WO2021124970A1 - 非水電解質二次電池用正極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2021124970A1
WO2021124970A1 PCT/JP2020/045579 JP2020045579W WO2021124970A1 WO 2021124970 A1 WO2021124970 A1 WO 2021124970A1 JP 2020045579 W JP2020045579 W JP 2020045579W WO 2021124970 A1 WO2021124970 A1 WO 2021124970A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mixture layer
electrode mixture
negative electrode
electrolyte secondary
Prior art date
Application number
PCT/JP2020/045579
Other languages
English (en)
French (fr)
Inventor
幸俊 上原
堂上 和範
晋也 宮崎
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2021565489A priority Critical patent/JPWO2021124970A1/ja
Priority to US17/785,211 priority patent/US20220393177A1/en
Priority to CN202080087516.8A priority patent/CN114868276A/zh
Publication of WO2021124970A1 publication Critical patent/WO2021124970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 the volume ratio of the positive electrode active material to the positive electrode mixture is 97.1% to 99.6%, and the volume ratio of the voids in the positive electrode mixture layer is 16% to 22%.
  • Patent Document 2 contains polyvinylidene fluoride having a molecular weight of 600,000 to 1,000,000 as a binder, and by controlling the preparation temperature to 30 ° C. to 60 ° C., it is suitable for producing a high-capacity positive electrode mixture layer. It is disclosed that a positive electrode mixture slurry having properties can be obtained.
  • Patent Document 1 When the density of the positive electrode mixture layer is increased as disclosed in Patent Document 1, it becomes difficult for lithium ions to move between the particles of the positive electrode active material, which may result in high resistance. Further, even if polyvinylidene fluoride having a molecular weight of 600,000 to 1,000,000 is used as disclosed in Patent Document 2, if the content of polyvinylidene fluoride is small, the stability of the positive electrode mixture slurry deteriorates and the resistance is high. It may become. The techniques disclosed in Patent Documents 1 and 2 do not consider battery resistance, and there is still room for improvement.
  • the positive electrode for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, includes a positive electrode core body and a positive electrode mixture layer formed on the surface of the positive electrode core body.
  • the void ratio of the positive electrode mixture layer is 23% by volume to 50% by volume, and the positive electrode mixture layer contains at least a positive electrode active material, carbon nanotubes as a conductive auxiliary material, and polyvinylidene fluoride as a binder.
  • the carbon nanotubes have a particle size of 5 nm to 40 nm, an aspect ratio of 100 to 1000, a content in the positive electrode mixture layer of 0.2% by mass to 5% by mass, and per unit mass of the positive electrode mixture layer.
  • the molecular quantity of polyvinylidene fluoride contained in the above is 0.005 to 0.030.
  • the non-aqueous electrolyte secondary battery includes the above-mentioned positive electrode for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte.
  • FIG. 1 is a perspective view of a secondary battery which is an example of an embodiment, and is a diagram showing an internal structure of a battery case with the front side of the exterior body removed.
  • the dispersibility of the positive electrode active material, polyvinylidene fluoride, and carbon nanotubes in the positive electrode mixture slurry is improved, so that uniform coating is possible.
  • polyvinylidene fluoride and carbon nanotubes act in a complex manner to improve the adhesion strength between the positive electrode active materials and improve the electron conductivity. Due to these synergistic effects, the positive electrode and the battery can have low resistance. This effect can be obtained by setting the molecular quantity of polyvinylidene fluoride contained per unit mass of the positive electrode mixture layer within a predetermined range even when the amount of polyvinylidene fluoride is small.
  • the secondary battery 100 provided with the square metal exterior body 1 is illustrated, but the exterior body is not limited to the square shape, and may be, for example, a cylindrical shape or the like.
  • a winding type electrode body 3 in which a positive electrode and a negative electrode are wound via a separator is illustrated, a stack in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated one by one via a separator. It may be a type electrode body.
  • the electrode body 3 is preferably of a winding type.
  • each mixture layer is formed on both sides of each core body is illustrated, but the case where each mixture layer is formed on both sides of each core body is not limited to the case where each mixture layer is formed on both sides of each core body. It may be formed on at least one surface.
  • the secondary battery 100 includes a wound electrode body 3 in which a positive electrode and a negative electrode are wound via a separator and formed into a flat shape having a flat portion and a pair of curved portions. It includes an electrolyte, an electrode body 3, and an exterior body 1 that houses the electrolyte. Both the exterior body 1 and the sealing plate 2 are made of metal, and are preferably made of aluminum or an aluminum alloy.
  • the exterior body 1 has a bottom portion having a substantially rectangular shape when viewed from the bottom surface, and a side wall portion erected on the peripheral edge of the bottom portion.
  • the side wall is formed perpendicular to the bottom.
  • the dimensions of the exterior body 1 are not particularly limited, but as an example, the exterior body 1 has a lateral length of 60 to 160 mm, a height of 60 to 100 mm, and a thickness of 10 to 40 mm.
