ガス(N)と酸素ガス(O)との混合ガスを用いて第2段階のエッチングのみを行うこともできる。
 ドライエッチングにおけるエッチング条件は、下記手法により、エッチング時間を算出しながら行うことが好ましい。
 (A)第1段階のエッチングにおけるエッチングレート(nm/分)と、第2段階のエッチングにおけるエッチングレート(nm/分)とをそれぞれ算出する。
 (B)第1段階のエッチングで所望の厚さをエッチングする時間と、第2段階のエッチングで所望の厚さをエッチングする時間とをそれぞれ算出する。
 (C)上記(B)で算出したエッチング時間に従って第1段階のエッチングを実施する。
 (D)上記(B)で算出したエッチング時間に従って第2段階のエッチングを実施する。あるいはエンドポイント検出でエッチング時間を決定し、決定したエッチング時間に従って第2段階のエッチングを実施してもよい。
 (E)上記(C)、(D)の合計時間に対してオーバーエッチング時間を算出し、オーバーエッチングを実施する。
 上記第1段階のエッチングにおいて用いる混合ガスとしては、被エッチング膜である有機材料を矩形に加工する観点から、フッ素系ガス及び酸素ガス(O)を含むことが好ましい。また、第1段階のエッチングにおいては、積層体が有機層が露出しない領域までエッチングされる。そのため、この段階では有機層はダメージを受けていないか、ダメージは軽微であると考えられる。
 また、上記第2段階のエッチング及び上記オーバーエッチングにおいては、有機層のダメージ回避の観点から、窒素ガス及び酸素ガスの混合ガスを用いてエッチング処理を行うことが好ましい。
 第1段階のエッチングにおけるエッチング量と、第2段階のエッチングにおけるエッチング量との比率は、第1段階のエッチングにおける有機層のパターンの断面における矩形性に優れるように決定することが重要である。
 全エッチング量(第1段階のエッチングにおけるエッチング量と第2段階のエッチングにおけるエッチング量との総和)中における、第2段階のエッチングにおけるエッチング量の比率は、0%より大きく50%以下であることが好ましく、10~20%がより好ましい。エッチング量とは、被エッチング膜の残存する膜厚とエッチング前の膜厚との差から算出される量のことをいう。
 また、エッチングは、オーバーエッチング処理を含むことが好ましい。オーバーエッチング処理は、オーバーエッチング比率を設定して行なうことが好ましい。オーバーエッチング比率は任意に設定できるが、フォトレジストのエッチング耐性と被エッチングパターン(有機層)の矩形性維持の点で、エッチング工程におけるエッチング処理時間全体の30%以下であることが好ましく、5~25%であることがより好ましく、10~15%であることが特に好ましい。
<中間層不溶化工程>
 本発明の有機層パターンの製造方法は、上記エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程(「中間層不溶化工程」ともいう。)を含む。
 中間層の表面を不溶化する工程においては、後述する積層体洗浄工程において用いられる水又は水溶性溶剤に対して、中間層の表面が不溶化すればよい。
 ここで、中間層の表面を不溶化するとは、中間層の表面が積層体洗浄工程において溶解しないようにすればよく、例えば中間層の表面自体が変質して不溶化してもよいし、中間層の表面に別の層を更に形成する等により不溶化してもよい。
 具体的には、中間層不溶化工程後に得られる中間層の表面の、積層体洗浄工程において用いられる水又は水溶性溶剤に対する溶解速度が23℃において10nm/s以下となることが好ましく、5nm/s以下となることがより好ましい。上記溶解速度の下限は特に限定されず、0nm/sであってもよい。
 また、中間層の表面とは、中間層の有機層が存在する側とは反対の側の表面をいう。
 中間層不溶化工程においては、中間層の表面から少なくとも一部の領域が不溶化されればよく、中間層の全体が不溶化してもよいが、中間層の表面からの一部の領域が不溶化されることが好ましい。中間層の表面に形成される不溶化される領域の厚さは、例えば0.2~100nmとすることが好ましい。
〔プラズマ処理〕
 中間層不溶化工程は、中間層の表面をプラズマ処理する工程であることが好ましい。
 上記プラズマ処理により、例えば中間層に含まれる樹脂が架橋を形成する等により、積層体洗浄工程において用いられる水又は水溶性溶剤に対して、中間層が不溶化する。
 上記プラズマ処理は、特に限定されないが、不活性気体を含むガスにより行われることが好ましく、Arを含むガスにより行われることがより好ましい。
 上記Arを含むガスは、N、又は、He、Ne等のAr以外の希ガスを更に含んでもよく、Ar及びNを含むことが好ましい。
 上記Ar及びNを含むガスにおけるNの分圧は、ガスの全圧に対して10~50%であることが好ましく、20~50%であることがより好ましい。
 上記分圧は、例えばプラズマ処理時のガス流量比として調節することができる。
 また、上記プラズマ処理がAr及びNのみを含むガスにより行われることも、本発明の好ましい態様の一つである。
 上記範囲内であれば、中間層が効果的に不溶化され、かつ、後述する中間層の表面を除去する工程が容易となる場合がある。
 その他、プラズマ処理の条件等は樹脂種、エッチングガス種等を考慮して公知の表面処理の方法を参考に決定すればよい。
〔層形成処理〕
 中間層不溶化工程は、中間層表面に、積層体洗浄工程において用いられる水又は水溶性溶剤に対する溶解度が低い層を形成することにより行ってもよい。
 例えば、中間層表面にパリレン等の樹脂を含む樹脂層を蒸着等の方法により形成する、等の方法が挙げられる。
〔その他の処理〕
 その他、例えば中間層不溶化工程は、中間層に硬化性化合物を含有させておいて表面を硬化させる等の方法により行うこともできる。例えば、重合性化合物と光重合開始剤とを中間層に含有させ、低露光量で表面を露光する方法等が挙げられる。
<積層体洗浄工程>
 本発明の有機層パターンの製造方法は、水又は水溶性溶剤により上記中間層不溶化工程後の積層体を洗浄する工程(「積層体洗浄工程」ともいう。)を含む。
 積層体洗浄工程により、エッチング残渣(例えば、パーティクル状の残渣)が除去される。
 また、中間層は上記中間層不溶化工程により不溶化されているため、積層体洗浄工程後においても除去されにくく、中間層は積層体洗浄工程後に残存すると考えられる。
