WO2022045036A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2022045036A1
WO2022045036A1 PCT/JP2021/030717 JP2021030717W WO2022045036A1 WO 2022045036 A1 WO2022045036 A1 WO 2022045036A1 JP 2021030717 W JP2021030717 W JP 2021030717W WO 2022045036 A1 WO2022045036 A1 WO 2022045036A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
electrolytic solution
Prior art date
Application number
PCT/JP2021/030717
Other languages
English (en)
French (fr)
Inventor
祐 石黒
千咲希 藤友
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/023,638 priority Critical patent/US20230307610A1/en
Priority to EP21861462.6A priority patent/EP4207343A4/en
Priority to CN202180052565.2A priority patent/CN115989594A/zh
Priority to JP2022544567A priority patent/JPWO2022045036A1/ja
Publication of WO2022045036A1 publication Critical patent/WO2022045036A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte a non-aqueous electrolyte solution is mainly used.
  • the negative electrode comprises a negative electrode mixture containing a negative electrode active material capable of electrochemically occluding and releasing lithium ions.
  • a material capable of electrochemically occluding and releasing lithium ions is used.
  • a material for example, a carbonaceous material, a silicon-containing material, or the like is used.
  • a carbonaceous material that does not occlude and release lithium ions such as carbon fibers and carbon nanotubes may be added to the negative electrode mixture.
  • Patent Document 1 describes a composite electrode agent containing particles containing an element capable of occluding / releasing lithium ions, carbon particles capable of occluding / releasing lithium ions, a multilayer carbon tube, and carbon nanofibers. It is proposed to be used for secondary batteries.
  • Patent Document 2 an active material, carbon fibers having a fiber diameter of 50 nm or more and 300 nm or less, carbon fibers having a fiber diameter of 5 nm or more and 400 nm or less, carbon black, and a binder are dry-mixed to obtain a mixture, and a liquid medium is added to the mixture. It is proposed to use an electrode produced by kneading and forming the kneaded product into a sheet shape for a lithium ion battery.
  • Silicon-containing materials have a large volume change due to occlusion and release of lithium ions. Therefore, when a silicon-containing material is used as the negative electrode active material, the conductive path between the negative electrode active material particles is cut, the negative electrode active material particles are isolated, and the cycle characteristics are likely to deteriorate.
  • One aspect of the present disclosure comprises a positive electrode, a separator, a negative electrode facing the positive electrode via the separator, and an electrolytic solution, the electrolytic solution containing an acid anhydride, and the negative electrode being a negative electrode.
  • the negative electrode active material comprises a negative electrode mixture containing an active material and a carbon nanotube, and the negative electrode active material relates to a non-aqueous electrolyte secondary battery containing a silicon-containing material and a carbonaceous material.
  • the present disclosure it is possible to suppress a decrease in the electrolytic solution when the charge / discharge cycle of the non-aqueous electrolyte secondary battery is repeated at a high temperature for a long period of time, and to improve the capacity retention rate.
  • FIG. 1 is a perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure is cut out.
  • the non-aqueous electrolyte secondary battery according to the present disclosure includes a positive electrode, a separator, a negative electrode facing the positive electrode via the separator, and an electrolytic solution.
  • the negative electrode comprises a negative electrode mixture, and the negative electrode mixture contains a negative electrode active material and carbon nanotubes.
  • Negative electrode active materials include silicon-containing materials and carbonaceous materials.
  • the silicon-containing material may be referred to as a Si-containing material
  • the carbon nanotube may be referred to as CNT.
  • the electrolytic solution contains acid anhydride.
  • the acid anhydride reacts rapidly with the negative electrode active material.
  • the acid anhydride reacts rapidly on the new surface formed by the cracks to form a protective film with low resistance.
  • the rapid protection of the neoplastic surface suppresses the progression of further side reactions that accompany the decomposition of the electrolyte. Therefore, by including the Si-containing material and CNT, the consumption of the electrolytic solution is suppressed even when the negative electrode active material is likely to be cracked due to expansion and contraction. As a result, the capacity retention rate can be remarkably improved even when a long-term charge / discharge cycle is performed at a high temperature.
  • Acid anhydride hardly contributes to suppressing the decrease of the electrolytic solution when a negative electrode mixture containing no CNT is used, and greatly improves the capacity retention rate when a long-term charge / discharge cycle is performed at a high temperature. Does not contribute. However, when the electrolytic solution containing acid anhydride is combined with the negative electrode mixture containing CNT, the decrease of the electrolytic solution is remarkably suppressed and the capacity retention rate is remarkable when a long-term charge / discharge cycle is performed at a high temperature. Improvements can be seen.
  • the capacity retention rate at the initial stage of the charge / discharge cycle is improved by using CNT. Further, by using acid anhydride, the capacity retention rate is improved even when a long-term charge / discharge cycle is performed at a high temperature.
  • the content of acid anhydride in the electrolytic solution is, for example, 5% by mass or less, and may be 3% by mass or less.
  • the content of the acid anhydride is in such a range, the action of forming a protective film on the new surface generated by the cracking of the negative electrode active material is maintained for a long period of time without impairing the function required for the electrolytic solution. Therefore, when a long-term charge / discharge cycle is performed at a high temperature, the decrease in the electrolytic solution can be further suppressed.
  • the content of the acid anhydride in the electrolytic solution is preferably 2% by mass or less.
  • the content of acid anhydride in the electrolytic solution changes during the storage period or the charge / discharge cycle. Therefore, it is sufficient that the acid anhydride remains at a concentration equal to or higher than the detection limit in the electrolytic solution collected from the non-aqueous electrolyte secondary battery.
  • the content of the acid anhydride in the electrolytic solution may be 0.01% by mass or more, 0.1% by mass or more, or 0.5% by mass or more.
  • the content of the acid anhydride in the electrolytic solution used for manufacturing the non-aqueous electrolyte secondary battery may be 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more. May be.
  • the content of acid anhydride in the electrolytic solution used for producing the non-aqueous electrolyte secondary battery is, for example, 5% by mass or less, and may be 3% by mass or less or 2% by mass or less.
  • the type of acid anhydride is not particularly limited, but the acid anhydride containing a carbon-carbon unsaturated bond can react more rapidly on the new surface generated by the cracking of the negative electrode active material to form a protective film. Is desirable.
  • the acid anhydride molecule is desirable to have as simple a structure as possible from the viewpoint of effectively utilizing as many constituent elements of the molecule as possible for forming a protective film.
  • acid anhydrides include maleic anhydride, succinic anhydride, acetic anhydride, phthalic anhydride, benzoic anhydride and the like.
  • maleic anhydride, succinic anhydride and the like are preferable because they have an excellent balance between stability and reactivity and can form a film having a lower resistance.
  • one type of acid anhydride may be used alone, or two or more types may be used in combination.
  • the content of each component in the electrolytic solution can be determined, for example, by using gas chromatography under the following conditions.
  • Measuring device GC-2010 Plus manufactured by Shimadzu Corporation Column: HP-1 manufactured by J & W (1 ⁇ m x 60 m) Linear velocity: 30.0 cm / sec Injection port temperature: 270 ° C Detector: FID 290 ° C (sens.10 1 )
  • the non-aqueous electrolyte secondary battery of the present disclosure will be specifically described for each component.
  • the negative electrode comprises a negative electrode mixture.
  • the negative electrode may include a negative electrode mixture and a negative electrode current collector that holds the negative electrode mixture.
  • the negative electrode usually includes a layered negative electrode mixture (hereinafter referred to as a negative electrode mixture layer).
  • the negative electrode mixture contains a negative electrode active material and CNT.
  • the negative electrode mixture may further contain a binder, a thickener, a conductive agent other than CNT, and the like.
  • Negative electrode active materials include Si-containing materials and carbonaceous materials.
  • the carbonaceous material has a smaller degree of expansion and contraction during charging and discharging than the Si-containing material.
  • the negative electrode active material may contain other negative electrode active materials other than the Si-containing material and the carbonaceous material, if necessary. Examples of the other negative electrode active material include at least one selected from the group consisting of Sn simple substances, Sn alloys, and Sn compounds such as Sn oxides.
  • Si-containing material examples include simple substances of Si, silicon alloys, silicon compounds (silicon oxides, etc.), and composite materials in which a silicon phase (fine Si phase) is dispersed in a lithium ion conductive phase (matrix). ..
  • silicon oxide examples include SiO x .
  • x is 0.5 ⁇ x ⁇ 2, and may be 0.8 ⁇ x ⁇ 1.6.
  • the Si-containing material preferably contains the above-mentioned composite material.
  • the lithium ion conductive phase preferably contains at least one selected from the group consisting of a SiO 2 phase and a silicate phase.
