WO2023149529A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2023149529A1
WO2023149529A1 PCT/JP2023/003508 JP2023003508W WO2023149529A1 WO 2023149529 A1 WO2023149529 A1 WO 2023149529A1 JP 2023003508 W JP2023003508 W JP 2023003508W WO 2023149529 A1 WO2023149529 A1 WO 2023149529A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mixture layer
electrode mixture
active material
secondary battery
Prior art date
Application number
PCT/JP2023/003508
Other languages
English (en)
French (fr)
Inventor
晶大 加藤木
敬光 田下
勇士 大浦
Original Assignee
パナソニックエナジ-株式会社
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジ-株式会社, パナソニックホールディングス株式会社 filed Critical パナソニックエナジ-株式会社
Publication of WO2023149529A1 publication Critical patent/WO2023149529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to non-aqueous electrolyte secondary batteries.
  • Non-aqueous electrolyte secondary batteries are widely used as high energy density secondary batteries.
  • the negative electrode mixture layer has a two-layer structure, and the negative electrode mixture layer A2 on the positive electrode side has a higher porosity than the negative electrode mixture layer A1 on the negative electrode current collector side. Techniques are disclosed.
  • Patent Literature 1 does not discuss the improvement of charge-discharge cycle characteristics, and there is still room for improvement.
  • An object of the present disclosure is to provide a non-aqueous electrolyte secondary battery with high capacity and excellent charge-discharge cycle characteristics.
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode mixture layer has a first negative electrode mixture layer facing the negative electrode current collector and a second negative electrode mixture layer facing the positive electrode;
  • the negative electrode active material is included, at least the second negative electrode mixture layer includes carbon nanotubes, the inter-particle porosity of the negative electrode active material in the first negative electrode mixture layer is S1, and the negative electrode active material in the second negative electrode mixture layer is It is characterized by satisfying 3.5 ⁇ S2/S1 ⁇ 5.0, where S2 is the void ratio between particles.
  • nonaqueous electrolyte secondary battery According to the nonaqueous electrolyte secondary battery according to the present disclosure, it is possible to improve battery capacity and charge/discharge cycle characteristics.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery that is an example of an embodiment
  • FIG. 1 is a cross-sectional view of a negative electrode in one example of an embodiment
  • FIG. It is a schematic diagram showing a cross section of a graphite particle in an example of the embodiment.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15 .
  • the electrode body 14 has a wound structure in which the positive electrode 11 and the negative electrode 12 are wound with the separator 13 interposed therebetween.
  • the sealing body 16 side will be referred to as "upper” and the bottom side of the exterior body 15 will be referred to as "lower”.
  • the inside of the secondary battery 10 is hermetically sealed by closing the opening end of the exterior body 15 with the sealing body 16 .
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing member 16 .
  • the cap 26, which is the top plate of the sealing member 16 electrically connected to the filter 22, serves as a positive electrode terminal.
  • the negative electrode lead 20 passes through the through hole of the insulating plate 18 , extends to the bottom side of the exterior body 15 , and is welded to the bottom inner surface of the exterior body 15 .
  • the exterior body 15 becomes a negative electrode terminal.
  • the negative electrode lead 20 when the negative electrode lead 20 is installed at the end of the winding end of the negative electrode 12 , the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the outer package 15 to reach the bottom of the outer package 15 . Welded to the inner surface.
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure hermetic sealing of the inside of the secondary battery 10 .
  • the exterior body 15 has, for example, a grooved portion 21 formed by pressing the side portion from the outside.
  • the grooved portion 21 is preferably annularly formed along the circumferential direction of the exterior body 15 and supports the sealing body 16 via a gasket 27 on its upper surface.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are stacked in order from the electrode body 14 side.
  • Each member constituting the sealing member 16 has, for example, a disk shape or a ring shape, and each member other than the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edge portions.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte that constitute the secondary battery 10, particularly the negative electrode 12, will be described in detail below.
  • FIG. 2 is a cross-sectional view of the negative electrode 12 that is an example of an embodiment.
  • the negative electrode 12 has a negative electrode current collector 30 and a negative electrode mixture layer 32 formed on the surface of the negative electrode current collector 30 .
  • the negative electrode mixture layer 32 has a first negative electrode mixture layer 32 a facing the negative electrode current collector 30 and a second negative electrode mixture layer 32 b facing the positive electrode 11 .
  • the thicknesses of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b may be the same or different.
  • the thickness of the second negative electrode mixture layer 32b is, for example, smaller than the thickness of the first negative electrode mixture layer 32a.
  • the ratio of the thickness of the second negative electrode mixture layer 32b to the thickness of the first negative electrode mixture layer 32a is preferably 2:8 to 5:5, more preferably 2:8 to 4:6.
  • the negative electrode current collector 30 for example, a foil of a metal such as copper that is stable in the potential range of the negative electrode, a film having the metal on the surface layer, or the like is used.
  • the thickness of the negative electrode current collector 30 is, for example, 5 ⁇ m to 30 ⁇ m.
  • the negative electrode mixture layer 32 contains a particulate negative electrode active material.
  • the negative electrode active material includes, for example, particulate graphite such as natural graphite and artificial graphite (hereinafter sometimes referred to as graphite particles 40). From the point of view of ease of adjusting the internal porosity, which will be described later, etc., the graphite preferably contains artificial graphite.
  • FIG. 3 is a schematic diagram showing a cross section of the graphite particles 40.
  • the graphite particle 40 has closed voids 42 (hereinafter referred to as internal voids 42) that are not connected from the inside of the particle to the particle surface, and voids that are connected from the inside of the particle to the particle surface. and a gap 44 (hereinafter referred to as an external gap 44).
  • the interplanar spacing (d 002 ) between the (002) planes of the graphite particles 40 measured by the X-ray wide-angle diffraction method is, for example, preferably 0.3354 nm or more, more preferably 0.3357 nm or more, and 0.3357 nm or more. It is preferably less than 340 nm, more preferably 0.338 nm or less.
  • the crystallite size (Lc(002)) of the graphite particles 40 determined by the X-ray diffraction method is, for example, preferably 5 nm or more, more preferably 10 nm or more, and 300 nm or less. is preferred, and 200 nm or less is more preferred.
  • the negative electrode active material may further contain metals that are alloyed with lithium, such as Si and Sn, or alloys and oxides containing these. Since these materials can store more lithium ions than graphite, they can increase the capacity of the battery.
  • the negative electrode active material preferably contains a Si-based material.
