WO2022138503A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2022138503A1
WO2022138503A1 PCT/JP2021/046815 JP2021046815W WO2022138503A1 WO 2022138503 A1 WO2022138503 A1 WO 2022138503A1 JP 2021046815 W JP2021046815 W JP 2021046815W WO 2022138503 A1 WO2022138503 A1 WO 2022138503A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mixture layer
secondary battery
fibrous carbon
electrode mixture
Prior art date
Application number
PCT/JP2021/046815
Other languages
English (en)
French (fr)
Inventor
茂樹 守屋
安展 岩見
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP21910648.1A priority Critical patent/EP4270517A1/en
Priority to JP2022571408A priority patent/JPWO2022138503A1/ja
Priority to US18/267,323 priority patent/US20240014403A1/en
Priority to CN202180084533.0A priority patent/CN116686114A/zh
Publication of WO2022138503A1 publication Critical patent/WO2022138503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery in which the negative electrode contains fibrous carbon.
  • the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery have a metal as a current collector and a mixture layer formed on the surface of the current collector.
  • the mixture layer can be formed by applying a mixture slurry containing an active substance or a conductive agent to the surface of a current collector, drying the mixture, and compressing the mixture layer.
  • fibrous carbon such as carbon nanotubes may be used as the conductive agent.
  • Patent Document 1 discloses a technique for uniformly dispersing fibrous carbon in a mixture slurry by using two types of fibrous carbon having different diameters.
  • an object of the present disclosure is to provide a non-aqueous electrolyte secondary battery having improved charge / discharge cycle characteristics.
  • the non-aqueous electrolyte secondary battery includes an electrode body in which a band-shaped positive electrode and a band-shaped negative electrode are wound via a separator, an electrolytic solution, and an exterior body containing the electrode body and the electrolytic solution.
  • the negative electrode has a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector, and the negative electrode mixture layer contains a negative electrode active material and fibrous carbon, and is a negative electrode mixture.
  • the average fiber length of the fibrous carbon contained in the central portion in the width direction of the layer is larger than the average fiber length of the fibrous carbon contained in both ends in the width direction of the negative electrode mixture layer.
  • the charge / discharge cycle characteristics can be improved.
  • FIG. 1 is an axial sectional view of a cylindrical secondary battery 10 which is an example of an embodiment.
  • the electrode body 14 and the electrolytic solution (not shown) are housed in the exterior body 15.
  • the electrode body 14 has a winding structure in which a band-shaped positive electrode 11 and a band-shaped negative electrode 12 are wound around the separator 13.
  • the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
  • the inside of the secondary battery 10 is sealed by closing the opening end of the upper part of the exterior body 15 with the sealing body 16.
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16.
  • the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as a positive electrode terminal.
  • the negative electrode lead 20 passes through the outside of the insulating plate 18, extends toward the bottom of the exterior body 15, and is welded to the inner surface of the bottom of the exterior body 15.
  • the exterior body 15 serves as a negative electrode terminal.
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10.
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside.
  • the grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at the central portion thereof, and an insulating member 24 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the electrolytic solution constituting the secondary battery 10 will be described in detail, and in particular, the negative electrode active material contained in the negative electrode mixture layer constituting the negative electrode 12 will be described in detail.
  • the positive electrode 11 has, for example, a band-shaped positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector. As shown in FIG. 1, the positive electrode 11 may have positive electrode mixture layers 32 on both sides of the positive electrode current collector 30. As the positive electrode current collector 30, a metal foil stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the positive electrode mixture layer 32 may contain, for example, a positive electrode active material, a binder, a conductive agent, and the like.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and the like is applied onto the positive electrode current collector 30, dried, and then compressed to form a positive electrode mixture layer 32.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and the like is applied onto the positive electrode current collector 30, dried, and then compressed to form a positive electrode mixture layer 32.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, and the like is applied onto the positive electrode current collector 30, dried, and then compressed to form a positive electrode mixture layer 32.
  • the positive electrode active material examples include a lithium transition metal composite oxide containing a transition metal element such as Co, Mn, and Ni.
  • the lithium transition metal composite oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , and Li x .
  • Ni 1-y My O z Li x Mn 2 O 4 , Li x Mn 2-y My O 4 , Li MPO 4 , Li 2 MPO 4 F (M is Na, Mg, Sc, Y, Mn, Fe) , Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and at least one of B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2. 3) can be exemplified. These may be used individually by 1 type, or may be used by mixing a plurality of types.
  • the positive electrode active materials are Li x NiO 2 , Li x Coy Ni 1-y O 2 , and Li x Ni 1-y My Oz ( M is at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ . It is preferable to contain a lithium nickel composite oxide such as y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3). Inorganic compound particles such as aluminum oxide and lanthanoid-containing compounds may be adhered to the surface of the particles of the lithium transition metal composite oxide.
  • Examples of the conductive agent contained in the positive electrode mixture layer 32 include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black, and graphite. Further, the conductive agent may contain fibrous carbon such as carbon nanotube (CNT) described later. These may be used alone or in combination of two or more.
  • carbon black CB
  • AB acetylene black
  • Ketjen black Ketjen black
  • graphite graphite
  • the conductive agent may contain fibrous carbon such as carbon nanotube (CNT) described later. These may be used alone or in combination of two or more.
