WO2023053764A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2023053764A1
WO2023053764A1 PCT/JP2022/031271 JP2022031271W WO2023053764A1 WO 2023053764 A1 WO2023053764 A1 WO 2023053764A1 JP 2022031271 W JP2022031271 W JP 2022031271W WO 2023053764 A1 WO2023053764 A1 WO 2023053764A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
aqueous electrolyte
carbon
phase
secondary battery
Prior art date
Application number
PCT/JP2022/031271
Other languages
English (en)
French (fr)
Inventor
祐 石黒
菜々美 竹田
陽祐 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280065200.8A priority Critical patent/CN118056306A/zh
Publication of WO2023053764A1 publication Critical patent/WO2023053764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to non-aqueous electrolyte secondary batteries.
  • a non-aqueous electrolyte secondary battery represented by a lithium-ion secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte is mainly used as the non-aqueous electrolyte.
  • the negative electrode includes a negative electrode mixture containing a negative electrode active material.
  • a material capable of electrochemically intercalating and deintercalating lithium ions is used for the negative electrode active material. Examples of such materials include carbonaceous materials and silicon-containing materials. Carbonaceous materials such as carbon fibers and carbon nanotubes, which do not occlude and release lithium ions, are sometimes added to the negative electrode mixture as conductive agents.
  • Patent Document 1 discloses a composite electrode agent containing particles containing an element capable of absorbing/releasing lithium ions, carbon particles capable of absorbing/releasing lithium ions, multi-walled carbon nanotubes, and carbon nanofibers. It is proposed to use it for secondary batteries.
  • Patent Document 2 discloses a negative electrode active material containing a negative electrode current collector and an alloy-based active material that is supported on the surface of the negative electrode current collector and absorbs and releases lithium ions. and a material layer, and further comprising a resin layer containing a resin component having lithium ion conductivity and a non-aqueous electrolyte additive on the surface of the negative electrode active material layer. is suggesting.
  • Silicon-containing materials have a large volume change accompanying the absorption and release of lithium ions.
  • carbon composite particles containing a carbon phase and a silicon phase dispersed in the carbon phase have a large discharge capacity and a high utilization rate of the active material, so that the volume change is particularly large. Therefore, every time charging and discharging are repeated, the carbon composite particles are likely to crack and new surfaces appear. A side reaction with the electrolytic solution is likely to occur on the new surface, and the capacity decreases when charging and discharging are repeated, resulting in a decrease in the capacity retention ratio and cycle characteristics.
  • One aspect of the present disclosure includes a negative electrode containing a negative electrode mixture, a separator, a positive electrode facing the negative electrode via the separator, and a non-aqueous electrolyte
  • the negative electrode mixture contains a negative electrode active material
  • the negative electrode active material contains 3% by mass or more of a silicon-containing material
  • the silicon-containing material comprises carbon composite particles
  • the carbon composite particles comprise a carbon phase and a silicon phase dispersed within the carbon phase
  • the non-aqueous electrolyte relates to a non-aqueous electrolyte secondary battery containing a 5- or 6-membered cyclic compound component containing sulfur as a ring-constituting element.
  • FIG. 1 is a partially cutaway perspective view of a non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure
  • carbonaceous materials such as graphite are generally used as negative electrode active materials.
  • a silicon-containing material can provide a higher capacity than a carbonaceous material.
  • a side reaction with the non-aqueous electrolyte is likely to occur, resulting in a decrease in capacity. Therefore, even if a silicon-containing material is used, the capacity retention ratio decreases when charging and discharging are repeated, and it is difficult to ensure a sufficient life.
  • carbon composite particles containing a carbon phase and a silicon phase dispersed in the carbon phase are ideal from the viewpoint of obtaining a high capacity because they have a particularly high active material utilization rate and a large discharge capacity. .
  • the non-aqueous electrolyte secondary battery of the present disclosure includes a negative electrode containing a negative electrode mixture, a separator, a positive electrode facing the negative electrode via the separator, and a non-aqueous electrolyte.
  • the negative electrode mixture contains a negative electrode active material.
  • the negative electrode active material contains 3% by mass or more of the silicon-containing material.
  • the silicon-containing material includes carbon composite particles. Carbon composite particles include a carbon phase and a silicon phase dispersed within the carbon phase.
  • the non-aqueous electrolyte contains a 5- or 6-membered cyclic compound component containing a sulfur element as a ring-constituting element.
  • a 5- or 6-membered cyclic compound component containing a sulfur element as a ring-constituting element may be simply referred to as an S-containing cyclic compound component.
  • the silicon-containing material is sometimes referred to as the Si-containing material, and the silicon phase is sometimes referred to as the Si phase.
  • the negative electrode contains a silicon-containing material containing carbon composite particles containing a Si phase
  • the capacity retention rate can be suppressed, and the deterioration of cycle characteristics can be suppressed. This is because even if the silicon-containing material including the carbon composite particles cracks and a new surface is generated due to charging and discharging, the S-containing cyclic compound component forms a coating on the surface of the negative electrode active material, and side reactions do not occur. This is thought to be due to suppression.
  • the coating formed on the surface including the new surface of the silicon-containing material containing the carbon composite particles by the action of the S-containing cyclic compound component is a low-resistance coating that hardly inhibits the charge-discharge reaction.
  • a silicon-containing material containing carbon composite particles for the negative electrode by using a silicon-containing material containing carbon composite particles for the negative electrode, a high initial discharge capacity can be ensured.
  • the non-aqueous electrolyte does not contain an S-containing cyclic compound component.
  • the initial discharge capacity and the capacity retention rate after repeated charging and discharging are almost unchanged. That is, in the case of using a carbonaceous material containing no Si phase as the negative electrode active material and in the case of using carbon composite particles containing a Si phase, the S-containing cyclic compound component has a large effect on the behavior of the cycle characteristics. I would say different.
  • the silicon-containing material may further contain silicon oxide.
  • the silicon-containing material further comprises silicate composite particles,
  • the silicate composite particles may comprise a silicate phase and a silicon phase dispersed within the silicate phase.
  • the cyclic compound component may contain a sulfur element as a ring-constituting element and a cyclic compound having a carbon-carbon unsaturated bond.
  • the cyclic compound component may include 1,3-propenesultone.
  • the concentration of the cyclic compound component in the non-aqueous electrolyte may be 2% by mass or less.
  • the negative electrode mixture may further contain carbon nanotubes.
  • the non-aqueous electrolyte may further contain fluoroethylene carbonate.
  • non-aqueous electrolyte secondary battery of the present disclosure including the above (1) to (8), will be described more specifically for each component.
  • At least one of the above (1) to (8) may be combined with at least one of the elements described below within a technically consistent range.
  • the negative electrode contains a negative electrode mixture.
  • the negative electrode may include a negative electrode mixture and a negative electrode current collector that holds the negative electrode mixture.
  • the negative electrode generally includes a layered negative electrode mixture (hereinafter referred to as a negative electrode mixture layer).
  • the negative electrode mixture contains at least a negative electrode active material.
  • the negative electrode mixture may further contain at least one selected from the group consisting of a binder and a thickener.
  • the negative electrode mixture may further contain a conductive agent and the like.
