WO2022048099A1 - 一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用 - Google Patents

一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用 Download PDF

Info

Publication number
WO2022048099A1
WO2022048099A1 PCT/CN2021/073012 CN2021073012W WO2022048099A1 WO 2022048099 A1 WO2022048099 A1 WO 2022048099A1 CN 2021073012 W CN2021073012 W CN 2021073012W WO 2022048099 A1 WO2022048099 A1 WO 2022048099A1
Authority
WO
WIPO (PCT)
Prior art keywords
triethanolamine
block polyether
phosphazene
catalyst
narrow
Prior art date
Application number
PCT/CN2021/073012
Other languages
English (en)
French (fr)
Inventor
隋美玉
李传亮
陆国太
姜明
秦承群
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Publication of WO2022048099A1 publication Critical patent/WO2022048099A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2618Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen
    • C08G65/2621Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups
    • C08G65/2624Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing nitrogen containing amine groups containing aliphatic amine groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2648Alkali metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2675Phosphorus or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2687Elements not covered by groups C08G65/2672 - C08G65/2684 or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/269Mixed catalyst systems, i.e. containing more than one reactive component or catalysts formed in-situ

Definitions

  • the application belongs to the field of nonionic surfactants, and in particular relates to a preparation method of a narrow distribution triethanolamine block polyether, a block polyether and applications thereof.
  • Ethylene oxide (EO) and propylene oxide (PO) block copolymers are polymer polyether surfactants, usually starting with compounds containing active hydrogen atoms, which are successively combined with ethylene oxide (EO)
  • EO ethylene oxide
  • the polyoxyethylene (PEO) part is a hydrophilic group
  • the polyoxypropylene (PPO) part is a hydrophobic group because it has a methyl group and is hydrophobic.
  • the mixing ratio of EO and PO and the reaction temperature are different, and its structure has rich designability.
  • block polyethers have developed rapidly and penetrated into almost every field, such as metal processing, defoaming, emulsification, extraction, biochemical separation, tissue engineering, and medicine and cosmetics.
  • triethanolamine polyethers are processed into polyoxyethylene ether or polyoxypropylene ether.
  • the only triethanolamine block polyether (patent CN101240062A) also has wide molecular weight distribution, long reaction time, and requires a large amount of adsorbent for post-treatment. and other shortcomings.
  • Commonly used catalysts for common block polyethers are generally basic substances, such as alkali metal methanol/ethoxide, alkali (earth) metal hydroxides, etc., and a small number of them use phosphazene catalysts or bimetallic DMC catalysts. The high cost of phosphazene and the harsh choice of substrate and environment for DMC catalysts are the main reasons for limiting their use.
  • the most commonly used catalysts in industry for economic reasons are KOH, NaOH, CH 3 OK, CH 3 ONa, etc.
  • the molecular weight distribution of block polyethers synthesized by traditional basic substance catalysts is generally wide, which has a great influence on its application.
  • the catalytic efficiency of traditional catalysts is not high, and the amount of catalyst is large.
  • the post-treatment and refining process generally adopts the process of neutralization, filtration or coalescence separation.
  • the scope of application of coalescing separators is narrow, and the compatibility of surfactant-based polyethers with water is not suitable.
  • the neutralization and filtration process not only needs to increase the cost, but also generates a large amount of solid waste.
  • the purpose of this application is to provide a method for preparing a novel narrow-distribution triethanolamine block polyether, so that the PDI of the prepared block polyether product is at least 1.023, which greatly improves the performance of the polyether product.
  • Another object of the present application is to provide a narrow distribution triethanolamine block polyether product prepared by this method.
  • Another object of the present application is to provide the application of this narrow-distribution triethanolamine block polyether product in the fields of medicine, cosmetics, fibers, cleaning, lubrication, and polyurethane.
  • a method for preparing a novel narrow-distribution triethanolamine block polyether wherein, in the presence of a certain amount of phosphazene composite catalyst, triethanolamine is used as a starting agent to carry out a polymerization reaction with ethylene oxide and propylene oxide to prepare In triethanolamine block polyether.
  • the preparation method of the novel narrow distribution triethanolamine block polyether comprises the following steps:
  • the phosphazene composite catalyst is a mixture of base catalyst, crown ether and phosphazene catalyst in proportion, and the mass ratio of the three is 1 ⁇ 6:2 ⁇ 10:2 ⁇ 40 , preferably 1:2 to 8:6 to 30.
  • the added amount of the phosphazene composite catalyst is 0.001% to 1% of the total mass of triethanolamine, ethylene oxide and propylene oxide;
  • the reaction molar ratio of alkane and propylene oxide is 1:m:n, wherein m and n are selected from integers from 0 to 200, and at least one of m and n is not 0; more preferably, the triethanolamine block
  • the molecular weight distribution coefficient of the polyether is lower than 1.05.
  • the phosphazene catalyst is any one or a mixture of phosphazene compounds, phosphazene salts and phosphazene oxides.
  • the base catalyst is any one or a mixture of sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium methoxide and sodium methoxide.
  • the crown ether is any one or a mixture of 12-crown-4, 15-crown(ether)-5 and 18-crown(ether)-6.
  • the polymerization reaction temperature in steps (2) and (3) is 90-180° C.
  • the reaction pressure is 0.1 MPa-0.6 MPa
  • the reaction time is 1-20 hours.
  • Another aspect of the present application relates to a novel narrow distribution triethanolamine block polyether prepared by the aforementioned method, and its reaction structural formula is:
  • n is an integer from 0 to 200, and at least one of m and n is not 0; the molecular weight distribution coefficient of the triethanolamine block polyether is lower than 1.05.
  • Yet another aspect of the present application relates to the use of the aforementioned novel narrow distribution triethanolamine block polyethers in the fields of pharmaceuticals, cosmetics, fibers, detergents, lubricants, and polyurethanes.
  • the narrow distribution triethanolamine block polyether belongs to nonionic surfactants.