  • binder contained in the positive electrode mixture layer 32 examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide (PI), acrylic resins, and polyolefins.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide (PI), acrylic resins, and polyolefins.
  • system resins These may be used alone or in combination of two or more. Further, these resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO) and the like.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the negative electrode 12 has a band-shaped negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector. As shown in FIG. 1, the negative electrode 12 may have negative electrode mixture layers 36 on both sides of the negative electrode current collector 34.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the negative electrode mixture layer 36 contains a negative electrode active material and fibrous carbon.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions, and for example, a carbon material such as graphite can be used.
  • the graphite may be any of natural graphite such as scaly graphite, lump graphite and earthy graphite, and artificial graphite such as lump artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloying with Li such as Si and Sn, a metal compound containing Si and Sn, a lithium titanium composite oxide and the like may be used.
  • Si oxides represented by SiO x (0.5 ⁇ x ⁇ 1.6) or lithium silicate phases represented by Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2) contain fine particles of Si.
  • the dispersed Si-containing compound or the like may be used in combination with a carbon material such as graphite. Since the volume change of the metal-based material containing Si, Sn, etc.
  • the above-mentioned metal-based material is used as the negative electrode active material, the distribution of the electrolytic solution in the negative electrode mixture layer 36 is distributed. Non-uniformity is likely to occur. Therefore, when the above metal-based material is used as the negative electrode active material, the improvement of the charge / discharge cycle characteristics becomes more remarkable by distributing the fibrous carbon in the negative electrode mixture layer 36 as described later.
  • the fibrous carbon contained in the negative electrode mixture layer 36 functions as a conductive agent and improves the permeability of the electrolytic solution, as will be described later.
  • the content of fibrous carbon contained in the negative electrode mixture layer 36 may be 0.1% by mass to 5% by mass, and 0.3% by mass to 3% by mass with respect to the mass of the negative electrode active material. It is preferable, and more preferably 0.5% by mass to 1.5% by mass. Within this range, the permeability of the electrolytic solution in the negative electrode mixture layer 36 can be improved while ensuring the dispersibility in the negative electrode mixture slurry.
  • the fibrous carbon includes carbon nanotube (CNT), carbon nanohorn (CNH) carbon nanofiber (CNF), vapor phase growth carbon fiber (VGCF), electrospinning carbon fiber, polyacrylonitrile (PAN) type carbon fiber, and pitch type.
  • CNT carbon nanotube
  • CNH carbon nanohorn
  • VGCF vapor phase growth carbon fiber
  • electrospinning carbon fiber polyacrylonitrile (PAN) type carbon fiber
  • PAN polyacrylonitrile
  • pitch type pitch type carbon fiber
  • pitch type examples include carbon fibers. These may be used alone or in combination of two or more.
  • the fibrous carbon preferably contains CNT.
  • the structure of the CNT is not particularly limited, and a tubular structure in which a graphene sheet composed of a carbon 6-membered ring is wound parallel to the fiber axis, and a graphene sheet composed of a carbon 6-membered ring are arranged perpendicular to the fiber axis. It may be either a pulletlet structure or a herringbone structure in which a graphene sheet composed of a six-membered carbon ring is wound at an oblique angle with respect to the fiber axis.
  • the CNT is not limited in terms of the layer structure, and may be either a single-walled carbon nanotube (SWCNT) or a multi-walled carbon nanotube (MWCNT).
  • SWCNTs can form a conductive path in the negative electrode mixture layer 36 in a smaller amount than MWCNTs, it is preferable that SWCNTs are contained in CNTs.
  • the negative electrode mixture layer 36 may contain MWCNT as well as SWCNT.
  • the average fiber length of the fibrous carbon is preferably 0.1 ⁇ m to 40 ⁇ m, more preferably 0.3 ⁇ m to 20 ⁇ m, and particularly preferably 0.5 ⁇ m to 5 ⁇ m.
  • the electrolytic solution permeates through the fibrous carbon, and the fibrous carbon having a long average fiber length has higher permeability than the fibrous carbon having a short average fiber length.
  • the fibrous carbon having a short average fiber length has higher retention of the electrolytic solution than the fibrous carbon having a long average fiber length.
  • the average fiber length of the fibrous carbon is calculated from the average value of 10 fibrous carbons measured by using a scanning electron microscope (hereinafter, may be referred to as SEM).
  • the length of fibrous carbon can be obtained from an SEM image (number of pixels 1024 ⁇ 1280) observed under the condition of an acceleration voltage of 5 kV.
  • the diameter of the fibrous carbon may be, for example, 1 nm to 100 nm. The diameter of the fibrous carbon is calculated by measuring the thickness of 10 fibrous carbons using SEM and averaging them.
  • FIG. 2 is a front view of the negative electrode 12 which is an example of the embodiment, and both end portions 36a are regions at both ends of the negative electrode mixture layer 36 formed on both sides of the band-shaped negative electrode current collector 34 in the width direction.
  • the central portion 36b is a central region in the width direction of the negative electrode mixture layer 36.
  • the average fiber length of the fibrous carbon contained in the central portion 36b in the width direction of the negative electrode mixture layer 36 is larger than the average fiber length of the fibrous carbon contained in the central portion 36b in the width direction of the negative electrode mixture layer 36. .. Thereby, the charge / discharge cycle characteristics can be improved.