 積層体洗浄工程において用いられる水又は水溶性溶剤(「洗浄液」ともいう。)としては、水、アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール、ジチオジグリコール、2-メチル-1,3-プロパンジオール、1,2,6-ヘキサントリオール、アセチレングリコール誘導体、トリメチロールプロパン)、エーテル若しくはエステル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールジアセテート、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル)、アミン(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミン)及びその他の極性溶剤(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、2-ピロリドン、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、アセトニトリル、アセトン)、又はこれらの混合物が挙げられ、水、アルコール又はこれらの混合物が好ましく、水、メタノール、イソプロパノール又はジエチレングリコールがより好ましい。
 洗浄方法としては特に限定されず、公知の洗浄方法を用いることができる。
 例えば、回転吐出法、ディップ法、スプレー法又はこれらの組み合わせによる方法等が挙げられる。
 また、洗浄時の温度は特に限定されず、15℃~40℃等とすることができる。
<水溶性回復工程>
 本発明の有機層パターンの製造方法は、中間層の表面の水又は水溶性溶剤に対する溶解性を増加させる工程(「水溶性回復工程」ともいう。)を更に含むことが好ましい。
 水溶性回復工程は、積層体洗浄工程の後に行われることが好ましく、積層体洗浄工程の後、中間層除去工程の前に行われることがより好ましい。
 水溶性回復工程により、中間層は後述する中間層除去工程において用いられる除去液に対する溶解性が向上することが好ましい。
 具体的には、水溶性回復工程後の中間層は、除去液に対する溶解速度が100nm/s以上であることが好ましく、120nm/s以上であることがより好ましく、150nm/s以上であることが更に好ましい。上記溶解速度の上限は特に限定されず、例えば、1,000nm/s以下とすることができる。
 水溶性回復工程は、上記中間層不溶化工程において不溶化された中間層の表面を除去する工程(「中間層表面除去工程」ともいう。)であることが好ましい。
 上記除去により、不溶化された中間層の表面が除去され、中間層は除去液に対して溶解するようになる。
 中間層表面除去工程においては、中間層における不溶化された表面が少なくとも除去されることが好ましい。また、中間層の不溶化されていない領域が更に除去されてもよい。
 中間層表面除去工程は、ドライエッチングを実施する工程であることが好ましく、酸素分圧が全圧に対して50~100%であるエッチングガスによりドライエッチングを実施する工程であることがより好ましい。
 エッチングガスに含まれる酸素以外のガスとしては、Nガス、CFガス、Arガス等が挙げられる。
 上記ドライエッチングにより、不溶化された中間層の表面が除去される。
 ドライエッチングの詳細な条件については、公知の方法を採用することができる。また、上述のレジスト層のドライエッチングの記述を参照して条件を決定することもできる。
<中間層除去工程>
 本発明の有機層パターンの製造方法は、中間層を除去する工程(中間層除去工程)を含むことが好ましい。
 中間層除去工程は、積層体洗浄工程後に行われることが好ましく、水溶性回復工程後に行われることがより好ましい。
 中間層除去工程は、除去液により中間層を除去する工程であることが好ましい。
 また、中間層の表面に不溶化された領域が残る場合(例えば、水溶性回復工程を行わない場合)などにおいては、ドライエッチング等により中間層を除去することもできる。
 除去液としては、水又は水溶性溶剤を含む除去液が挙げられる。
 除去液が水を含む場合、除去液の全質量に対する水の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。上記含有量の上限は特に限定されないが、99.95質量%以下とすることができる。
 また、除去液が水を含む場合、水及び水溶性溶剤の全質量に対する水の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。上記含有量の上限は特に限定されないが、100質量%以下とすることができる。
 また、除去液は、水溶性溶剤を含んでもよい。
 特に、上記除去液が水を含む態様において、除去液は水溶性溶剤を更に含んでもよい。
 本明細書において、水、水と水溶性溶剤との混合物、及び、水溶性溶剤をあわせて、水系溶剤と呼ぶことがある。
 水溶性溶剤としては、23℃における水への溶解度が1g以上の有機溶剤が好ましく、上記溶解度が10g以上の有機溶剤がより好ましく、上記溶解度が30g以上の有機溶剤が更に好ましい。
 水溶性溶剤としては、例えば、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン等のアルコール系溶剤;アセトン等のケトン系溶剤;ホルムアミド等のアミド系溶剤、等が挙げられる。
 また除去液は、界面活性剤を含むことも好ましい。
 界面活性剤としては、上述の中間層におけるアセチレン基を含む界面活性剤、他の界面活性剤等と同様の成分が挙げられる。
 除去液は、溶剤及び界面活性剤以外の成分を実質的に含まない態様とすることもできる。上記態様において、溶剤及び界面活性剤の合計含有量は、除去液の全質量に対し、98質量%以上であることが好ましく、99質量%以上であることがより好ましく、99.9質量%以上であることが更に好ましい。上記含有量の上限は特に限定されず、100質量%とすることもできる。
 また除去液が水を含む態様において、水及び界面活性剤以外の成分を実質的に含まない態様とすることもできる。上記態様において、水及び界面活性剤の合計含有量は、除去液の全質量に対し、98質量%以上であることが好ましく、99質量%以上であることがより好ましく、99.9質量%以上であることが更に好ましい。上記含有量の上限は特に限定されず、100質量%とすることもできる。
 本発明において、除去液は、粘度が1.0mPa・s以下であることが好ましく、0.8mPa・s以下であることがより好ましく、0.75mPa・s以下であることが更に好ましく、粘度が0.72mPa・s以下であることが特に好ましい。上記粘度の下限は、特に限定されず、例えば0.10mPa・s以上とすることができる。