  • the positive electrode is a long body having a metal positive electrode core body and positive electrode mixture layers formed on both sides of the core body, and is a positive electrode core body along the longitudinal direction at one end in the lateral direction.
  • the strip-shaped positive electrode core body exposed portion 4 is formed.
  • the negative electrode is a long body having a negative electrode core made of metal and a negative electrode mixture layer formed on both sides of the core, along the longitudinal direction at one end in the lateral direction.
  • a band-shaped negative electrode core body exposed portion 5 is formed in which the negative electrode core body is exposed.
  • the positive electrode core body exposed portion 4 of the positive electrode is arranged on one end side in the axial direction
  • the negative electrode core body exposed portion 5 of the negative electrode is arranged on the other end side in the axial direction. It has a wound structure.
  • the positive electrode current collector 6 is connected to the laminated portion of the positive electrode core body exposed portion 4 of the positive electrode, and the negative electrode current collector 8 is connected to the laminated portion of the negative electrode core body exposed portion 5 of the negative electrode.
  • a suitable positive electrode current collector 6 is made of aluminum or an aluminum alloy.
  • a suitable negative electrode current collector 8 is made of copper or a copper alloy.
  • the positive electrode terminal 7 is inserted into a positive electrode external conductive portion 13 arranged on the outer side of the battery of the sealing plate 2, a positive electrode bolt portion 14 connected to the positive electrode external conductive portion 13, and a through hole provided in the sealing plate 2. It has a positive electrode insertion portion 15 and is electrically connected to the positive electrode current collector 6.
  • the negative electrode terminal 9 is provided in a negative electrode external conductive portion 16 arranged on the outer side of the battery of the sealing plate 2, a negative electrode bolt portion 17 connected to the negative electrode external conductive portion 16, and a through hole provided in the sealing plate 2. It has a negative electrode insertion portion 18 to be inserted, and is electrically connected to the negative electrode current collector 8.
  • the positive electrode terminal 7 and the positive electrode current collector 6 are fixed to the sealing plate 2 via the inner side insulating member and the outer side insulating member, respectively.
  • the internal insulating member is arranged between the sealing plate 2 and the positive electrode current collector 6, and the external insulating member is arranged between the sealing plate 2 and the positive electrode terminal 7.
  • the negative electrode terminal 9 and the negative electrode current collector 8 are fixed to the sealing plate 2 via the internal insulating member and the external insulating member, respectively.
  • the internal insulating member is arranged between the sealing plate 2 and the negative electrode current collector 8, and the external insulating member is arranged between the sealing plate 2 and the negative electrode terminal 9.
  • the electrode body 3 is housed in the exterior body 1.
  • the sealing plate 2 is connected to the opening edge of the exterior body 1 by laser welding or the like.
  • the sealing plate 2 has an electrolyte injection hole 10, and the electrolyte injection hole 10 is sealed with a sealing plug after the electrolyte is injected into the exterior body 1.
  • the sealing plate 2 is formed with a gas discharge valve 11 for discharging gas when the pressure inside the battery exceeds a predetermined value.
  • the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte constituting the electrode body 3 will be described in detail, and in particular, the positive electrode mixture layer constituting the positive electrode will be described in detail.
  • the positive electrode includes a positive electrode core body and a positive electrode mixture layer formed on the surface of the positive electrode core body.
  • a foil of a metal stable in the potential range of the positive electrode such as aluminum or an aluminum alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains at least a positive electrode active material, carbon nanotubes as a conductive auxiliary material (hereinafter, may be referred to as CNT), and polyvinylidene fluoride as a binder (hereinafter, may be referred to as PVdF).
  • CNT carbon nanotubes
  • PVdF polyvinylidene fluoride as a binder
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive auxiliary material, a binder, etc. is applied onto the positive electrode core, the coating film is dried, and then compressed to form the positive electrode mixture layer into the positive electrode core. It can be produced by forming on both sides of.
  • the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode core body.
  • the porosity of the positive electrode mixture layer is 23% by volume to 50% by volume.
  • the void ratio of the positive electrode mixture layer is as follows based on the bulk density of the positive electrode mixture layer and the true density and content of each component such as the positive electrode active material, the conductive auxiliary material, and the binder contained in the positive electrode mixture layer. It is calculated according to the formula of.
  • Porosity of the positive electrode mixture layer 1- (total of (content / true density) for each component x bulk density of the positive electrode mixture layer)
  • Examples of the positive electrode active material contained in the positive electrode mixture layer include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Lithium transition metal oxides for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3). These may be used alone or in admixture of a plurality of types.
  • the positive electrode active material Li x NiO 2, Li x Co y Ni 1-y O 2, Li x Ni 1-y M y O z ( M; At least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0. It is preferable to contain a lithium nickel composite oxide such as 9.9, 2.0 ⁇ z ⁇ 2.3).