  • the electrolytic solution suppresses the outflow of the electrolytic solution from the central portion 36b, and during discharging, the electrolytic solution easily returns from the outside of the electrode body to the central portion 36b via both end portions 36a. It is inferred that.
  • the area ratio between both end portions 36a and the central portion 36b is preferably in the range of 30:70 to 70:30, and in the range of 45:55 to 55:45. It is more preferable to have.
  • the lengths of both ends 36a in the width direction are substantially the same from the viewpoint of the uniformity of the distribution of the electrolytic solution in the electrode body.
  • the ratio of the lengths of one end portion 36a, the central portion 36b, and the other end portion 36a in the width direction can be, for example, 15:70:15 to 35:30:35.
  • the ratio of the average fiber length of the fibrous carbon contained in the central portion 36b to the average fiber length of the fibrous carbon contained in both end portions 36a is preferably 1.2 or more. As a result, the difference in liquid permeability between both ends 36a and the central portion 36b can be increased, so that the electrolytic solution is secured in the central portion 36b where the electrolytic solution flowing out of the electrode body is less likely to return during charging than at both ends 36a. Can be done.
  • the ratio of the average fiber length of the fibrous carbon contained in the central portion 36b to the average fiber length of the fibrous carbon contained in both end portions 36a may be, for example, 5 or less, or 3 or less. good.
  • the average fiber length of the fibrous carbon contained in both ends 36a is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Within this range, the permeability of the electrolytic solution at both ends 36a can be improved.
  • the content of fibrous carbon in both end portions 36a may be larger, the same, or smaller than the content of fibrous carbon in the central portion 36b.
  • the content of fibrous carbon in both end portions 36a is preferably substantially the same as the content of fibrous carbon in the central portion 36b.
  • the content of fibrous carbon at both ends 36a and the content of fibrous carbon at the central portion 36b are the percentages of the mass of fibrous carbon with respect to the mass of the negative electrode active material at both ends 36a and the central portion 36b, respectively. To say.
  • the negative electrode mixture layer 36 may contain non-fibrous carbon in addition to the fibrous carbon.
  • the non-fibrous carbon include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the content of the non-fibrous carbon conductive agent in the negative electrode mixture layer 36 may be, for example, 5% by mass or less with respect to the total mass of the negative electrode mixture layer 36.
  • the negative electrode mixture layer 36 may further contain a binder or the like.
  • a fluororesin such as PTFE or PVdF, a PAN, PI, an acrylic resin, a polyolefin resin or the like may be used as in the case of the positive electrode 11.
  • SBR Styrene-butadiene rubber
  • the negative electrode mixture layer may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • the negative electrode 12 can be manufactured, for example, through the following steps 1 to 3.
  • a negative electrode mixture slurry A using water as a dispersion medium is prepared by mixing a negative electrode active material, a binder, a thickener and the like in an appropriate ratio with the first fibrous carbon.
  • the negative electrode mixture slurry A is applied to the central portion and dried, and then the negative electrode mixture slurry B is applied to the end portions, dried, compressed, and both ends thereof.
  • the negative electrode mixture layer 36 having the 36a and the central portion 36b is formed.
  • the negative electrode 12 can be manufactured.
  • the negative electrode mixture slurry B may be applied without being dried, and then dried and compressed to form the negative electrode mixture layer 36. Further, the negative electrode mixture slurry B may be applied to the end portion and then the negative electrode mixture slurry A may be applied to the central portion.
  • a porous sheet having ion permeability and insulating property can be used as the separator 13.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may have either a single-layer structure or a laminated structure. A heat-resistant layer or the like may be formed on the surface of the separator 13.
  • the electrolytic solution may contain a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • halogen substituent examples include a fluorinated cyclic carbonate ester such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate ester, and a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid ester
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • GBL ⁇ -butyrolactone
  • VL ⁇ -valerolactone
  • MP methyl propionate
  • a chain carboxylic acid ester such as ethyl propionate, and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • the electrolyte salt is preferably a lithium salt.
  • lithium salts include LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (P (C 2 O 4 ) F 4 ), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2 ), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic carboxylate lithium, Li 2B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and other imide salts.
  • lithium salt these may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt may be, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent.
  • the positive electrode active material cobalt aluminum-containing lithium nickelate represented by LiNi 0.8 Co 0.15 Al 0.05 O 2 was used.
  • the positive electrode active material, acetylene black (AB), and polyvinylidene fluoride (PVdF) are mixed at a mass ratio of 94: 5: 1, and a positive electrode using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • a mixture slurry was prepared.
  • the positive electrode mixture slurry is applied to both sides of a strip-shaped positive electrode current collector made of aluminum foil by the doctor blade method, the coating film is dried, and then the coating film is compressed by a roller to be applied to both sides of the positive electrode current collector.
  • a positive electrode mixture layer was formed.
  • a positive electrode current collector on which a positive electrode mixture layer was formed was cut into a predetermined electrode size to prepare a positive electrode.
  • Negative electrode active material carboxymethyl cellulose (CMC), carbon nanotubes (CNT) with an average fiber length of 2.4 ⁇ m, and styrene-butadiene rubber (SBR) in a mass ratio of 100: 0.8: 1: 1.2.