  • the preparation method of the novel narrow-distribution triethanolamine block polyether of the present application adopts a novel phosphazene composite catalyst, takes triethanolamine as a starting agent, and carries out a polymerization reaction with ethylene oxide and propylene oxide to prepare In triethanolamine block polyether. Due to the formation of complexes between crown ethers and alkali metal cations such as potassium in the special phosphazene composite catalyst, the reaction rate of the PO stage is greatly accelerated.
  • the phosphazene composite catalyst has a narrow distribution due to the large steric hindrance, and the basic The conditions make the catalytic efficiency of phosphazene higher and the reaction time greatly shortened.
  • the catalyst consumption of the whole process is 10% of the conventional process catalyst consumption, the cost of raw materials is greatly reduced, and the consumption of sodium and potassium is few, and additional refining treatments such as adsorption are not required, which greatly reduces production. cost.
  • the block polyether prepared by the method of the present application has a small molecular weight distribution coefficient and a hydroxyl value closer to the design value, indicating that the method of the present application is easy to customize polyether products with different foam heights and emulsifying properties according to the needs of customers, only need
  • the EO/PO molar ratio can be adjusted on the basis of the method of the present application.
  • the block polyether prepared by this method has low impurity content, small molecular weight distribution coefficient (less than 1.05), and the lowest can reach 1.023, so that the polyether product has the advantages of high transparency, low pour point, low foam and good emulsifying performance. , It has good application prospects in the fields of daily chemical products, metal cleaning, coatings, oil field industry and so on.
  • a novel narrow distribution triethanolamine block polyether has the following reaction formula:
  • m is an integer from 0 to 200
  • n is an integer from 0 to 200
  • at least one of m and n is not 0
  • m is an integer from 2 to 100 and/or n is an integer from 1 to 100
  • m is an integer of 3-60 and/or n is an integer of 3-45. That is, in the reaction system, triethanolamine, ethylene oxide, and propylene oxide are fed in a molar ratio of 1:m:n, wherein m and n are selected from the above-mentioned integers, and are not 0 at the same time.
  • the molecular weight distribution coefficient (PDI) of the novel narrow-distribution triethanolamine block polyether is lower than 1.05, and the lowest can be 1.023, which is a significant improvement compared with the prior art generally higher than 1.1.
  • the preparation method of above-mentioned novel narrow distribution triethanolamine block polyether comprises the following steps:
  • the phosphazene composite catalyst designed in this application is a mixture of base catalyst, crown ether and phosphazene catalyst, and the mass ratio of the three is 1-6:2-10:2-40, preferably 1:2-8:6 ⁇ 30 compounded.
  • the added amount of the phosphazene composite catalyst is 0.001% to 1% of the total mass of triethanolamine, ethylene oxide and propylene oxide, and the preferred catalyst content is the total mass of triethanolamine, ethylene oxide and propylene oxide. 0.02% ⁇ 0.3%.
  • Described alkali catalyst is selected from any one or the mixture in sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium methoxide and sodium methoxide, preferably any one in potassium hydroxide, potassium methoxide, sodium methoxide or a mixture of several;
  • the crown ether is selected from any one or mixtures of 12-crown-4, 15-crown (ether)-5 and 18-crown (ether)-6, preferably 18-crown (ether)-6 Crown (ether)-6.
  • the base catalyst, crown ether and phosphazene catalyst in the phosphazene composite catalyst are all commercially available high-purity reagents, and do not need to be configured into solutions or other pretreatments.
  • the step (1) is specifically adding the triethanolamine initiator and the phosphazene composite catalyst into the high temperature and high pressure reaction kettle, sealing the reaction kettle, purging and replacing it twice with nitrogen before heating, and heating to 80 ⁇ 100 °C , keep the temperature of the reaction kettle at 80-100 °C, and then vacuumize for 1-3 hours to remove moisture and impurity monomers in the reaction system.
  • the step (2) is specifically that after the dehydration is completed, the temperature of the reaction kettle is kept at 90-180° C., ethylene oxide (propylene) alkane is added, and the pressure of the reaction kettle is controlled to 0.1-0.6 MPa, and the addition is completed in 0.5-8 hours, and the material addition is completed. , aging for a period of time, until the pressure remains unchanged for 20min.
  • the preferred reaction temperature is 100-140°C, and the preferred pressure is not more than 0.3 MPa.
  • the step (3) is specifically to start adding propylene oxide (ethane) to the aged intermediate product, control the temperature of the reaction kettle to 90 ⁇ 180°C, the pressure to 0.1 ⁇ 0.6MPa, finish the addition for 0.5 ⁇ 8h, and wait until the material is added. , aging for a period of time, until the pressure remains unchanged for 20min. The temperature was lowered to about 80°C to remove unreacted monomers. Add organic acid (such as acetic acid, lactic acid) according to 1-1.05 times the molar amount of catalyst, neutralize for 1 hour at 80-90 °C, dehydrate and deacidify for 0.5 hour, and discharge.
  • the preferred reaction temperature is 100-140°C, and the preferred pressure is not more than 0.3 MPa.
  • the operations such as de-singling, dehydration, de-acidification, and discharging can all refer to the prior art.
  • the operations of removing single, dehydrating and deacidifying are specifically adjusting the speed of the stirring paddle of the reaction kettle to 200-300 r/min, the temperature is 80-90 °C, and continuously vacuuming; the discharging operation is specifically to open the reaction at about 60 °C
  • the bottom valve of the kettle and the air connection valve are connected to the product with a reagent bottle.
  • ethylene oxide and propylene oxide in the above-mentioned steps (2) and step (3) is not limited, for example, ethylene oxide can be added in the step (2), and at this time, the corresponding ring is added in the step (3). Oxypropane; Similarly, when propylene oxide is added in step (2), at this time, ethylene oxide is correspondingly added in step (3). Regardless of the order of addition, the reaction temperature, pressure and other conditions in the reactor are still carried out in accordance with the conditions defined in steps (2) and (3).
  • the polymerization reaction of the above-mentioned block polyether can be carried out in any known reactor, as long as the corresponding temperature and pressure can be satisfied, and the conditions of vacuuming can be provided.
  • the reaction vessel is any one of a tubular reactor, a stirred tank, a loop reactor and a jet reactor, but not limited thereto.