 上記粘度は、公知の方法で測定することができるが、例えば、東機産業(株)製のRE-80L型回転粘度計により測定される。回転数は適宜設定すればよいが、例えば100rpmとすることができる。
 除去液の粘度は、例えば、除去液に含まれる化合物の構造、除去液の温度、除去液に含まれる溶剤の混合比等により調整される。
 除去液の粘度を上述の範囲とする等の目的で、除去液の温度を調節してもよい。例えば、除去液の温度を20℃以上とすることが好ましく、30℃以上とすることがより好ましく、40℃以上とすることが更に好ましく、50℃以上とすることが特に好ましい。上記温度の上限は、例えば100℃以下とすることができ、90℃以下が好ましく、80℃以下がより好ましい。
 中間層を除去液で除去する方法としては、例えば、スプレー式又はシャワー式の噴射ノズルから除去液を噴射して、中間層を除去する方法を挙げることができる。また、噴射ノズルとしては、その噴射範囲内に積層体表面全体が包含される噴射ノズルや、可動式の噴射ノズルであってその可動範囲が積層体表面全体を包含する噴射ノズルを挙げることができる。また別の態様として、機械的に中間層を除去した後に、有機層上に残存する中間層の残渣を溶解除去する態様が挙げられる。
 噴射ノズルが可動式の場合、中間層を除去する工程中に積層体中心部から積層体端部までを2回以上移動して除去液を噴射することで、より効果的にレジストパターンを除去することができる。
 中間層を除去した後、乾燥等の工程を行うことも好ましい。乾燥温度としては、80~120℃とすることが好ましい。また、中間層の除去後に、純水等を用いてリンスする工程を含んでもよい。
<有機層パターンを複数回形成する工程>
 本発明の有機層パターンの製造方法は、有機層パターンを複数回形成する工程を含んでもよい。
 具体的には、本発明の有機層パターンの製造方法は、上記洗浄する工程後に、第2の有機層を更に形成する工程と、上記第2の有機層上に、水又は水溶性溶剤に溶解する第2の中間層、及び、第2のレジスト層をこの順に形成して積層体を得る工程(第2の積層体を得る工程)と、上記第2のレジスト層の第2のパターンを形成する工程(第2のレジストパターン作製工程)と、上記第2のパターンをマスクとして第2の有機層のエッチングを行う工程(第2の有機層エッチング工程)と、上記エッチング後に、第2の中間層の表面を水又は水溶性溶剤に対して不溶化する工程(第2の中間層不溶化工程)と、水又は水溶性溶剤により上記不溶化後の積層体を洗浄する工程(第2の積層体洗浄工程)とを含むことが好ましい。
 上記第2の積層体を得る工程において、例えば、本発明の有機層パターンの製造方法により得られた有機層パターンを備える基材上に、第2の有機層等が形成される。
 その他、第2の積層体を得る工程、第2のレジストパターン作製工程、第2の有機層エッチング工程、第2の中間層不溶化工程、及び、第2の積層体洗浄工程は、上述の積層体を得る工程、レジストパターン作製工程、有機層エッチング工程、中間層不溶化工程、及び、積層体洗浄工程において説明した方法により行うことができる。
 また、本発明の有機層パターンの製造方法において、有機層パターンを複数回形成する場合、例えば下記(A)~(F)の工程を行った後に、再度(A)~(F)の工程を繰り返し、最後に(G)の工程を行う態様等が挙げられる。各工程は、上述の説明に従い行うことができる。また、複数回行われる各工程はそれぞれ、全く同一の工程であってもよいし、異なる工程であってもよい。例えば、1回目の(A)~(F)の工程における(A)の工程で形成される有機層と、2回目の(A)~(F)の工程における(A)の工程で形成される有機層とが異なる種類の有機物を含む有機層である態様などが挙げられる。
(A)積層体を得る工程
(B)レジストパターン作製工程
(C)有機層エッチング工程
(D)中間層不溶化工程
(E)積層体洗浄工程
(F)水溶性回復工程
(G)中間層除去工程
 図1は、本発明の有機層パターンの製造方法の一例を示す概略断面図である。
 積層体について、図1(a)に示した例のように、基材4の上に有機層3(例えば、有機半導体層)が配設されている。更に、有機層3を保護する中間層2が接する形でその表面に配設されている。有機層3と中間層2の間には他の層が設けられていてもよいが、有機層を適切に保護する観点からは、有機層3と中間層2とが直接接していることが好ましい。また、この中間層の上にフォトレジストとして機能するレジスト層1が配置されている。レジスト層1と中間層2とは直接接していてもよいし、レジスト層1と中間層2との間に他の層が設けられていてもよいが、パターン剥がれの抑制の観点からは、レジスト層1と中間層2とは直接接していることが好ましい。
 図1(b)には、レジスト層1の一部を露光現像した状態の一例が示されている。例えば、所定のマスク等を用いる等の方法によりレジスト層1を部分的に露光し、露光後に有機溶剤等の現像液を用いて現像することにより、除去部5におけるレジスト層1が除去され、露光現像後のレジスト層1aが形成される。
 例えば、レジスト層1が露光により酸が発生するレジスト層である場合、露光時において、例えば、レジスト層1の露光部において酸が発生することにより、露光部の現像液に対する溶解性が変化し、レジスト層1の現像が可能となる。
 また、上記現像において、中間層2は現像液により除去されにくいため残存し、有機層3は残存した上記中間層2によって現像液によるダメージから保護される。
 また、上記現像後にレジスト層1aに対して加熱又は露光を更に行ってもよい。
 図1(c)には、中間層2と有機層3の一部を除去した状態の一例が示されている。例えば、ドライエッチング処理等により、現像後のレジスト層(レジスト)1aのない除去部5における中間層2と有機層3とを除去することにより、中間層2及び有機層3に除去部5aが形成される。このようにして、除去部5aにおいて有機層3を取り除くことができる。すなわち、有機層3のパターニングを行うことができる。
 ここで、除去部5aにはエッチング残渣6が発生する。エッチング残渣6は仮に球状のパーティクルとして記載したが、この形状は特に限定されない。
 図1では仮にドライエッチング処理等によりレジスト層1aまで除去された態様を記載しているが、レジスト層1aは残存していてもよい。
 図1(d)には、中間層2の表面を不溶化した状態の一例が記載されている。