  • CMC carboxymethyl cellulose
  • CNT carbon nanotubes
  • SBR styrene-butadiene rubber
  • Slurry B was prepared.
  • a negative electrode current collector made of copper foil was prepared, and the end, center, and end were set at a length ratio of 25:50:25 in the width direction. That is, the area ratio between both ends and the center was 50:50.
  • Negative electrode mixture slurry A is applied to the center of both sides of the negative electrode current collector by the doctor blade method, and after the coating film is dried, negative electrode mixture slurry B is applied to both ends by the doctor blade method and applied. The film was dried and compressed with a roller to form a negative electrode mixture layer on both sides of the negative electrode current collector.
  • a negative electrode current collector on which the negative electrode mixture layer was formed was cut to a predetermined electrode size to prepare a negative electrode.
  • LiPF 6 is added to a mixed solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) are mixed at a volume ratio of 3: 3: 4 (25 ° C., 1 atm).
  • An electrolytic solution was prepared by dissolving at a concentration of 2 mol / L.
  • Example 2 In the fabrication of the negative electrode, except that the area ratio between both ends and the center was changed to 70:30 (the ratio of the length in the width direction was 35:30:35 to make the end, center, and end). , A secondary battery was produced in the same manner as in Example 1.
  • Example 3 In the fabrication of the negative electrode, the area ratio between both ends and the center was changed to 55:45 (the ratio of the lengths of 27.5: 45: 27.5 in the width direction was used as the end, center, and end). ), A secondary battery was produced in the same manner as in Example 1.
  • Example 4 In the fabrication of the negative electrode, except that the area ratio between both ends and the center was changed to 90:10 (the ratio of the length in the width direction was 45:10:45 to make the end, center, and end). , A secondary battery was produced in the same manner as in Example 1.
  • Example 5 In the fabrication of the negative electrode, except that the area ratio between both ends and the center was changed to 30:70 (the ratio of the length in the width direction was 15:70:15 to make the end, center, and end). , A secondary battery was produced in the same manner as in Example 1.
  • Example 6 In the fabrication of the negative electrode, the area ratio between both ends and the center was changed to 45:55 (the length ratio of 22.5: 55: 22.5 in the width direction was used as the end, center, and end). ), A secondary battery was produced in the same manner as in Example 1.
  • Example 7 In the fabrication of the negative electrode, except that the area ratio between both ends and the center was changed to 10:90 (the ratio of the length in the width direction was 5: 90: 5 to make the ends, the center, and the ends). , A secondary battery was produced in the same manner as in Example 1.
  • Example 8 In the production of the negative electrode, the average fiber length of the CNTs contained in the negative electrode mixture slurry A was changed to 1.2 ⁇ m, and the average fiber length of the CNTs contained in the negative electrode mixture slurry B was changed to 1.0 ⁇ m. A secondary battery was produced in the same manner as in Example 1.
  • ⁇ Comparative Example 1> In the production of the negative electrode, a secondary battery was produced in the same manner as in Example 1 except that the average fiber length of the CNTs contained in the negative electrode mixture slurry A was changed to 2.0 ⁇ m.
  • Table 1 shows the evaluation results of each secondary battery. Table 1 also shows the average fiber length of CNTs contained in each of the end and the center of the negative electrode and the area ratio between the end and the center of the negative electrode.
  • the battery of the example is superior to the battery of the comparative example in charge / discharge cycle characteristics.
  • the battery of Comparative Example 1 contains CNTs having the same average fiber length at both ends and the center in the width direction of the negative electrode mixture layer. Therefore, the amount of the electrolytic solution tends to be smaller at the central portion than at both ends during both charging and discharging, and the distribution of the electrolytic solution becomes non-uniform, so that the charge / discharge cycle characteristics deteriorate.