  • the CNT contained in the positive electrode mixture layer may be either a single-walled carbon nanotube (SWCNT) or a multi-walled carbon nanotube (MWCNT).
  • MWCNTs for example, a CNT having a tubular structure in which a graphene sheet made of a 6-membered carbon ring is wound parallel to the fiber axis, and a graphene sheet made of a 6-membered carbon ring are arranged perpendicular to the fiber axis.
  • a CNT having a puretlet structure, a CNT having a herringbone structure in which a graphene sheet composed of a six-membered carbon ring is wound at an oblique angle with respect to the fiber axis, or the like can be used.
  • the positive electrode mixture layer may contain a carbon material such as carbon black, acetylene black (AB), Ketjen black, and graphite as a conductive auxiliary material.
  • the CNT has a particle size of 5 nm to 40 nm and an aspect ratio of 100 to 1000. By satisfying this range, interaction with PVdF occurs, and the positive electrode and the battery can have low resistance.
  • the particle size of CNTs is calculated from the average value of 10 CNTs measured by measuring the diameters of 10 CNTs using a scanning electron microscope (hereinafter, may be referred to as SEM).
  • the length of CNTs is calculated by measuring the lengths of 10 CNTs using SEM and averaging them. For example, the CNT is observed at an acceleration voltage of 5 kV using SEM, and the diameter and length of any 10 CNTs are measured in an image (number of pixels 1024 x 1280) of 50,000 times, and the average value thereof is measured.
  • the particle size and length can be obtained from.
  • the aspect ratio is a value obtained by dividing the length by the particle size.
  • the content of CNT in the positive electrode mixture layer is 0.2% by mass to 5% by mass, preferably 1.5% by mass to 3% by mass. Within this range, the dispersibility of CNTs in the positive electrode mixture slurry is improved, so that a positive electrode and a battery having lower resistance can be obtained.
  • the molecular quantity of PVdF contained in the unit mass of the positive electrode mixture layer is 0.005 to 0.030, preferably 0.007 to 0.011. By satisfying this range, interaction with CNT occurs, and the positive electrode and the battery can have low resistance.
  • the molecular quantity of PVdF contained in the unit mass of the positive electrode mixture layer is a value obtained by dividing the content (mass%) of PVdF in the positive electrode mixture layer by the molecular weight (g / mol) of PVdF.
  • the content of polyvinylidene fluoride in the positive electrode mixture layer may be 0.3% by mass to 2.5% by mass. As a result, a positive electrode and a battery having a lower resistance can be obtained.
  • the molecular weight of polyvinylidene fluoride may be 1.1 million to 1.4 million.
  • the positive electrode mixture layer may contain a fluororesin such as polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), polyimide, acrylic resin, polyolefin, etc. as a binder, and these resins may be contained.
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • polyimide polyimide
  • acrylic resin polyolefin, etc.
  • acrylic resin polyolefin, etc.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the negative electrode has a negative electrode core body and a negative electrode mixture layer formed on the surface of the negative electrode core body.
  • a metal foil stable in the potential range of the negative electrode such as copper or a copper alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material and a binder.
  • the thickness of the negative electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the current collector.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto the negative electrode core body, the coating film is dried, and then rolled to form negative electrode mixture layers on both sides of the negative electrode core body. Can be produced by.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions, and a carbon material such as graphite is generally used.
  • the graphite may be any of natural graphite such as scaly graphite, massive graphite and earthy graphite, and artificial graphite such as massive artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloying with Li such as Si and Sn, a metal compound containing Si and Sn and the like, a lithium titanium composite oxide and the like may be used.
  • Si-containing compounds represented by SiO x (0.5 ⁇ x ⁇ 1.6) or lithium silicate phases represented by Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2) contain fine particles of Si. Dispersed Si-containing compounds and the like may be used in combination with graphite.
  • a fluororesin such as PTFE or PVdF, PAN, polyimide, acrylic resin, polyolefin or the like may be used as in the case of the positive electrode, but styrene-butadiene is preferable. Rubber (SBR) is used.
  • the negative electrode mixture layer may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • the negative electrode mixture layer contains, for example, SBR and CMC or a salt thereof.
  • the separator a porous sheet having ion permeability and insulating property is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • the material of the separator polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may have a single-layer structure or a laminated structure. Further, the surface of the separator may be provided with a resin layer having high heat resistance such as an aramid resin and a filler layer containing a filler of an inorganic compound.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • halogen substituent examples include a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, and a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid ester
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • Ethylpropyl carbonate chain carbonate such as methyl isopropyl carbonate
  • cyclic carboxylic acid ester such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP) ), Chain carboxylic acid ester such as ethyl propionate and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and other imide salts.
  • lithium salt these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent.
  • Example 1 [Preparation of positive electrode]
  • a lithium transition metal oxide represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used.