  • the molecular weight distribution coefficient (PDI) of the novel narrow-distribution triethanolamine block polyether prepared in the present application is lower than 1.05, and the lowest can reach 1.023; the molecular weight of the triethanolamine block polyether can be 400-6000 g/mol; wherein, the The relative molecular weight of ethylene oxide in the molecular chain of the triethanolamine block polyether can account for 5% to 95%.
  • the present application overcomes the problems of generally low activity and small reaction steric hindrance of catalysts in the prior art, and avoids the inherent defect that EO/PO randomly reacts with the substrate and cannot preferentially react with short chains.
  • the technical purpose of the present application is achieved through an efficient and highly selective phosphazene composite catalyst and its precise control of the polymerization reaction.
  • This application completely solves the problem of residual bottom alcohol in the finished product of small molecular weight polyether, and PDI is generally above 1.1, and also avoids the problem of EO due to the excessively long reaction time and the air tightness of the device not reaching zero oxygen for large molecular weight polyether.
  • PO isomerized acetaldehyde, acrolein or react with oxygen to generate by-products such as formaldehyde, which reduces the yield of the product and increases the PDI.
  • the hydroxyl value is 28.05 ⁇ 420.75mgKOH/g
  • the molecular weight distribution coefficient is generally lower than 1.05
  • the minimum can reach 1.023
  • the appearance is light in color and high in transparency
  • the content of sodium and potassium ions is low
  • no post-treatment is required
  • the cost is low
  • the three wastes are few.
  • It has good application prospects in the field of surfactants, especially in the fields of medicine, cosmetics, fibers, washing, lubrication, and polyurethane.
  • Anhydrous lithium hydroxide Aladdin reagent, purity 99.99%;
  • Glacial acetic acid Chinese medicine reagent, purity 99.9%;
  • EO/PO is self-produced with Wanhua device.
  • the determination method of hydroxyl value in this application is determined according to the benzene compound method described in the national standard GB 12008.3-89 "Determination of hydroxyl value in polyether polyols".
  • the molecular weight distribution of the polyether is determined by gel permeation chromatography (GPC), and the molecular weight distribution coefficient PDI can be obtained simultaneously in the GPC spectrum.
  • the content of sodium and potassium ions is measured by a flame photometer. Dilute the potassium and sodium ions of the sample to be measured with 70% ethanol to 0-100 ppm, and the data can be directly read by multiplying the dilution ratio.
  • the appearance was measured by visual observation after being placed at a constant temperature for 2 hours.
  • Determination method of emulsifying performance at 25 °C, use 40 mL of sample with a mass fraction of 0.1% and the same volume of liquid paraffin to vigorously stir in a 250 mL beaker for 1 min, pour it into a 100 mL graduated cylinder, and record the time (s) for the separation of 10 mL of the water phase. .
  • Example 2 Other settings are the same as those of Example 1, except that the amount of catalyst, the composite ratio of the catalyst, the reaction time, the molar ratio of triethanolamine and PO and EO are different, and the specific proportions and parameters are shown in Table 1, wherein Comparative Examples 1 to 3 are: control group.
  • the polyether product parameter index and detection that embodiment and comparative example make are shown in Table 2.
  • Table 1 embodiment process parameter table
  • the application can achieve high catalytic efficiency by adjusting the ratio and dosage of the phosphazene composite catalyst, and the molecular weight distribution coefficient is low, especially the molecular weight distribution coefficient in Examples 1 and 2 can reach 1.025 and 1.023, the most direct impact is
  • the product has high content of active ingredients, less content of high molecular weight components, and low pour point of the product, which can be compared from the product form at 10 °C.
  • the block polyether products with narrow molecular weight distribution obtained in the present application are all liquid, which provides convenience for the application of the product in winter, especially the application in the north.
  • the foam height and emulsifying properties of the product are mainly related to the EO/PO molar ratio.
  • the proportion of EO is high, that is, when the hydrophilic group content is high, the foam height is large; PO is a lipophilic group, which can effectively reduce the surface tension of the formed foam surface, causing the foam to burst and disappear, and the defoaming effect is obvious.
  • High foam and low foam have different requirements in different fields. Low foam is better in industrial cleaning and lubrication fields, but in some fields, it is just the opposite, such as daily chemicals, body wash, facial cleanser, etc. The pursuit is more foam and more foam. Delicate; products with narrow distribution are easier to meet the corresponding foam requirements according to the corresponding design values.
  • emulsification is related to the amount of EO.
  • High EO content has good emulsification performance.
  • the products of Examples 3 and 4 have a lower foam height and better emulsification performance. It is also better and has certain advantages in application. Based on this application, the molecular weight distribution coefficient of the block polyether is narrower, and the hydroxyl value is closer to the theoretical design value.
  • the EO/PO molar ratio can be adjusted to make the performance of the product meet the needs of different customers, and it can even be customized according to needs.
  • the molecular weight distribution coefficient of the prior art is generally higher than 1.15, and it is impossible to customize it according to the needs. From the comparison between Example 2 and Comparative Examples 1, 2, and 3, it can be seen that the phosphazene composite catalyst product and other catalyst products also have certain advantages in emulsification and low foam.
  • the crown ether and the base are in equal molar amounts, the sodium and potassium ions are completely complexed, and the catalytic efficiency is higher.
  • the proportion of the phosphazene catalyst can be adjusted appropriately to reduce the sodium and potassium ions.
  • the purpose of potassium content is to improve the catalytic efficiency at the same time, and to optimize the product design scheme to match different customer needs.
  • the base catalyst, crown ether and phosphazene catalyst of the phosphazene composite catalyst are compounded according to the preferred scheme of 1:2 to 8:6 to 30, the sum of the sodium and potassium content of the obtained block polyether product is less than 50ppm, so it is not necessary to After refining, it can be used directly, which greatly reduces the production cost.