  • all of the batteries of Examples 1 to 8 contain CNTs having a larger average fiber length than the CNTs contained at both ends in the central portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電サイクル特性を向上させた非水電解質二次電池を提供する。本開示の一態様である非水電解質二次電池は、正極及び負極がセパレータを介して巻回された電極体と、電解液と、電極体及び電解液を収容する外装体とを備える。負極は、負極集電体と、負極集電体の表面に形成された負極合剤層とを有し、負極合剤層は、負極活物質と、繊維状炭素とを含有し、負極合剤層の幅方向における中央部に含有される繊維状炭素の平均繊維長が、負極合剤層の幅方向における両端部に含有される繊維状炭素の平均繊維長より大きい。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関し、特に、負極が繊維状炭素を含む非水電解質二次電池に関する。
 非水電解質二次電池の正極及び負極は、集電体である金属と、集電体の表面に形成された合剤層とを有している。合剤層は、活物質や導電剤を含有する合剤スラリーを集電体の表面に塗布し、乾燥し、圧縮することで形成できる。電池性能を向上させるために、導電剤としてカーボンナノチューブ等の繊維状炭素が用いられる場合がある。例えば、特許文献1には、直径の大きさの異なる2種類の繊維状炭素を用いることで、合剤スラリー中で繊維状炭素を均一に分散させる技術が開示されている。
特開2010-238575号公報
 ところで、巻回型の電極体を有する非水電解質二次電池では、充放電による電極体の膨張収縮に起因して、電極体内で電解液の分布の不均一が生じ、充放電を繰り返すと電池容量が低下することがある。特許文献1に開示された技術は、電極体内での電解液の分布について検討しておらず、充放電サイクル特性に未だ改良の余地がある。
 そこで、本開示の目的は、充放電サイクル特性を向上させた非水電解質二次電池を提供することである。
 本開示の一態様である非水電解質二次電池は、帯状の正極及び帯状の負極がセパレータを介して巻回された電極体と、電解液と、電極体及び電解液を収容する外装体とを備える。負極は、負極集電体と、負極集電体の表面に形成された負極合剤層とを有し、負極合剤層は、負極活物質と、繊維状炭素とを含有し、負極合剤層の幅方向における中央部に含有される繊維状炭素の平均繊維長が、負極合剤層の幅方向における両端部に含有される繊維状炭素の平均繊維長より大きいことを特徴とする。
 本開示の一態様である二次電池によれば、充放電サイクル特性を向上させることができる。
実施形態の一例である円筒形の二次電池の軸方向断面図である。 実施形態の一例である負極の正面図である。
 以下では、図面を参照しながら、本開示に係る円筒形の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、円筒形の二次電池の仕様に合わせて適宜変更することができる。また、以下の説明において、複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び電解液(図示せず)が外装体15に収容されている。電極体14は、帯状の正極11及び帯状の負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
 外装体15の上部の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。
 外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
 以下、二次電池10を構成する正極11、負極12、セパレータ13、及び電解液について、特に負極12を構成する負極合剤層に含まれる負極活物質について詳説する。
 [正極]
 正極11は、例えば、帯状の正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。図1に示すように、正極11は、正極集電体30の両面に正極合剤層32を有してもよい。正極集電体30としては、アルミニウム等の正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層32は、例えば、正極活物質、結着剤、導電剤等を含んでもよい。正極11は、例えば、正極集電体30上に、正極活物質、導電剤、結着剤等を含む正極合剤スラリーを塗布、乾燥させた後、圧縮して正極合剤層32を形成することにより製造できる。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属複合酸化物が例示できる。リチウム遷移金属複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、及びBのうちの少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)が例示できる。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、及びBのうちの少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。なお、リチウム遷移金属複合酸化物の粒子表面に、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子等が固着していてもよい。
 正極合剤層32に含まれる導電剤としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料が例示できる。また、導電剤は、後述するカーボンナノチューブ(CNT)等の繊維状炭素を含んでもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層32に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド(PI)、アクリル系樹脂、ポリオレフィン系樹脂等が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。
 [負極]
 負極12は、帯状の負極集電体と、負極集電体の表面に形成された負極合剤層とを有する。図1に示すように、負極12は、負極集電体34の両面に負極合剤層36を有してもよい。負極集電体34としては、銅等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
 負極合剤層36は、負極活物質と、繊維状炭素とを含有する。負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、黒鉛等の炭素材料を用いることができる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。
 負極活物質としては、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi酸化物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛等の炭素材料と併用されてもよい。上記のSi、Sn等を含む金属系材料は、充放電による体積変化が炭素材料よりも大きいため、上記の金属系材料を負極活物質として用いる場合、負極合剤層36内で電解液の分布の不均一が生じやすい。よって、上記の金属系材料を負極活物質として用いる場合、負極合剤層36において繊維状炭素を後述するように分布させることで、充放電サイクル特性の向上がより顕著になる。