  • the negative electrode active material contains at least a Si-containing material.
  • the Si-containing material contains at least the carbon composite particles described above.
  • the negative electrode may contain a material other than the Si-containing material as a negative electrode active material.
  • Si-containing material Among Si-containing materials, carbon composite particles include a carbon phase and a Si phase dispersed within the carbon phase. Since the carbon phase has electronic conductivity, even if the carbon composite particles are cracked due to the expansion and contraction of the Si phase, they are less likely to be isolated, and the carbon composite particles can easily maintain contact with their surroundings. Therefore, deterioration of cycle characteristics can be easily suppressed.
  • the carbon phase can be composed of, for example, amorphous carbon (that is, amorphous carbon), crystalline carbon.
  • Amorphous carbon may be, for example, hard carbon, soft carbon, or otherwise.
  • Amorphous carbon generally refers to a carbonaceous material having an average interplanar spacing d002 of (002) planes exceeding 0.340 nm as measured by an X-ray diffraction method.
  • Crystalline carbon includes carbon having a graphite-type crystal structure, such as graphite. Crystalline carbon such as graphite refers to a carbonaceous material having d002 of 0.340 nm or less (for example, 0.3354 nm or more and 0.340 nm or less).
  • the content of the Si phase in the carbon composite particles is, for example, 30% by mass or more and 80% by mass or less, and may be 40% by mass or more and 70% by mass or less. Within such a range, a higher initial capacity can be obtained and deterioration of cycle characteristics can be easily alleviated. In addition, by containing a relatively large amount of the carbon phase, even if the particles are cracked due to charging and discharging, the carbon phase easily enters the voids formed, and the conductive path in the negative electrode mixture is easily maintained.
  • the content of carbon composite particles in the negative electrode active material is, for example, 3% by mass or more, and may be 4% by mass or more or 5% by mass or more.
  • the content of the carbon composite particles is within such a range, the effect of side reactions on the new surface is likely to appear due to the volume change associated with the absorption and release of lithium ions. Therefore, the effect of using a non-aqueous electrolyte containing an S-containing cyclic compound component tends to be noticeable.
  • the content of carbon composite particles in the negative electrode active material is, for example, 10% by mass or less.
  • Carbon composite particles can be obtained, for example, by pulverizing a mixture of a carbon source and raw material silicon while stirring in a ball mill or the like, pulverizing the particles, and then heat-treating the mixture in an inert atmosphere.
  • carbon sources include petroleum resins such as coal pitch, petroleum pitch and tar, sugars such as carboxymethyl cellulose (CMC), polyvinylpyrrolidone, cellulose, and sucrose, and water-soluble resins.
  • CMC carboxymethyl cellulose
  • the carbon source and raw silicon may be dispersed in a dispersion medium such as alcohol. After drying the milled mixture, it is heated in an inert gas atmosphere, for example, at 600° C. or higher and 1000° C. or lower to carbonize the carbon source, thereby forming a carbon phase.
  • Si-containing materials other than carbon composite particles include simple silicon, silicon alloys, and silicon compounds.
  • the Si-containing material may contain composite particles other than carbon composite particles.
  • Such composite particles include composite particles in which a Si phase (fine Si phase) is dispersed in a lithium ion conductive phase (matrix).
  • a Si phase fine Si phase
  • a lithium ion conductive phase matrix
  • the lithium ion conductive phase preferably contains at least one selected from the group consisting of SiO 2 phases and silicate phases.
  • the lithium ion conducting phase may further contain a carbon phase.
  • the lithium ion conducting phase can form an amorphous phase.
  • at least a portion of each of the silicate phase and the carbon phase may be a crystalline phase containing crystalline carbon or the like as described for the crystalline silicate or carbon composite particles.
  • Specific examples of the composite particles include composite particles containing a SiO 2 phase and a Si phase dispersed within the SiO 2 phase, and composite particles containing a silicate phase and a Si phase dispersed within the silicate phase (silicate composite particles). be done.
  • composite particles are not limited to these specific examples.
  • the SiO2 phase is an amorphous phase containing more than 95% by weight of silicon dioxide.
  • Composite particles in which the Si phase is dispersed within the SiO 2 phase are denoted by SiO x .
  • x is, for example, 0.5 ⁇ x ⁇ 2, and may be 0.8 ⁇ x ⁇ 1.6.
  • SiO x is obtained, for example, by heat-treating silicon monoxide and separating it into a SiO 2 phase and a fine Si phase by a disproportionation reaction. Observing the cross section of the SiOx particles using a transmission electron microscope (TEM), it is possible to confirm the Si phase dispersed in the SiO2 phase.
  • Such composite particles are sometimes referred to herein as silicon oxides.
  • the negative electrode active material contains silicon oxide, it is easy to ensure a higher initial discharge capacity.
  • the silicate phase preferably contains at least one of an alkali metal element (a Group 1 element other than hydrogen in the long-period periodic table) and a Group 2 element in the long-period periodic table.
  • Alkali metal elements include lithium (Li), potassium (K), sodium (Na), and the like.
  • Group 2 elements include magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and the like.
  • the lithium silicate phase can have a composition represented by the formula: Li 2y SiO 2+y (0 ⁇ y ⁇ 2).
  • Silicate composite particles in which the Si phase is dispersed in the silicate phase can be obtained, for example, by pulverizing a mixture of silicate and raw material silicon with stirring in a ball mill or the like, pulverizing the pulverized particles, and then heat-treating the mixture in an inert atmosphere. can.
  • the content of the Si phase dispersed in the silicate phase may be 30% by mass or more and 95% by mass or less, or 35% by mass or more and 75% by mass or less with respect to the entire silicate composite particles. good.
  • the Si-containing material may contain only carbon composite particles, or may contain a combination of carbon composite particles and at least one selected from other Si-containing materials.
  • the Si-containing material may contain, for example, at least one selected from the group consisting of silicon oxide and silicate composite particles in addition to carbon composite particles.
  • the content of silicon oxide in the negative electrode active material is, for example, 0.1% by mass or more, may be 0.5% by mass or more, or may be 1% by mass or more. In this case, the initial discharge capacity can be further increased.
  • the content of silicon oxide in the negative electrode active material is, for example, 5% by mass or less.
  • the content of the silicate composite particles in the negative electrode active material is, for example, 0.1% by mass or more, may be 0.5% by mass or more, or may be 1% by mass or more. In this case, a higher initial discharge capacity can be ensured, and a decrease in the capacity retention rate can be further suppressed.
  • the content of the silicate composite particles in the negative electrode active material is, for example, 5% by mass or less.
  • the composition of the Si-containing material can be determined, for example, by obtaining a backscattered electron image of the cross section of the negative electrode mixture layer with a field emission scanning electron microscope (FE-SEM), observing particles of the Si-containing material, It is determined by performing an elemental analysis on the observed particles of the Si-containing material.
  • FE-SEM field emission scanning electron microscope
  • the battery is disassembled, the negative electrode is taken out, washed with a non-aqueous solvent such as ethylene carbonate, dried, and then cross sectioned on the negative electrode mixture layer by a cross section polisher (CP) to obtain a sample.