  • the lithium ion conduction phase may further contain a carbon phase.
  • the lithium ion conductive phase can form an amorphous phase.
  • the Si-containing material includes a composite material in which the silicon phase is dispersed in the SiO 2 phase, a composite material in which the silicon phase is dispersed in the silicate phase, a composite material in which the silicon phase is dispersed in the carbon phase, and the like. But it may be.
  • the SiO 2 phase is an amorphous phase containing 95% by mass or more of silicon dioxide.
  • the composite material in which silicon particles are dispersed in the SiO 2 phase is represented by SiO x , and x may be, for example, in the above range.
  • SiO x can be obtained, for example, by heat-treating silicon monoxide and separating it into a SiO 2 phase and a fine Si phase by a disproportionation reaction. When the particle cross section of SiO x is observed using a transmission electron microscope (TEM: Transmission Electron Microscope), the silicon phase dispersed in the SiO 2 phase can be confirmed.
  • TEM Transmission Electron Microscope
  • the silicate phase preferably contains at least one of an alkali metal element (a group 1 element other than hydrogen in the long-periodic table) and a group 2 element in the long-periodic table.
  • Alkali metal elements include lithium (Li), potassium (K), sodium (Na) and the like.
  • Group 2 elements include magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and the like.
  • the lithium silicate phase may have a composition represented by the formula: Li 2y SiO 2 + y (0 ⁇ y ⁇ 2). y may be 1/2 or 1.
  • the composite material in which silicon particles are dispersed in the silicate phase can be obtained, for example, by crushing a mixture of silicate and raw material silicon with stirring with a ball mill or the like, forming fine particles, and then heat-treating the mixture in an inert atmosphere. ..
  • the content of the silicon phase dispersed in the silicate phase may be 30% by mass or more and 95% by mass or less, and 35% by mass or more and 75% by mass or less with respect to the entire composite material. May be good.
  • the carbon phase contains, for example, amorphous carbon (amorphous carbon) having low crystallinity.
  • the amorphous carbon may be, for example, easily graphitized carbon (hard carbon) or non-graphitized carbon (soft carbon).
  • a composite material in which silicon particles are dispersed in a carbon phase can be obtained, for example, by crushing a mixture of a carbon source and a raw material silicon with stirring with a ball mill or the like, forming fine particles, and then heat-treating the mixture in an inert atmosphere. can.
  • a saccharide such as carboxymethyl cellulose (CMC) or a water-soluble resin such as polyvinylpyrrolidone is used.
  • composition of the Si-containing material for example, a backscattered electron image of a cross section of the negative electrode mixture layer was obtained with an electro-emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope), and particles of the Si-containing material were observed. It is obtained by performing elemental analysis on the observed particles of the Si-containing material. For elemental analysis, for example, electron probe microanalyzer (EPMA) analysis or the like is used.
  • EPMA electron probe microanalyzer
  • the composition of the lithium ion conduction phase can also be determined by the above analysis.
  • Si-containing material one type may be used alone, or two or more types may be used in combination.
  • the Si-containing material is, for example, a particulate material.
  • the average particle size (D50) of the Si-containing material is, for example, 1 ⁇ m or more and 25 ⁇ m or less, preferably 4 ⁇ m or more and 15 ⁇ m or less. In the above range, good battery performance can be easily obtained.
  • the average particle size (D50) means the particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction / scattering method.
  • the measuring device for example, "LA-750" manufactured by HORIBA, Ltd. can be used.
  • the conductive layer contains a conductive material such as conductive carbon.
  • the coating amount of the conductive layer is, for example, 1 part by mass or more and 10 parts by mass or less per 100 parts by mass in total of the Si-containing material particles and the conductive layer.
  • the Si-containing material particles having a conductive layer on the surface can be obtained, for example, by mixing coal pitch or the like with the Si-containing material particles and heat-treating the particles in an inert atmosphere.
  • the Si-containing material has a large volume change due to expansion and contraction during charging and discharging. Therefore, when the ratio of the Si-containing material to the negative electrode active material becomes large, the cycle characteristics tend to deteriorate.
  • the negative electrode mixture contains a specific content of CNTs, even when the ratio of the Si-containing material to the negative electrode active material is relatively large, the cutting of the conductive path is suppressed and the cycle characteristics are high. Easy to secure.
  • the ratio of the Si-containing material to the negative electrode active material is preferably 4% by mass or more, and may be 5% by mass or more.
  • the ratio of the Si-containing material is preferably 15% by mass or less, and may be 10% by mass or less.
  • Carbonaceous material examples include graphite, graphitized carbon (soft carbon), and graphitized carbon (hard carbon).
  • the carbonaceous material one kind may be used alone, or two or more kinds may be used in combination.
  • Graphite is preferable as the carbonaceous material because it has excellent charge / discharge stability and has a small irreversible capacity.
  • Examples of graphite include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • the graphite particles may partially contain amorphous carbon, easily graphitized carbon, and non-graphitized carbon.
  • Graphite is a carbonaceous material with a developed graphite-type crystal structure.
  • the interplanar spacing d002 of the (002) plane of graphite measured by the X-ray diffraction method may be, for example, 0.340 nm or less, 0.3354 nm or more, and 0.340 nm or less.
  • the crystallite size Lc (002) of graphite may be, for example, 5 nm or more, 5 nm or more, or 200 nm or less.
  • the crystallite size Lc (002) is measured, for example, by the Scherrer method.
  • the ratio of the carbonaceous material to the negative electrode active material is, for example, 97% by mass or less, 96% by mass or less, or 95% by mass or less.
  • the ratio of the carbonaceous material to the negative electrode active material is, for example, 76% by mass or more, 80% by mass or more, 85% by mass or more, or 90% by mass or more.
  • the ratio of the total amount of the Si-containing material and the carbonaceous material in the negative electrode active material is preferably 90% by mass or more, and may be 95% by mass or more or 98% by mass or more.
  • the ratio of the total amount of the Si-containing material and the carbonaceous material in the negative electrode active material is 100% by mass or less.
  • the negative electrode active material may be composed only of a Si-containing material and a carbonaceous material.
  • CNT carbonaceous material having a diameter of nano size, which has a structure in which a sheet (graphene) of a six-membered ring network formed by carbon atoms is wound in a cylindrical shape. CNTs have excellent conductivity.
  • SWCNT single-walled carbon nanotube
  • MWCNT multi-walled carbon nanotube
  • the CNT preferably contains SWCNTs.
  • SWCNTs SWCNTs
  • the ratio of SWCNTs to CNTs is, for example, 50% or more, 75% or more, or 90% or more.
  • the ratio of SWCNTs to CNTs is 100% or less.
  • the ratio of SWCNTs to CNTs is the ratio of the number of SWCNTs to the total number of CNTs.
  • CNT in the negative electrode mixture
  • SEM scanning electron microscope
  • the ratio of SWCNTs to the CNTs contained in the negative electrode mixture can be obtained by the following method.
  • SEM image a plurality of (for example, 50 to 200) CNTs are arbitrarily selected and observed, the number of SWCNTs is obtained, and the ratio of the number of SWCNTs to the total number of selected CNTs is calculated.
  • Quantitative analysis of CNTs is performed, for example, by combining Raman spectroscopy and thermogravimetric analysis.
  • the average diameter of CNTs may be, for example, 1 nm or more and 10 nm or less, and may be 1 nm or more and 5 nm or less.
  • the average length of CNTs may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, and may be 5 ⁇ m or more and 20 ⁇ m or less.
  • the average length and average diameter of CNTs can be determined from the cross section of the negative electrode mixture layer or the image of CNTs using at least one of SEM and TEM. More specifically, in the captured image, a plurality of (for example, 50 to 200) CNTs are arbitrarily selected, the length and the diameter are measured, and the average length and the average diameter are obtained by averaging each of them. Be done.
  • the length of the CNT means the length when the CNT is stretched in a straight line.
  • the content of CNT in the negative electrode mixture is, for example, 0.005% by mass or more and 0.1% by mass or less, and may be 0.01% by mass or more and 0.05% by mass or less. It may be 02% by mass or more and 0.05% by mass or less.
  • the binder for example, a resin material is used.
  • the binder include fluororesins (eg, polytetrafluoroethylene, polyfluorovinylidene), polyolefin resins (eg, polyethylene, polypropylene), polyamide resins (eg, aramid resins), and polyimide resins (eg, polyimides, polyamides). Imid), acrylic resin (eg, polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymer, ethylene-acrylic acid copolymer, or salts thereof), vinyl resin (eg, polyvinyl acetate), rubber. Plastic materials (eg, styrene-butadiene copolymer rubber (SBR)) can be mentioned.