 負極合剤層36に含まれる繊維状炭素は、導電剤として機能しつつ、後述するように、電解液の浸透性を向上させる。負極合剤層36に含まれる繊維状炭素の含有量は、負極活物質の質量に対して、0.1質量%~5質量%であってもよく、0.3質量%~3質量%が好ましく、0.5質量%~1.5質量%がより好ましい。この範囲であれば、負極合剤スラリー中での分散性確保しつつ、負極合剤層36における電解液の浸透性を向上させることができる。
 繊維状炭素としては、カーボンナノチューブ(CNT)、カーボンナノホーン(CNH)カーボンナノファイバー(CNF)、気相成長炭素繊維(VGCF)、電界紡糸法炭素繊維、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維等が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 繊維状炭素は、CNTを含むことが好ましい。CNTの構造は、特に限定されず、炭素六員環からなるグラフェンシートが繊維軸に対して平行に巻かれたチューブラー構造、炭素六員環からなるグラフェンシートが繊維軸に対して垂直に配列したプーレトレット構造、炭素六員環からなるグラフェンシートが繊維軸に対して斜めの角度を持って巻かれたヘリンボーン構造のいずれであってもよい。また、CNTは、層構造についても限定されず、単層カーボンナノチューブ(SWCNT)、多層カーボンナノチューブ(MWCNT)のいずれであってもよい。SWCNTは、MWCNTより少量で負極合剤層36中に導電パスを形成できるので、CNTにはSWCNTが含まれることが好ましい。なお、負極合剤層36には、SWCNTだけでなく、MWCNTが含まれていてもよい。
 繊維状炭素の平均繊維長は、0.1μm~40μmであることが好ましく、0.3μm~20μmであることがより好ましく、0.5μm~5μmであることが特に好ましい。負極合剤層36中では、繊維状炭素を伝って電解液が浸透し、平均繊維長が長い繊維状炭素は、平均繊維長が短い繊維状炭素に比べて、浸透性が高い。換言すれば、平均繊維長が短い繊維状炭素は、平均繊維長が長い繊維状炭素に比べて、電解液の保持性が高い。ここで、繊維状炭素の平均繊維長は、走査型電子顕微鏡(以下、SEMという場合がある)を用いて10本の繊維状炭素の長さを測定し、それらの平均値から算出される。例えば、加速電圧5kVの条件で観察した5万倍のSEM画像(画素数1024×1280)から、繊維状炭素の長さを求めることができる。また、繊維状炭素の直径は、例えば、1nm~100nmであってもよい。繊維状炭素の直径は、SEMを用いて10本の繊維状炭素の太さを測定し、それらの平均値から算出される。
 次に、図2を参照しつつ、負極集電体34の表面に形成した負極合剤層36における、繊維状炭素の分布について説明する。図2は、実施形態の一例である負極12の正面図であり、両端部36aは帯状の負極集電体34の両面に形成された負極合剤層36の幅方向の両端の領域であり、中央部36bは負極合剤層36の幅方向の中央の領域である。
 負極合剤層36の幅方向における中央部36bに含有される繊維状炭素の平均繊維長は、負極合剤層36の幅方向における中央部36bに含有される繊維状炭素の平均繊維長より大きい。これにより、充放電サイクル特性を向上させることができる。充電時においては、電解液が中央部36bからの電解液の流出を抑制し、放電時においては、電極体の外部から両端部36aを介して中央部36bに電解液が戻りやすくなっているためと推察される。
 負極合剤層の幅方向において、両端部36aと、中央部36bとの面積比は、30:70~70:30の範囲内であることが好ましく、45:55~55:45の範囲内であることがより好ましい。両端部36aと中央部36bの面積比をこの範囲とすることで、充放電時の電極体における電解液のバランスがより良くなり、充放電サイクル特性の向上がより顕著になる。
 両端部36aの幅方向の長さは、電極体における電解液の分布の均一性の観点から、略同じであることが好ましい。一方の端部36a、中央部36b、他方の端部36aの幅方向の長さの比は、例えば、15:70:15~35:30:35とすることができる。
 両端部36aに含有される繊維状炭素の平均繊維長に対する、中央部36bに含有される繊維状炭素の平均繊維長の比率は、1.2以上であることが好ましい。これにより、両端部36aと中央部36bの液浸透性の差を大きくできるので、両端部36aに比べて充電時に電極体から流出した電解液が戻りにくい中央部36bにおいて、電解液を確保することができる。両端部36aに含有される繊維状炭素の平均繊維長に対する、中央部36bに含有される繊維状炭素の平均繊維長の比率は、例えば、5以下であってもよく、3以下であってもよい。
 両端部36aに含有される繊維状炭素の平均繊維長は、1μm以上であることが好ましく、2μm以上であることがより好ましい。この範囲であれば、両端部36aにおける電解液の浸透性を向上させることができる。
 両端部36aにおける繊維状炭素の含有量は、中央部36bにおける繊維状炭素の含有量よりも大きくてもよいし、同じであってもよいし、小さくてもよい。両端部36aにおける繊維状炭素の含有量は、中央部36bにおける繊維状炭素の含有量と略同じであることが好ましい。ここで、両端部36aにおける繊維状炭素の含有量及び中央部36bにおける繊維状炭素の含有量とは、各々、両端部36a及び中央部36bにおける負極活物質の質量に対する繊維状炭素の質量の百分率をいう。
 負極合剤層36は、繊維状炭素以外に、非繊維状炭素を含有してもよい。非繊維状炭素としては、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。負極合剤層36における非繊維状炭素の導電剤の含有量は、負極合剤層36の総質量に対して、例えば、5質量%以下であってもよい。
 負極合剤層36は、さらに、結着剤等を含んでもよい。負極合剤層36に含まれる結着剤としては、正極11の場合と同様に、PTFE、PVdF等のフッ素系樹脂、PAN、PI、アクリル系樹脂、ポリオレフィン系樹脂等を用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極合剤層には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等が含まれていてもよい。
 上記の負極12は、例えば、下記の工程1~3を経て製造することができる。
(1)負極活物質、結着剤、増粘剤等と、第1繊維状炭素とを適当な割合で混合して水を分散媒とする負極合剤スラリーAを調製する。
(2)負極活物質、結着剤、増粘剤等と、第1繊維状炭素よりも平均繊維長が短い第2繊維状炭素とを適当な割合で混合して水を分散媒とする負極合剤スラリーBを調製する。
(3)負極集電体34の表面において、中央部に、負極合剤スラリーAを塗布、乾燥させた後、端部に、負極合剤スラリーBを塗布、乾燥させ、圧縮して、両端部36a及び中央部36bを有する負極合剤層36を形成する。これにより、負極12を製造できる。なお、負極合剤スラリーAを塗布後、乾燥させずに負極合剤スラリーBを塗布してから乾燥、圧縮して負極合剤層36を形成してもよい。また、負極合剤スラリーBを端部に塗布した後に負極合剤スラリーAを中央部に塗布してもよい。
 [セパレータ]
 セパレータ13としては、イオン透過性及び絶縁性を有する多孔性シートを用いることができる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロース等が好適である。セパレータ13は、単層構造、積層構造のいずれであってもよい。セパレータ13の表面に、耐熱層等が形成されていてもよい。
 [電解液]