  • CP cross section polisher
  • a backscattered electron image of the cross section of the sample is taken using the FE-SEM.
  • EMA Electron Probe Micro Analyzer
  • AES Auger Electron Spectroscopy
  • Si-containing materials are usually particulate materials.
  • the average particle diameter (D50) of the Si-containing material is, for example, 1 ⁇ m or more and 25 ⁇ m or less, and may be 4 ⁇ m or more and 15 ⁇ m or less. Within the above range, good battery performance is likely to be obtained.
  • the average particle size (D50) means the particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction scattering method.
  • the average particle diameter of the Si-containing material may be obtained from a cross-sectional sample of the negative electrode formed to obtain a backscattered electron image of FE-SEM. Equivalent circle diameters of cross sections of 10 or more Si-containing material particles are obtained, and the average value thereof is obtained as the average particle diameter.
  • the equivalent circle diameter is the diameter of a circle having the same area as the particle observed in the cross section of the negative electrode.
  • the Si phase dispersed within the carbon phase is usually composed of multiple crystallites.
  • the crystallite size of the Si phase is, for example, 500 nm or less, and may be 30 nm or less. Although the lower limit of the crystallite size of the Si phase is not particularly limited, it is, for example, 5 nm or more.
  • the crystallite size is calculated by Scherrer's formula from the half width of the diffraction peak attributed to the Si (111) plane in the X-ray diffraction (XRD) pattern of the Si phase.
  • the content of the Si phase contained in the composite particles can be measured, for example, by Si-NMR. Desirable measurement conditions for Si-NMR are shown below.
  • Measurement device Solid-state nuclear magnetic resonance spectrometer (INOVA-400) manufactured by Varian Probe: Varian 7mm CPMAS-2 MAS: 4.2kHz MAS speed: 4kHz Pulse: DD (45° pulse + signal acquisition time 1H decouple) Repeat time: 1200sec Observation width: 100kHz Observation center: Around -100 ppm Signal capture time: 0.05 sec Cumulative count: 560 Sample amount: 207.6 mg
  • the conductive layer comprises a conductive material such as conductive carbon.
  • the coating amount of the conductive layer is, for example, 1 part by mass or more and 10 parts by mass or less per 100 parts by mass in total of the particles of the Si-containing material and the conductive layer.
  • Particles of Si-containing material having a conductive layer on the surface thereof can be obtained, for example, by mixing coal pitch or the like with particles of Si-containing material and heat-treating the mixture in an inert atmosphere.
  • the content of the Si-containing material in the negative electrode active material is 3% by mass or more, preferably 4% by mass or more, and may be 5% by mass or more. When the content is within this range, a high initial capacity can be obtained, but the cycle characteristics tend to deteriorate. In the present disclosure, even in such a case, high cycle characteristics can be ensured by using a non-aqueous electrolyte containing an S-containing cyclic compound component.
  • the ratio of the Si-containing material is, for example, 15% by mass or less, and may be 10% by mass or less. These lower and upper limits can be combined arbitrarily.
  • negative electrode active materials other than Si-containing materials include at least one selected from the group consisting of carbonaceous materials containing no Si phase, simple Sn, Sn alloys, and Sn compounds (such as Sn oxides). Since the volume of the Si-containing material expands and contracts with charging and discharging, when the proportion of the Si-containing material in the negative electrode active material increases, poor contact between the negative electrode active material and the negative electrode current collector tends to occur with charging and discharging. The carbonaceous material expands and contracts less during charging and discharging than the Si-containing material.
  • the Si-containing material and the carbonaceous material in combination, it is possible to maintain a better contact state between the negative electrode active material particles and between the negative electrode mixture and the negative electrode current collector when charging and discharging are repeated. Therefore, by using a Si-containing material and a carbonaceous material that does not contain a Si phase together, it is easy to obtain excellent cycle characteristics while imparting a high capacity of the Si phase to the negative electrode.
  • carbonaceous materials examples include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
  • soft carbon graphitizable carbon
  • hard carbon non-graphitizable carbon
  • graphite is preferable as the carbonaceous material because of its excellent charge-discharge stability and low irreversible capacity.
  • examples of graphite include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • the graphite particles may include, in part, amorphous carbon, graphitizable carbon, and non-graphitizable carbon.
  • Graphite is a carbonaceous material with a developed graphite-type crystal structure.
  • the average interplanar spacing d002 of (002) planes of graphite measured by X-ray diffraction may be, for example, 0.340 nm or less, or may be 0.3354 nm or more and 0.340 nm or less.
  • the crystallite size Lc(002) of graphite may be, for example, 5 nm or more, or may be 5 nm or more and 200 nm or less.
  • the crystallite size Lc(002) is measured, for example, by the Scherrer method.
  • the ratio of the total amount of the Si-containing material and the carbonaceous material (the carbonaceous material containing no Si phase) in the negative electrode active material is preferably 90% by mass or more, and may be 95% by mass or more or 98% by mass or more. .
  • the ratio of the total amount of the Si-containing material and the carbonaceous material in the negative electrode active material is 100% by mass or less.
  • the negative electrode active material may be composed only of the Si-containing material and the carbonaceous material.
  • Binder For example, a resin material is used as the binder.
  • binders include fluororesins (e.g., polytetrafluoroethylene, polyvinylidene fluoride), polyolefin resins (e.g., polyethylene, polypropylene), polyamide resins (e.g., aramid resins), polyimide resins (e.g., polyimide, polyamide imide), acrylic resin (e.g., polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymer, ethylene-acrylic acid copolymer, or salts thereof), vinyl resin (e.g., polyvinyl acetate), rubber materials such as styrene-butadiene copolymer rubber (SBR).
  • the binder may be used alone or in combination of two or more.
  • Thickeners include, for example, cellulose derivatives such as cellulose ethers.
  • Cellulose derivatives include CMC and modified products thereof, methyl cellulose and the like.
  • Modified forms of CMC also include salts of CMC. Salts include alkali metal salts (eg, sodium salts), ammonium salts, and the like.
  • a thickener may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Conductive agents include, for example, conductive fibers and conductive particles.
  • Examples of conductive fibers include carbon fibers and metal fibers.
  • Carbon fibers also include carbon nanotubes (CNT).
  • Conductive particles include conductive carbon (such as carbon black) and metal powder. Conductive agents may be used singly or in combination of two or more.
  • Si-containing materials have a large volume change due to expansion and contraction during charging and discharging.
  • the negative electrode mixture contains CNTs, even if the particles crack due to the expansion and contraction of the Si-containing material, the CNTs suppress the disconnection of the conductive path, and higher cycle characteristics are likely to be obtained.
  • the content of the Si-containing material in the negative electrode active material is large (for example, when it is 4% by mass or more), the effect of CNTs is remarkable.
  • a CNT is a carbonaceous material having a nano-sized diameter and having a structure in which a sheet of a six-membered ring network formed by carbon atoms (graphene) is rolled into a cylinder. CNTs have excellent electrical conductivity. When the number of graphene layers constituting the tubular structure is one, it is called a single-walled carbon nanotube (SWCNT). When the number of layers is plural, multi-walled CNT (MWCNT: multi-walled carbon nanotube).