  • the CNT As the conductive auxiliary material, one having a particle size of 10 nm and an aspect ratio of 100 to 1000 (hereinafter referred to as CNT-A) was used.
  • CNT-A As the CNT-A was used.
  • PVdF one having a molecular weight of 1.1 million was used.
  • the positive electrode active material, CNT, and PVdF are mixed at a mass ratio of 97.3: 0.2: 2.5 and kneaded while adding N-methyl-2-pyrrolidone (NMP) to combine the positive electrodes.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to both sides, leaving a portion to which the positive electrode core lead made of aluminum foil was connected, and the coating film was dried. Then, the coating film was rolled using a roller so that the porosity of the positive electrode mixture layer was 50% by volume, and then cut into a predetermined electrode size to form positive electrode mixture layers on both sides of the positive electrode core.
  • a positive electrode was prepared.
  • Graphite as a negative electrode active material, sodium salt of CMC, and dispersion of SBR are mixed at a solid content mass ratio of 99 / 0.6 / 0.4, and an appropriate amount of water is added to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry was applied and the coating film was dried, leaving the portions where the leads were connected to both sides of the negative electrode core made of copper foil.
  • the coating film was cut to a predetermined electrode size to prepare a negative electrode having negative electrode mixture layers formed on both sides of the negative electrode core.
  • the packing density of the negative electrode mixture layer was 1.17 g / cm 3 .
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • Electrodes were attached to the negative electrode and the positive electrode, respectively, and a laminated electrode body was prepared in which each electrode was alternately laminated one by one via a separator. A single-layer polypropylene separator was used as the separator. The prepared electrode body and the non-aqueous electrolyte were housed in a square battery case to prepare a test cell.
  • Examples 2 to 14 Comparative Examples 1 to 21> Examples are shown in Tables 1 and 2, except that the content of the positive electrode active material, the type and content of the conductive auxiliary agent, the content and molecular weight of PVdF, and the porosity of the positive electrode mixture layer are changed. A positive electrode and a test cell were prepared and evaluated in the same manner as in 1.
  • the conductive auxiliary material CNT-B is a CNT having a particle size of 150 nm and an aspect ratio of 10 to 70.
  • Tables 1 and 2 summarize the results of the mixture layer resistance increase, the interface resistance increase, and the DC resistance of Examples and Comparative Examples.