  • Si-based materials include Si, alloys containing Si, Si oxides represented by SiO x (0.5 ⁇ x ⁇ 1.6), and Li 2y SiO (2+y) (0 ⁇ y ⁇ 2). Examples include a Si-containing material in which Si fine particles are dispersed in a lithium silicate phase, and a Si-containing material in which Si fine particles are dispersed in a carbon phase.
  • the ratio of the Si-based material to the total mass of the negative electrode active material in the negative electrode mixture layer 32 is preferably 1% by mass to 10% by mass. It is preferably 3% by mass to 7% by mass.
  • the Si-based material preferably contains SiO x (0.5 ⁇ x ⁇ 1.6).
  • the void ratio between particles of the negative electrode active material is a two-dimensional value obtained from the ratio of the area of the voids between particles of the negative electrode active material to the cross-sectional area of the negative electrode mixture layer 32 .
  • S2/S1 calculates the inter-particle void ratio S1 of the negative electrode active material in the first negative electrode mixture layer 32a and the inter-particle void ratio S2 of the negative electrode active material in the second negative electrode mixture layer 32b in the following procedure. It is required by
  • a cross section of the negative electrode mixture layer 32 is exposed.
  • a method of exposing the cross section for example, a method of cutting a part of the negative electrode 12 and processing it with an ion milling device (eg, IM4000PLUS manufactured by Hitachi High-Tech) to expose the cross section of the negative electrode mixture layer 32 can be mentioned.
  • an ion milling device eg, IM4000PLUS manufactured by Hitachi High-Tech
  • backscattered electron images of the cross section of the exposed negative electrode mixture layer 32 are taken for each of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b.
  • the magnification for capturing the backscattered electron image is, for example, 800 times.
  • the internal voids 42 of the graphite particles 40 and the width of 3 ⁇ m or less The area of the inter-particle voids of the negative electrode active material is calculated using the portion excluding the external voids 44 as the inter-particle voids of the negative electrode active material.
  • Means for adjusting the inter-particle porosity of the negative electrode active material in the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b include, for example, means for adjusting the packing density of the negative electrode mixture layer 32 and graphite particles 40 means for adjusting the internal porosity of the. According to the latter means, by reducing the internal porosity of the graphite particles 40, the inter-particles of the negative electrode active material can be formed without reducing the packing density of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b. Porosity can be increased.
  • the second negative electrode mixture layer S2/S1 can be increased by reducing the internal porosity of the graphite particles B contained in 32b.
  • the graphite particles A mainly contained in the first negative electrode mixture layer 32a can be produced, for example, as follows. Coke (precursor), which is the main raw material, is pulverized to a predetermined size, agglomerated with a binder, and further pressure-molded into blocks, which are fired at a temperature of 2600° C. or higher to graphitize. Graphite particles A having a desired size are obtained by pulverizing and sieving the block-shaped compact after graphitization. Here, it is possible to adjust the internal porosity to be larger than that of graphite particles B, which will be described later, by adjusting the amount of the volatile component added to the block-shaped compact.
  • the internal porosity of graphite particles A is preferably 8% to 20%, more preferably 10% to 18%, and particularly preferably 12% to 16%. If part of the binder added to the coke (precursor) volatilizes during firing, the binder can be used as a volatile component. Pitch is exemplified as such a binder.
  • the graphite particles B mainly contained in the second negative electrode mixture layer 32b can be produced, for example, as follows. Coke (precursor), which is the main raw material, is pulverized to a predetermined size, aggregated with a binder, fired at a temperature of 2600 ° C. or higher, graphitized, and sieved to obtain the desired Graphite particles B of size are obtained.
  • the internal porosity of the graphite particles B can be adjusted by the particle size of the precursor after pulverization, the particle size of the aggregated precursor, and the like. For example, the internal porosity can be reduced by increasing the particle size of the precursor after pulverization.
  • the average particle diameter of the pulverized precursor may be in the range of 12 ⁇ m to 20 ⁇ m.
  • the internal porosity of the graphite particles B is preferably 5% or less, more preferably 1% to 5%, particularly preferably 3% to 5%.
  • the second negative electrode mixture layer 32b contains carbon nanotubes (hereinafter sometimes referred to as CNTs).
  • CNTs carbon nanotubes
  • S2/S1 is set within a predetermined range to improve the permeability of the non-aqueous electrolyte while maintaining the conductive path.
  • the first negative electrode mixture layer 32a may contain CNTs or may not contain CNTs.
  • the CNT content in the first negative electrode mixture layer 32a is A1 and the CNT content in the second negative electrode mixture layer is A2, it is preferable to satisfy A2/A1>1.
  • the total amount of CNTs contained in the negative electrode mixture layer 32 is constant, charge-discharge cycle characteristics are improved when A2 is larger than A1.
  • the content of CNTs in the second negative electrode mixture layer 32b is preferably 0.01% by mass to 0.1% by mass, more preferably 0.01% by mass to 0.01% by mass, based on the mass of the negative electrode active material. 05% by mass. Within this range, the content of the negative electrode active material in the negative electrode mixture layer can be sufficiently ensured.
  • the G/D ratio obtained by Raman spectroscopic measurement of the CNTs contained in the second negative electrode mixture layer 32b is preferably 40-130. Thereby, the charge-discharge cycle characteristics can be significantly improved. Although the details of the mechanism are not clear, since the G/D ratio represents the crystal ratio, CNTs must have an appropriate amount of structural defects in order to secure conductive paths in the second negative electrode mixture layer 32b. It is assumed that there is.
  • the G/D ratio is the ratio of the peak intensity of G-Band (1550 cm -1 to 1600 cm -1 ) to the peak intensity of D-Band (1300 cm -1 to 1350 cm -1 ) in Raman spectroscopy. CNTs with a high G/D ratio have high crystallinity.
  • the Raman spectroscopic spectrum of CNT can be measured using a Raman spectrometer (eg, NRS-5500 manufactured by JASCO Corporation).
  • a Raman spectrometer eg, NRS-5500 manufactured by JASCO Corporation
  • the CNTs are dispensed onto a slide and flattened using a spatula to measure the prepared sample.
  • Measurement conditions are, for example, as follows. Measurement time: 5 seconds Accumulation times: 2 Neutral density filter OD: 0.3 Objective lens magnification: 100 times Measurement range: 950 cm -1 to 1900 cm -1
  • CNTs contained in the negative electrode mixture layer 32 include single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs).
  • SWCNTs single-walled carbon nanotubes
  • MWCNTs multi-walled carbon nanotubes
  • the CNTs contained in the negative electrode mixture layer 32 are preferably SWCNTs.
  • the CNTs contained in the negative electrode mixture layer 32 may be a combination of SWCNTs and MWCNTs.