Abstract

本文公布了一种窄分布三乙醇胺嵌段聚醚的制备方法,在一定量磷腈复合催化剂的存在下,以三乙醇胺为起始剂,与环氧乙烷、环氧丙烷进行聚合反应,制得三乙醇胺嵌段聚醚。本申请通过加入一定量磷腈复合催化剂,使得制得的三乙醇胺嵌段聚醚具有制备周期短、窄分布、倾点低、泡沫低、乳化效果好的性能特点。而且相对于传统的胺醚,本方法制备的胺醚催化剂用量低,无需后处理的精制过程,大大降低了原料成本和生产成本,取得了较好的技术效果。

Description

一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用 技术领域
本申请属于非离子表面活性剂领域,具体涉及一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用。
背景技术
环氧乙烷(EO)和环氧丙烷(PO)嵌段共聚物是高分子聚醚型表面活性剂,通常是以含活泼氢原子化合物为起始剂,先后与环氧乙烷(EO)和环氧丙烷(PO)加成聚合生成的一类非离子表面活性剂。其分子结构中聚氧乙烯基(PEO)部分是亲水基,聚氧丙烯基(PPO)部分因带有甲基而具憎水性故为疏水基,其性能随相对分子质量、起始剂、EO和PO混合比例、反应温度等的不同而不同,其结构有着丰富的可设计性。近年来,嵌段聚醚发展迅速,几乎渗透到各个领域,如金属加工、消泡、乳化、萃取、生化分离、组织工程以及医药和化妆品等方面。
目前的三乙醇胺聚醚大多被单一加工成聚氧乙烯醚或聚氧丙烯醚,仅有的三乙醇胺嵌段聚醚(专利CN101240062A)也存在分子量分布宽、反应时间长、需要大量吸附剂后处理等缺点。普通嵌段聚醚常用的催化剂一般是碱性物质,例如碱金属甲醇/乙醇盐、碱(土)金属氢氧化物等,也有少部分用磷腈催化剂或者双金属DMC催化剂。磷腈成本较高而DMC催化剂对底料和环境选择较为苛刻是限制它们使用的主要原因。工业上出于经济考虑最常用的催化剂是KOH、NaOH、CH 3OK、CH 3ONa等,但是传统碱性物质催化剂合成得到的嵌段聚醚分子量分布普遍较宽,对其应用影响较大。另外传统催化剂催化效率不高,催化剂用量大,后处理精制环节一般采用中和过滤或者聚结分离的工艺。而聚结分离器适用范围较窄,表面活性剂类聚醚与水相容性较好不适用,中和过滤工艺 不仅需要增加成本,还有大量固废产生。
作为现有技术的中国专利CN106084199A、CN102924707A、CN 110922580A将聚醚催化剂进行改进,但是同样存在催化剂用量大、分子量分布宽(PDI最低分别是1.35、1.15和1.19)等问题。现有技术制备的嵌段聚醚分子量分布PDI普遍在1.1以上,这在一定程度上影响了聚醚产品的性能,而且还带来一些后处理精制环节的问题。另外,基于现有技术的方法,嵌段聚醚的PDI很难做到更低。
因此,仍旧需要一种新型窄分布嵌段聚醚的制备方法,使得制备的嵌段聚醚产品的PDI达到1.05以下,最低1.023,在改善产品性能的同时,简化后处理精制环节。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种新型窄分布三乙醇胺嵌段聚醚的制备方法,使得制备的嵌段聚醚产品的PDI最低达到1.023,大大地改善了聚醚产品的性能。
本申请的另一目的在于提供这种方法制备的窄分布三乙醇胺嵌段聚醚产品。
本申请的再一目的在于提供这种窄分布三乙醇胺嵌段聚醚产品在药物、化妆品、纤维、洗化、润滑、聚氨酯领域中的应用。
为了实现上述目的,本申请采用的技术方案如下:
一种新型窄分布三乙醇胺嵌段聚醚的制备方法,其中,在一定量磷腈复合催化剂的存在下,以三乙醇胺为起始剂,与环氧乙烷、环氧丙烷进行聚合反应, 制得三乙醇胺嵌段聚醚。
在一个具体的实施方案中,所述新型窄分布三乙醇胺嵌段聚醚的制备方法包括以下步骤:
(1)将三乙醇胺起始剂和磷腈复合催化剂混合,用氮气吹扫置换后脱除水分和杂质单体;
(2)向含有催化剂的三乙醇胺起始剂中加入环氧乙(丙)烷,反应、老化得到中间产物;
(3)向中间产物中加入环氧丙(乙)烷,反应、老化得到最终产物三乙醇胺嵌段聚醚。
在一个具体的实施方案中,所述的磷腈复合催化剂为碱催化剂、冠醚、磷腈催化剂按比例复配而成的混合物,三者质量比例为1~6:2~10:2~40,优选为1:2~8:6~30。
在一个具体的实施方案中,所述的磷腈复合催化剂的添加量为三乙醇胺与环氧乙烷、环氧丙烷总质量的0.001%~1%;优选地,所述三乙醇胺与环氧乙烷、环氧丙烷的反应摩尔比为1:m:n,其中m、n选自0~200的整数,且m和n中的至少一个不为0;更优选地,所述三乙醇胺嵌段聚醚的分子量分布系数低于1.05。
在一个具体的实施方案中,所述的磷腈催化剂为磷腈化合物、磷腈盐和氧化磷腈中的任一种或几种的混合物。
在一个具体的实施方案中,所述碱催化剂为氢氧化钠、氢氧化钾、氢氧化锂、甲醇钾和甲醇钠中的任一种或几种的混合物。
在一个具体的实施方案中,所述冠醚为12-冠-4、15-冠(醚)-5和18-冠(醚)-6中的任一种或几种的混合物。
在一个具体的实施方案中,步骤(2)、(3)所述的聚合反应温度为90~180℃,反应压力为0.1MPa~0.6MPa,反应时间为1~20小时。
本申请的另一方面涉及一种前述方法制备的新型窄分布三乙醇胺嵌段聚醚,其反应结构式为:
Figure PCTCN2021073012-appb-000001
其中,m为0~200的整数,n为0~200的整数,且m和n中的至少一个不为0;所述三乙醇胺嵌段聚醚的分子量分布系数低于1.05。
本申请的再一方面涉及将前述的新型窄分布三乙醇胺嵌段聚醚用于药物、化妆品、纤维、洗化、润滑、聚氨酯领域中。所述窄分布三乙醇胺嵌段聚醚属于非离子表面活性剂。
与现有技术相比,本申请具有以下有益效果:
(1)本申请的新型窄分布三乙醇胺嵌段聚醚的制备方法,采用一种新型磷腈复合催化剂,以三乙醇胺为起始剂,与环氧乙烷、环氧丙烷进行聚合反应,制得三乙醇胺嵌段聚醚。由于特殊的磷腈复合催化剂中冠醚与钾等碱金属阳离子形成络合物,大大加速了PO段反应速率,磷腈复合催化剂由于空间位阻较大使得产品呈现窄分布的特性,而且碱性条件使得磷腈催化效率更高,反应时间大大缩短。