 電解液(非水電解質)は、非水溶媒と、非水溶媒に溶解した電解質塩とを含んでもよい。非水溶媒としては、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等が挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステル等が挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル等が挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類等が挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば、非水溶媒1L当り0.8モル~1.8モルとしてもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例>
 [正極の作製]
 正極活物質として、LiNi0.8Co0.15Al0.05で表されるコバルトアルミニウム含有ニッケル酸リチウムを用いた。当該正極活物質と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVdF)とを、94:5:1の質量比で混合し、N-メチル-2-ピロリドン(NMP)を分散媒とする正極合剤スラリーを調製した。当該正極合剤スラリーをアルミニウム箔からなる帯状の正極集電体の両面にドクターブレード法で塗布し、塗膜を乾燥させた後、ローラで塗膜を圧縮して、正極集電体の両面に正極合剤層を形成した。正極合剤層が形成された正極集電体を所定の電極サイズに切断して正極を作製した。
 [負極の作製]
 黒鉛粉末と、Si酸化物とを、95:5の質量比で混合したものを負極活物質として用いた。負極活物質と、カルボキシメチルセルロース(CMC)と、平均繊維長が2.4μmのカーボンナノチューブ(CNT)と、スチレン-ブタジエンゴム(SBR)とを、100:0.8:1:1.2の質量比で混合し、水を分散媒とする負極合剤スラリーAを調製した。
 上記の負極活物質と、CMCと、平均繊維長が2μmのCNTと、SBRとを、100:0.8:1:1.2の質量比で混合し、水を分散媒とする負極合剤スラリーBを調製した。
 銅箔からなる負極集電体を準備し、幅方向に25:50:25の長さの比で端部、中央部、端部とした。即ち、両端部と中央部との面積比は、50:50であった。負極集電体の両面の中央部に、負極合剤スラリーAをドクターブレード法で塗布し、塗膜を乾燥させた後、両端部に、負極合剤スラリーBをドクターブレード法で塗布し、塗膜を乾燥させ、ローラで圧縮して、負極集電体の両面に負極合剤層を形成した。負極合剤層が形成された負極集電体を所定の電極サイズに切断して負極を作製した。
 [電解液の調製]
 エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)を、3:3:4の体積比(25℃、1気圧)で混合した混合溶媒に対して、LiPFを1.2モル/Lの濃度で溶解させて、電解液を調製した。
 [二次電池の作製]
 正極にアルミニウムリードを、負極にニッケルリードをそれぞれ取り付け、ポリエチレン製微多孔膜からなるセパレータを介して正極と負極を渦巻き状に巻回して巻回型電極体を作製した。この電極体を外装体内に収容し、ニッケルリードを当該外装体の底に溶接した。次に、アルミニウムリードを封口体に溶接し、上記電解液を注入した後、外装体の開口部を封口体で封止して、設計容量2500mAhの非水電解質二次電池を得た。
 <実施例2>
 負極の作製において、両端部と中央部との面積比を70:30に変更した(幅方向に35:30:35の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例3>
 負極の作製において、両端部と中央部との面積比を55:45に変更した(幅方向に27.5:45:27.5の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例4>
 負極の作製において、両端部と中央部との面積比を90:10に変更した(幅方向に45:10:45の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例5>
 負極の作製において、両端部と中央部との面積比を30:70に変更した(幅方向に15:70:15の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例6>
 負極の作製において、両端部と中央部との面積比を45:55に変更した(幅方向に22.5:55:22.5の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例7>
 負極の作製において、両端部と中央部との面積比を10:90に変更した(幅方向に5:90:5の長さの比で端部、中央部、端部とした)こと以外は、実施例1と同様にして二次電池を作製した。
 <実施例8>
 負極の作製において、負極合剤スラリーAに含有させるCNTの平均繊維長を1.2μmに変更し、負極合剤スラリーBに含有させるCNTの平均繊維長を1.0μmに変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例1>
 負極の作製において、負極合剤スラリーAに含有させるCNTの平均繊維長を2.0μmに変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例2>
 負極の作製において、負極合剤スラリーAに含有させるCNTの平均繊維長を2.0μmに変更し、負極合剤スラリーBに含有させるCNTの平均繊維長を2.4μmに変更したこと以外は、実施例1と同様にして二次電池を作製した。
 [サイクル試験]
 上記各二次電池を、25℃の温度環境下、0.7Cの定電流で電池電圧が4.2Vになるまで定電流充電を行い、4.2Vで電流値が1/20Cになるまで定電圧充電を行った。その後、0.7Cの定電流で電池電圧が2.75Vになるまで定電流放電を行った。この充放電サイクルを400サイクル繰り返した。1サイクル目の放電容量と、400サイクル目の放電容量を求め、下記式により容量維持率を算出した。
  容量維持率(%)=(400サイクル目放電容量÷1サイクル目放電容量)×100
 表1に各二次電池の評価結果を示す。また、表1に、負極の端部、中央部の各々に含まれるCNTの平均繊維長と、負極の端部と中央部の面積比を併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例の電池は、比較例の電池に比べて充放電サイクル特性に優れている。比較例1の電池は、負極合剤層の幅方向における両端部と中央部で同じ平均繊維長のCNTを含有している。そのため、充電時及び放電時のどちらにおいても、電解液は、両端部よりも中央部で少なくなりやすく電解液の分布が不均一になるので、充放電サイクル特性が低下する。一方、実施例1~8の電池は、いずれも、中央部に両端部に含有されるCNTに比べて平均繊維長の大きいCNTを含有している。これにより、実施例1~8の電池は、いずれも、負極合剤層の中央部に電解液が保持されることで電極体における電解液の不均一が抑制されるので、充放電サイクル特性が向上したと推察される。特に、両端部と中央部との面積比を50:50とした実施例1は、充放電サイクル特性が最も向上している。また、比較例2は、両端部に中央部に含有されるCNTに比べて平均繊維長の大きいCNTを含有しているので、電極体における電解液の不均一が生じやすくなっており、比較例1よりも充放電サイクル特性が低下している。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット、30 正極集電体、32 正極合剤層、34 負極集電体、36 負極合剤層、36a 端部、36b 中央部

Claims (6)

  1.  帯状の正極及び帯状の負極がセパレータを介して巻回された電極体と、電解液と、前記電極体及び前記電解液を収容する外装体とを備える非水電解質二次電池であって、
     前記負極は、負極集電体と、前記負極集電体の表面に形成された負極合剤層とを有し、