  • the diameter of SWCNT is, for example, 0.1 nm to 2 nm. Also, the length of the SWCNT is, for example, 0.1 ⁇ m to 200 ⁇ m.
  • the diameter of SWCNT is calculated from the average value of 10 SWCNT diameters measured using a transmission electron microscope (TEM). The length of SWCNT is calculated by measuring the length of 10 SWCNTs using a scanning electron microscope (SEM) and calculating their average value.
  • the diameter of MWCNT is, for example, 3 nm to 100 nm. Also, the length of the MWCNT is, for example, 0.1 ⁇ m to 200 ⁇ m. The diameter and length of MWCNTs can be calculated in the same manner as for SWCNTs.
  • the negative electrode mixture layer 32 may contain a conductive agent other than CNT.
  • conductive agents other than CNT include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the negative electrode mixture layer 32 may further contain a binder.
  • binders include fluorine resins, polyimide resins, acrylic resins, polyolefin resins, polyacrylonitrile (PAN), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), carboxymethyl cellulose (CMC ) or salts thereof, polyacrylic acid (PAA) or salts thereof (PAA-Na, PAA-K, etc., and partially neutralized salts may also be used), polyvinyl alcohol (PVA), and the like. These may be used alone or in combination of two or more.
  • first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b a method for forming the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b will be described.
  • a negative electrode active material containing graphite particles A, a binder, and a solvent such as water are mixed to prepare a first negative electrode mixture slurry.
  • a negative electrode active material containing graphite particles B, a binder, and a solvent such as water are mixed to prepare a second negative electrode mixture slurry.
  • the second negative electrode mixture slurry is applied to both surfaces of the coating film of the first negative electrode mixture slurry and dried.
  • the negative electrode mixture layer 32 can be formed by rolling the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b with rolling rollers.
  • the first negative electrode mixture slurry is applied and dried, and then the second negative electrode mixture slurry is applied.
  • a slurry may be applied.
  • the first negative electrode mixture slurry may be applied, dried, and rolled, and then the second negative electrode mixture slurry may be applied on the first negative electrode mixture layer 32a.
  • the inter-particle porosities of the respective negative electrode active materials do not become the same.
  • the inter-particle porosity of the negative electrode active materials of the first negative electrode mixture layer 32a and the second negative electrode mixture layer 32b can be adjusted.
  • the positive electrode 11 is composed of, for example, a positive electrode current collector such as a metal foil, and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil
  • a positive electrode mixture layer formed on the positive electrode current collector.
  • the positive electrode current collector a foil of a metal such as aluminum that is stable in the positive electrode potential range, a film having the metal on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains, for example, a positive electrode active material, a binder, a conductive agent, and the like.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive agent, etc. is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer. It can be produced by rolling.
  • Examples of positive electrode active materials include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Lithium transition metal oxides include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- yMyOz , LixMn2O4, LixMn2-yMyO4, LiMPO4 , Li2MPO4F ( M ; Na , Mg , Sc, Y , Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3).
  • the positive electrode active material is Li x NiO 2 , Li x Co y Ni 1-y O 2 , Li x Ni 1-y My O z ( M; at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0 .9, 2.0 ⁇ z ⁇ 2.3).
  • Conductive agents include, for example, carbon black (CB), acetylene black (AB), ketjen black, carbon nanotubes (CNT), graphene, and carbon-based particles such as graphite. These may be used alone or in combination of two or more.
  • binders include fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyimide-based resins, acrylic resins, polyolefin-based resins, and polyacrylonitrile (PAN). These may be used alone or in combination of two or more.
  • fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF)
  • PVdF polyvinylidene fluoride
  • acrylic resins acrylic resins
  • polyolefin-based resins polyolefin-based resins
  • PAN polyacrylonitrile
  • separator 13 for example, a porous sheet or the like having ion permeability and insulation is used. Specific examples of porous sheets include microporous thin films, woven fabrics, and non-woven fabrics. Suitable materials for the separator include olefin resins such as polyethylene and polypropylene, and cellulose.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Also, a multilayer separator including a polyethylene layer and a polypropylene layer may be used, and a separator 13 having a surface coated with a material such as aramid resin or ceramic may be used.
  • a non-aqueous electrolyte is a liquid electrolyte (electrolytic solution) containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate. , Ethyl propyl carbonate, methyl isopropyl carbonate and other chain carbonates, ⁇ -butyrolactone, ⁇ -valerolactone and other cyclic carboxylic acid esters, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc. and chain carboxylic acid esters of.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, cyclic ethers such as crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, cycl
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), and the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4O7 , borates such as Li (B( C2O4 ) F2 ), LiN( SO2CF3 ) 2 , LiN( C1F2l + 1SO2 )( CmF2m + 1SO2 ) ⁇ l , where m is an integer of 1 or more ⁇ .
  • Lithium salts may be used singly or in combination. Of these, it is preferable to use LiPF 6 from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • the lithium salt concentration is preferably 0.8 to 1.8 mol per 1 L of solvent.
  • Example 1 [Preparation of positive electrode] A powdery lithium transition metal oxide represented by LiCo 0.979 Zr 0.001 Mg 0.01 Al 0.01 O 2 was used as a positive electrode active material. 95 parts by mass of the positive electrode active material, 2.5 parts by mass of acetylene black (AB) as a conductive agent, and 2.5 parts by mass of polyvinylidene fluoride powder as a binding agent. An appropriate amount of -2-pyrrolidone (NMP) was added to prepare a positive electrode mixture slurry.
  • NMP -2-pyrrolidone
  • This slurry is applied to both sides of a positive electrode current collector made of aluminum foil (thickness 15 ⁇ m) by a doctor blade method, the coating film is dried, and then the coating film is rolled with a rolling roller to A positive electrode having a positive electrode mixture layer formed thereon was produced.
  • Graphite particles A and SiO were mixed at a mass ratio of 95:5 to obtain a first negative electrode active material.
  • 100 parts by mass of the first negative electrode active material, 1 part by mass of carboxymethyl cellulose sodium salt (CMC-Na), and 1 part by mass of styrene-butadiene copolymer rubber (SBR) were mixed, and the mixture was immersed in water. to prepare a first negative electrode mixture slurry.
  • the first negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of copper foil by a doctor blade method and dried to form a first negative electrode mixture layer. Furthermore, the second negative electrode mixture slurry was applied onto the first negative electrode mixture layer and dried to form a second negative electrode mixture layer. At this time, the coating mass ratio per unit area of the first negative electrode mixture slurry and the second negative electrode mixture slurry was set to 7:3.
  • a negative electrode was produced by rolling the first negative electrode mixture layer and the second negative electrode mixture layer with a rolling roller.