(2)本申请的制备方法中,整个工艺的催化剂用量是常规工艺催化剂用量的10%,原料成本大大降低,而且钠、钾用量少,不需要吸附等额外的精制处理,大大降低了生产成本。
(3)采用本申请方法制备的嵌段聚醚,分子量分布系数小,羟值更接近设计值,说明本申请的方法容易根据客户的需求定制不同泡沫高度与乳化性能的 聚醚产品,只需要在本申请方法的基础上调节EO/PO摩尔比例即可。
(4)本方法制备的嵌段聚醚杂质含量低,分子量分布系数小(低于1.05),最低可达到1.023,使得聚醚产品具有透明度高,倾点低、低泡、乳化性能好等优点,在日化产品、金属清洗、涂料、油田工业等领域具有良好的应用前景。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为了更好的理解本申请的技术方案,下面的实施例将对本申请所提供的方法予以进一步的说明,但本申请不限于所列出的实施例,还应包括在本申请的权利要求范围内其他任何公知的改变。
一种新型窄分布三乙醇胺嵌段聚醚,其具有如下反应式:
Figure PCTCN2021073012-appb-000002
其中,m为0~200的整数,n为0~200的整数,且m和n中的至少一个不为0;优选地,m为2~100的整数和/或n为1~100的整数;更优选地,m为3~60的整数和/或n为3~45的整数。亦即反应体系中三乙醇胺、环氧乙烷、环氧丙烷按1:m:n的摩尔配比投料,其中,m、n选择上述的整数,且不同时为0。
其中,所述新型窄分布三乙醇胺嵌段聚醚的分子量分布系数(PDI)低于1.05,最低可做到1.023,与现有技术普遍高于1.1相比,有显著的进步。
上述新型窄分布三乙醇胺嵌段聚醚的制备方法,包括以下步骤:
(1)将三乙醇胺起始剂和磷腈复合催化剂混合,用氮气吹扫置换后脱除水分和杂质单体;
(2)向含有催化剂的三乙醇胺起始剂中加入环氧乙(丙)烷,反应、老化得到中间产物;
(3)向中间产物中加入环氧丙(乙)烷,反应、老化得到最终产物三乙醇胺嵌段聚醚。
本申请设计磷腈复合催化剂为碱催化剂、冠醚、磷腈催化剂的混合物,三者质量比例按1~6:2~10:2~40复配而成,优选按1:2~8:6~30复配而成。所述的磷睛复合催化剂的添加量为三乙醇胺与环氧乙烷、环氧丙烷总质量的0.001%~1%,优选的催化剂含量为三乙醇胺与环氧乙烷、环氧丙烷总质量的0.02%~0.3%。
其中,磷腈催化剂为磷腈类催化剂,选自磷腈化合物、磷腈盐和氧化磷腈中的任一种或几种的混合物,优选为磷腈化合物;具体地,所述磷腈化合物包括但不限于六氯环三磷腈、三聚氯化磷腈等;所述磷腈盐包括但不限于[(C 6H 11)CH 3N] 4P +BF 4 -等;所述氧化磷腈包括但不限于六苯氧基环三磷腈、甲氧基磷腈、胍基取代氧化磷腈[(NMe 2) 2C=N] 3PO等。
所述碱催化剂选自氢氧化钠、氢氧化钾、氢氧化锂、甲醇钾和甲醇钠中的任一种或几种的混合物,优选为氢氧化钾、甲醇钾、甲醇钠中的任一种或几种的混合物;所述冠醚选自12-冠-4、15-冠(醚)-5和18-冠(醚)-6中的任一种或几种的混合物,优选为18-冠(醚)-6。所述磷腈复合催化剂中的碱催化剂、冠醚、磷腈催化剂均采用市售的高纯试剂,无需配置成溶液或其他预处理。
所述步骤(1)具体为将三乙醇胺起始剂和磷腈复合催化剂加入到高温高压反应釜中,密闭好反应釜,在升温前先用氮气吹扫置换二次,升温至80~100℃,保持反应釜温度80~100℃,然后抽真空1~3小时,脱除反应体系中的水分和杂质单体。
所述步骤(2)具体为脱水完毕后,保持反应釜温度90~180℃,开始加入 环氧乙(丙)烷,控制反应釜压力0.1~0.6MPa,0.5~8h加完,待物料加入完毕,老化一段时间,直至压力20min不变。优选的反应温度为100~140℃,优选的压力不超过0.3MPa。
所述步骤(3)具体为向老化以后的中间产物中开始加入环氧丙(乙)烷,控制反应釜温度90~180℃,压力0.1~0.6MPa,0.5~8h加完,待物料加入完毕,老化一段时间,直至压力20min不变。降温至80℃左右脱除未反应的单体。按照催化剂摩尔量1~1.05倍加有机酸(如醋酸、乳酸)在80~90℃中和1h,脱水及脱酸0.5h,出料。优选的反应温度为100~140℃,优选的压力不超过0.3MPa。其中,所述脱单、脱水、脱酸、出料等操作均可参照现有技术。例如所述脱单、脱水、脱酸操作具体为将反应釜搅拌桨转速调至200~300r/min,温度80~90℃,持续抽真空;所述出料操作具体为在60℃左右打开反应釜底阀和大气联通阀,用试剂瓶盛接产品。
上述步骤(2)和步骤(3)中加入环氧乙烷和环氧丙烷的顺序没有任何限制,例如可以步骤(2)中加入环氧乙烷,此时,步骤(3)中对应加入环氧丙烷;同理,当步骤(2)中加入环氧丙烷,此时,步骤(3)中对应加入环氧乙烷。不管加入顺序如何,反应器中的反应温度、压力等条件仍按照步骤(2)和步骤(3)限定的条件进行。
上述嵌段聚醚的聚合反应可以在已知的任何形式的反应器中进行,只要能够满足相应的温度和压力,能够具备抽真空的条件即可。例如所述反应容器为管式反应器、搅拌釜、环流反应器和喷射反应器中的任一种,但不限于此。
本申请制得的新型窄分布三乙醇胺嵌段聚醚的分子量分布系数(PDI)低于1.05,最低可达到1.023;三乙醇胺嵌段聚醚的分子量可为400~6000g/mol;其中, 所述三乙醇胺嵌段聚醚的分子链中环氧乙烷的相对分子量可占5%~95%。
本申请克服了现有技术的催化剂普遍活性不高、反应空间位阻较小的问题,避免了EO/PO随机与底料反应,无法优先选择性地发生短链反应的固有缺陷。通过高效、高选择性的磷腈复合催化剂及其对聚合反应的精准控制,实现了本申请的技术目的。本申请彻底解决了小分子量聚醚成品中有底醇的残留,PDI普遍在1.1以上的问题,也避免了大分子量聚醚由于反应时间过长和装置气密性并没有达到0氧气,导致EO、PO异构的乙醛、丙烯醛或与氧气反应生成甲醛等副产物,使得产物收率降低,PDI增大的不利情形。