     前記負極合剤層は、負極活物質と、繊維状炭素とを含有し、
     前記負極合剤層の中央部に含有される前記繊維状炭素の平均繊維長が、前記負極合剤層の幅方向における両端部に含有される前記繊維状炭素の平均繊維長より大きい、非水電解質二次電池。
  2.  前記負極合剤層の幅方向において、前記両端部と、前記中央部との面積比は、30:70~70:30の範囲内である、請求項1に記載の非水電解質二次電池。
  3.  前記負極合剤層の幅方向において、前記両端部と、前記中央部との面積比は、45:55~55:45の範囲内である、請求項1に記載の非水電解質二次電池。
  4.  前記両端部に含有される前記繊維状炭素の平均繊維長に対する、前記中央部に含有される前記繊維状炭素の平均繊維長の比率は、1.2以上である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記両端部に含有される前記繊維状炭素の平均繊維長は、1μm以上である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記繊維状炭素は、カーボンナノチューブを含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
PCT/JP2021/046815 2020-12-23 2021-12-17 非水電解質二次電池 WO2022138503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21910648.1A EP4270517A1 (en) 2020-12-23 2021-12-17 Non-aqueous electrolyte secondary battery
JP2022571408A JPWO2022138503A1 (ja) 2020-12-23 2021-12-17
US18/267,323 US20240014403A1 (en) 2020-12-23 2021-12-17 Non-aqueous electrolyte secondary battery
CN202180084533.0A CN116686114A (zh) 2020-12-23 2021-12-17 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213438 2020-12-23
JP2020213438 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138503A1 true WO2022138503A1 (ja) 2022-06-30

Family

ID=82157791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046815 WO2022138503A1 (ja) 2020-12-23 2021-12-17 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20240014403A1 (ja)
EP (1) EP4270517A1 (ja)
JP (1) JPWO2022138503A1 (ja)
CN (1) CN116686114A (ja)
WO (1) WO2022138503A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093406A (ja) * 2000-09-18 2002-03-29 At Battery:Kk 非水系電解液二次電池
JP2002329529A (ja) * 2000-09-06 2002-11-15 Toshiba Corp 非水電解質二次電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2020175172A1 (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 巻回型非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329529A (ja) * 2000-09-06 2002-11-15 Toshiba Corp 非水電解質二次電池
JP2002093406A (ja) * 2000-09-18 2002-03-29 At Battery:Kk 非水系電解液二次電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2020175172A1 (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 巻回型非水電解質二次電池

Also Published As

Publication number Publication date
EP4270517A1 (en) 2023-11-01
US20240014403A1 (en) 2024-01-11
JPWO2022138503A1 (ja) 2022-06-30
CN116686114A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN113097444B (zh) 非水电解质二次电池用负极及非水电解质二次电池
US20240186487A1 (en) Non-aqueous electrolyte secondary battery
WO2022070895A1 (ja) 二次電池用負極及び二次電池
WO2022070894A1 (ja) 非水電解質二次電池
US20210202933A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20220393177A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
WO2022138503A1 (ja) 非水電解質二次電池
WO2021241217A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2023140163A1 (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
US20230361307A1 (en) Secondary battery negative electrode and secondary battery
US20240120553A1 (en) Non-aqueous electrolyte secondary battery
WO2023013286A1 (ja) 非水電解質二次電池
CN113097445B (zh) 非水电解质二次电池用负极及非水电解质二次电池
CN113054159B (zh) 非水电解质二次电池用负极和非水电解质二次电池
US11721802B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2023189682A1 (ja) 非水電解質二次電池
WO2023149529A1 (ja) 非水電解質二次電池
WO2021261358A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571408

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267323

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180084533.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910648

Country of ref document: EP

Effective date: 20230724