 図1(d)中、2aが中間層の不溶化した表面を示している。また、仮に図では上部が不溶化した状態として記載しているが、実際には中間層2の側面が更に不溶化されていてもよい。
 図1(e)には、積層体洗浄工程後の状態の一例が記載されている。
 積層体洗浄工程により、エッチング残渣6が除去されている。
 また、中間層を不溶化していることにより、積層体洗浄工程では中間層2は除去されにくく、残存しているため、有機層3へのダメージは抑制されている。
 図1(f)には、水溶性回復工程後の状態の一例が記載されている。
 水溶性回復工程により、中間層の不溶化した表面2aが除去されている。
 以降、上記プロセスを繰り返し、中間層を除去することにより、図2に記載のような第1の有機層、第2の有機層及び第3の有機層の有機層パターンをそれぞれ有する基材を形成することができる。
 図2は第1の有機層、第2の有機層及び第3の有機層の有機層パターンがそれぞれ形成された基材の一例を示す概略断面図である。
 このように、本発明の有機層パターンの製造方法によれば、例えば3つの異なる有機層パターンを備える基材を製造することができる。
 一例として、有機層3が赤色、第2の有機層7が緑色、第3の有機層11が青色の有機EL(electro-luminescence)用材料である態様などが挙げられる。
(半導体デバイスの製造方法)
 本発明の半導体デバイスの製造方法は、本発明の有機層パターンの製造方法を含む。
 本発明の半導体デバイスの製造方法により得られた半導体デバイスは、本発明の有機層パターンの製造方法により得られた有機層パターンを含むことが好ましい。
 本発明の半導体デバイスは、除去液により有機層パターンから中間層が除去されたパターンを含むことが好ましい。
 すなわち、半導体デバイスの製造方法により得られた半導体デバイスにおいて、除去液により中間層は除去され、中間層は半導体デバイスには残存していない場合がある。
 ここで、半導体デバイスとは、半導体を含有し、かつ2つ以上の電極を有し、その電極間に流れる電流や生じる電圧を、電気、光、磁気、化学物質などにより制御するデバイス、あるいは、印加した電圧や電流により、光や電場、磁場などを発生させるデバイスである。
 例としては、有機光電変換素子、有機電界効果トランジスタ、有機電界発光素子、ガスセンサ、有機整流素子、有機インバータ、情報記録素子などが挙げられる。有機光電変換素子は光センサ用途、エネルギー変換用途(太陽電池)のいずれにも用いることができる。これらの中で、好ましくは有機電界効果トランジスタ、有機光電変換素子、有機電界発光素子であり、より好ましくは有機電界効果トランジスタ、有機光電変換素子であり、特に好ましくは有機電界効果トランジスタである。
 以下に、実施例を挙げて本発明を更に具体的に説明する。実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は、以下に示す具体例に限定されるものではない。実施例において、特に述べない限り、「部」及び「%」は質量基準であり、各工程の環境温度(室温)は23℃である。
 レジスト層形成用樹脂組成物中の樹脂の重量平均分子量(Mw)は、GPC測定によるポリスチレン換算値として算出した。HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cm)を用いた。
(実施例1)
<有機半導体基板の作製>
 5cm角のガラス基板上に、以下の組成からなる有機半導体塗布液をスピンコートし、130℃で10分乾燥させることで有機半導体膜(有機層)を成膜した。乾燥後に得られた有機半導体膜の膜厚は150nmであった。
〔有機半導体塗布液の組成〕
・P3HT(シグマ アルドリッチ ジャパン合同会社製) 10質量%
・PCBM(シグマ アルドリッチ ジャパン合同会社製) 10質量%
・クロロホルム(和光純薬工業(株)製) 80質量%
<中間層形成用組成物の調製>
 下記表の「中間層形成用組成物」の欄に示した配合比(質量部)となるように各原料を混合した。
 混合後、撹拌機(ホットマグネットスターラー、C-MAG HS4、IKA社製)を使用して、下記の撹拌条件の下、中間層形成用組成物をそれぞれ撹拌した。撹拌が終了した後、ステンレス プレッシャー フィルターホルダー(sartorius社製)に、孔径5μmのPVDF(ポリフッ化ビニリデン)メンブレンフィルター(デュラポア(Durapore)、Merck社製)を設置し、これを用いて2MPaで加圧しながら各組成物を濾過した。
〔撹拌条件〕
・雰囲気:大気
・撹拌時間:240分
・撹拌温度:50℃
・撹拌部材の回転速度:500rpm(1分間当たりの回転数、revolutions per minutes)
<有機層の上に中間層を形成する工程>
 上記ガラス基板上に成膜した有機半導体膜上に、上記中間層形成用組成物をスピンコートし、100℃で1分乾燥させることで水溶性樹脂膜(中間層)を成膜した。成膜後の中間層の膜厚は2.0μmであった。
<レジスト層形成用組成物(化学増幅型感光性樹脂組成物)の調製>
 下記成分を混合し、レジスト層形成用組成物を調製した。
・樹脂A-1:30.09質量部
・光酸発生剤(化合物X(下記構造)、R11はトリル基、R18はメチル基を表す。ダイトーケミックス(株)製):0.26質量部
Figure JPOXMLDOC01-appb-C000019
・塩基性化合物(化合物Y(下記構造)、DSP五協フード&ケミカル(株)製):0.08質量部
Figure JPOXMLDOC01-appb-C000020
・界面活性剤(OMNOVA社製、PF-6320):0.08質量部
・PGMEA(プロピレングリコールモノメチルエーテルアセテート):69.5質量部
〔樹脂A-1の合成〕
 BzMA(ベンジルメタクリレート、16.65g)、THFAA(アクリル酸テトラヒドロフルフリル、19.19g)、t-BuMA(5.76g)、及びV-601(0.4663g)をPGMEA(32.62g)に溶解し、PGMEA溶液を調製した。次いで、窒素導入管及び冷却管を取り付けた三口フラスコにPGMEA(32.62g)を入れ、86℃に昇温し、ここに、上記PGMEA溶液を2時間かけて滴下し、反応液とした。次いで、上記反応液を2時間撹拌し、その後、反応を終了させた。反応終了後の溶液をヘプタン中に注入してポリマー成分を再沈させ、これにより生じた白色粉体を濾過により回収した。この結果、重量平均分子量(Mw)が45,000の樹脂を得た。
<中間層の上にレジスト層を形成する工程>