  • SBR styrene-butadiene copolymer rubber
  • Examples of the thickener include cellulose derivatives such as cellulose ether.
  • Examples of the cellulose derivative include CMC and its modified product, methyl cellulose and the like.
  • the modified form of CMC also contains a salt of CMC.
  • Examples of the salt include alkali metal salts (for example, sodium salts), ammonium salts and the like.
  • the thickener may be used alone or in combination of two or more.
  • Examples of the conductive agent other than CNT include conductive fibers and conductive particles other than CNT.
  • Examples of conductive fibers include carbon fibers and metal fibers.
  • Examples of the conductive particles include conductive carbon (carbon black and the like), metal powder and the like.
  • As the conductive agent one type may be used alone, or two or more types may be used in combination.
  • the negative electrode current collector is selected according to the type of non-aqueous electrolyte secondary battery.
  • Examples of the negative electrode current collector include a sheet-shaped one.
  • a metal foil or the like may be used.
  • a porous body may be used as the current collector.
  • Examples of the porous current collector include a mesh-like one, a punching sheet, and an expanded metal.
  • Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but may be, for example, 1 to 50 ⁇ m and 5 to 30 ⁇ m.
  • the negative electrode can be formed, for example, by applying a negative electrode slurry in which the constituent components of the negative electrode mixture are dispersed in a dispersion medium to the surface of the negative electrode current collector and drying the negative electrode.
  • the dried coating film may be rolled if necessary.
  • the dispersion medium is not particularly limited, but is, for example, water, alcohol (eg, ethanol), ether (eg, tetrahydrofuran), amide (eg, dimethylformamide), N-methyl-2-pyrrolidone (NMP), or any of these.
  • a mixed solvent can be mentioned.
  • the positive electrode may include a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components.
  • the dispersion medium can be selected from, for example, those exemplified for the negative electrode.
  • a composite oxide containing lithium and a transition metal is used as the positive electrode active material.
  • the transition metal include Ni, Co, Mn and the like.
  • the composite oxide containing lithium and a transition metal include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b1 Ni 1-b1 O 2 , and Li a Co b1 M 1-b1 O.
  • examples thereof include c1 , Li a Ni 1-b1 M b1 O c1 , Li a Mn 2 O 4 , and Li a Mn 2-b1 M b1 O 4 .
  • a 0 to 1.2
  • b1 0 to 0.9
  • c1 2.0 to 2.3.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B.
  • the a value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • Li a Ni b2 M 1-b2 O 2 (0 ⁇ a ⁇ 1.2, 0.3 ⁇ b2 ⁇ 1), and M is at least one selected from the group consisting of Mn, Co and Al.
  • the resin material exemplified for the negative electrode can be used as the binder.
  • the conductive agent can be selected from, for example, those exemplified for the negative electrode.
  • Graphite may be used as the conductive agent.
  • the shape and thickness of the positive electrode current collector can be selected from the shapes and ranges described for the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the electrolytic solution is usually used in a liquid state, but the fluidity may be limited by a gelling agent or the like.
  • the electrolytic solution usually contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, and additionally contains an additive.
  • acid anhydrides and sulfur-containing compounds are classified as additives.
  • Chain carboxylic acid esters are classified as non-aqueous solvents.
  • Non-aqueous solvent examples include cyclic carbonate esters, chain carbonate esters, cyclic carboxylic acid esters, and chain carboxylic acid esters.
  • examples of the cyclic carbonic acid ester include propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC) and the like.
  • Examples of the chain carbonate ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl formate, ethyl formate, propyl formate, methyl acetate (MA), ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • the electrolytic solution may contain one kind of non-aqueous solvent, or may contain two or more kinds in combination.
  • the electrolytic solution contains FEC or a chain carboxylic acid ester
  • a side reaction is likely to occur when combined with a negative electrode mixture containing CNT.
  • the effect of using the acid anhydride can be remarkably obtained. Therefore, side reactions are suppressed and high cycle characteristics can be ensured. Such an effect becomes even more pronounced when the electrolytic solution contains at least MA as the FEC or chain carboxylic acid ester.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiB 10 Cl 10, and LiCl. , LiBr, LiI, phosphates, borates, imide salts and the like.
  • the phosphate include lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorobis (oxalate) (LiDFBOP), lithium tetrafluoro (oxalate) and the like.
  • borate examples include bis (oxalate) lithium borate (LiBOB) and difluoro (oxalate) lithium borate (LiDFOB).
  • imide salt examples include bisfluorosulfonylimide lithium (LiN (FSO 2 ) 2 ), bistrifluoromethanesulfonate imide lithium (LiN (CF 3 SO 2 ) 2 ), and trifluoromethanesulfonate nonafluorobutane sulfonate imide lithium (LiN).
  • the electrolytic solution may contain one type of lithium salt or a combination of two or more types.
  • the electrolytic solution contains bisfluorosulfonylimide lithium (LiFSI), side reactions are likely to occur when combined with a negative electrode mixture containing CNT.
  • LiFSI bisfluorosulfonylimide lithium
  • the effect of using the acid anhydride can be remarkably obtained. Therefore, side reactions are suppressed and high cycle characteristics can be ensured.
  • the concentration of the lithium salt in the electrolytic solution is, for example, 0.5 mol / L or more and 2 mol / L or less.
  • the sulfur-containing compound As the sulfur-containing compound, at least one selected from the group consisting of sulfate ester, sulfite ester and sulfonic acid ester can be used.
  • the sulfate ester may be cyclic, chain-like, or may constitute a salt.
  • the sulfite ester may be cyclic, chain-like, or may constitute a salt.
  • the sulfonic acid ester may be cyclic, chain-like, or may constitute a salt.
  • the electrolytic solution may contain one type of sulfur-containing compound or may contain two or more types in combination.
  • C 2-4 alkyl sulfate is preferable. Specific examples thereof include ethylene sulfate, propylene sulfate, trimethylene sulfate, butylene sulfate, vinylene sulfate, ethyl sulfate, and methyl sulfate.
  • C 2-4 alkylene sulfite is preferable. Specific examples thereof include ethylene sulphite (ES), propylene sulphite, trimethylene sulphite, butylene sulphite, vinylen sulphite and the like.
  • sulfonic acid ester at least one selected from the group consisting of C 3-5 alkane sultone and C 3-5 alken sultone is preferable. Specific examples thereof include 1,3-propane sultone, 1,4-butane sultone, and 1,3-propene sultone.
  • one or more hydrogen atoms of the compound exemplified above may be substituted with a substituent.
  • the substituent include an alkyl group, a hydroxyalkyl group, a hydroxy group, an alkoxy group, a halogen atom and the like.
  • the number of carbon atoms of the substituent may be 1 to 4 or 1 to 3.
  • the halogen atom include a chlorine atom and a fluorine atom.
  • the content of the sulfur-containing compound in the electrolytic solution is, for example, 5% by mass or less, may be 3% by mass or less, or may be 2% by mass or less.
  • the content of the sulfur-containing compound is in such a range, the effect of suppressing the decrease of the electrolytic solution is further enhanced.
  • the viscosity of the electrolytic solution can be suppressed to a low level and the charge / discharge reaction can proceed more uniformly, it is considered that the consumption of the electrolytic solution is suppressed as a whole.
  • the content of the sulfur-containing compound in the electrolytic solution changes during the storage period or the charge / discharge cycle. Therefore, it is sufficient that the sulfur-containing compound remains at a concentration equal to or higher than the detection limit in the electrolytic solution collected from the non-aqueous electrolyte secondary battery.
  • the content of the sulfur-containing compound in the electrolytic solution may be 0.01% by mass or more, 0.1% by mass or more, or 0.5% by mass or more.
  • the content of the sulfur-containing compound in the electrolytic solution used for manufacturing the non-aqueous electrolyte secondary battery may be 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more. You may.
  • the content of the sulfur-containing compound in the electrolytic solution used for producing the non-aqueous electrolyte secondary battery is, for example, 5% by mass or less, and may be 3% by mass or less or 2% by mass or less.
  • the electrolytic solution may contain other additives.
  • additives include vinyl ethylene carbonate, cyclohexylbenzene and the like.
  • Separator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has moderate mechanical strength and insulation.
  • a separator for example, a microporous thin film, a woven fabric, or a non-woven fabric, or at least two laminates selected from these can be used.
  • polyolefin for example, polypropylene, polyethylene
  • polyethylene is preferable.
  • the structure of the non-aqueous electrolyte secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound around a separator is housed in an exterior body together with an electrolytic solution.
  • the present invention is not limited to this, and other forms of electrodes may be applied.
  • a laminated electrode group in which a positive electrode and a negative electrode are laminated via a separator may be used.