  • LiPF 6 was added to 100 parts by mass of a non-aqueous solvent obtained by mixing ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC) at a volume ratio of 10:10:80. It was dissolved at a concentration of 0 mol/L and used as a non-aqueous electrolyte.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • Example 2 A test cell was produced in the same manner as in Example 1, except that 0.01 part by mass of SWCNT was further mixed to produce a mixture in the preparation of the first negative electrode mixture slurry.
  • Example 3 In the preparation of the first negative electrode mixture slurry, 0.01 parts by mass of SWCNTs are further mixed to prepare a mixture, and in the preparation of the second negative electrode mixture slurry, the mixing ratio of SWCNTs is changed to 0.03 parts by mass.
  • a test cell was prepared in the same manner as in Example 1, except that
  • Example 4 A test cell was produced in the same manner as in Example 1, except that 0.02 parts by mass of SWCNT was further mixed to produce a mixture in the preparation of the first negative electrode mixture slurry.
  • Example 5 A test cell was prepared in the same manner as in Example 2, except that in the preparation of the second negative electrode mixture slurry, the mixing ratio of graphite particles A and graphite particles B was changed to 34:66.
  • Example 6 A test cell was prepared in the same manner as in Example 2, except that in the preparation of the second negative electrode mixture slurry, the graphite particles B and SiO were mixed at a mass ratio of 95:5 to form the second negative electrode active material. bottom.
  • Example 7 A test cell was fabricated in the same manner as in Example 1, except that the coating mass ratio per unit area of the first negative electrode mixture slurry and the second negative electrode mixture slurry was changed to 8:2 in the preparation of the negative electrode.
  • Example 8 A test cell was fabricated in the same manner as in Example 1, except that the coating mass ratio per unit area of the first negative electrode mixture slurry and the second negative electrode mixture slurry was changed to 5:5 in the preparation of the negative electrode.
  • Example 1 A test cell was produced in the same manner as in Example 1, except that the following points were changed in the production of the negative electrode.
  • (1) In the preparation of the first negative electrode mixture slurry, mixed graphite obtained by mixing 50 parts by mass of graphite particles A and 50 parts by mass of graphite particles B, and SiO at a mass ratio of 95:5 They were mixed to obtain a first negative electrode active material.
  • (2) In the preparation of the second negative electrode mixture slurry, the mixing ratio of graphite particles A and graphite particles B was changed to 50:50, and a mixture was produced without mixing SWCNTs.
  • Example 2 In the preparation of the second negative electrode mixture slurry, the same procedure as in Example 1 was performed, except that the mixing ratio of graphite particles A and graphite particles B was changed to 60:40, and the mixture was produced without mixing SWCNTs. A test cell was constructed.
  • Example 3 A test cell was produced in the same manner as in Example 1, except that the mixture was produced without mixing the SWCNTs in the preparation of the second negative electrode mixture slurry.
  • Example 4 A test cell was produced in the same manner as in Example 1, except that the following points were changed in the production of the negative electrode.
  • (1) In the preparation of the first negative electrode mixture slurry, mixed graphite obtained by mixing 50 parts by mass of graphite particles A and 50 parts by mass of graphite particles B, and SiO at a mass ratio of 95:5 They were mixed to obtain a first negative electrode active material.
  • 0.02 parts by mass of SWCNT was further mixed to prepare a mixture.
  • the mixing ratio of graphite particles A and graphite particles B was changed to 50:50.