 成膜した水溶性樹脂膜(中間層)上に、上に示す組成からなるレジスト層形成用組成物(化学増幅型感光性樹脂組成物)をスピンコートし、100℃で1分間乾燥した。乾燥後の膜厚は1700nmであった。
<中間層上に樹脂のマスクパターン(レジスト層のパターン)を作製する工程>
 i線の平行露光機を用い、線幅20μmの1:1ラインアンドスペースパターンが形成されたバイナリマスクを介して60mJ/cmの露光量でレジスト層を露光した。その後、100℃で1分間加熱し、酢酸ブチルで現像することでマスクパターンを得た。
<レジスト層のパターンをマスクとして有機層のエッチングを行う工程>
 以下の条件で基板のドライエッチングを行い、非マスクパターン部の水溶性樹脂膜(中間層)および非マスクパターン部の有機半導体膜を除去した。また、マスクパターン部においてもレジスト層は除去され、中間層が露出した。
ガス:N(流量25ml/min)、O(流量500ml/min)
ソースパワー:800W
ウェハバイアス:0W
アンテナバイアス:100W
ESC(Electrostatic chuck)電圧:400V
時間:300sec(秒)
<中間層の表面を水又は水溶性溶剤に対して不溶化する工程(プラズマ処理1)>
 以下の条件でプラズマ処理を行い、中間層への溶剤耐性付与工程を実施した。
ガス:Ar(流量400ml/min)、N(流量100ml/min)
ソースパワー:800W
ウェハバイアス:0W
アンテナバイアス:100W
ESC電圧:400V
時間:1sec
<水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程>
 洗浄液として純水を使用し、小型現像機AD-1200(ミカサ(株)製)を用い、スプレーノズルを用いて純水を吐出して60秒間基板洗浄を実施した。
 上記洗浄後に中間層が全面に残存している場合をA、少なくとも一部において中間層が除去され、有機層が露出している場合をBとして、評価結果を「クリーニング後の中間層の残存」の欄に記載した。
<パーティクル検査(パーティクル数の確認)>
 光学顕微鏡を用い、100倍の倍率で基板全体を観察し、異物数をカウントしてパーティクル数とした。評価結果(観察されたパーティクルの個数)は表中の「パーティクル数」の欄に記載した。
<水溶性回復工程(エッチング2)>
 上記洗浄後の基板に対し、以下の条件でドライエッチングを行い、中間層の水溶性回復工程を実施した。
ガス:N(流量25ml/min)、O(流量500ml/min)
ソースパワー:800W
ウェハバイアス:0W
アンテナバイアス:100W
ESC電圧:400V
時間:2sec
<中間層の除去>
 上記水溶性回復工程後の基板を、EMALEX710(日本エマルジョン製)5質量%水溶液(除去液)に浸漬し、30分後に取り出して純水で洗浄し、乾燥することで中間層が除去された基板を得た。
 また、この際中間層の水溶性を測定し、中間層の100g、25℃の水に対する溶解度が100nm/s以上であった場合をA、100nm/s未満であった場合をBとして評価した。評価結果は表中の「エッチング2後の水溶性」の欄に記載した。
<発光デバイス評価>
 上記で得られた基板を用いて発光デバイスを作製し、問題なく動作することを確認した。
(実施例2~11、13~14、比較例1)
 中間層形成用組成物の組成、各プラズマ処理(プラズマ処理1、エッチング2)の条件及び水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程における洗浄液及び洗浄液吐出口を表に記載のように変更した以外は、実施例1と同様の方法により「有機半導体基板の作製」~「発光デバイス評価」を実施した。発光デバイスは問題なく動作した。
(実施例12)
 実施例1において、上記プラズマ処理1に代えて、メタルマスクを通して有機半導体層上に形成された中間層の上のみに膜厚10nmのポリパラキシリレンの蒸着を行った。その後の水又は水溶性溶剤により上記不溶化する工程後の積層体を洗浄する工程は実施例1と同様の方法で純水を用いて実施した。その後、水溶性回復工程に代えて、パリレンの除去をO流量500ml/min、N流量25ml/min、ソースパワー800Wの条件でプラズマ処理(10秒間)により行った。
 他の工程及び評価は実施例1と同様に行った。各評価結果は表中に記載した。
(比較例2)
 下記表中に記載された組成の中間層形成用組成物を用い、(レジスト層のパターンをマスクとして有機層のエッチングを行う工程までを実施例1と同様に行った。上記有機層のエッチングを行う工程が終了したところで処理を止め、パーティクルの数を数えたところ、74個のパーティクルが確認された。
Figure JPOXMLDOC01-appb-T000021
 表1中に記載した略語の詳細は、下記の通りである。
〔樹脂〕
・T-1:日本酢ビ・ポバール(株)製 PXP-05
・T-2:第一工業製薬社製 ピッツコールK-90
・T-3:2-ヒドロキシエチルセルロース
・T-4:(株)クラレ製 クラレポバール5-88
〔界面活性剤〕
・S-1:アセチレノールE00(川研ファインケミカル(株)製)
・S-2:EMALEX 710(日本エマルジョン(株)製)
〔洗浄液〕
・W-1:純水
・W-2:メタノール
・W-3:エタノール
・W-4:イソプロパノール
・W-5:ジエチレングリコール
〔洗浄液吐出口〕
・A:スプレーノズル
・B:ストレートノズル
 表1に記載した結果から、本発明の有機層パターンの製造方法によれば、パーティクル(エッチング残渣)の発生が抑制されることがわかる。
 比較例1に記載の有機層パターンの製造方法においては、水溶性回復工程(エッチング2)を行っていない。そのため、中間層が残存してしまうことがわかる。
 比較例2に記載の有機層パターンの製造方法においては、積層体の洗浄を行っていない。そのため、多数のパーティクルが発生していることがわかる。
1  レジスト層
1a 露光現像後のレジスト層
2  中間層
2a 中間層の不溶化した表面
3  有機層
4  基材
5  現像後のレジスト層の除去部
5a エッチング後の積層体の除去部
6  エッチング残渣
7  第2の有機層
11 第3の有機層

Claims (11)

  1.  有機層上に、水又は水溶性溶剤に溶解する中間層、及び、レジスト層をこの順に形成して積層体を得る工程と、
     前記レジスト層のパターンを作製する工程と、
     前記レジスト層のパターンをマスクとして有機層のエッチングを行う工程と、