  • Tables 1 and 2 also show the composition of the positive electrode mixture layer composed of the positive electrode active material, the conductive auxiliary material, and PVdF, and the porosity of the positive electrode mixture layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池用正極は、正極芯体と、正極芯体の表面に形成された正極合材層と、を備える。正極合材層の空隙率は、23体積%~50体積%であり、正極合材層は、少なくとも、正極活物質と、導電助材としてのカーボンナノチューブと、結着材としてのポリフッ化ビニリデンとを含み、カーボンナノチューブは、粒子径が5nm~40nmで、アスペクト比が100~1000で、正極合材層における含有量が0.2質量%~5質量%であり、正極合材層の単位質量当たりに含まれるポリフッ化ビニリデンの分子数量が0.005~0.030である。

Description

非水電解質二次電池用正極及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極及び非水電解質二次電池に関する。
 近年、二次電池は、益々の高容量化が求められている。特許文献1には、正極合材に占める正極活物質の体積比率を97.1%~99.6%とし、かつ正極合材層の空隙の体積比率を16%~22%とすることで、正極合材層の正極活物質密度を3.7g/cc以上に高密度化した高容量の二次電池が開示されている。
 また、正極合材層において、結着材の含有量を少なくしつつ正極活物質の含有量を多くすることで、高容量の二次電池が得られる。特許文献2には、分子量が60万~100万のポリフッ化ビニリデンを結着材として含み、調製温度を30℃~60℃に制御することで、高容量の正極合材層の作製に好適な性状の正極合材スラリーを得られることが開示されている。
特開2015-43257号公報 特許第4263501号公報
 特許文献1に開示されたように正極合材層を高密度化すると、リチウムイオンが正極活物質の粒子間を移動しづらくなり、高抵抗になってしまう場合がある。また、特許文献2に開示されたように60万~100万の分子量のポリフッ化ビニリデンを用いたとしても、ポリフッ化ビニリデンの含有量が少ないと正極合材スラリーの安定性が悪化し、高抵抗になってしまう場合がある。特許文献1,2に開示された技術は、電池抵抗については考慮されておらず、未だ改善の余地がある。
 本開示の一態様である非水電解質二次電池用正極は、正極芯体と、正極芯体の表面に形成された正極合材層と、を備える。正極合材層の空隙率は、23体積%~50体積%であり、正極合材層は、少なくとも、正極活物質と、導電助材としてのカーボンナノチューブと、結着材としてのポリフッ化ビニリデンを含み、カーボンナノチューブは、粒子径が5nm~40nmで、アスペクト比が100~1000で、正極合材層における含有量が0.2質量%~5質量%であり、正極合材層の単位質量当たりに含まれるポリフッ化ビニリデンの分子数量が0.005~0.030である。
 本開示の一態様である非水電解質二次電池は、上記の非水電解質二次電池用正極と、負極と、非水電解質とを備える。
 本開示によれば、高容量で低抵抗の二次電池を提供することができる。
図1は、実施形態の一例である二次電池の斜視図であって、外装体の手前側を外した状態での電池ケースの内部の構造を示す図である。
 高容量で高出力な二次電池が求められている。空隙率を小さくして、正極合材層を高密度化することで、二次電池の高容量化を図ることができるが、リチウムイオンが正極活物質の粒子間を移動しづらくなり、二次電池が高抵抗になってしまう場合がある。本発明者らが鋭意検討した結果、正極合材層の空隙率を適切な範囲に調整しつつ、アスペクト比の高いカーボンナノチューブを所定量添加し、正極合材層の単位質量当たりに含まれるポリフッ化ビニリデンの分子数量を所定の範囲にすることで、高容量と低抵抗を両立した二次電池が得られることを見出した。ポリフッ化ビニリデンとカーボンナノチューブとの相乗効果により、正極合材スラリー中の正極活物質、ポリフッ化ビニリデン、及びカーボンナノチューブの分散性が向上したことで均一な塗布が可能となる。また、ポリフッ化ビニリデンとカーボンナノチューブが複合的に作用し、正極活物質間の密着強度を向上させ、電子伝導性が向上する。これらの相乗効果により、正極及び電池を低抵抗にすることができる。この効果は、ポリフッ化ビニリデンが少量の場合でも、正極合材層の単位質量当たりに含まれるポリフッ化ビニリデンの分子数量を所定の範囲にすることで得られる。
 以下、本開示の実施形態の一例について詳細に説明する。本実施形態では、角形の金属製の外装体1を備えた二次電池100を例示するが、外装体は角形に限定されず、例えば、円筒形等であってもよい。また、正極と負極とがセパレータを介して巻回された巻回型の電極体3を例示するが、複数の正極と複数の負極とがセパレータを介して交互に1枚ずつ積層されてなる積層型の電極体であってもよい。電極体3は、巻回型であることが好ましい。また、正極及び負極の両方において、各合材層が各芯体の両面に形成される場合を例示するが、各合材層は、各芯体の両面に形成される場合に限定されず、少なくとも一方の表面に形成されればよい。
 図1に例示するように、二次電池100は、正極と負極がセパレータを介して巻回され、平坦部及び一対の湾曲部を有する扁平状に成形された巻回型の電極体3と、電解質と、電極体3及び電解質を収容する外装体1とを備える。外装体1及び封口板2はいずれも金属製であり、アルミニウム製又はアルミニウム合金製であることが好ましい。
 外装体1は、底面視略長方形状の底部、及び底部の周縁に立設した側壁部を有する。側壁部は、底部に対して垂直に形成される。外装体1の寸法は特に限定されないが、一例としては、横方向長さが60~160mm、高さが60~100mm、厚みが10~40mmである。
 正極は、金属製の正極芯体と、芯体の両面に形成された正極合材層とを有する長尺体であって、短手方向における一方の端部に長手方向に沿って正極芯体が露出する帯状の正極芯体露出部4が形成されたものである。同様に、負極は、金属製の負極芯体と、芯体の両面に形成された負極合材層とを有する長尺体であって、短手方向における一方の端部に長手方向に沿って負極芯体が露出する帯状の負極芯体露出部5が形成されたものである。電極体3は、軸方向一端側に正極の正極芯体露出部4が、軸方向他端側に負極の負極芯体露出部5がそれぞれ配置された状態で、セパレータを介して正極及び負極が巻回された構造を有する。
 正極の正極芯体露出部4の積層部には正極集電体6が、負極の負極芯体露出部5の積層部には負極集電体8がそれぞれ接続される。好適な正極集電体6は、アルミニウム製又はアルミニウム合金製である。好適な負極集電体8は、銅又は銅合金製である。正極端子7は、封口板2の電池外部側に配置される正極外部導電部13と、正極外部導電部13に接続された正極ボルト部14と、封口板2に設けられた貫通穴に挿入される正極挿入部15とを有し、正極集電体6と電気的に接続されている。また、負極端子9は、封口板2の電池外部側に配置される負極外部導電部16と、負極外部導電部16に接続された負極ボルト部17と、封口板2に設けられた貫通穴に挿入される負極挿入部18とを有し、負極集電体8と電気的に接続されている。