  • the form of the non-aqueous electrolyte secondary battery is not limited, and may be, for example, a cylindrical type, a square type, a coin type, a button type, a laminated type, or the like.
  • FIG. 1 is a schematic perspective view in which a part of a square non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and an electrolytic solution.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them.
  • the negative electrode current collector of the negative electrode is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via the negative electrode lead 3.
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • the positive electrode current collector of the positive electrode is electrically connected to the back surface of the sealing plate 5 via the positive electrode lead 2.
  • the positive electrode is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded.
  • the sealing plate 5 has an injection hole for the electrolytic solution, and is closed by the sealing 8 after the injection.
  • Negative Electrode An appropriate amount of water was added to the negative electrode mixture and mixed to obtain a negative electrode slurry.
  • a mixture of a negative electrode active material, a binder, and a conductive agent was used.
  • the negative electrode active material a mixture of a Si-containing material and graphite (average particle size (D50) 25 ⁇ m) was used.
  • the mass ratio of the Li 2y SiO 2 + y particles excluding the conductive layer and the SiO x particles excluding the conductive layer was 1: 1. In the negative electrode active material, the mass ratio of the Si-containing material excluding the conductive layer to graphite was 6:94.
  • binder sodium polyacrylate (PAA-Na), sodium salt of CMC (CMC-Na), and SBR were used.
  • CMC-Na sodium salt of CMC
  • SBR sulfur-based conductive agent
  • CNTs containing 90% or more of SWCNTs average diameter: about 1.6 nm, average length: about 5 ⁇ m
  • the CNT content in the negative electrode mixture was the value shown in Table 1.
  • the contents of PAA-Na, CMC-Na, and SBR in the negative electrode mixture were set to 1% by mass, respectively.
  • Negative electrode was obtained.
  • the non-aqueous electrolyte secondary battery after 400 cycles was disassembled, the remaining electrolytic solution was recovered, and the volume was determined. The ratio (%) of the volume of the remaining electrolytic solution when the volume of the initial electrolytic solution was 100% was calculated. Table 1 shows this ratio as the remaining amount of electrolytic solution (%).
  • Table 1 shows the results of Examples and Comparative Examples. Table 1 also shows the content of CNT in the negative electrode mixture (% by mass), the type and amount of the additive added to the electrolytic solution (% by mass). In Table 1, E1 to E7 are Examples 1 to 7, and C1 to C7 are Comparative Examples 1 to 7.
  • LiPF 6 Bisfluorosulfonylimide
  • Lithium FEC Fluoroethylene carbonate
  • concentration of LiPF 6 is 1.35 mol / L to 1.25 mol / L.
  • LiFSI was added to a concentration of 0.10 mol / L instead.
  • the remaining amount of the electrolytic solution is reduced by 3.3% as compared with the case where it does not contain CNT (comparison between C1 and C2). Further, when the negative electrode mixture does not contain CNT, even if acid anhydride is added to the electrolytic solution, the remaining amount of the electrolytic solution is almost the same (+ 0.5% for C3 and +0.1 for C4 with respect to C1). %). In other words, when the negative electrode mixture does not contain CNTs, the acid anhydride contributes little to the suppression of the decrease in the electrolytic solution.
  • E1 to E7 it is possible to secure the remaining amount of the electrolytic solution comparable to that in the case where the negative electrode mixture does not contain CNT, as compared with C2 using the electrolytic solution containing no acid anhydride (C2).
  • E1 is + 4.2%
  • E2 is + 2.6%
  • E5 is + 3.8%
  • E6 is + 3.4%
  • E7 is + 3.6%
  • E1 to E7 a high capacity retention rate can be secured as compared with the case where CNT is not used or the acid anhydride is not used, and when charging / discharging at a high temperature (45 ° C.) is repeated for 400 cycles.
  • an excellent capacity retention rate can be obtained (comparison between C1 to C7 and E1 to E7).
  • the negative electrode mixture contains CNT, which suppresses the cutting of the conductive path in the negative electrode mixture when charging and discharging are repeated, and the use of acid anhydride causes the negative electrode mixture to contain CNT. It is considered that this is because the side reaction in the case is suppressed and electrons are preferentially consumed in the charge / discharge reaction.
  • the non-aqueous electrolyte secondary battery of the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • the use of the non-aqueous electrolyte secondary battery is not limited to these.
  • Electrode group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Gasket 8 Sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極と、セパレータと、前記セパレータを介して前記正極と対向する負極と、電解液と、を具備し、前記電解液は、酸無水物を含み、前記負極は、負極活物質と、カーボンナノチューブと、を含む負極合剤を備え、前記負極活物質は、ケイ素含有材料および炭素質材料を含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、正極と、負極と、非水電解質とを備える。非水電解質としては主に非水電解液が用いられている。負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質を含む負極合剤を備える。負極活物質には、リチウムイオンを電気化学的に吸蔵および放出可能な材料が用いられる。このような材料としては、例えば、炭素質材料、ケイ素含有材料などが用いられている。また、負極合剤には、炭素繊維、カーボンナノチューブなどのリチウムイオンを吸蔵および放出しない炭素質材料が添加されることがある。