  • the CNTs preferably include SWCNTs. In this case, it is easy to ensure higher cycle characteristics.
  • the ratio of SWCNTs to CNTs is, for example, 50% or more, may be 75% or more, or may be 90% or more.
  • the ratio of SWCNTs to CNTs is 100% or less.
  • the ratio of SWCNTs to CNTs is the ratio of the number of SWCNTs to the total number of CNTs.
  • CNTs in the negative electrode mixture can be confirmed, for example, by scanning electron microscope (SEM) images of the cross section of the negative electrode mixture layer.
  • the ratio of SWCNTs to the CNTs contained in the negative electrode mixture is obtained by the following method.
  • a cross section of the negative electrode mixture layer or an image of the CNT is obtained using SEM.
  • SEM image a plurality of CNTs (for example, 50 or more and 200 or less) are arbitrarily selected and observed, the number of SWCNTs is obtained, and the ratio of the number of SWCNTs to the total number of selected CNTs is calculated.
  • Quantitative analysis of CNTs is performed, for example, by combining Raman spectroscopy and thermogravimetric analysis.
  • the average diameter of CNTs is, for example, 1 nm or more and 10 nm or less, and may be 1 nm or more and 5 nm or less.
  • the average length of CNTs is, for example, 1 ⁇ m or more and 100 ⁇ m or less, and may be 5 ⁇ m or more and 20 ⁇ m or less.
  • the average length and average diameter of CNTs can be obtained from the cross section of the negative electrode mixture layer or the image of CNTs using at least one of SEM and TEM. More specifically, in a photographed image, a plurality of CNTs (for example, 50 or more and 200 or less) are arbitrarily selected, the length and diameter are measured, and the average length and diameter are averaged. is required. In addition, the length of CNT means the length when CNT is extended linearly.
  • the content of CNTs in the negative electrode mixture is, for example, 0.005% by mass or more and 1% by mass or less, may be 0.01% by mass or more and 1% by mass or less, or is 0.01% by mass or more and 0.01% by mass or more. 05% by mass or less.
  • the content of CNTs in the negative electrode mixture is within this range, the effects of improving the conductivity of the negative electrode and improving the capacity retention rate at the initial stage of the charge/discharge cycle are enhanced.
  • the negative electrode current collector is selected according to the type of non-aqueous electrolyte secondary battery.
  • Examples of negative electrode current collectors include sheet-like current collectors. A metal foil or the like may be used as the current collector. A porous current collector may also be used as the current collector. Examples of porous current collectors include nets, punched sheets, and expanded metals.
  • Examples of materials for the negative electrode current collector include stainless steel, nickel, nickel alloys, copper, and copper alloys.
  • the thickness of the negative electrode current collector is not particularly limited, and may be, for example, from 1 ⁇ m to 50 ⁇ m, or from 5 ⁇ m to 30 ⁇ m.
  • the negative electrode can be formed, for example, by applying a negative electrode slurry obtained by dispersing the components of the negative electrode mixture in a dispersion medium on the surface of the negative electrode current collector and drying the slurry.
  • the dried coating film may be rolled if necessary.
  • the dispersion medium is not particularly limited, and examples include water, alcohol (eg, ethanol), ether (eg, tetrahydrofuran), amide (eg, dimethylformamide), N-methyl-2-pyrrolidone (NMP), or A mixed solvent is mentioned.
  • alcohol eg, ethanol
  • ether eg, tetrahydrofuran
  • amide eg, dimethylformamide
  • NMP N-methyl-2-pyrrolidone
  • a mixed solvent is mentioned.
  • the positive electrode may include a positive electrode current collector and a positive electrode mixture layer held on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of the positive electrode current collector and drying the slurry. The dried coating film may be rolled if necessary.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components.
  • the dispersion medium can be selected from, for example, the dispersion medium exemplified for the negative electrode.
  • a composite oxide containing lithium and a transition metal is used as the positive electrode active material.
  • transition metals include Ni, Co, and Mn.
  • the composite oxide containing lithium and a transition metal include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b1 Ni 1-b1 O 2 , Li a Co b1 M 1-b1 O c1 , Li a Ni 1-b1 M b1 O c1 , Li a Mn 2 O 4 and Li a Mn 2-b1 M b1 O 4 .
  • a 0 to 1.2
  • b1 0 to 0.9
  • c1 2.0 to 2.3.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B; Note that the value a, which indicates the molar ratio of lithium, increases or decreases due to charging and discharging.
  • the resin materials exemplified for the negative electrode can be used as the binder.
  • the conductive agent can be selected from, for example, the conductive agents exemplified for the negative electrode.
  • Graphite may be used as the conductive agent.
  • the shape and thickness of the positive electrode current collector can be selected from the shapes and ranges described for the negative electrode current collector.
  • Examples of materials for the positive electrode current collector include stainless steel, aluminum, aluminum alloys, and titanium.
  • separator Generally, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and moderate mechanical strength and insulation.
  • Separators include, for example, microporous membranes, woven fabrics, and non-woven fabrics.
  • the separator may have a single layer structure or a multilayer structure.
  • the multi-layered separator may be a laminate containing at least two layers selected from the group consisting of a microporous thin film, a woven fabric, and a nonwoven fabric.
  • Polyolefin eg, polypropylene, polyethylene
  • Non-aqueous electrolyte The non-aqueous electrolyte is usually used in a liquid state, but may be in a state where the fluidity is restricted by a gelling agent or the like.
  • the non-aqueous electrolyte usually contains a non-aqueous solvent, a lithium salt dissolved in the non-aqueous solvent, and additives.
  • the non-aqueous electrolyte includes an S-containing cyclic compound component.
  • the non-aqueous electrolyte may further contain additives other than the S-containing cyclic compound component.
  • Non-aqueous solvent examples include cyclic carbonates, chain carbonates, cyclic carboxylates, and chain carboxylates.
  • Cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC) and the like.
  • Chain carbonates include diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Cyclic carboxylic acid esters include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • Chain carboxylic acid esters include methyl formate, ethyl formate, propyl formate, methyl acetate (MA), ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and propyl propionate.
  • the non-aqueous electrolyte may contain one type of non-aqueous solvent, or may contain two or more types in combination.
  • Lithium salts include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , lithium lower aliphatic carboxylate, LiCl , LiBr, LiI, phosphates, borates, and imide salts.
  • Phosphates include lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorobis(oxalato)phosphate (LiDFBOP), lithium tetrafluoro(oxalato)phosphate, and the like.
  • Borates include lithium bis(oxalato)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), and the like.
  • the imide salt include lithium bisfluorosulfonylimide (LiN(FSO 2 ) 2 ), lithium bistrifluoromethanesulfonimide (LiN(CF 3 SO 2 ) 2 ), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 )(C 4 F 9 SO 2 )), lithium bispentafluoroethanesulfonic acid imide (LiN(C 2 F 5 SO 2 ) 2 ), and the like.
  • the non-aqueous electrolyte may contain one type of lithium salt, or may contain two or more types in combination.
  • the concentration of the lithium salt in the electrolyte is, for example, 0.5 mol/L or more and 2 mol/L or less.