通过对现有三乙醇胺聚醚产品合成方法的分析比较,采用先加入环氧乙(丙)烷再加入环氧丙(乙)烷进行聚合反应的两步法合成路线,并经优化催化剂配比及反复试验研究,合理确定了原料配比、催化剂用量、聚合反应温度、时间等工艺参数和条件,反应条件温和,反应时间短,容易控制,制得的三乙醇胺嵌段聚醚可调控分子量的范围在400~6000g/mol,羟值28.05~420.75mgKOH/g,分子量分布系数普遍低于1.05,最低可达1.023,外观色浅透明度高,钠钾离子含量低不需要后处理,成本低、三废少,在表面活性剂领域有较好应用前景,特别是用于药物、化妆品、纤维、洗化、润滑、聚氨酯领域中。
下面通过几个更具体的实施例进一步说明本申请,这仅为了实例说明,并不对本申请构成任何限制。
以下实施例用到的原料来源如下:
18-冠(醚)-6:阿拉丁试剂,纯度99%;
15-冠(醚)-5:阿拉丁试剂,纯度97%;
12-冠(醚)-4:阿拉丁试剂,纯度98%;
甲醇钠:阿拉丁试剂,纯度30%甲醇溶液;
KOH:工业用95%;
甲醇钾:阿拉丁试剂,纯度99%;
无水氢氧化锂:阿拉丁试剂,纯度99.99%;
磷腈:奇克磷腈催化剂(40%乙醇溶液);
冰醋酸:国药试剂,纯度99.9%;
EO/PO用万华装置自产。
本申请中羟值的测定方法按国家标准GB 12008.3-89《聚醚多元醇中羟值测定方法》记载的苯配法进行测定。
聚醚的分子量分布采用凝胶渗透色谱法(GPC)测定,分子量分布系数PDI在GPC图谱中可以同时得到。
钠、钾离子含量采用火焰光度计测定,将需要测定的样品的钾、钠离子用70%乙醇稀释至0~100ppm即可直接读取数据,乘稀释倍数即可。
外观采用恒温放置2h后肉眼观察测定。
乳化性能的测定方法:在25℃下,用质量分数0.1%的试样40mL与同体积液体石蜡在250mL烧杯中剧烈搅拌1min,倒入100mL量筒中,记录出水相分出10mL的时间(s)。
实施例1
一种三乙醇胺聚氧丙烯聚氧乙烯醚的制备,具体步骤如下:
在自吸式搅拌反应釜中加入149.19g(1mol)三乙醇胺和相当于三乙醇胺、PO、EO总质量的0.02%的磷腈复合催化剂。密闭好反应釜以后用氮气置换3次,待反应釜升温至80℃抽真空1h脱除水分和甲醇。其中磷腈复合催化剂的组成为 KOH:18-冠-6醚:磷腈为1:2:7。脱水完毕,保持反应釜温度120~125℃,加入环氧丙烷2610g,控制压力在0.3MPa以下,5h加完,继续反应老化直至压力不再降低。由于釜容量有限,冷却至60℃以下取出部分中间体,反应釜内留689.8g中间体,氮气置换3次,升温至120℃通入环氧乙烷330g,控制压力在0.3MPa以下,2h加完,继续老化反应一段时间直至压力不再降低,而后冷却至75~80℃脱单1h,在产物中加入适量醋酸中和pH至7左右,脱除水分和未反应醋酸,出料。测定产物的羟值,分子量分布系数,钠、钾离子含量,外观,乳化性能等。
实施例2~7
其他与实施例1的设置相同,区别在于催化剂的用量、催化剂的复合比、反应时间、三乙醇胺与PO、EO的摩尔比不同,具体配比及参数见表1,其中对比例1~3是对照组。实施例及对比例制得的聚醚产品参数指标及检测见表2。
表1实施例工艺参数表
Figure PCTCN2021073012-appb-000003
Figure PCTCN2021073012-appb-000004
表2产品参数性能表
Figure PCTCN2021073012-appb-000005
Figure PCTCN2021073012-appb-000006
从结果看,实施例1的磷腈复合催化剂与对比例的普通催化剂或单一磷腈催化剂相比,当接的EO/PO数量相同时,本申请的催化剂用量仅为对比例的10%,反应时间也将近缩短了一半,说明本申请的方法具有反应速率快、催化效率高的明显优势。对比例1为0.2%甲醇钠催化,对比例2为0.2%磷腈催化,对比例3为0.2%KOH催化,实施例1和2在复合催化剂用量更低的催化反应条件下,同为120℃反应。这五组对比发现,当接的EO/PO数量相同时,本申请的磷腈复合催化剂制备的嵌段聚醚羟值更接近设计值,分子量也就更接近设计值,具体表现为分子量分布系数更接近理想值1。同时,实施例2与实施例1相比催化剂用量略大,最终产品的羟值更接近设计值,分子量分布系数也更窄。本申 请通过磷腈复合催化剂配比和用量的调整,均能实现高的催化效率,并且分子量分布系数低,特别是实施例1和2中分子量分布系数可达到1.025和1.023,最直接的影响就是产品有效成分含量高,高分子量组分含量少,产品倾点低,从10℃产品形态即能对比出来。本申请得到的窄分子量分布的嵌段聚醚产品均为液体,这为产品冬季的应用特别是北方的应用提供了便利。
产品的泡沫高度与乳化性能主要与EO/PO摩尔比例有关。当EO占比高,即亲水基含量高时,泡沫高度大;PO为亲油基,可以有效降低所形成的泡沫表面的表面张力,导致泡沫破裂并消失,消泡作用明显。高泡和低泡在不同领域要求不同,工业清洗以及润滑领域低泡较佳,但是在某些领域,却恰恰相反,如日用化学品,沐浴露洗面奶等,追求的就是泡沫多,泡沫细腻;窄分布的产品更易按照相应的设计值达到相应泡沫要求。会使得低泡性能更明显,而乳化性能也是。一般来讲乳化性与EO量有关,EO含量高乳化性能好,同样为了得到乳化和泡沫俱佳的产品就要经过精准的调试,实施例3和4综合而言产品泡沫高度较低,乳化性能也较好,在应用中具有一定优势。基于本申请的嵌段聚醚分子量分布系数更窄,羟值更接近理论设计值,在此基础上可以通过调整EO/PO摩尔比,使得产品的性能满足不同客户的需求,甚至可以根据需求定制;而现有技术的分子量分布系数普遍高于1.15,根本无法做到根据需求定制。从实施例2与对比例1、2、3的对比可以看出来磷腈复合催化剂产品与其他催化剂产品在乳化、低泡方面也有一定的优势。另外理论上由于当冠醚和碱等摩尔量的时候,钠钾离子完全被络合,催化效率更高,在钠钾被完全络合的基础上适当调整磷腈催化剂的比例,可达到降低钠钾含量同时提高催化效率的目的,并以此来优化产品设计方案,来匹配不同的客户需求。本申请在磷腈复合催化 剂的碱催化剂、冠醚、磷腈催化剂按优选方案1:2~8:6~30复配时,所得嵌段聚醚产品的钠、钾含量总和小于50ppm,因此无需精制后处理就能直接使用,大大降低了生产成本。