  • Capacity retention rate (discharge capacity at 200th cycle/discharge capacity at 1st cycle) x 100
  • Table 1 summarizes the evaluation results of the capacity retention rate of the test cells of each example and each comparative example. Table 1 also shows the ratio of graphite particles A and graphite particles B in each of the first negative electrode mixture layer and the second negative electrode mixture layer, and the content of CNTs in the first negative electrode mixture layer and the second negative electrode mixture layer. ratio, thicknesses of the first and second negative electrode mixture layers, and S2/S1 in the negative electrode mixture layer are also shown.
  • the battery of the example has an improved capacity retention rate compared to the battery of the comparative example.
  • the battery of the example by including carbon nanotubes in at least the second negative electrode mixture layer while maintaining S2/S1 within a predetermined range, the permeability of the electrolyte solution through the entire negative electrode mixture layer was improved. improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高容量で、充放電サイクル特性に優れた非水電解質二次電池を提供する。本開示の一態様である非水電解質二次電池は、正極と、負極と、非水電解質とを備え、負極は、負極集電体と、負極集電体の表面に形成された負極合剤層を有し、負極合剤層は、負極集電体に対向する第1負極合剤層と、正極と対向する第2負極合剤層とを有し、負極合剤層は、粒子状の負極活物質を含み、少なくとも第2負極合剤層は、カーボンナノチューブを含み、第1負極合剤層における負極活物質の粒子間空隙率をS1とし、第2負極合剤層における負極活物質の粒子間空隙率をS2とした場合に、3.5≦S2/S1≦5.0を満たす。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 非水電解質二次電池は、高エネルギー密度の二次電池として広く利用されている。特許文献1には、高容量化の観点から、負極合剤層を2層構造とし、負極集電体側の負極合剤層A1よりも、正極側の負極合剤層A2の空隙率を大きくする技術が開示されている。
特開2003-77463号公報
 近年、非水電解質二次電池には益々の高容量化が求められており、負極合剤層に含まれる負極活物質として、膨張収縮の割合が大きいSi系材料等が使用される場合がある。特許文献1に記載の負極合剤層A2のように空隙率が高い負極合剤層では、充放電に伴う体積変化によって、負極活物質の粒子間の導電パスが維持できずに電池容量が低下することがある。特許文献1は、充放電サイクル特性の向上については検討しておらず、未だ改良の余地がある。
 本開示の目的は、高容量で、充放電サイクル特性に優れた非水電解質二次電池を提供することにある。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、非水電解質とを備え、負極は、負極集電体と、負極集電体の表面に形成された負極合剤層を有し、負極合剤層は、負極集電体に対向する第1負極合剤層と、正極と対向する第2負極合剤層とを有し、負極合剤層は、粒子状の負極活物質を含み、少なくとも第2負極合剤層は、カーボンナノチューブを含み、第1負極合剤層における負極活物質の粒子間空隙率をS1とし、第2負極合剤層における負極活物質の粒子間空隙率をS2とした場合に、3.5≦S2/S1≦5.0を満たすことを特徴とする。
 本開示に係る非水電解質二次電池によれば、電池容量及び充放電サイクル特性を向上させることができる。
実施形態の一例である円筒形の二次電池の軸方向断面図である。 実施形態の一例における負極の断面図である。 実施形態の一例における黒鉛粒子の断面を示す模式図である。
 以下では、図面を参照しながら、本開示に係る円筒形の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、円筒形の二次電池の仕様に合わせて適宜変更することができる。また、外装体は円筒形に限定されず、例えば角形等であってもよい。また、以下の説明において、複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
 外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が負極12の巻き終わり側の端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。
 外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
 以下、二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に負極12について詳説する。
 [負極]
 図2は、実施形態の一例である負極12の断面図である。図2に示すように、負極12は、負極集電体30と、負極集電体30の表面に形成された負極合剤層32とを有する。負極合剤層32は、負極集電体30に対向する第1負極合剤層32aと、正極11と対向する第2負極合剤層32bとを有する。
 第1負極合剤層32aと第2負極合剤層32bの厚みは、同じであっても相互に異なっていてもよい。第2負極合剤層32bの厚みは、例えば、第1負極合剤層32aの厚みよりも小さい。第2負極合剤層32bの厚みと第1負極合剤層32aの厚みとの比は、好ましくは2:8~5:5であり、より好ましくは2:8~4:6である。
 負極集電体30は、例えば、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。負極集電体30の厚みは、例えば5μm~30μmである。
 負極合剤層32は、粒子状の負極活物質を含む。負極活物質は、例えば、天然黒鉛、人造黒鉛等の粒子状の黒鉛(以下、黒鉛粒子40という場合がある)を含む。後述する内部空隙率の調整のし易さ等の点では、黒鉛は人造黒鉛を含むことが好ましい。
 図3は、黒鉛粒子40の断面を示す模式図である。図3に示すように、黒鉛粒子40は、黒鉛粒子40の断面視において、粒子内部から粒子表面につながっていない閉じられた空隙42(以下、内部空隙42)と、粒子内部から粒子表面につながっている空隙44(以下、外部空隙44)とを有する。
 黒鉛粒子40のX線広角回折法による(002)面の面間隔(d002)は、例えば、0.3354nm以上であることが好ましく、0.3357nm以上であることがより好ましく、また、0.340nm未満であることが好ましく、0.338nm以下であることがより好ましい。また、黒鉛粒子40のX線回折法で求めた結晶子サイズ(Lc(002))は、例えば、5nm以上であることが好ましく、10nm以上であることがより好ましく、また、300nm以下であることが好ましく、200nm以下であることがより好ましい。面間隔(d002)及び結晶子サイズ(Lc(002))が上記範囲を満たす場合、上記範囲を満たさない場合と比べて、電池容量が大きくなる傾向がある。
 負極活物質は、さらに、Si、Sn等のリチウムと合金化する金属、又はこれらを含む合金、酸化物等を含んでもよい。これらは、黒鉛に比べてより多くのリチウムイオンを吸蔵できるので、電池の高容量化を図ることができる。
 負極活物質は、Si系材料を含むことが好ましい。Si系材料としては、Si、Siを含む合金、SiO(0.5≦x≦1.6)で表されるSi酸化物、Li2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有材料、及び炭素相中にSiの微粒子が分散したSi含有材料等が例示できる。