 特許文献1は、リチウムイオンを吸蔵・放出可能な元素を含む粒子と、リチウムイオンを吸蔵・放出可能な炭素粒子と、多層カーボンチューブと、カーボンナノファイバと、を含む複合電極剤を、リチウムイオン二次電池に用いることを提案している。
 特許文献2は、活物質、繊維径50nm以上300nm以下の炭素繊維、繊維径5nm以上400nm以下の炭素繊維、カーボンブラック、およびバインダを乾式混合して混合物を得、この混合物に液媒体を加えて混練し、混練物をシート状に成形することにより製造される電極を、リチウムイオン電池に用いることを提案している。
特開2014-146519号公報 特開2014-160590号公報
 ケイ素含有材料は、リチウムイオンの吸蔵および放出に伴う体積変化が大きい。そのため、ケイ素含有材料を負極活物質として用いると、負極活物質粒子間の導電パスが切断されて負極活物質粒子が孤立し、サイクル特性が低下しやすい。
 ケイ素含有材料を含む負極活物質とカーボンナノチューブとを組み合わせると、充放電サイクルの初期に負極活物質粒子間の導電性を確保しやすくなる。一方、カーボンナノチューブを用いることで負極の利用率が高まり、負極活物質の膨張と収縮が増大して負極活物質に割れが生じやすくなる。よって、高温で長期間の充放電サイクルを行うと、次第に副反応が増加し、電解液の消費が顕著になる。
 本開示の一側面は、正極と、セパレータと、前記セパレータを介して前記正極と対向する負極と、電解液と、を具備し、前記電解液は、酸無水物を含み、前記負極は、負極活物質と、カーボンナノチューブと、を含む負極合剤を備え、前記負極活物質は、ケイ素含有材料および炭素質材料を含む、非水電解質二次電池に関する。
 本開示によれば、非水電解質二次電池の充放電サイクルを高温で長期間繰り返したときの電解液の減少を抑制し、容量維持率を向上させることができる。
図1は、本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた斜視図である。
 本開示に係る非水電解質二次電池は、正極と、セパレータと、セパレータを介して正極と対向する負極と、電解液とを具備する。負極は、負極合剤を備え、負極合剤は、負極活物質と、カーボンナノチューブとを含む。負極活物質は、ケイ素含有材料および炭素質材料を含む。以下、ケイ素含有材料を、Si含有材料と称し、カーボンナノチューブをCNTと称することがある。
 電解液は、酸無水物を含む。酸無水物は、負極活物質と迅速に反応する。充放電サイクルの過程で負極活物質に割れが生じた場合、酸無水物が割れで生成する新生面で素早く反応して低抵抗の保護被膜を形成する。新生面が素早く保護されることで、電解液の分解を伴う更なる副反応の進行が抑制される。よって、Si含有材料とCNTとを含むことで、膨張と収縮による負極活物質の割れが生じやすい場合でも、電解液の消費が抑制される。その結果、高温で長期間の充放電サイクルを行う場合でも、容量維持率を顕著に改善することができる。
 酸無水物は、CNTを含まない負極合剤を用いる場合には、電解液の減少の抑制にほとんど寄与せず、高温で長期間の充放電サイクルを行う場合の容量維持率の改善にも大きく寄与しない。ところが、酸無水物を含む電解液を、CNTを含む負極合剤と組み合わせると、高温で長期間の充放電サイクルを行う場合には、電解液の減少が顕著に抑制され、容量維持率の顕著な改善が見られる。
 本開示に係る非水電解質二次電池では、CNTを用いることで、充放電サイクルの初期における容量維持率が向上する。また、酸無水物を用いることで、高温で長期間の充放電サイクルを行う場合にも容量維持率が向上する。
 電解液中の酸無水物の含有量は、例えば、5質量%以下であり、3質量%以下であってもよい。酸無水物の含有量がこのような範囲である場合、電解液に必要な機能を損なうことなく、長期間に亘って負極活物質の割れにより生じる新生面に保護被膜を形成する作用が持続する。よって、高温で長期間の充放電サイクルを行う場合に、電解液の減少を更に抑制することができる。電解液の減少を更に抑制する場合、電解液中の酸無水物の含有量を2質量%以下とすることが好ましい。
 なお、非水電解質二次電池では、保存期間中もしくは充放電サイクルの期間中に電解液中の酸無水物の含有量が変化する。そのため、非水電解質二次電池から採取される電解液中に、酸無水物が検出限界以上の濃度で残存していればよい。電解液中の酸無水物の含有量は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、0.5質量%以上であってもよい。
 一方、非水電解質二次電池の製造に用いられる電解液中の酸無水物の含有量は、0.1質量%以上であってもよく、0.3質量%以上または0.5質量%以上であってもよい。非水電解質二次電池の製造に用いられる電解液中の酸無水物の含有量は、例えば、5質量%以下であり、3質量%以下または2質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 酸無水物の種類は、特に限定されないが、負極活物質の割れにより生じた新生面でより迅速に反応して保護被膜を形成することができる点で、炭素-炭素不飽和結合を含む酸無水物が望ましい。
 酸無水物は、その分子の構成元素をできるだけ多く保護被膜の形成に有効利用する観点から、酸無水物の分子は、できるだけ単純な構造を有することが望ましい。そのような酸無水物として、無水マレイン酸、無水コハク酸、無水酢酸、無水フタル酸、無水安息香酸などが挙げられる。中でも、安定性と反応性とのバランスに優れ、かつより低抵抗な被膜を形成し得る点で、無水マレイン酸、無水コハク酸などが好ましい。ただし、酸無水物は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 電解液中の各成分の含有量は、例えば、ガスクロマトグラフィーを用いて、例えば、下記の条件で求められる。
 測定装置:島津製作所製 GC-2010 Plus
 カラム:J&W製 HP-1(1μm×60m)
 線速度:30.0cm/sec
 注入口温度:270℃
 検出器:FID 290℃(sens.10
 以下に、本開示の非水電解質二次電池について構成要素ごとにより具体的に説明する。
 (負極)
 負極は、負極合剤を備える。負極は、負極合剤と負極合剤を保持する負極集電体とを備えていてもよい。負極は、通常、層状の負極合剤(以下、負極合剤層と称する)を備えている。負極合剤は、負極活物質およびCNTを含む。負極合剤は、さらに、結着剤、増粘剤、CNT以外の導電剤などを含んでもよい。
 (負極活物質)
 負極活物質は、Si含有材料および炭素質材料を含む。炭素質材料は、Si含有材料よりも充放電時の膨張収縮の度合いが小さい。Si含有材料と炭素質材料とを併用することで、充放電の繰り返しの際、負極活物質粒子同士および負極合剤と負極集電体との接触状態をより良好に維持することができる。よって、炭素質材料をSi含有材料と組み合わせることで、Si含有材料の高容量を確保しながらも、高いサイクル特性を確保しやすい。負極活物質は、必要に応じて、Si含有材料および炭素質材料以外の他の負極活物質を含んでもよい。他の負極活物質としては、例えば、Sn単体、Sn合金、およびSn酸化物などのSn化合物からなる群より選択される少なくとも一種が挙げられる。
 (Si含有材料)
 Si含有材料としては、Si単体、ケイ素合金、およびケイ素化合物(ケイ素酸化物など)、リチウムイオン伝導相(マトリックス)内にシリコン相(微細なSi相)が分散している複合材料などが挙げられる。ケイ素酸化物としては、SiOが挙げられる。xは、例えば0.5≦x<2であり、0.8≦x≦1.6であってもよい。
 より高いサイクル特性を確保する観点から、Si含有材料は、上記複合材料を含むことが好ましい。リチウムイオン伝導相は、SiO相およびシリケート相からなる群より選択される少なくとも1種を含むことが好ましい。リチウムイオン伝導相は、さらに炭素相を含んでもよい。リチウムイオン伝導相は、非晶質相を形成し得る。Si含有材料は、SiO相内にシリコン相が分散している複合材料、シリケート相内にシリコン相が分散している複合材料、炭素相内にシリコン相が分散している複合材料等を含んでもよい。
 SiO相は、二酸化ケイ素を95質量%以上含むアモルファス相である。SiO相内にシリコン粒子が分散した複合材料はSiOで表され、xは、例えば上記の範囲であってもよい。SiOは、例えば、一酸化ケイ素を熱処理し、不均化反応によりSiO相と微細なSi相とに分離することにより得られる。透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いてSiOの粒子断面を観察すると、SiO相内に分散しているシリコン相を確認することができる。
 シリケート相は、アルカリ金属元素(長周期型周期表の水素以外の第1族元素)および長周期型周期表の第2族元素の少なくとも一方を含むことが好ましい。アルカリ金属元素は、リチウム(Li)、カリウム(K)、ナトリウム(Na)等を含む。第2族元素は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を含む。リチウムシリケート相は、式:Li2ySiO2+y(0<y<2)で表される組成を有し得る。yは1/2であってもよく、1であってもよい。シリケート相内にシリコン粒子が分散した複合材料は、例えば、シリケートと原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。
 シリケート相内に分散しているシリコン相の含有量は、複合材料の全体に対して、30質量%以上、95質量%以下であってもよく、35質量%以上、75質量%以下であってもよい。
 炭素相は、例えば、結晶性の低い無定形炭素(アモルファス炭素)を含む。無定形炭素は、例えば、易黒鉛化炭素(ハードカーボン)でもよく、難黒鉛化炭素(ソフトカーボン)でもよい。炭素相内にシリコン粒子が分散した複合材料は、例えば、炭素源と原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。炭素源には、例えば、カルボキシメチルセルロース(CMC)等の糖類やポリビニルピロリドン等の水溶性樹脂が用いられる。
 Si含有材料の組成は、例えば、電界放出型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)により負極合剤層の断面の反射電子像を得、Si含有材料の粒子を観察し、観察されたSi含有材料の粒子について元素分析を行うことにより求められる。元素分析には、例えば、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)分析等が用いられる。上記分析により、リチウムイオン伝導相の組成も求めることができる。
 Si含有材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 Si含有材料は、例えば、粒子状材料である。Si含有材料の平均粒径(D50)は、例えば1μm以上、25μm以下であり、好ましくは4μm以上、15μm以下である。上記範囲では、良好な電池性能が得られ易い。
 なお、本明細書中、平均粒径(D50)とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 導電性向上の観点から、Si含有材料の粒子表面の少なくとも一部は、導電層で被覆されていてもよい。導電層は、導電性炭素等の導電性材料を含む。導電層の被覆量は、例えば、Si含有材料粒子と導電層の合計100質量部あたり1質量部以上、10質量部以下である。表面に導電層を有するSi含有材料粒子は、例えば、石炭ピッチ等をSi含有材料粒子と混合し、不活性雰囲気中で熱処理することにより得られる。