 正極端子7及び正極集電体6は、それぞれ内部側絶縁部材及び外部側絶縁部材を介して封口板2に固定される。内部側絶縁部材は、封口板2と正極集電体6との間に配置され、外部側絶縁部材は封口板2と正極端子7との間に配置される。同様に、負極端子9及び負極集電体8は、それぞれ内部側絶縁部材及び外部側絶縁部材を介して封口板2に固定される。内部側絶縁部材は封口板2と負極集電体8との間に配置され、外部側絶縁部材は封口板2と負極端子9との間に配置される。
 電極体3は、外装体1内に収容される。封口板2は、外装体1の開口縁部にレーザー溶接等により接続される。封口板2は電解質注液孔10を有し、この電解質注液孔10は外装体1内に電解質を注液した後、封止栓により電解質注液孔10が封止される。封口板2には、電池内部の圧力が所定値以上となった場合にガスを排出するためのガス排出弁11が形成されている。
 以下、電極体3を構成する正極、負極、セパレータ、及び非水電解質について、特に正極を構成する正極合材層について詳説する。
 [正極]
 正極は、正極芯体と、正極芯体の表面に形成された正極合材層とを備える。正極芯体には、アルミニウム、アルミニウム合金など、正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
 正極合材層は、少なくとも、正極活物質と、導電助材としてのカーボンナノチューブ(以下、CNTという場合がある)と、結着材としてのポリフッ化ビニリデン(以下、PVdFという場合がある)とを含む。正極は、正極芯体上に正極活物質、導電助材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。正極合材層の厚みは、例えば、正極芯体の片側で10μm~150μmである。
 正極合材層の空隙率は、23体積%~50体積%である。正極合材層の空隙率は、正極合材層の嵩密度と、正極合材層に含まれる正極活物質、導電助材、結着材等の各成分の真密度及び含有量とから、以下の式に従って算出される。正極合材層の圧縮率を調整することで、正極合材層の嵩密度を変化させることができるので、正極合材層の空隙率を変えることができる。
   正極合材層の空隙率=1-(成分毎の(含有量/真密度)の総和×正極合材層の嵩密度)
 正極合材層に含まれる正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 正極合材層に含まれるCNTは、単層カーボンナノチューブ(SWCNT)、多層カーボンナノチューブ(MWCNT)のいずれであってもよい。また、MWCNTとしては、例えば、炭素六員環からなるグラフェンシートが繊維軸に対して平行に巻いたチューブラー構造のCNT、炭素六員環からなるグラフェンシートが繊維軸に対して垂直に配列したプーレトレット構造のCNT、炭素六員環からなるグラフェンシートが繊維軸に対して斜めの角度を持って巻いているヘリンボーン構造のCNT等を用いることができる。正極合材層は、CNT以外に、導電助材として、カーボンブラック、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料を含んでもよい。
 CNTは、粒子径が5nm~40nmで、アスペクト比が100~1000である。この範囲を満たすことで、PVdFとの相互作用が生じて、正極及び電池を低抵抗にすることができる。ここで、CNTの粒子径は、走査型電子顕微鏡(以下、SEMという場合がある)を用いて10本のCNTの直径を測定し、それらの平均値から算出される。また、CNTの長さは、SEMを用いて10本のCNTの長さを測定し、それらの平均値から算出される。例えば、CNTは、SEMを用いて加速電圧5kVにて観察し、5万倍の画像(画素数1024×1280)において、任意の10本のCNTの直径及び長さを測定し、それらの平均値から粒子径及び長さを求めることができる。アスペクト比は、長さを粒子径で除した値である。
 正極合材層におけるCNTの含有量は、0.2質量%~5質量%であり、好ましくは、1.5質量%~3質量%である。この範囲にあることで、正極合材スラリー中でのCNTの分散性が向上するので、より低抵抗の正極及び電池が得られる。
 正極合材層の単位質量当たりに含まれるPVdFの分子数量は、0.005~0.030であり、好ましくは0.007~0.011である。この範囲を満たすことで、CNTとの相互作用が生じて、正極及び電池を低抵抗にすることができる。ここで、正極合材層の単位質量当たりに含まれるPVdFの分子数量とは、正極合材層におけるPVdFの含有量(質量%)をPVdFの分子量(g/モル)で除した値である。
 正極合材層におけるポリフッ化ビニリデンの含有量が、0.3質量%~2.5質量%であってもよい。これにより、より低抵抗の正極及び電池が得られる。
 ポリフッ化ビニリデンの分子量は、110万~140万であってもよい。これにより、より低抵抗の正極及び電池が得られる。また、正極合材層は、PVdF以外に、結着材として、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等を含んでもよく、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)などが併用されてもよい。
 [負極]
 負極は、負極芯体と、負極芯体の表面に形成された負極合材層とを有する。負極芯体には、銅、銅合金等の負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極合材層は、負極活物質、及び結着材を含む。負極合材層の厚みは、例えば集電体の片側で10μm~150μmである。負極は、負極芯体上に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層を負極芯体の両面に形成することにより作製できる。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合材層に含まれる結着材には、正極の場合と同様に、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極合材層には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。負極合材層には、例えばSBRと、CMC又はその塩が含まれる。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータは、単層構造であってもよく、積層構造を有していてもよい。また、セパレータの表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルである。
 <実施例>