  • the S-containing cyclic compound component is a cyclic compound component containing the S element as a ring-constituting element.
  • the cyclic compound contained in the S-containing cyclic compound component may contain an oxygen element in addition to the S element constituting the ring.
  • the oxo group may be bonded to a carbon atom that constitutes the ring, but is preferably bonded to the S element that constitutes the ring.
  • Such an S-containing cyclic compound may be, for example, at least one selected from the group consisting of sulfate esters, sulfite esters and sulfonate esters.
  • Cyclic compounds also include salts of these esters. Among them, cyclic sulfites and cyclic sulfonates are preferred.
  • Cyclic sulfates include alkylene sulfates and alkenylene sulfates. Specific examples of cyclic sulfates include ethylene sulfate, propylene sulfate, trimethylene sulfate, butylene sulfate, and vinylene sulfate. Cyclic sulfites include, for example, at least one selected from the group consisting of alkylene sulfites and alkenylene sulfites. Specific examples of cyclic sulfites include ethylene sulfite, propylene sulfite, trimethylene sulfite, butylene sulfite, and vinylene sulfite.
  • Cyclic sulfonates include, for example, at least one selected from the group consisting of alkanesultones and alkenesultones.
  • Specific examples of cyclic sulfonic acid esters include 1,3-propanesultone, 1,4-butanesultone and 1,3-propenesultone.
  • one or more hydrogen atoms of the compounds exemplified above may be substituted with a substituent.
  • substituents include alkyl groups, alkenyl groups, hydroxyalkyl groups, hydroxy groups, alkoxy groups, halogen atoms and the like.
  • the number of carbon atoms in the substituent may be 1 or more and 4 or less or 1 or more and 3 or less.
  • a chlorine atom, a fluorine atom, etc. are mentioned as a halogen atom.
  • the S-containing ring contained in the S-containing cyclic compound is usually 5- or 6-membered.
  • the S-containing cyclic compound component may contain one of these S-containing cyclic compounds, or may contain two or more of them in combination.
  • the S-containing cyclic compound component preferably contains an S-containing cyclic compound having a carbon-carbon unsaturated bond.
  • the carbon-carbon unsaturated bond may constitute part of the S-containing ring, or may be included in a substituent of the S-containing ring.
  • substituents include alkenyl groups such as vinyl groups and allyl groups (such as C 2-4 alkenyl groups).
  • Specific examples of such S-containing cyclic compounds include 1,3-propene sultone, vinylene sulfite, vinylethylene sulfite and vinylene sulfate.
  • the S-containing cyclic compound component contains at least 1,3-propenesultone, a film having excellent film quality is easily formed on the surfaces of the negative electrode active material particles, including the new surfaces, and higher cycle characteristics can be obtained.
  • the S-containing cyclic compound component may include 1,3-propene sultone and other S-containing cyclic compounds.
  • the concentration of the S-containing cyclic compound component in the non-aqueous electrolyte is, for example, 2% by mass or less, and may be 1% by mass or less.
  • the concentration of the S-containing cyclic compound component is a value required for the non-aqueous electrolyte collected from the initial non-aqueous electrolyte secondary battery.
  • the S-containing cyclic compound component is used for film formation, so the concentration of the S-containing cyclic compound component in the non-aqueous electrolyte changes during storage or charge/discharge cycles.
  • the S-containing cyclic compound component remains in the non-aqueous electrolyte collected from the initial non-aqueous electrolyte secondary battery at a concentration equal to or higher than the detection limit.
  • the content of the S-containing cyclic compound component in the electrolytic solution may be 0.01% by mass or more, 0.1% by mass or more, or 0.25% by mass or more, It may be 0.5% by mass or more.
  • the concentration of 1,3-propene sultone may be within the above range.
  • An initial non-aqueous electrolyte secondary battery is, for example, a non-aqueous electrolyte secondary battery after it has been assembled and preliminarily charged and discharged (and aged if necessary).
  • a commercially available non-aqueous electrolyte secondary battery may be used as an initial non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte may be sampled and used for analysis.
  • the concentration of the S-containing cyclic compound component in the non-aqueous electrolyte used for manufacturing the non-aqueous electrolyte secondary battery may be 0.1% by mass or more, 0.2% by mass or more, or 0.25% by mass or more. or 0.5% by mass or more.
  • the content of the S-containing cyclic compound component in the electrolytic solution used for manufacturing the non-aqueous electrolyte secondary battery is, for example, 2% by mass or less.
  • the concentration of 1,3-propene sultone may be within the above range.
  • the non-aqueous electrolyte may contain additives other than the S-containing cyclic compound component.
  • additives include sulfur element-containing compounds, phosphorus element-containing compounds, nitrogen-containing compounds, vinyl ethylene carbonate, FEC, and aromatic compounds (cyclohexylbenzene, fluorobenzene, etc.) other than the S-containing cyclic compound component.
  • the sulfur element-containing compound (S-containing compound) includes at least one selected from the group consisting of chain sulfate (ethyl sulfate, methyl sulfate, etc.), chain sulfite and chain sulfonate.
  • the S-containing compounds also include salts of these esters (ethylsulfate, methylsulfate, etc.).
  • the non-aqueous electrolyte may contain one of these additives, or may contain two or more of them in combination.
  • the non-aqueous electrolyte secondary battery preferably contains FEC.
  • FEC may be contained in a small amount (e.g., 0.1% by mass or more and 2% by mass or less) as an additive, and in a relatively large amount (e.g., more than 2% by mass) as a nonaqueous solvent in the nonaqueous electrolyte. many) may be included.
  • the structure of the non-aqueous electrolyte secondary battery there is a structure in which an electrode group, in which a positive electrode and a negative electrode are wound with a separator interposed therebetween, is accommodated in an outer package together with a non-aqueous electrolyte.
  • the structure of the non-aqueous electrolyte secondary battery is not limited to such a structure.
  • the electrode group may be of a laminated type in which a positive electrode and a negative electrode are laminated via a separator.
  • the form of the non-aqueous electrolyte secondary battery is also not limited, and may be, for example, cylindrical, square, coin, button, or laminate.
  • FIG. 1 is a partially cutaway schematic perspective view of a prismatic non-aqueous electrolyte secondary battery according to an embodiment of the present disclosure.
  • the non-aqueous electrolyte secondary battery includes a prismatic battery case 4 with a bottom, and an electrode group 1 and an electrolytic solution (not shown) accommodated in the battery case 4 .
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed therebetween.
  • the negative electrode current collector of the negative electrode is electrically connected to a negative electrode terminal 6 provided on a sealing plate 5 via a negative electrode lead 3 .
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7 .
  • the positive current collector of the positive electrode is electrically connected to the rear surface of the sealing plate 5 via the positive lead 2 . That is, the positive electrode is electrically connected to the battery case 4 which also serves as a positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted into the open end of the battery case 4, and the fitted portion is laser-welded.
  • the sealing plate 5 has an injection hole for the electrolytic solution, which is closed with a sealing plug 8 after the injection.
  • Examples 1 to 3 and Comparative Examples 1 to 8>> A non-aqueous electrolyte secondary battery was produced and evaluated by the following procedure.