     前記エッチング後に、中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、
     水又は水溶性溶剤により前記不溶化する工程後の積層体を洗浄する工程とを含む
     有機層パターンの製造方法。
  2.  前記不溶化する工程において不溶化された中間層の表面を除去する工程を含む、請求項1に記載の有機層パターンの製造方法。
  3.  前記中間層の表面を除去する工程が、酸素分圧が全圧に対して50~100%であるエッチングガスによりドライエッチングを実施する工程である、請求項2に記載の有機層パターンの製造方法。
  4.  前記中間層がポリビニルアルコールを含む、請求項1~3のいずれか1項に記載の有機層パターンの製造方法。
  5.  前記不溶化する工程が、中間層の表面をプラズマ処理する工程である、請求項1~4のいずれか1項に記載の有機層パターンの製造方法。
  6.  前記プラズマ処理が、Arを含むガスにより行われる、請求項5に記載の有機層パターンの製造方法。
  7.  前記プラズマ処理が、Ar及びNを含むガスにより行われる、請求項6に記載の有機層パターンの製造方法。
  8.  前記Ar及びNを含むガスにおけるNの分圧が、ガスの全圧に対して10~50%である、請求項7に記載の有機層パターンの製造方法。
  9.  前記中間層を除去する工程を含む、請求項8に記載の有機層パターンの製造方法。
  10.  前記洗浄する工程後に、第2の有機層を更に形成する工程と、
     前記第2の有機層上に、水又は水溶性溶剤に溶解する第2の中間層、及び、第2のレジスト層をこの順に形成して積層体を得る工程と、
     前記第2のレジスト層の第2のパターンを形成する工程と、前記第2のパターンをマスクとして第2の有機層のエッチングを行う工程と、
     前記エッチング後に、第2の中間層の表面を水又は水溶性溶剤に対して不溶化する工程と、
     水又は水溶性溶剤により前記不溶化後の積層体を洗浄する工程とを含む、請求項1~9のいずれか1項に記載の有機層パターンの製造方法。
  11.  請求項1~10のいずれか1項に記載の有機層パターンの製造方法を含む、半導体デバイスの製造方法。
PCT/JP2021/032133 2020-09-04 2021-09-01 有機層パターンの製造方法、及び、半導体デバイスの製造方法 WO2022050313A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21864370.8A EP4210089A4 (en) 2020-09-04 2021-09-01 METHOD FOR MANUFACTURING ORGANIC LAYER PATTERN AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
KR1020237007178A KR20230044294A (ko) 2020-09-04 2021-09-01 유기층 패턴의 제조 방법, 및, 반도체 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148769 2020-09-04
JP2020148769 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050313A1 true WO2022050313A1 (ja) 2022-03-10

Family

ID=80491032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032133 WO2022050313A1 (ja) 2020-09-04 2021-09-01 有機層パターンの製造方法、及び、半導体デバイスの製造方法

Country Status (3)

Country Link
EP (1) EP4210089A4 (ja)
KR (1) KR20230044294A (ja)
WO (1) WO2022050313A1 (ja)

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148706A (en) 1981-03-11 1982-09-14 Canon Inc Production of color filter
JPS582809A (ja) 1981-06-29 1983-01-08 Nec Corp カラ−フイルタ−の製造方法
JPS589108A (ja) 1981-07-09 1983-01-19 Canon Inc カラ−フイルタ−の製造法
JPS5946628A (ja) 1983-07-04 1984-03-16 Canon Inc カラ−表示素子
JPS59126506A (ja) 1983-01-10 1984-07-21 Canon Inc カラ−フイルタ−
JPS6141102A (ja) 1984-08-03 1986-02-27 Canon Inc 色分解フイルタ−の製造方法
JPS61226746A (ja) 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd 半導体集積回路製造用のスピンコート用レジスト組成物
JPS61226745A (ja) 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd 半導体集積回路製造用のスピンコート用レジスト組成物
JPS6236663A (ja) 1985-08-12 1987-02-17 Mitsubishi Chem Ind Ltd ナフトキノンジアジド系化合物及び該化合物を含有するポジ型フオトレジスト組成物
JPS62170950A (ja) 1986-01-23 1987-07-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6334540A (ja) 1986-07-30 1988-02-15 Mitsubishi Chem Ind Ltd ポジ型フオトレジスト組成物
JPH07230165A (ja) 1993-06-30 1995-08-29 Tokyo Ohka Kogyo Co Ltd ポジ型ホトレジスト組成物
JPH0862834A (ja) 1994-08-22 1996-03-08 Mitsubishi Chem Corp フォトレジスト組成物
JPH095988A (ja) 1995-06-21 1997-01-10 Mitsubishi Chem Corp 感放射線性塗布組成物