 Si含有材料は、充放電時の膨張収縮に伴う体積変化が大きい。そのため、負極活物質に占めるSi含有材料の比率が大きくなると、サイクル特性が低下しやすい。一方、本開示によれば、負極合剤に特定の含有量のCNTを含むため、負極活物質に占めるSi含有材料の比率が比較的大きい場合でも、導電パスの切断が抑制され、高いサイクル特性を確保しやすい。負極活物質に占めるSi含有材料の比率は、4質量%以上が好ましく、5質量%以上であってもよい。Si含有材料の比率は、15質量%以下が好ましく、10質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 (炭素質材料)
 炭素質材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)が挙げられる。炭素質材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 充放電の安定性に優れ、不可逆容量も少ないことから、中でも、炭素質材料としては黒鉛が好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。黒鉛粒子は、部分的に、非晶質炭素、易黒鉛化炭素、難黒鉛化炭素を含んでもよい。
 黒鉛とは、黒鉛型結晶構造が発達した炭素質材料である。X線回折法により測定される黒鉛の(002)面の面間隔d002は、例えば、0.340nm以下であってもよく、0.3354nm以上、0.340nm以下であってもよい。また、黒鉛の結晶子サイズLc(002)は、例えば、5nm以上であってもよく、5nm以上、200nm以下であってもよい。結晶子サイズLc(002)は、例えばシェラー(Scherrer)法により測定される。黒鉛の(002)面の面間隔d002および結晶子サイズLc(002)が上記範囲内である場合、高容量が得られ易い。
 負極活物質に占める炭素質材料の比率は、例えば、97質量%以下であり、96質量%以下であってもよく、95質量%以下であってもよい。負極活物質に占める炭素質材料の比率は、例えば、76質量%以上であり、80質量%以上または85質量%以上であってもよく、90質量%以上であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極活物質中、Si含有材料および炭素質材料の総量が占める比率は、90質量%以上が好ましく、95質量%以上または98質量%以上であってもよい。負極活物質中、Si含有材料および炭素質材料の総量が占める比率は、100質量%以下である。負極活物質を、Si含有材料および炭素質材料のみで構成してもよい。
 (CNT)
 CNTは、炭素原子により形成される六員環ネットワークのシート(グラフェン)を筒状に巻いた構造を有する、直径がナノサイズの炭素質材料である。CNTは、優れた導電性を有する。筒状構造を構成するグラフェンの層数が1つの場合、単層CNT(SWCNT:single-walled carbon nanotube)と称する。上記の層数が複数の場合、複層CNT(MWCNT:multi-walled carbon nanotube)と称する。
 CNTは、SWCNTを含むことが好ましい。この場合、より高いサイクル特性を確保しやすいことに加え、酸無水物による電解液の減少を抑制する効果がさらに発揮されやすくなる。
 CNTに占めるSWCNTの割合は、例えば、50%以上であり、75%以上であってもよく、90%以上であってもよい。CNTに占めるSWCNTの割合は、100%以下である。なお、CNTに占めるSWCNTの割合とは、CNT全体に対するSWCNTの本数の比率である。
 負極合剤にCNTが含まれることは、例えば、負極合剤層の断面の走査型電子顕微鏡(SEM:Scanning Electron Microscope)の画像により確認することができる。
 負極合剤に含まれるCNTに占めるSWCNTの割合は、以下の方法により求められる。
 SEMを用いて負極合剤層の断面またはCNTの画像を得る。SEM画像において、複数本(例えば50~200本)のCNTを任意に選出して観察し、SWCNTの本数を求め、選出したCNTの総本数に対するSWCNTの本数の割合を算出する。
 CNTの定量分析は、例えば、ラマン分光法および熱重量分析法を組み合わせて行われる。
 充放電時の導電性パスの切断を低減する観点から、CNTの平均直径は、例えば、1nm以上10nm以下であり、1nm以上5nm以下であってもよい。
 充放電時の導電性パスの切断を低減する観点から、CNTの平均長さは、例えば、1μm以上100μm以下であり、5μm以上20μm以下であってもよい。
 CNTの平均長さおよび平均直径は、SEMおよびTEMの少なくとも一方を用いて負極合剤層の断面またはCNTの画像から求めることができる。より具体的には、撮影した画像において、複数本(例えば50~200本)のCNTを任意に選出し、長さおよび直径を計測し、それぞれ平均化することにより平均長さおよび平均直径が求められる。なお、CNTの長さとは、CNTを直線状に伸ばしたときの長さを意味する。
 負極合剤中のCNTの含有量は、例えば、0.005質量%以上、0.1質量%以下であり、0.01質量%以上、0.05質量%以下であってもよく、0.02質量%以上、0.05質量%以下であってもよい。負極合剤中のCNTの含有量を0.005質量%以上とすることで、負極の導電性の向上や、充放電サイクルの初期における容量維持率の改善効果が大きくなる。また、CNTを含む負極合剤に酸無水物を含む電解液を組み合わせることによる電解液の減少を抑制する効果も顕在化する。一方、負極合剤中のCNTの含有量を0.1質量%以下(更には0.05質量%以下)とすることで、酸無水物による電解液の減少を抑制する効果が顕在化する。
 (その他)
 結着剤としては、例えば、樹脂材料が用いられる。結着剤としては、例えば、フッ素樹脂(例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン)、ポリオレフィン樹脂(例えば、ポリエチレン、ポリプロピレン)、ポリアミド樹脂(例えば、アラミド樹脂)、ポリイミド樹脂(例えば、ポリイミド、ポリアミドイミド)、アクリル樹脂(例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸-メタクリル酸共重合体、エチレン-アクリル酸共重合体、またはこれらの塩)、ビニル樹脂(例えば、ポリ酢酸ビニル)、ゴム状材料(例えば、スチレン-ブタジエン共重合ゴム(SBR))挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、セルロースエーテルなどのセルロース誘導体が挙げられる。セルロース誘導体としては、CMCおよびその変性体、メチルセルロースなどが挙げられる。CMCの変性体には、CMCの塩も含まれる。塩としては、アルカリ金属塩(例えば、ナトリウム塩)、アンモニウム塩などが挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CNT以外の導電剤としては、例えば、CNT以外の導電性繊維、導電性粒子が挙げられる。導電性繊維としては、炭素繊維、金属繊維などが挙げられる。導電性粒子としては、導電性炭素(カーボンブラックなど)、金属粉末などが挙げられる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極集電体は、非水電解質二次電池の種類に応じて選択される。負極集電体としては、例えば、シート状のものが挙げられる。集電体としては、金属箔などを用いてもよい。また、集電体として多孔質のものを用いてもよい。多孔質の集電体としては、例えば、網状のもの、パンチングシート、エキスパンドメタルが挙げられる。
 負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金が例示される。
 負極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
 負極は、例えば、負極合剤の構成成分を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 分散媒としては、特に制限されないが、例えば、水、アルコール(例えば、エタノール)、エーテル(例えば、テトラヒドロフラン)、アミド(例えば、ジメチルホルムアミド)、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒が挙げられる。
 (正極)
 正極は、正極集電体と、正極集電体の表面に担持された正極合剤層とを備えてもよい。正極合剤層は、正極合剤を分散媒に分散させた正極スラリを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤等を含むことができる。分散媒としては、例えば、負極について例示したものから選択できる。
 正極活物質としては、例えば、リチウムと遷移金属とを含む複合酸化物が用いられる。遷移金属としては、例えば、Ni、Co、Mn等が挙げられる。リチウムと遷移金属とを含む複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCob1Ni1-b1、LiCob11-b1c1、LiNi1-b1b1c1、LiMn、LiMn2-b1b1が挙げられる。ここで、a=0~1.2、b1=0~0.9、c1=2.0~2.3である。Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択される少なくとも1種である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 中でも、LiNib21-b2(0<a≦1.2、0.3≦b2≦1であり、Mは、Mn、CoおよびAlからなる群より選択される少なくとも1種である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b2≦1を満たすことがより好ましい。結晶構造の安定性の観点から、LiNib2Coc2Al(0<a≦1.2、0.85≦b2<1、0<c2≦0.15、0<d≦0.1、b2+c2+d=1)が更に好ましい。
 結着剤としては、負極で例示した樹脂材料などを用いることができる。導電剤としては、例えば、負極で例示したものから選択できる。導電剤として、黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体について説明した形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンが挙げられる。
 (電解液)
 電解液としては、通常、液状のまま用いられるが、ゲル化剤などで流動性が制限された状態であってもよい。電解液は、通常、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含み、これらに加えて添加剤を含む。本明細書では、酸無水物および硫黄含有化合物は、添加剤に分類する。鎖状カルボン酸エステルは、非水溶媒に分類する。
 (非水溶媒)
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル(MA)、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。電解液は、非水溶媒を1種含んでもよく、2種以上組み合わせて含んでもよい。
 電解液が、FECや鎖状カルボン酸エステルを含む場合、CNTを含む負極合剤と組み合わせたときに副反応が起こりやすい。しかし、このような場合であっても、酸無水物を用いることによる効果が顕著に得られる。よって、副反応が抑制され、高いサイクル特性を確保することができる。電解液が、FECまたは鎖状カルボン酸エステルとして少なくともMAを含む場合には、このような効果が更に顕著になる。
 (リチウム塩)