 電池容量の向上及び充放電サイクル特性の低下抑制等の観点から、負極合剤層32における負極活物質の総質量に対するSi系材料の割合は、好ましくは1質量%~10質量%であり、より好ましくは3質量%~7質量%である。Si系材料は、SiO(0.5≦x≦1.6)を含むことが好ましい。
 第1負極合剤層32aにおける負極活物質の粒子間空隙率をS1とし、第2負極合剤層32bにおける負極活物質の粒子間空隙率をS2とした場合に、3.5≦S2/S1≦5.0を満たす。これにより、負極合剤層32における非水電解質の浸透性が向上する。負極活物質の粒子間空隙率とは、負極合剤層32の断面積に対する負極活物質の粒子間空隙の面積の割合から求めた2次元値である。S2/S1は、以下の手順で、第1負極合剤層32aにおける負極活物質の粒子間空隙率S1、及び、第2負極合剤層32bにおける負極活物質の粒子間空隙率S2を算出することで求められる。
 <負極活物質の粒子間空隙率の測定方法>
 (1)負極合剤層32の断面を露出させる。断面を露出させる方法としては、例えば、負極12の一部を切り取り、イオンミリング装置(例えば、日立ハイテク社製、IM4000PLUS)で加工し、負極合剤層32の断面を露出させる方法が挙げられる。
 (2)走査型電子顕微鏡を用いて、上記露出させた負極合剤層32の断面の反射電子像を、第1負極合剤層32a及び第2負極合剤層32bのそれぞれについて撮影する。反射電子像を撮影する際の倍率は、例えば、800倍である。
 (3)上記により得られた断面像をコンピュータに取り込み、画像解析ソフト(例えば、アメリカ国立衛生研究所製、ImageJ)を用いて二値化処理を行い、断面像内の粒子断面を黒色とし、粒子断面に存在する空隙を白色として変換した二値化処理画像を得る。
 (4)第1負極合剤層32a及び第2負極合剤層32bの二値化処理画像において、各々、白色として変換された空隙のうち、黒鉛粒子40の内部空隙42、及び、幅3μm以下の外部空隙44を除く部分を負極活物質の粒子間空隙として、負極活物質の粒子間空隙の面積を算出する。負極活物質の粒子間空隙率は、以下の式に基づいて算出できる。
 負極活物質の粒子間空隙率(%)=負極活物質の粒子間空隙の面積/負極合剤層断面の面積×100
 (5)S1及びS2は、各々、上記測定3回の平均値として求められる。
 第1負極合剤層32a及び第2負極合剤層32bにおける負極活物質の粒子間空隙率を調整する手段としては、例えば、負極合剤層32の充填密度を調整する手段と、黒鉛粒子40の内部空隙率を調整する手段が挙げられる。後者の手段によれば、黒鉛粒子40の内部空隙率を低減することで、第1負極合剤層32a及び第2負極合剤層32bの充填密度を低減することなく、負極活物質の粒子間空隙率を高めることができる。換言すれば、第1負極合剤層32a及び第2負極合剤層32bの充填密度を同等とし、第1負極合剤層32aに含まれる黒鉛粒子Aに比較して、第2負極合剤層32bに含まれる黒鉛粒子Bの内部空隙率を小さくすることで、S2/S1を大きくすることができる。
 主に第1負極合剤層32aに含まれる黒鉛粒子Aは、例えば、以下のようにして作製することができる。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらを結着剤で凝集した後、さらにブロック状に加圧成形した状態で、2600℃以上の温度で焼成し、黒鉛化させる。黒鉛化後のブロック状の成形体を粉砕し、篩い分けることで、所望のサイズの黒鉛粒子Aを得る。ここで、ブロック状の成形体に添加される揮発成分の量によって、内部空隙率を後述の黒鉛粒子Bよりも大きくするように調整できる。黒鉛粒子Aの内部空隙率は、8%~20%が好ましく、10%~18%がより好ましく、12%~16%が特に好ましい。コークス(前駆体)に添加される結着剤の一部が焼成時に揮発する場合、結着剤を揮発成分として用いることができる。そのような結着剤としてピッチが例示される。
 主に第2負極合剤層32bに含まれる黒鉛粒子Bは、例えば、以下のようにして作製することができる。主原料となるコークス(前駆体)を所定サイズに粉砕し、それらを結着剤で凝集させた状態で、2600℃以上の温度で焼成し、黒鉛化させた後、篩い分けることで、所望のサイズの黒鉛粒子Bを得る。ここで、粉砕後の前駆体の粒径や凝集させた状態の前駆体の粒径等によって、黒鉛粒子Bの内部空隙率を調整することができる。例えば、粉砕後の前駆体の粒径を大きくすることで、内部空隙率を小さくすることができる。粉砕後の前駆体の平均粒径(体積換算のメジアン径、以下、D50という場合がある)は、12μm~20μmの範囲であってもよい。黒鉛粒子Bの内部空隙率は、5%以下が好ましく、1%~5%がより好ましく、3%~5%が特に好ましい。
 負極合剤層32の内、少なくとも第2負極合剤層32bは、カーボンナノチューブ(以下、CNTという場合がある)を含む。負極活物質の粒子間空隙率が高い第2負極合剤層32bにCNTを含有させることで、充放電を繰り返した後も負極活物質の粒子間の導電パスを維持することができる。上記のように、S2/S1を所定の範囲にして非水電解質の浸透性を向上させつつ、導電パスを維持できるので、高容量化と充放電サイクル特性の向上を両立させることができる。第1負極合剤層32aは、CNTを含んでもよいし、CNTを含まなくてもよい。
 第1負極合剤層32aにおけるCNTの含有率をA1とし、第2負極合剤層におけるCNTの含有率をA2とした場合に、A2/A1>1を満たすことが好ましい。負極合剤層32に含まれるCNTの総量が一定の場合には、A2がA1よりも大きい方が充放電サイクル特性が向上する。
 第2負極合剤層32bにおけるCNTの含有率は、負極活物質の質量に対して、好ましくは0.01質量%~0.1質量%であり、より好ましくは0.01質量%~0.05質量%である。この範囲であれば、負極合剤層における負極活物質の含有量を十分に確保できる。
 第2負極合剤層32bに含まれるCNTのラマン分光測定により得られるG/D比は、40~130であることが好ましい。これにより、充放電サイクル特性を顕著に向上させることができる。メカニズムついての詳細は明らかではないが、G/D比は結晶比率を表すので、第2負極合剤層32b中の導電パスを確保するためには、CNTに適切な量の構造欠陥が必要であると推察される。
 G/D比は、ラマン分光スペクトルにおいて、D-Band(1300cm-1~1350cm-1)のピーク強度に対するG-Band(1550cm-1~1600cm-1)のピーク強度の比である。G/D比の高いCNTは、結晶性が高い。
 CNTのラマン分光スペクトルは、ラマン分光装置(例えば、日本分光社製NRS-5500)を用いて計測することができる。例えば、CNTをスライド上に分取し、スパチュラを用いて平坦化して作製した試料を測定する。計測条件は、例えば、以下の通りである。
  測定時間:5秒
  積算回数:2回
  減光フィルタOD:0.3
  対物レンズ倍率:100倍
  測定範囲:950cm-1~1900cm-1
 負極合剤層32に含有されるCNTとしては、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)が例示できる。負極合剤層32に含有されるCNTは、SWCNTであることが好ましい。また、負極合剤層32に含有されるCNTは、SWCNTとMWCNTの組み合わせでもよい。
 SWCNTの直径は、例えば、0.1nm~2nmである。また、SWCNTの長さは、例えば、0.1μm~200μmである。ここで、SWCNTの直径は、透過型電子顕微鏡(TEM)を用いて10本のSWCNTの直径を測定し、それらの平均値から算出される。SWCNTの長さは、走査型電子顕微鏡(SEM)を用いて10本のSWCNTの長さを測定し、それらの平均値から算出される。MWCNTの直径は、例えば、3nm~100nmである。また、MWCNTの長さは、例えば、0.1μm~200μmである。MWCNTの直径及び長さは、SWCNTと同様の方法で算出することができる。
 負極合剤層32は、CNT以外の導電剤を含有してもよい。CNT以外の導電剤としては、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、単独でもよいし、2種類以上を組み合わせて用いてもよい。
 負極合剤層32は、さらに、結着剤を含んでもよい。結着剤としては、例えば、フッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 次に、第1負極合剤層32a及び第2負極合剤層32bを形成する方法について説明する。例えば、まず、黒鉛粒子Aを含む負極活物質と、結着剤と、水等の溶媒とを混合して、第1負極合剤スラリーを調製する。これとは別に黒鉛粒子Bを含む負極活物質と、結着剤と、水等の溶媒とを混合して、第2負極合剤スラリーを調製する。そして、負極集電体の両面に、第1負極合剤スラリーを塗布、乾燥した後、第1負極合剤スラリーによる塗膜の上に、第2負極合剤スラリーを両面に塗布、乾燥する。さらに、圧延ローラにより第1負極合剤層32a及び第2負極合剤層32bを圧延することで負極合剤層32を形成することができる。なお、上記方法では、第1負極合剤スラリーを塗布、乾燥させてから、第2負極合剤スラリーを塗布したが、第1負極合剤スラリーを塗布後、乾燥前に、第2負極合剤スラリーを塗布してもよい。また、第1負極合剤スラリーを塗布、乾燥させて圧延した後に、第1負極合剤層32a上に第2負極合剤スラリーを塗布してもよい。