JPH0954432A (ja) 1995-08-18 1997-02-25 Dainippon Ink & Chem Inc フォトレジスト組成物
JP2000058506A (ja) * 1998-08-06 2000-02-25 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
JP2001330953A (ja) 2000-05-22 2001-11-30 Jsr Corp 感放射線性樹脂組成物
JP2004264623A (ja) 2003-03-03 2004-09-24 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの形成方法
JP2006023696A (ja) 2004-06-07 2006-01-26 Fuji Photo Film Co Ltd 着色感光性樹脂組成物、着色感光性樹脂組成物の塗布膜、感光性樹脂転写材料、感光性樹脂層の形成方法、カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置。
JP2006047592A (ja) 2004-08-03 2006-02-16 Fuji Photo Film Co Ltd 遮光膜付基板、エレクトロルミネッセンス表示装置用遮光膜付基板、及び該遮光膜付基板を用いたエレクトロルミネッセンス表示装置
JP2008197480A (ja) 2007-02-14 2008-08-28 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2011209692A (ja) 2010-03-11 2011-10-20 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機el表示装置
JP2012159830A (ja) 2011-01-12 2012-08-23 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2013011678A (ja) 2011-06-28 2013-01-17 Fujifilm Corp パターン形成方法及び該方法に使用するための感活性光線性又は感放射線性樹脂組成物
JP2014098889A (ja) 2012-10-19 2014-05-29 Fujifilm Corp 保護膜形成用の樹脂組成物、保護膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
WO2015144930A1 (en) 2014-03-28 2015-10-01 Imec Vzw High-resolution patterning of multiple layers side by side
JP2015194674A (ja) 2013-08-23 2015-11-05 富士フイルム株式会社 積層体
JP2016035562A (ja) * 2014-08-01 2016-03-17 三菱化学株式会社 光学素子の製造方法
WO2016175220A1 (ja) 2015-04-28 2016-11-03 富士フイルム株式会社 積層体およびキット
JP6179930B2 (ja) 2014-08-29 2017-08-16 国立大学法人 東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
WO2018203478A1 (ja) * 2017-05-01 2018-11-08 東京エレクトロン株式会社 有機elディスプレイの製造方法

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148706A (en) 1981-03-11 1982-09-14 Canon Inc Production of color filter
JPS582809A (ja) 1981-06-29 1983-01-08 Nec Corp カラ−フイルタ−の製造方法
JPS589108A (ja) 1981-07-09 1983-01-19 Canon Inc カラ−フイルタ−の製造法
JPS59126506A (ja) 1983-01-10 1984-07-21 Canon Inc カラ−フイルタ−
JPS5946628A (ja) 1983-07-04 1984-03-16 Canon Inc カラ−表示素子
JPS6141102A (ja) 1984-08-03 1986-02-27 Canon Inc 色分解フイルタ−の製造方法
JPS61226746A (ja) 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd 半導体集積回路製造用のスピンコート用レジスト組成物
JPS61226745A (ja) 1985-03-30 1986-10-08 Japan Synthetic Rubber Co Ltd 半導体集積回路製造用のスピンコート用レジスト組成物
JPS6236663A (ja) 1985-08-12 1987-02-17 Mitsubishi Chem Ind Ltd ナフトキノンジアジド系化合物及び該化合物を含有するポジ型フオトレジスト組成物
JPS62170950A (ja) 1986-01-23 1987-07-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6334540A (ja) 1986-07-30 1988-02-15 Mitsubishi Chem Ind Ltd ポジ型フオトレジスト組成物
JPH07230165A (ja) 1993-06-30 1995-08-29 Tokyo Ohka Kogyo Co Ltd ポジ型ホトレジスト組成物
JPH0862834A (ja) 1994-08-22 1996-03-08 Mitsubishi Chem Corp フォトレジスト組成物
JPH095988A (ja) 1995-06-21 1997-01-10 Mitsubishi Chem Corp 感放射線性塗布組成物
JPH0954432A (ja) 1995-08-18 1997-02-25 Dainippon Ink & Chem Inc フォトレジスト組成物