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、リン酸塩、ホウ酸塩、イミド塩が挙げられる。リン酸塩としては、ジフルオロリン酸リチウム(LiPO)、ジフルオロビス(オキサラト)リン酸リチウム(LiDFBOP)、テトラフルオロ(オキサラト)リン酸リチウム等が挙げられる。ホウ酸塩としては、ビス(オキサラト)ホウ酸リチウム(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)等が挙げられる。イミド塩としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。電解液は、リチウム塩を、1種含んでもよく、2種以上組み合わせて含んでもよい。
 電解液が、ビスフルオロスルホニルイミドリチウム(LiFSI)を含む場合、CNTを含む負極合剤と組み合わせたときに副反応が起こりやすい。しかし、このような場合であっても、酸無水物を用いることによる効果が顕著に得られる。よって、副反応が抑制され、高いサイクル特性を確保することができる。
 電解液中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。
 (硫黄含有化合物)
 硫黄含有化合物としては、硫酸エステル、亜硫酸エステルおよびスルホン酸エステルからなる群より選択される少なくとも1種を用い得る。硫酸エステルは、-O-S(=O)-O-構造を有する。硫酸エステルは、環状であってもよく、鎖状であってもよく、塩を構成していてもよい。亜硫酸エステルは、-O-S(=O)-O-構造を有する。亜硫酸エステルは、環状であってもよく、鎖状であってもよく、塩を構成していてもよい。スルホン酸エステルは、-S(=O)-O-構造を有する。スルホン酸エステルは、環状であってもよく、鎖状であってもよく、塩を構成していてもよい。電解液は、硫黄含有化合物を1種含んでもよく、2種以上組み合わせて含んでもよい。
 硫酸エステルとしては、C2-4アルキルサルフェートが好ましい。具体的には、エチレンサルフェート、プロピレンサルフェート、トリメチレンサルフェート、ブチレンサルフェート、ビニレンサルフェート、エチル硫酸塩、メチル硫酸塩等が挙げられる。
 亜硫酸エステルとしては、C2-4アルキレンサルファイトが好ましい。具体的には、エチレンサルファイト(ES)、プロピレンサルファイト、トリメチレンサルファイト、ブチレンサルファイト、ビニレンサルファイト等が挙げられる。
 スルホン酸エステルとしては、C3-5アルカンスルトンおよびC3-5アルケンスルトンからなる群より選択される少なくとも一種が好ましい。具体的には、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン等が挙げられる。
 硫黄含有化合物は、上記で例示した化合物の1つまたは2つ以上の水素原子が置換基で置換されていてもよい。置換基としては、アルキル基、ヒドロキシアルキル基、ヒドロキシ基、アルコキシ基、ハロゲン原子などが挙げられる。置換基の炭素数は、1~4または1~3であってもよい。ハロゲン原子としては、塩素原子、フッ素原子などが挙げられる。
 電解液中の硫黄含有化合物の含有量は、例えば、5質量%以下であり、3質量%以下であってもよく、2質量%以下であってもよい。硫黄含有化合物の含有量がこのような範囲である場合、電解液の減少を抑制する効果が更に高められる。この場合、電解液の粘度を低く抑えて、充放電反応をより均一に進行させることができることから、電解液の消費が全体として抑制されると考えられる。
 なお、非水電解質二次電池では、保存期間中もしくは充放電サイクルの期間中に電解液中の硫黄含有化合物の含有量が変化する。そのため、非水電解質二次電池から採取される電解液中に、硫黄含有化合物が検出限界以上の濃度で残存していればよい。電解液中の硫黄含有化合物の含有量は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、0.5質量%以上であってもよい。
 非水電解質二次電池の製造に用いられる電解液中の硫黄含有化合物の含有量は、0.1質量%以上であってもよく、0.3質量%以上または0.5質量%以上であってもよい。非水電解質二次電池の製造に用いられる電解液中の硫黄含有化合物の含有量は、例えば、5質量%以下であり、3質量%以下または2質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 電解液は、他の添加剤を含んでもよい。そのような添加剤として、例えばビニルエチレンカーボネート、シクロヘキシルベンゼンなどが挙げられる。
 (セパレータ)
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、例えば、微多孔薄膜、織布、または不織布、もしくはこれらから選択される少なくとも2つの積層体を用いることができる。セパレータの材質としては、ポリオレフィン(例えば、ポリプロピレン、ポリエチレン)が好ましい。
 (その他)
 非水電解液二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群が電解液と共に外装体に収容された構造が挙げられる。ただし、これに限られず、他の形態の電極群が適用されてもよい。例えば、正極と負極とがセパレータを介して積層された積層型の電極群でもよい。非水電解液二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型などであればよい。
 図1は、本開示の一実施形態に係る角形の非水電解液二次電池の一部を切欠いた概略斜視図である。電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および電解液とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には電解液の注入孔があり、注液後に封栓8により塞がれる。
 [実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1~7および比較例1~7》
 下記の手順で、非水電解質二次電池を作製し、評価を行った。
 (1)負極の作製
 負極合剤に適量の水を加え、混合し、負極スラリを得た。負極合剤には、負極活物質と、結着剤と、導電剤との混合物を用いた。
 負極活物質には、Si含有材料と、黒鉛(平均粒径(D50)25μm)との混合物を用いた。Si含有材料には、表面が導電性炭素を含む導電層で被覆されたLi2ySiO2+y粒子(y=0.5、平均粒径(D50)10μm)および表面が導電性炭素を含む導電層で被覆されたSiO粒子(x=1、平均粒径(D50)5μm)を用いた。導電層を除くLi2ySiO2+y粒子と導電層を除くSiO粒子との質量比は、1:1とした。負極活物質において、導電層を除くSi含有材料と黒鉛との質量比は6:94とした。
 結着剤には、ポリアクリル酸ナトリウム(PAA-Na)と、CMCのナトリウム塩(CMC-Na)と、SBRとを用いた。導電剤には、SWCNTを90%以上含むCNT(平均直径1.6nm程度、平均長さ5μm程度)を用いた。
 負極合剤中のCNTの含有量は、表1に示す値とした。負極合剤中のPAA-Na、CMC-Na、およびSBRの含有量は、それぞれ、1質量%とした。
 次に、銅箔の表面に負極スラリを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層(厚み80μm、密度1.6g/cm)を形成し、負極を得た。
 (2)正極の作製
 リチウム含有複合酸化物(LiNi0.8Co0.18Al0.02)95質量部に、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部と、適量のNMPとを加え、混合し、正極スラリを得た。次に、アルミニウム箔の表面に正極スラリを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極合剤層(厚み95μm、密度3.6g/cm)を形成し、正極を得た。
 (3)電解液の調製
 ECとDMCとMAとの混合溶媒(EC:DMC:MA=20:60:20(体積比))に、LiPFおよび必要に応じて表1に示す添加剤を溶解させることにより、電解液を調製した。電解液中のLiPFの濃度は、1.35mol/Lとした。電解液中の添加剤の濃度(初期濃度)は、表1中に示される値(質量%)とした。
 (4)非水電解質二次電池の作製
 上記で得られた正極にAl製の正極リードを取り付け、上記で得られた負極にNi製の負極リードを取り付けた。不活性ガス雰囲気中で、正極と負極とをポリエチレン薄膜(セパレータ)を介して渦巻状に捲回し、捲回型の電極群を作製した。電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、上記電解液の所定量を注入した後、外装体を封止して非水電解質二次電池を作製した。なお、電極群を外装体に収容する際、正極リードおよび負極リードの一部は、それぞれ外装体より外部に露出させた。
 (評価)
 下記の手順で、非水電解質二次電池の充放電サイクルを行い、サイクル後の電解液の残存量および容量維持率を求めた。
 45℃環境下で、非水電解質二次電池の電圧が4.2Vになるまで0.5C(180mA)の電流で定電流充電を行い、その後、電流が0.05C(18mA)になるまで4.2Vの電圧で定電圧充電を行った。10分の休止の後、非水電解質二次電池の電圧が2.5Vになるまで0.7C(252mA)の電流で定電流放電を行った。このときの放電容量(Ci)を求めた。このような充電、休止および放電のサイクルを1サイクルとして、400サイクル繰り返し、400サイクル目の放電容量(Cc)を求めた。初期の放電容量Ciを100%としたときの放電容量Ccの比率(%)を容量維持率として求めた。
 また、400サイクル後の非水電解質二次電池を分解して、残存する電解液を回収し、体積を求めた。初期の電解液の体積を100%としたときの残存する電解液の体積の比率(%)を算出した。表1には、この比率を電解液残量(%)として示す。
 実施例および比較例の結果を表1に示す。表1には、負極合剤中のCNTの含有量(質量%)、電解液に添加した添加剤の種類および添加量(質量%)も合わせて示した。表1中、E1~E7は、実施例1~7であり、C1~C7は、比較例1~7である。
 表中の添加剤の表示は下記の通りである。
 MAL:無水マレイン酸
 SUC:無水コハク酸
 ES:エチレンサルファイト
 LiFSI:ビスフルオロスルホニルイミドリチウム
 FEC:フルオロエチレンカーボネート
 電池E5、C5においては、LiPFの濃度を1.35mol/Lから1.25mol/Lに減量して、代わりにLiFSIを0.10mol/Lの濃度になるように添加した。
 電池E6、C6においては、ECのうち、50体積%をFECに置換した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極合剤がCNTを含む場合は、CNTを含まない場合に比べて電解液残量が3.3%減少する(C1とC2との比較)。また、負極合剤にCNTが含まれない場合、電解液に酸無水物を添加しても、電解液残量はほとんど変わらない(C1に対してC3は+0.5%、C4は+0.1%)。換言すると、負極合剤にCNTが含まれない場合には、酸無水物は電解液の減少抑制にほとんど貢献しない。
 一方、CNTを含む負極合剤に酸無水物を含む電解液を組み合わせた場合、電解液の減少を抑制する効果が発揮される。具体的には、酸無水物を含まない電解液を用いたC2に比べて、E1~E7では、負極合剤がCNTを含まない場合に匹敵する電解液残量を確保することができる(C2に対してE1は+4.2%、E2は+2.6%、E5は+3.8%、E6は+3.4%、E7は+3.6%)。
 なお、いずれもCNTを用いないC1とC5とを対比すると、LiFSIを用いる場合には、電解液の減少がより顕著になることがわかる(C1に対してC5は-0.1%)。これに対し、E5とC5とを対比すると、CNTを用いる場合でも、酸無水物を使用すると、CNTを用いないC5を大きく超える電解液残量を確保できることがわかる(C5に対してE5は+0.6%)。なお、E7とC7とを対比すると、ESを用いる場合にも、同様の傾向があることがわかる。