 第1負極合剤層32aと第2負極合剤層32bの圧延の条件を変えることで、それぞれの充填密度の調整をより自由にすることができる。なお、第1負極合剤層32aと第2負極合剤層32bは、上記の通り同時に圧延を行っても、各々の負極活物質の粒子間空隙率は同じにはならない。例えば、黒鉛粒子A及び黒鉛粒子Bの粒度分布を変化させることで、第1負極合剤層32aと第2負極合剤層32bの負極活物質の粒子間空隙率を調整することができる。
 [正極]
 正極11は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極合剤層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、例えば、正極活物質、結着剤、導電剤等を含む。正極11は、例えば、正極活物質、結着剤、導電剤等を含む正極合剤スラリーを正極集電体上に塗布、乾燥して正極合剤層を形成した後、この正極合剤層を圧延することにより作製できる。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 導電剤は、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ13の表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 [非水電解質]
 非水電解質は、非水溶媒、及び、非水溶媒に溶解した電解質塩を含む、液体電解質(電解液)である。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、粉末状のLiCo0.979Zr0.001Mg0.01Al0.01で表されるリチウム遷移金属酸化物を用いた。上記正極活物質が95質量部、導電剤としてのアセチレンブラック(AB)が2.5質量部、結着剤としてのポリフッ化ビニリデン粉末が2.5質量部となるよう混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。このスラリーをアルミニウム箔(厚さ15μm)からなる正極集電体の両面にドクターブレード法により塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。
 [黒鉛粒子Aの作製]
 コークスを平均粒径(D50)が17μmとなるまで粉砕し、粉砕したコークスに結着剤としてのピッチを添加し、コークスを凝集させた。この凝集物に等方的な圧力を加えて1.6g/cm~1.9g/cmの密度を有するブロック状の成形体を作製した。このブロック状の成形体を2800℃の温度で焼成して黒鉛化した後、黒鉛化したブロック状の成形体を粉砕し、250メッシュの篩いを用いて、篩い分けを行い、平均粒径(D50)が23μmの黒鉛粒子Aを得た。
 [黒鉛粒子Bの作製]
 コークスを平均粒径(D50)が13μmとなるまで粉砕し、粉砕したコークスに結着剤としてのピッチを添加して、平均粒径(D50)が18μmとなるまで凝集させた。この凝集物を2800℃の温度で焼成して黒鉛化した。次いで、黒鉛化したブロック状の成形体を粉砕し、250メッシュの篩いを用いて、篩い分けを行い、平均粒径(D50)が23μmの黒鉛粒子Bを得た。
 [負極の作製]
 黒鉛粒子AとSiOとを95:5の質量比で混合して第1負極活物質とした。100質量部の第1負極活物質と、1質量部のカルボキシメチルセルロースのナトリウム塩(CMC-Na)と、1質量部のスチレン-ブタジエン共重合体ゴム(SBR)とを混合し、その混合物を水中で混練して、第1負極合剤スラリーを調製した。
 25質量部の黒鉛粒子Aと75質量部の黒鉛粒子Bとを混合して得られた混合黒鉛と、SiOとを95:5の質量比で混合して第2負極活物質とした。100質量部の第2負極活物質と、1質量部のCMC-Naと、1質量部のSBRと、0.02質量部の単層カーボンナノチューブ(SWCNT)とを混合し、その混合物を水中で混練して、第2負極合剤スラリーを調製した。
 第1負極合剤スラリーを銅箔からなる負極集電体の両面にドクターブレード法により塗布し、乾燥させて第1負極合剤層を形成した。さらに、第1負極合剤層上に、上記の第2負極合剤スラリーを塗布し、乾燥して第2負極合剤層を形成した。このとき、第1負極合剤スラリーと第2負極合剤スラリーの単位面積あたりの塗布質量比は7:3とした。圧延ローラにより第1負極合剤層及び第2負極合剤層を圧延して、負極を作製した。
 [非水電解質の作製]
 エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、エチルメチルカーボネート(EMC)とを体積比で10:10:80となるように混合した100質量部の非水溶媒に、LiPFを1.0mol/Lの濃度で溶解し、これを非水電解質とした。
 [試験セルの作製]
 正極集電体にアルミニウム製の正極リードを、負極集電体にニッケル製の負極リードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解質を注入した後、外装体の開口部を封止して、高さ62mm、幅35mm、厚み3.6mmの試験セルを得た。
 <実施例2>
 第1負極合剤スラリーの調製において、さらに、0.01質量部のSWCNTを混合して混合物を作製したこと以外は、実施例1と同様にして試験セルを作製した。
 <実施例3>
 第1負極合剤スラリーの調製において、さらに、0.01質量部のSWCNTを混合して混合物を作製し、第2負極合剤スラリーの調製において、SWCNTの混合比率を0.03質量部に変更したこと以外は、実施例1と同様にして試験セルを作製した。
 <実施例4>
 第1負極合剤スラリーの調製において、さらに、0.02質量部のSWCNTを混合して混合物を作製したこと以外は、実施例1と同様にして試験セルを作製した。
 <実施例5>
 第2負極合剤スラリーの調製において、黒鉛粒子Aと黒鉛粒子Bとの混合比を34:66に変更したこと以外は、実施例2と同様にして試験セルを作製した。
 <実施例6>
 第2負極合剤スラリーの調製において、黒鉛粒子Bと、SiOとを95:5の質量比で混合して第2負極活物質としたこと以外は、実施例2と同様にして試験セルを作製した。
 <実施例7>
 負極の作製において、第1負極合剤スラリーと第2負極合剤スラリーの単位面積あたりの塗布質量比を8:2に変更したこと以外は、実施例1と同様にして試験セルを作製した。
 <実施例8>
 負極の作製において、第1負極合剤スラリーと第2負極合剤スラリーの単位面積あたりの塗布質量比を5:5に変更したこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例1>
 負極の作製において、以下の点を変更したこと以外は、実施例1と同様にして試験セルを作製した。
(1)第1負極合剤スラリーの調製において、50質量部の黒鉛粒子Aと50質量部の黒鉛粒子Bとを混合して得られた混合黒鉛と、SiOとを95:5の質量比で混合して第1負極活物質とした。
(2)第2負極合剤スラリーの調製において、黒鉛粒子Aと黒鉛粒子Bとの混合比を50:50に変更し、SWCNTを混合せずに混合物を作製した。
 <比較例2>
 第2負極合剤スラリーの調製において、黒鉛粒子Aと黒鉛粒子Bとの混合比を60:40に変更し、SWCNTを混合せずに混合物を作製したこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例3>
 第2負極合剤スラリーの調製において、SWCNTを混合せずに混合物を作製したこと以外は、実施例1と同様にして試験セルを作製した。
 <比較例4>
 負極の作製において、以下の点を変更したこと以外は、実施例1と同様にして試験セルを作製した。
(1)第1負極合剤スラリーの調製において、50質量部の黒鉛粒子Aと50質量部の黒鉛粒子Bとを混合して得られた混合黒鉛と、SiOとを95:5の質量比で混合して第1負極活物質とした。また、第1負極合剤スラリーの調製において、さらに、0.02質量部のSWCNTを混合して混合物を作製した。
(2)第2負極合剤スラリーの調製において、黒鉛粒子Aと黒鉛粒子Bとの混合比を50:50に変更した。
 <比較例5>
 第1負極合剤スラリーの調製において、さらに、0.02質量部のSWCNTを混合して混合物を作製し、第2負極合剤スラリーの調製において、黒鉛粒子Aと黒鉛粒子Bとの混合比を60:40に変更したこと以外は、実施例1と同様にして試験セルを作製した。
 [負極活物質の粒子間空隙率の評価]