Claims (10)

  1. 一种窄分布三乙醇胺嵌段聚醚的制备方法,其中,在磷腈复合催化剂的存在下,以三乙醇胺为起始剂,与环氧乙烷、环氧丙烷进行聚合反应,制得三乙醇胺嵌段聚醚;
    所述的磷腈复合催化剂为碱催化剂、冠醚、磷腈催化剂按比例复配而成的混合物,三者质量比例为1~6:2~10:2~40。
  2. 根据权利要求1所述的窄分布三乙醇胺嵌段聚醚的制备方法,其包括以下步骤:
    (1)将三乙醇胺起始剂和磷腈复合催化剂混合,用氮气吹扫置换后脱除水分和杂质单体;
    (2)向含有催化剂的三乙醇胺起始剂中加入环氧乙(丙)烷,反应、老化得到中间产物;
    (3)向中间产物中加入环氧丙(乙)烷,反应、老化得到最终产物三乙醇胺嵌段聚醚。
  3. 根据权利要求1或2所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述的磷腈复合催化剂中碱催化剂、冠醚、磷腈催化剂三者质量比例为1:2~8:6~30。
  4. 根据权利要求3所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述的磷腈复合催化剂的添加量为三乙醇胺与环氧乙烷、环氧丙烷总质量的0.001%~1%;优选地,所述三乙醇胺与环氧乙烷、环氧丙烷的反应摩尔比为1:m:n,其中m、n选自0~200的整数,且m和n中的至少一个不为0;更优选地,所述三乙醇胺嵌段聚醚的分子量分布系数低于1.05。
  5. 根据权利要求3所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述的磷腈催化剂为磷腈化合物、磷腈盐和氧化磷腈中的任一种或几种的混合物。
  6. 根据权利要求3所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述碱催化剂为氢氧化钠、氢氧化钾、氢氧化锂、甲醇钾和甲醇钠中的任一种或几种的混合物。
  7. 根据权利要求3所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述冠醚为12-冠-4、15-冠(醚)-5和18-冠(醚)-6中的任一种或几种的混合物。
  8. 根据权利要求2所述的窄分布三乙醇胺嵌段聚醚的制备方法,其中,所述步骤(2)和(3)的聚合反应温度为90~180℃,反应压力为0.1MPa~0.6MPa,反应时间为1~20小时。
  9. 一种根据权利要求1-8任一项所述的方法制备的窄分布三乙醇胺嵌段聚醚,其反应结构式为:
    Figure PCTCN2021073012-appb-100001
    其中,m为0~200的整数,n为0~200的整数,且m和n中的至少一个不为0;所述嵌段聚醚的分子量分布系数低于1.05。
  10. 将权利要求9所述的窄分布三乙醇胺嵌段聚醚用于药物、化妆品、纤维、洗化、润滑和聚氨酯领域中。
PCT/CN2021/073012 2020-09-01 2021-01-21 一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用 WO2022048099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010902027.5 2020-09-01
CN202010902027.5A CN114106315B (zh) 2020-09-01 2020-09-01 一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用

Publications (1)

Publication Number Publication Date
WO2022048099A1 true WO2022048099A1 (zh) 2022-03-10

Family

ID=80360225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073012 WO2022048099A1 (zh) 2020-09-01 2021-01-21 一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用

Country Status (2)