JP2000058506A (ja) * 1998-08-06 2000-02-25 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
JP2001330953A (ja) 2000-05-22 2001-11-30 Jsr Corp 感放射線性樹脂組成物
JP2004264623A (ja) 2003-03-03 2004-09-24 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの形成方法
JP2006023696A (ja) 2004-06-07 2006-01-26 Fuji Photo Film Co Ltd 着色感光性樹脂組成物、着色感光性樹脂組成物の塗布膜、感光性樹脂転写材料、感光性樹脂層の形成方法、カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置。
JP2006047592A (ja) 2004-08-03 2006-02-16 Fuji Photo Film Co Ltd 遮光膜付基板、エレクトロルミネッセンス表示装置用遮光膜付基板、及び該遮光膜付基板を用いたエレクトロルミネッセンス表示装置
JP2008197480A (ja) 2007-02-14 2008-08-28 Fujifilm Corp レジスト組成物及びそれを用いたパターン形成方法
JP2011209692A (ja) 2010-03-11 2011-10-20 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機el表示装置
JP2012159830A (ja) 2011-01-12 2012-08-23 Fujifilm Corp ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP5191567B2 (ja) 2011-01-12 2013-05-08 富士フイルム株式会社 ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2013011678A (ja) 2011-06-28 2013-01-17 Fujifilm Corp パターン形成方法及び該方法に使用するための感活性光線性又は感放射線性樹脂組成物
JP2014098889A (ja) 2012-10-19 2014-05-29 Fujifilm Corp 保護膜形成用の樹脂組成物、保護膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP2015194674A (ja) 2013-08-23 2015-11-05 富士フイルム株式会社 積層体
WO2015144930A1 (en) 2014-03-28 2015-10-01 Imec Vzw High-resolution patterning of multiple layers side by side
JP2017510951A (ja) * 2014-03-28 2017-04-13 アイメック・ヴェーゼットウェーImec Vzw 並置された多層膜の高解像度パターン形成
JP2016035562A (ja) * 2014-08-01 2016-03-17 三菱化学株式会社 光学素子の製造方法
JP6179930B2 (ja) 2014-08-29 2017-08-16 国立大学法人 東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
WO2016175220A1 (ja) 2015-04-28 2016-11-03 富士フイルム株式会社 積層体およびキット
WO2018203478A1 (ja) * 2017-05-01 2018-11-08 東京エレクトロン株式会社 有機elディスプレイの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE ADHESION SOCIETY OF JAPAN, vol. 29, no. 6, 1993, pages 249 - 259

Also Published As

Publication number Publication date
EP4210089A1 (en) 2023-07-12
KR20230044294A (ko) 2023-04-03
EP4210089A4 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US10833272B2 (en) Laminate and kit
WO2021182399A1 (ja) 除去液、キット及び半導体デバイス
WO2020195995A1 (ja) 積層体、組成物、及び、積層体形成用キット
WO2022050313A1 (ja) 有機層パターンの製造方法、及び、半導体デバイスの製造方法
WO2021020361A1 (ja) 保護層形成用組成物、層状膜、保護層、積層体および半導体デバイスの製造方法
WO2020184406A1 (ja) 積層体、組成物、及び、積層体形成用キット
JP7170123B2 (ja) 積層体、組成物、及び、積層体形成用キット
WO2020262282A1 (ja) 保護層形成用組成物の製造方法、保護層形成用組成物の保存方法およびこの保存方法の応用
JP2021110796A (ja) 感光性樹脂組成物、層状膜、感光層、積層体、キット及び半導体デバイス
JP2021110839A (ja) 積層体、保護層形成用組成物、キット及び半導体デバイス
JPWO2019167914A1 (ja) 積層体、水溶性樹脂組成物、キット
JP2021107473A (ja) 保護層形成用組成物、層状膜、保護層、積層体、キット及び半導体デバイス
CN111758074A (zh) 感光层、层叠体、感光性树脂组合物、试剂盒及感光性树脂组合物的制造方法
JPWO2020129873A1 (ja) 積層体、組成物、及び、積層体形成用キット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237007178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864370

Country of ref document: EP

Effective date: 20230404

NENP Non-entry into the national phase

Ref country code: JP