 環境温度25℃の下、各実施例及び各比較例の試験セルを、0.2Cで、4.2Vまで定電流充電した後、4.2Vで、1/50Cまで定電圧充電した。その後、0.2Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、5サイクル行った。5サイクル後の各実施例及び各比較例の試験セルから負極を取り出し、負極活物質の粒子間空隙率を算出した。
 [容量維持率の評価]
 環境温度25℃の下、各実施例及び各比較例の試験セルを、1Cで、4.2Vまで定電流充電した後、4.2Vで、1/50Cになるまで定電圧充電した。その後、0.5Cで、2.5Vまで定電流放電した。この充放電を1サイクルとして、200サイクル行った。以下の式により、各実施例及び各比較例の試験セルの充放電サイクルにおける容量維持率を求めた。
 容量維持率=(200サイクル目の放電容量/1サイクル目の放電容量)×100
 表1に、各実施例及び各比較例の試験セルの容量維持率の評価結果をまとめた。また、表1には、第1負極合剤層及び第2負極合剤層のそれぞれにおける黒鉛粒子Aと黒鉛粒子Bの比、第1負極合剤層及び第2負極合剤層におけるCNTの含有率、第1負極合剤層及び第2負極合剤層の厚み、負極合剤層におけるS2/S1も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 実施例の電池は、比較例の電池に比べて容量維持率が向上している。実施例の電池では、S2/S1を所定の範囲としつつ、少なくとも第2負極合剤層にカーボンナノチューブを含有させることで、負極合剤層全体の電解液の浸透性が向上したため、容量維持率が向上したと考えられる。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット、30 負極集電体、32 負極合剤層、32a 第1負極合剤層、32b 第2負極合剤層、40 黒鉛粒子、42 内部空隙、44 外部空隙

Claims (7)

  1.  正極と、負極と、非水電解質とを備える非水電解質二次電池であって、
     前記負極は、負極集電体と、前記負極集電体の表面に形成された負極合剤層を有し、
     前記負極合剤層は、前記負極集電体に対向する第1負極合剤層と、前記正極と対向する第2負極合剤層とを有し、
     前記負極合剤層は、粒子状の負極活物質を含み、
     少なくとも前記第2負極合剤層は、カーボンナノチューブを含み、
     前記第1負極合剤層における前記負極活物質の粒子間空隙率をS1とし、前記第2負極合剤層における前記負極活物質の粒子間空隙率をS2とした場合に、3.5≦S2/S1≦5.0を満たす、非水電解質二次電池。
  2.  前記負極活物質は、Si系材料を含む、請求項1に記載の非水電解質二次電池。
  3.  前記負極活物質の総質量に対する前記Si系材料の割合は、1質量%~10質量%である、請求項2に記載の非水電解質二次電池。
  4.  前記Si系材料は、SiO(0.5≦x≦1.6)を含む、請求項2又は3に記載の非水電解質二次電池。
  5.  前記カーボンナノチューブのラマン分光測定により得られるG/D比は、40~130である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記第1負極合剤層における前記カーボンナノチューブの含有率をA1とし、前記第2負極合剤層における前記カーボンナノチューブの含有率をA2とした場合に、A2/A1>1を満たす、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記第2負極合剤層の厚みと前記第1負極合剤層の厚みとの比は、2:8~5:5である、請求項1~6のいずれか1項に記載の非水電解質二次電池。
PCT/JP2023/003508 2022-02-07 2023-02-03 非水電解質二次電池 WO2023149529A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016896 2022-02-07
JP2022016896 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149529A1 true WO2023149529A1 (ja) 2023-08-10

Family

ID=87552618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003508 WO2023149529A1 (ja) 2022-02-07 2023-02-03 非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2023149529A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147647A1 (ja) * 2011-04-27 2012-11-01 新神戸電機株式会社 リチウムイオン二次電池
JP2019185943A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 リチウム二次電池用負極の製造方法
WO2019239652A1 (ja) * 2018-06-15 2019-12-19 三洋電機株式会社 非水電解質二次電池
WO2021132114A1 (ja) * 2019-12-24 2021-07-01 三洋電機株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
JP2021114361A (ja) * 2020-01-16 2021-08-05 パナソニック株式会社 蓄電装置及び蓄電モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147647A1 (ja) * 2011-04-27 2012-11-01 新神戸電機株式会社 リチウムイオン二次電池
JP2019185943A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 リチウム二次電池用負極の製造方法
WO2019239652A1 (ja) * 2018-06-15 2019-12-19 三洋電機株式会社 非水電解質二次電池
WO2021132114A1 (ja) * 2019-12-24 2021-07-01 三洋電機株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
JP2021114361A (ja) * 2020-01-16 2021-08-05 パナソニック株式会社 蓄電装置及び蓄電モジュール

Similar Documents

Publication Publication Date Title
JP7319265B2 (ja) 非水電解質二次電池
WO2021059706A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7336736B2 (ja) 非水電解質二次電池
WO2022181489A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JPWO2020175361A1 (ja) 非水電解質二次電池
WO2021059705A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7233013B2 (ja) 非水電解質二次電池
WO2021106730A1 (ja) 非水電解質二次電池
WO2022224824A1 (ja) 非水電解質二次電池
WO2022070818A1 (ja) 二次電池用負極及び二次電池
WO2022070894A1 (ja) 非水電解質二次電池
WO2022070817A1 (ja) 二次電池用負極及び二次電池
CN116195089A (zh) 二次电极用负极及二次电池
WO2023149529A1 (ja) 非水電解質二次電池
WO2024004836A1 (ja) 非水電解質二次電池
WO2022158375A1 (ja) 非水電解質二次電池
WO2023157746A1 (ja) 非水電解質二次電池
WO2024004837A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2021117615A1 (ja) 非水電解質二次電池
WO2023145603A1 (ja) 非水電解液二次電池用負極及び非水電解液二次電池
WO2024024505A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2021117748A1 (ja) 非水電解質二次電池
WO2021261358A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2023189682A1 (ja) 非水電解質二次電池
WO2023171564A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749845

Country of ref document: EP

Kind code of ref document: A1