 また、いずれもCNTを用いるC2とC6とを対比すると、FECを用いる場合には、電解液の減少がより顕著になることがわかる(C2に対してC6は-0.4%)。これに対し、E6とC6とを対比すると、酸無水物を使用すると、CNTを用いないC1を超え(C1に対して+0.1%)、かつC6から大幅に改善された電解液残量を確保できることがわかる(C6に対してE6は+3.8%)。
 更に、E1~E7では、CNTを用いない場合または酸無水物を用いない場合に比べて、高い容量維持率を確保することができ、高温(45℃)での充放電を400サイクル繰り返した時点でも優れた容量維持率が得られる(C1~C7とE1~E7との比較)。これは、負極合剤がCNTを含むことで、充放電を繰り返したときの負極合剤における導電パスの切断が抑制されることに加え、酸無水物を用いることで負極合剤がCNTを含む場合の副反応が抑制され、充放電反応に電子が優先的に消費されることによるものと考えられる。
 なお、負極合剤中のCNTの含有量が0.005質量%以上、0.1質量%以下の場合、上記と同様の傾向が得られた。
 本開示の非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。しかし、非水電解質二次電池の用途は、これらに限定されるものではない。
1  電極群
2  正極リード
3  負極リード
4  電池ケース
5  封口板
6  負極端子
7  ガスケット
8  封栓

Claims (13)

  1.  正極と、セパレータと、前記セパレータを介して前記正極と対向する負極と、電解液と、を具備し、
     前記電解液は、酸無水物を含み、
     前記負極は、負極活物質と、カーボンナノチューブと、を含む負極合剤を備え、
     前記負極活物質は、ケイ素含有材料および炭素質材料を含む、非水電解質二次電池。
  2.  前記電解液中の前記酸無水物の含有量が、5質量%以下である、請求項1に記載の非水電解質二次電池。
  3.  前記酸無水物は、炭素-炭素不飽和結合を含む、請求項1または2に記載の非水電解質二次電池。
  4.  前記酸無水物は、無水マレイン酸を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記カーボンナノチューブが、単層カーボンナノチューブを含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記カーボンナノチューブに占める前記単層カーボンナノチューブの割合は、90%以上である、請求項5に記載の非水電解質二次電池。
  7.  前記負極合剤中の前記カーボンナノチューブの含有量は、0.005質量%以上、0.1質量%以下である、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記電解液は、鎖状カルボン酸エステルを含む、請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  前記鎖状カルボン酸エステルが、少なくとも酢酸メチルを含む、請求項8に記載の非水電解質二次電池。
  10.  前記電解液が、硫黄含有化合物を含む、請求項1~9のいずれか1項に記載の非水電解質二次電池。
  11.  前記硫黄含有化合物が、硫酸エステル、亜硫酸エステルおよびスルホン酸エステルからなる群より選択される少なくとも1種を含む、請求項10に記載の非水電解質二次電池。
  12.  前記電解液中の前記硫黄含有化合物の含有量は、5質量%以下である、請求項10または11に記載の非水電解質二次電池。
  13.  前記負極活物質に占める前記ケイ素含有材料の割合は、4質量%以上である、請求項1~12のいずれか1項に記載の非水電解質二次電池。
PCT/JP2021/030717 2020-08-31 2021-08-23 非水電解質二次電池 WO2022045036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/023,638 US20230307610A1 (en) 2020-08-31 2021-08-23 Nonaqueous electrolyte secondary battery
EP21861462.6A EP4207343A4 (en) 2020-08-31 2021-08-23 SECONDARY BATTERY WITH NON-AQUEOUS ELECTROLYTE
CN202180052565.2A CN115989594A (zh) 2020-08-31 2021-08-23 非水电解质二次电池
JP2022544567A JPWO2022045036A1 (ja) 2020-08-31 2021-08-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020146134 2020-08-31
JP2020-146134 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045036A1 true WO2022045036A1 (ja) 2022-03-03

Family

ID=80353241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030717 WO2022045036A1 (ja) 2020-08-31 2021-08-23 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20230307610A1 (ja)
EP (1) EP4207343A4 (ja)
JP (1) JPWO2022045036A1 (ja)
CN (1) CN115989594A (ja)
WO (1) WO2022045036A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117133911A (zh) * 2023-10-26 2023-11-28 中创新航科技集团股份有限公司 一种负极活性材料及应用其的锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039949A1 (ja) * 2009-09-29 2011-04-07 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2014160590A (ja) 2013-02-20 2014-09-04 Showa Denko Kk 電池用電極の製造方法
WO2015163017A1 (ja) * 2014-04-21 2015-10-29 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017501546A (ja) * 2013-12-24 2017-01-12 イルジン エレクトリック カンパニー リミテッド リチウム二次電池用負極板
JP2017520100A (ja) * 2014-05-23 2017-07-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 環状サルフェートおよびリチウムボレートを含む非水系電解質組成物
WO2017199884A1 (ja) * 2016-05-17 2017-11-23 株式会社名城ナノカーボン 電極構造体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553591B1 (ko) * 2017-06-12 2023-07-11 삼성전자주식회사 포스페이트계 첨가제를 포함하는 리튬이차전지
KR102336719B1 (ko) * 2017-12-01 2021-12-08 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039949A1 (ja) * 2009-09-29 2011-04-07 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2014160590A (ja) 2013-02-20 2014-09-04 Showa Denko Kk 電池用電極の製造方法
JP2017501546A (ja) * 2013-12-24 2017-01-12 イルジン エレクトリック カンパニー リミテッド リチウム二次電池用負極板
WO2015163017A1 (ja) * 2014-04-21 2015-10-29 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017520100A (ja) * 2014-05-23 2017-07-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 環状サルフェートおよびリチウムボレートを含む非水系電解質組成物
WO2017199884A1 (ja) * 2016-05-17 2017-11-23 株式会社名城ナノカーボン 電極構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207343A4

Also Published As

Publication number Publication date
EP4207343A4 (en) 2024-02-28
CN115989594A (zh) 2023-04-18
JPWO2022045036A1 (ja) 2022-03-03
EP4207343A1 (en) 2023-07-05
US20230307610A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
KR102284571B1 (ko) 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
JP7028164B2 (ja) リチウムイオン二次電池
JP7223980B2 (ja) 正極材料および二次電池
WO2011115247A1 (ja) リチウムイオン二次電池
WO2020137321A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2020021763A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2021124970A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2022045036A1 (ja) 非水電解質二次電池
WO2021117549A1 (ja) 非水電解液二次電池
US20100009268A1 (en) Lithium primary battery
JP6016573B2 (ja) 負極合剤含有組成物の製造方法、リチウム二次電池用負極の製造方法、およびリチウム二次電池の製造方法
WO2021172005A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2022224824A1 (ja) 非水電解質二次電池
WO2021153398A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2021200528A1 (ja) 非水電解質二次電池
WO2023053764A1 (ja) 非水電解質二次電池
WO2023032499A1 (ja) 非水電解質二次電池
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2023054060A1 (ja) 非水電解質二次電池
WO2022092136A1 (ja) 非水電解質二次電池
WO2023127227A1 (ja) 非水電解質二次電池
WO2021235131A1 (ja) 非水電解質二次電池
WO2024071116A1 (ja) 二次電池用負極活物質、二次電池、および二次電池用負極活物質の製造方法
JP2018206472A (ja) リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861462

Country of ref document: EP

Effective date: 20230331