  • the components shown in Table 1 were used so that the content ratio of the total negative electrode active material was the value shown in Table 1. However, the content rate of each negative electrode active material was the rate excluding the conductive layer.
  • the negative electrode active materials shown in Table 1 are as follows.
  • Carbon composite particles carbon composite particles containing a carbon phase and a Si phase dispersed within the carbon phase, the surfaces of which are coated with a conductive layer containing conductive carbon (the Si phase contained in the particles excluding the conductive layer rate 50% by mass, average particle size (D50) 6 ⁇ m)
  • graphite particles average particle size (D50) 25 ⁇ m
  • Sodium polyacrylate (PAA-Na), sodium salt of CMC (CMC-Na), and SBR were used as binders.
  • CNTs containing 90% or more SWCNTs (average diameter of about 1.6 nm, average length of about 5 ⁇ m) were used as the conductive agent.
  • the content of CNTs in the negative electrode mixture was 0.05% by mass.
  • the dry solid contents of PAA-Na, CMC-Na, and SBR in the negative electrode mixture were each set to 1% by mass.
  • the negative electrode slurry was applied to the surface of the copper foil, the coating film was dried, and then rolled to form negative electrode mixture layers (thickness: 80 ⁇ m, density: 1.6 g/cm 3 ) on both sides of the copper foil. , to obtain the negative electrode.
  • Nonaqueous Electrolyte Secondary Battery An Al positive electrode lead was attached to the positive electrode obtained above, and a Ni negative electrode lead was attached to the negative electrode obtained above. In an inert gas atmosphere, the positive electrode and the negative electrode were spirally wound via a polyethylene thin film (separator) to prepare a wound electrode group.
  • the electrode group was housed in a bag-shaped exterior body formed of a laminate sheet having an Al layer, and after injecting a predetermined amount of the electrolyte solution, the exterior body was sealed to produce a non-aqueous electrolyte secondary battery. .
  • part of the positive electrode lead and the negative electrode lead were each exposed to the outside from the outer package.
  • Cycle characteristics A cycle of charging, resting and discharging when determining the discharge capacity Ci was regarded as one cycle, and 100 cycles were repeated to determine the discharge capacity (Cc) at the 100th cycle. The ratio (%) of the discharge capacity Cc to 100% of the initial discharge capacity Ci was determined as the capacity retention rate and used as an index of the cycle characteristics.
  • Table 1 shows the results of Examples and Comparative Examples.
  • E1-E3 are Examples 1-3
  • C1-C8 are Comparative Examples 1-8.
  • the initial capacity was expressed as a ratio (%) of the initial capacity Ci of each example when the initial capacity Ci of Comparative Example 1 was taken as 100%.
  • the non-aqueous electrolyte secondary battery of the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like. However, these are merely examples, and the uses of the non-aqueous electrolyte secondary battery are not limited to these.
  • electrode group 2 positive electrode lead 3: negative electrode lead 4: battery case 5: sealing plate 6: negative electrode terminal 7: gasket 8: sealing plug

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、負極合剤を含む負極と、セパレータと、前記セパレータを介して前記負極と対向する正極と、非水電解質とを含む。前記負極合剤は、負極活物質を含む。前記負極活物質は、3質量%以上のケイ素含有材料を含む。前記ケイ素含有材料は、炭素複合粒子を含む。前記炭素複合粒子は、炭素相と、前記炭素相内に分散したケイ素相と、を含む。前記非水電解質は、硫黄元素を環の構成元素として含む5員または6員の環状化合物成分を含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、正極と、負極と、非水電解質とを備える。非水電解質としては主に非水電解液が用いられている。負極は、負極活物質を含む負極合剤を備える。負極活物質には、リチウムイオンを電気化学的に吸蔵および放出可能な材料が用いられる。このような材料としては、例えば、炭素質材料、ケイ素含有材料などが用いられている。また、負極合剤には、炭素繊維、カーボンナノチューブなどのリチウムイオンを吸蔵および放出しない炭素質材料が導電剤として添加されることがある。
 特許文献1は、リチウムイオンを吸蔵・放出可能な元素を含む粒子と、リチウムイオンを吸蔵・放出可能な炭素粒子と、多層カーボンナノチューブと、カーボンナノファイバと、を含む複合電極剤を、リチウムイオン二次電池に用いることを提案している。