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、LiNi1/3Co1/3Mn1/3で表されるリチウム遷移金属酸化物を用いた。導電助材としてのCNTは、粒子径が10nmで、アスペクト比が100~1000のもの(以下、CNT-A)を用いた。PVdFは、分子量が110万のものを用いた。正極活物質と、CNTと、PVdFとを、97.3:0.2:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を加えながら混錬して、正極合材スラリーを調製した。次に、アルミニウム箔からなる正極芯体リードが接続される部分を残して、当該正極合材スラリーを両面に塗布し、塗膜を乾燥させた。そして、正極合材層の空隙率が50体積%となるようにローラを用いて塗膜を圧延した後、所定の電極サイズに切断し、正極芯体の両面に正極合材層が形成された正極を作製した。
 [負極の作製]
 負極活物質としての黒鉛と、CMCのナトリウム塩と、SBRのディスパージョンとを、99/0.6/0.4の固形分質量比で混合し、水を適量加えて、負極合材スラリーを調製した。次に、銅箔からなる負極芯体の両面にリードが接続される部分を残して、負極合材スラリーを塗布し、塗膜を乾燥させた。そして、ローラを用いて塗膜を圧延した後、所定の電極サイズに切断し、負極芯体の両面に負極合材層が形成された負極を作製した。負極合材層の充填密度は1.17g/cmであった。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、25:35:40の体積比で混合した100質量部の混合溶媒にビニレンカーボネート(VC)を1質量部添加し、LiPFを1.15モル/Lの割合で溶解させて非水電解質を調製した。
 [試験セルの作製]
 上記負極及び上記正極にリードをそれぞれ取り付け、セパレータを介して各電極を1枚ずつ交互に積層された積層型の電極体を作製した。セパレータには、単層のポリプロピレン製セパレータを用いた。作製した電極体及び上記非水電解質を角形の電池ケースに収容して、試験セルを作製した。
 [合材層抵抗及び界面抵抗の測定]
 試験セルに組み込む前の正極において、合材層全体の抵抗である合材層抵抗(Ω・cm)、及び、正極芯体と正極合材層との間の抵抗である界面抵抗(Ω・cm)を測定した。合材層抵抗増加量及び界面抵抗増加量は、上記のように作製した正極についての測定結果を、正極を80℃のジメチルカーボネート(DMC)に18時間浸漬した後に取り出した正極についての測定結果から引くことで算出した。合材層抵抗及び界面抵抗の測定には、日置電機株式会社製の電極抵抗測定器(装置名:XF057)を用いた。
 [直流抵抗の評価]
 上記試験セルに対して、25℃の環境下で、0.3Cの定電流で充電深度(SOC)が50%になるまで定電流充電を行い、SOC50%到達後、電流値が0.02Cになるまで定電圧充電を行った。その後、50Cの定電流で10秒間の定電流放電を行った。直流抵抗は、以下の式のように、開回路電圧(OCV)と、放電から10秒後の閉回路電圧(CCV)との差を、放電から10秒後の放電電流で除すことで算出した。
   直流抵抗=[OCV-CCV(放電10秒後)]/放電電流(放電10秒後)
 <実施例2~14、比較例1~21>
 表1、表2に示すように、正極活物質の含有量、導電助剤の種類及び含有量、PVdFの含有量及び分子量、並びに正極合材層の空隙率を変更したこと以外は、実施例1と同様にして正極及び試験セルを作製して評価を行った。なお、導電助材のCNT-Bは、粒子径が150nmで、アスペクト比が10~70のCNTである。
 表1と表2に、実施例及び比較例の、合材層抵抗増加量、界面抵抗増加量、直流抵抗の結果をまとめた。また、表1、表2には、正極活物質、導電助材、PVdFからなる正極合材層の組成、及び正極合材層の空隙率も記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2から分かるように、実施例1~14はいずれも、比較例1~21と比較して、正極及び電池の抵抗が小さかった。また、実施例1~14で、正極合材層における正極活物質の含有量は90質量%以上であり、高容量な正極及び電池を作製できた。
1  外装体
2  封口板
3  電極体
4  正極芯体露出部
5  負極芯体露出部
6  正極集電体
7  正極端子
8  負極集電体
9  負極端子
10  電解質注液孔
11  ガス排出弁
13  正極外部導電部
14  正極ボルト部
15  正極挿入部
16  負極外部導電部
17  負極ボルト部
18  負極挿入部
100  二次電池

Claims (4)

  1.  正極芯体と、前記正極芯体の表面に形成された正極合材層と、を備え、
     前記正極合材層の空隙率は、23体積%~50体積%であり、
     前記正極合材層は、少なくとも、正極活物質と、導電助材としてのカーボンナノチューブと、結着材としてのポリフッ化ビニリデンを含み、
     カーボンナノチューブは、粒子径が5nm~40nmで、アスペクト比が100~1000で、前記正極合材層における含有量が0.2質量%~5質量%であり、
     前記正極合材層の単位質量当たりに含まれるポリフッ化ビニリデンの分子数量が0.005~0.030である、非水電解質二次電池用正極。
  2.  前記正極合材層におけるポリフッ化ビニリデンの含有量が、0.3質量%~2.5質量%である、請求項1に記載の非水電解質二次電池用正極。
  3.  ポリフッ化ビニリデンの分子量は、110万~140万である、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  請求項1~3のいずれか1項に記載の非水電解質二次電池用正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2020/045579 2019-12-18 2020-12-08 非水電解質二次電池用正極及び非水電解質二次電池 WO2021124970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021565489A JPWO2021124970A1 (ja) 2019-12-18 2020-12-08
US17/785,211 US20220393177A1 (en) 2019-12-18 2020-12-08 Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
CN202080087516.8A CN114868276A (zh) 2019-12-18 2020-12-08 非水电解质二次电池用正极及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-228042 2019-12-18
JP2019228042 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021124970A1 true WO2021124970A1 (ja) 2021-06-24

Family