Country Link
CN (1) CN114106315B (zh)
WO (1) WO2022048099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164842A (zh) * 2023-11-01 2023-12-05 万华化学集团股份有限公司 一种窄分布的异构醇聚氧乙烯醚的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050653A1 (zh) * 2022-09-05 2024-03-14 万华化学集团股份有限公司 组合物及其胶黏剂组合料、无醛添加人造板及其制备方法
CN115141343B (zh) * 2022-09-05 2023-01-13 万华化学集团股份有限公司 组合物及其胶黏剂组合料、无醛添加人造板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192448A (ja) * 2000-01-11 2001-07-17 Mitsui Chemicals Inc ポリオキシアルキレンポリオールの製造方法
JP2001270925A (ja) * 2000-03-24 2001-10-02 Mitsui Chemicals Inc ポリオレフィン変性ポリオール及びその製造方法
US6410676B1 (en) * 1998-10-20 2002-06-25 Mitsui Chemicals, Inc. Method for producing polyoxyalkylene polyol and derivatives thereof
JP2003190808A (ja) * 2001-12-27 2003-07-08 Asahi Glass Co Ltd 複合金属シアン化物錯体触媒およびその製造方法
CN104448293A (zh) * 2014-12-09 2015-03-25 淄博德信联邦化学工业有限公司 表面活性剂聚醚多元醇及其制备方法
CN110922580A (zh) * 2019-12-12 2020-03-27 山东一诺威新材料有限公司 高分子量高活性聚醚多元醇的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240062B (zh) * 2007-12-21 2011-01-12 王伟松 三乙醇胺嵌段聚醚的合成方法
JP2018178100A (ja) * 2017-04-05 2018-11-15 三洋化成工業株式会社 ポリウレタンフォーム製造用ポリオール組成物及びポリウレタンフォーム
CN107573499B (zh) * 2017-09-15 2020-05-15 延安大学 一种原油破乳剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410676B1 (en) * 1998-10-20 2002-06-25 Mitsui Chemicals, Inc. Method for producing polyoxyalkylene polyol and derivatives thereof
JP2001192448A (ja) * 2000-01-11 2001-07-17 Mitsui Chemicals Inc ポリオキシアルキレンポリオールの製造方法
JP2001270925A (ja) * 2000-03-24 2001-10-02 Mitsui Chemicals Inc ポリオレフィン変性ポリオール及びその製造方法
JP2003190808A (ja) * 2001-12-27 2003-07-08 Asahi Glass Co Ltd 複合金属シアン化物錯体触媒およびその製造方法
CN104448293A (zh) * 2014-12-09 2015-03-25 淄博德信联邦化学工业有限公司 表面活性剂聚醚多元醇及其制备方法
CN110922580A (zh) * 2019-12-12 2020-03-27 山东一诺威新材料有限公司 高分子量高活性聚醚多元醇的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN HUA, HU Z, INBAO X, ANG WANG K, ANG F, INGLIN HAO J: "Research progress on ring-opening polymerization catalyst of epoxide", HUAXUE-GONGYE-YU-GONGCHENG-JISHU = JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING, CIE / NANJING HUAGONG GONGSI JISHU ZHONGXIN, ZHONGUO SHIHUA JITUAN, NANJING,, CN, no. 2, 28 April 2008 (2008-04-28), CN , pages 40 - 45, XP055906732, ISSN: 1006-7906 *
ZHAO RUICHAO, YAO LI-NA;GAI DONG-JIE;GU YAO: " Research Progress on Catalysts for Synthesis of Polyether Polyol", SHANGHAI PLASTICS, SHANGHAI SOCIETY OF PLASTICS ENGINEERING TECHNOLOGY; SHANGHAI INSTITUTE OF CHEMICAL INDUSTRY, no. 1, 30 March 2016 (2016-03-30), pages 16 - 25, XP055906744, ISSN: 1009-5993, DOI: 10.16777/j.cnki.issn.1009-5993.2016.01.004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164842A (zh) * 2023-11-01 2023-12-05 万华化学集团股份有限公司 一种窄分布的异构醇聚氧乙烯醚的制备方法
CN117164842B (zh) * 2023-11-01 2024-02-02 万华化学集团股份有限公司 一种窄分布的异构醇聚氧乙烯醚的制备方法

Also Published As

Publication number Publication date
CN114106315A (zh) 2022-03-01
CN114106315B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2022048099A1 (zh) 一种窄分布三乙醇胺嵌段聚醚的制备方法、嵌段聚醚及其应用
CN105061750B (zh) 高双键含量烯丙基聚醚的一种生产方法
CN107021875B (zh) 仲醇聚氧乙烯醚的制备方法
CN105330836B (zh) 一种端环氧基烯丙醇聚氧乙烯醚的合成方法
CN104231257B (zh) 一种芳基烷基醇聚氧丙烯聚氧乙烯嵌段共聚物及其制备方法和应用
CN109369903B (zh) 一种脂肪醇聚醚的制备方法
CN107935826B (zh) 一种低温稳定性好的脂肪醇嵌段聚醚及其制备方法和应用
CN106478937A (zh) 一种新的烯丙醇无规聚醚缩水甘油醚的制备方法
CN101914200B (zh) 一种烯丙基聚氧乙烯醚的制备方法
CN108864418B (zh) 一种老化原油破乳剂及其制备方法
CN110283315A (zh) 一种利用甲基氯硅烷副产物生产羟基硅油的方法
CN107200839A (zh) 一种甲基烯丙醇无规聚醚及其制备方法
CN106084197A (zh) 一种窄分布聚醚的制备方法
CN113061243B (zh) 一种烯丙醇聚氧丙烯醚的制备方法
CN113444237B (zh) 一种季铵化聚醚反相破乳剂及其制备方法
CN101717500B (zh) 二次封端法合成高封端率甲氧基封端聚醚的方法
CN1316398A (zh) 聚羧酸系引气高效混凝土减水剂
CN114805829A (zh) 一种模板剂及其制备方法和应用
CN111647102A (zh) 一种环氧化端羟基聚丁二烯及其制备方法
CN117645867B (zh) 一种提高采收率的表面活性剂组合物及其制备方法
CN117164842B (zh) 一种窄分布的异构醇聚氧乙烯醚的制备方法
CN109970894B (zh) 一种聚合物型混凝土消泡剂、其制备方法及应用
CN114685086B (zh) 一种超支化型混凝土消泡剂、其制备方法及应用
CN113817155B (zh) 原油破乳剂及其制备方法
CN115947702B (zh) 一种辛基缩水甘油醚的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863170

Country of ref document: EP

Kind code of ref document: A1