 合金系活物質を含有する負極を改良する観点から、特許文献2は、負極集電体と、前記負極集電体表面に支持されてリチウムイオンを吸蔵及び放出する合金系活物質を含む負極活物質層と、を備え、前記負極活物質層の表面に、リチウムイオン伝導性を有する樹脂成分と非水電解質用添加剤とを含有する樹脂層をさらに備える、非水電解質二次電池用負極を提案している。
特開2014-146519号公報 国際公開第2010/092815号
 ケイ素含有材料は、リチウムイオンの吸蔵および放出に伴う体積変化が大きい。中でも、炭素相と炭素相内に分散したケイ素相とを含む炭素複合粒子は、放電容量が大きく、活物質の利用率が高いため、体積変化が特に大きい。そのため、充放電を繰り返すたびに、炭素複合粒子が割れて新生面が現れ易い。新生面では電解液との副反応が起こり易く、充放電を繰り返したときに、容量が低下するため、容量維持率が低下し、サイクル特性が低下する。
 本開示の一側面は、負極合剤を含む負極と、セパレータと、前記セパレータを介して前記負極と対向する正極と、非水電解質とを含み、
 前記負極合剤は、負極活物質を含み、
 前記負極活物質は、3質量%以上のケイ素含有材料を含み、
 前記ケイ素含有材料は、炭素複合粒子を含み、
 前記炭素複合粒子は、炭素相と、前記炭素相内に分散したケイ素相と、を含み、
 前記非水電解質は、硫黄元素を環の構成元素として含む5員または6員の環状化合物成分を含む非水電解質二次電池に関する。
 ケイ素相を含む炭素複合粒子を含む負極を用いた非水電解質二次電池において、サイクル特性の低下を抑制できる。
本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた斜視図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 非水電解質二次電池では、一般に、黒鉛などの炭素質材料が負極活物質として使用されている。ケイ素含有材料を用いると、理論上、炭素質材料よりも高容量が得られるが、リチウムイオンの吸蔵および放出に伴う体積変化が大きく、活物質粒子に割れが生じて新生面が形成され易い。新生面では、非水電解質との副反応が起こり易く、容量が低下する。そのため、ケイ素含有材料を用いても、充放電を繰り返した場合の容量維持率が低下して、十分な寿命を確保することが難しい。中でも、炭素相と、炭素相内に分散したケイ素相とを含む炭素複合粒子は、特に、活物質利用率が高く、大きな放電容量が得られるため、高容量を得る観点からは理想的である。しかし、充放電を繰り返した場合に、ケイ素相の体積変化によってケイ素相だけでなく、マトリックスを構成する炭素相にも割れが生じ易い。そのため、ケイ素相を含む炭素複合粒子を用いる場合には、ケイ素相を含まない炭素質材料を用いる場合に比べて、多くの新生面が形成される。よって、充放電を繰り返したときに容量維持率が低下して、サイクル特性が低下し易い。
 上記に鑑み、(1)本開示の非水電解質二次電池は、負極合剤を含む負極と、セパレータと、セパレータを介して負極と対向する正極と、非水電解質とを含む。負極合剤は、負極活物質を含む。負極活物質は、3質量%以上のケイ素含有材料を含む。ケイ素含有材料は、炭素複合粒子を含む。炭素複合粒子は、炭素相と、炭素相内に分散したケイ素相と、を含む。非水電解質は、硫黄元素を環の構成元素として含む5員または6員の環状化合物成分を含む。以下、硫黄元素を環の構成元素として含む5員または6員の環状化合物成分を、単に、S含有環状化合物成分と称することがある。また、ケイ素含有材料をSi含有材料と、ケイ素相をSi相と、それぞれ称することがある。
 本開示によれば、S含有環状化合物成分を含む非水電解質を用いることで、負極がSi相を含む炭素複合粒子を含むケイ素含有材料を含む場合に、充放電を繰り返しても、容量維持率の低下を抑制することができ、サイクル特性の低下を抑制できる。これは、充放電に伴い、炭素複合粒子を含めてケイ素含有材料に割れが生じて新生面が生成しても、S含有環状化合物成分によって、負極活物質の表面に被膜が形成され、副反応が抑制されるためと考えられる。このことから、S含有環状化合物成分の作用によって、炭素複合粒子を含むケイ素含有材料の新生面を含む表面に形成される被膜は、充放電反応を阻害し難い低抵抗な被膜であると考えられる。また、本開示によれば、炭素複合粒子を含むケイ素含有材料を負極に用いることで、初期の高い放電容量を確保することができる。
 Si相を含まない炭素質材料を負極活物質として用いる場合には、S含有環状化合物成分を含む非水電解質を用いても、非水電解質がS含有環状化合物成分を含まない場合と比較して、初期の放電容量も、充放電を繰り返した場合の容量維持率もほとんど変わらない。つまり、負極活物質として、Si相を含まない炭素質材料を用いた場合と、Si相を含む炭素複合粒子を用いた場合とでは、S含有環状化合物成分がサイクル特性の挙動に及ぼす影響が大きく異なると言える。
 (2)上記(1)において、ケイ素含有材料は、さらにケイ素酸化物を含んでもよい。
 (3)上記(1)または(2)において、ケイ素含有材料は、さらに、シリケート複合粒子を含み、
 シリケート複合粒子は、シリケート相と、前記シリケート相内に分散したケイ素相と、を含んでもよい。
 (4)上記(1)~(3)のいずれか1つにおいて、環状化合物成分は、硫黄元素を環の構成元素として含むとともに、炭素-炭素不飽和結合を有する環状化合物を含んでもよい。
 (5)上記(1)~(4)のいずれか1つにおいて、環状化合物成分は、1,3-プロペンスルトンを含んでもよい。
 (6)上記(1)~(5)のいずれか1つにおいて、非水電解質中の環状化合物成分の濃度は、2質量%以下であってもよい。
 (7)上記(1)~(6)のいずれか1つにおいて、負極合剤は、さらにカーボンナノチューブを含んでもよい。
 (8)上記(1)~(7)のいずれか1つにおいて、非水電解質は、さらにフルオロエチレンカーボネートを含んでもよい。
 以下に、上記(1)~(8)を含めて、本開示の非水電解質二次電池について、構成要素ごとに、より具体的に説明する。技術的に矛盾のない範囲で、上記(1)~(8)の少なくとも1つと、以下に記載する要素の少なくとも1つとを組み合わせてもよい。
(負極)
 負極は、負極合剤を含む。負極は、負極合剤と負極合剤を保持する負極集電体とを含んでもよい。負極は、通常、層状の負極合剤(以下、負極合剤層と称する)を備えている。負極合剤は、少なくとも負極活物質を含む。負極合剤は、さらに、結着剤および増粘剤からなる群より選択される少なくとも一種などを含んでもよい。負極合剤は、さらに導電剤などを含んでもよい。
 (負極合剤)
 (負極活物質)
 負極活物質は、少なくともSi含有材料を含む。Si含有材料は、少なくとも上記の炭素複合粒子を含む。負極は、負極活物質として、Si含有材料以外の材料を含んでもよい。
 (Si含有材料)
 Si含有材料のうち、炭素複合粒子は、炭素相と、炭素相内に分散したSi相と、を含む。炭素相は電子導電性を有するため、Si相の膨張収縮によって炭素複合粒子に亀裂が生じても、孤立しにくく、炭素複合粒子とその周囲との接点を維持し易い。よって、サイクル特性の低下を抑制し易い。
 炭素相は、例えば、無定形炭素(すなわちアモルファス炭素)、結晶質炭素で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。無定形炭素とは、一般には、X線回折法により測定される(002)面の平均面間隔d002が0.340nmを超える炭素質材料を言う。結晶質炭素としては、黒鉛などの黒鉛型の結晶構造を有する炭素が挙げられる。黒鉛などの結晶質炭素は、d002が、0.340nm以下(例えば、0.3354nm以上0.340nm以下)である炭素質材料を言う。
 炭素複合粒子中のSi相の含有率は、例えば、30質量%以上80質量%以下であり、40質量%以上70質量%以下であってもよい。このような範囲では、より高い初期容量が得られるとともに、サイクル特性の低下を軽減し易い。また、比較的多くの炭素相を含むことで、充放電に起因して粒子に割れが生じても、形成される空隙に炭素相が侵入し易く、負極合剤における導電パスが維持され易い。
 負極活物質中の炭素複合粒子の含有率は、例えば、3質量%以上であり、4質量%以上または5質量%以上であってもよい。炭素複合粒子の含有率がこのような範囲である場合、リチウムイオンの吸蔵および放出に伴う体積変化によって、新生面における副反応の影響が現れ易い。そのため、S含有環状化合物成分を含む非水電解質を用いることによる効果が顕著に現れ易い。より高いサイクル特性を確保する観点からは、負極活物質中の炭素複合粒子の含有率は、例えば、10質量%以下である。
 炭素複合粒子は、例えば、炭素源と原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。炭素源としては、例えば、石炭ピッチ、石油ピッチ、タールなどの石油樹脂、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン、セルロース、スクロースなどの糖類や水溶性樹脂が用いられる。炭素源と原料シリコンとを混合する際には、例えば、炭素源と原料シリコンをアルコールなどの分散媒中に分散させてもよい。ミリングされた混合物を乾燥後、不活性ガス雰囲気中で、例えば600℃以上、1000℃以下で加熱し、炭素源を炭化させることで炭素相が形成される。