ID=76478649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045579 WO2021124970A1 (ja) 2019-12-18 2020-12-08 非水電解質二次電池用正極及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20220393177A1 (ja)
JP (1) JPWO2021124970A1 (ja)
CN (1) CN114868276A (ja)
WO (1) WO2021124970A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023099379A (ja) * 2022-01-01 2023-07-13 Connexx Systems株式会社 リチウムイオン二次電池の正極、その製造方法、およびその正極を有するリチウムイオン二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094100A1 (ja) * 2011-12-22 2013-06-27 パナソニック株式会社 二次電池用正極およびこれを用いた二次電池
JP2013175322A (ja) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
CN105070533A (zh) * 2015-07-02 2015-11-18 上海应用技术学院 一种由纳米树状聚苯胺构成的超级电容器电极及其制备方法
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2018081907A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用正極及びリチウムイオン電池
US20190312259A1 (en) * 2017-06-27 2019-10-10 Lg Chem, Ltd. Positive Electrode For Lithium Secondary Battery And Method For Manufacturing The Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094100A1 (ja) * 2011-12-22 2013-06-27 パナソニック株式会社 二次電池用正極およびこれを用いた二次電池
JP2013175322A (ja) * 2012-02-24 2013-09-05 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
CN105070533A (zh) * 2015-07-02 2015-11-18 上海应用技术学院 一种由纳米树状聚苯胺构成的超级电容器电极及其制备方法
WO2017010093A1 (ja) * 2015-07-14 2017-01-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2018081907A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用正極及びリチウムイオン電池
US20190312259A1 (en) * 2017-06-27 2019-10-10 Lg Chem, Ltd. Positive Electrode For Lithium Secondary Battery And Method For Manufacturing The Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023099379A (ja) * 2022-01-01 2023-07-13 Connexx Systems株式会社 リチウムイオン二次電池の正極、その製造方法、およびその正極を有するリチウムイオン二次電池
JP7370022B2 (ja) 2022-01-01 2023-10-27 Connexx Systems株式会社 リチウムイオン二次電池の正極、その製造方法、およびその正極を有するリチウムイオン二次電池

Also Published As

Publication number Publication date
CN114868276A (zh) 2022-08-05
JPWO2021124970A1 (ja) 2021-06-24
US20220393177A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP2019179724A (ja) 二次電池
JP7394324B2 (ja) 非水電解質二次電池
US20210194002A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021124970A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2022070895A1 (ja) 二次電池用負極及び二次電池
CN115989594A (zh) 非水电解质二次电池
WO2021124971A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2023032499A1 (ja) 非水電解質二次電池
EP4383361A1 (en) Non-aqueous electrolyte secondary battery
WO2021149539A1 (ja) 非水電解質二次電池
US20230187645A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2022138503A1 (ja) 非水電解質二次電池
WO2022070904A1 (ja) 二次電池用負極及び二次電池
WO2022070894A1 (ja) 非水電解質二次電池
US20240186487A1 (en) Non-aqueous electrolyte secondary battery
WO2023189682A1 (ja) 非水電解質二次電池
WO2022092214A1 (ja) 二次電池用正極および二次電池
US20230170527A1 (en) Nonaqueous electrolyte secondary battery
WO2022224824A1 (ja) 非水電解質二次電池
WO2021106591A1 (ja) 非水電解質二次電池用電極板及び非水電解質二次電池
WO2021106592A1 (ja) 非水電解質二次電池用電極板及び非水電解質二次電池
WO2023013286A1 (ja) 非水電解質二次電池
WO2021186949A1 (ja) 非水電解質二次電池
WO2022092136A1 (ja) 非水電解質二次電池
WO2023149529A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903353

Country of ref document: EP

Kind code of ref document: A1