 炭素複合粒子以外のSi含有材料としては、ケイ素単体、ケイ素合金、およびケイ素化合物などが挙げられる。
 Si含有材料は、炭素複合粒子以外の複合粒子を含んでもよい。このような複合粒子としては、例えば、リチウムイオン伝導相(マトリックス)内にSi相(微細なSi相)が分散した複合粒子が挙げられる。このような複合粒子をSi含有材料が含む場合、さらに高容量が得られるとともに、サイクル特性の低下を抑制する効果を高めることができる。
 リチウムイオン伝導相は、SiO相およびシリケート相からなる群より選択される少なくとも1種を含むことが好ましい。リチウムイオン伝導相は、さらに炭素相を含んでもよい。リチウムイオン伝導相は、非晶質相を形成し得る。しかし、この場合に限らず、例えば、シリケート相および炭素相のそれぞれの少なくとも一部は、結晶質シリケートまたは炭素複合粒子について述べたような結晶質炭素などを含む結晶質相であってもよい。複合粒子の具体例としては、SiO相とSiO相内に分散したSi相とを含む複合粒子、シリケート相とシリケート相内に分散したSi相とを含む複合粒子(シリケート複合粒子)が挙げられる。しかし、複合粒子は、これらの具体例に限定されない。
 SiO相は、二酸化ケイ素を95質量%以上含むアモルファス相である。SiO相内にSi相が分散した複合粒子はSiOで表される。xは、例えば0.5≦x<2であり、0.8≦x≦1.6であってもよい。SiOは、例えば、一酸化ケイ素を熱処理し、不均化反応によりSiO相と微細なSi相とに分離することにより得られる。透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いてSiOの粒子断面を観察すると、SiO相内に分散したSi相を確認することができる。このような複合粒子を、本明細書中では、ケイ素酸化物と称することがある。負極活物質が、ケイ素酸化物を含む場合、初期のより高い放電容量を確保し易い。
 シリケート相は、アルカリ金属元素(長周期型周期表の水素以外の第1族元素)および長周期型周期表の第2族元素の少なくとも一方を含むことが好ましい。アルカリ金属元素は、リチウム(Li)、カリウム(K)、ナトリウム(Na)等を含む。第2族元素は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を含む。リチウムシリケート相は、式:Li2ySiO2+y(0<y<2)で表される組成を有し得る。yは1/2であってもよく、1であってもよい。シリケート相内にSi相が分散したシリケート複合粒子は、例えば、シリケートと原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。
 シリケート相内に分散しているSi相の含有量は、シリケート複合粒子の全体に対して、30質量%以上95質量%以下であってもよく、35質量%以上75質量%以下であってもよい。
 Si含有材料は、炭素複合粒子のみを含んでもよく、炭素複合粒子と他のSi含有材料から選択される少なくとも一種とを組み合わせて含んでもよい。Si含有材料は、例えば、炭素複合粒子に加え、ケイ素酸化物およびシリケート複合粒子からなる群より選択される少なくとも一種を含んでもよい。
 負極活物質中のケイ素酸化物の含有率は、例えば、0.1質量%以上であり、0.5質量%以上であってもよく、1質量%以上であってもよい。この場合、初期の放電容量をさらに高めることができる。負極活物質中のケイ素酸化物の含有率は、例えば、5質量%以下である。
 負極活物質中のシリケート複合粒子の含有率は、例えば、0.1質量%以上であり、0.5質量%以上であってもよく、1質量%以上であってもよい。この場合、初期のより高い放電容量を確保できるとともに、容量維持率の低下をさらに抑制することができる。負極活物質中のシリケート複合粒子の含有率は、例えば、5質量%以下である。
 Si含有材料の組成は、例えば、電界放出型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)によって負極合剤層の断面の反射電子像を得、Si含有材料の粒子を観察し、観察されたSi含有材料の粒子について元素分析を行うことによって求められる。例えば、電池を分解し、負極を取り出し、エチレンカーボネート等の非水溶媒で洗浄し、乾燥した後、クロスセクションポリッシャ(Cross Section Polisher:CP)により負極合剤層の断面加工を行い、試料を得る。FE-SEMを用いて試料断面の反射電子像を撮影する。元素分析には、例えば、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)分析等が用いられる。オージェ電子分光(Auger Electron Spectroscopy:AES)分析装置を用いて元素の定性定量分析を行ってもよい。上記分析によって、リチウムイオン伝導相の組成も求めることができる。炭素相の組成は、X線回折法によって求められるd002に基づいて確認できる。
 Si含有材料は、通常、粒子状材料である。Si含有材料の平均粒径(D50)は、例えば、1μm以上25μm以下であり、4μm以上15μm以下であってもよい。上記範囲では、良好な電池性能が得られ易い。
 なお、本明細書中、平均粒径(D50)とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。Si含有材料の平均粒径は、FE-SEMの反射電子像を得るために形成される負極の断面試料から求めてもよい。10個以上のSi含有材料の粒子の断面の円相当径を求め、それらの平均値を平均粒径として求める。ここで、円相当径とは、負極の断面で観測される粒子の面積と同じ面積を有する円の直径をいう。
 炭素相内に分散しているSi相は、通常は、複数の結晶子で構成される。Si相の結晶子サイズは、例えば500nm以下であり、30nm以下でもよい。Si相の結晶子サイズの下限値は、特に限定されないが、例えば5nm以上である。結晶子サイズは、Si相のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラー(Scherrer)の式により算出される。
 複合粒子に含まれるSi相の含有率は、例えば、Si-NMRにより測定することができる。以下、Si-NMRの望ましい測定条件を示す。
 測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA-400)
 プローブ:Varian 7mm CPMAS-2
 MAS:4.2kHz
 MAS速度:4kHz
 パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
 繰り返し時間:1200sec
 観測幅:100kHz
 観測中心:-100ppm付近
 シグナル取込時間:0.05sec
 積算回数:560
 試料量:207.6mg
 導電性向上の観点から、Si含有材料の粒子表面の少なくとも一部は、導電層で被覆されていてもよい。導電層は、導電性炭素等の導電性材料を含む。導電層の被覆量は、例えば、Si含有材料の粒子と導電層との合計100質量部あたり1質量部以上、10質量部以下である。表面に導電層を有するSi含有材料の粒子は、例えば、石炭ピッチ等をSi含有材料の粒子と混合し、不活性雰囲気中で熱処理することにより得られる。
 負極活物質中のSi含有材料の含有率は、3質量%以上であり、4質量%以上が好ましく、5質量%以上であってもよい。含有率がこのような範囲である場合、初期の高容量が得られるが、サイクル特性が低下し易い。本開示では、このような場合であっても、S含有環状化合物成分を含む非水電解質を用いることで、高いサイクル特性を確保することができる。Si含有材料の比率は、例えば、15質量%以下であり、10質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 (他の負極活物質)
 Si含有材料以外の負極活物質としては、例えば、Si相を含まない炭素質材料、Sn単体、Sn合金、およびSn化合物(Sn酸化物など)からなる群より選択される少なくとも一種が挙げられる。Si含有材料は、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じやすい。炭素質材料は、Si含有材料よりも充放電時の膨張収縮の度合いが小さい。Si含有材料と炭素質材料とを併用することで、充放電を繰り返した場合に、負極活物質粒子同士および負極合剤と負極集電体との接触状態をより良好に維持することができる。よって、Si含有材料とSi相を含まない炭素質材料とを併用することで、Si相の高容量を負極に付与しながらも優れたサイクル特性が得られ易い。
 炭素質材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)が挙げられる。炭素質材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 充放電の安定性に優れ、不可逆容量も少ないことから、中でも、炭素質材料としては黒鉛が好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。黒鉛粒子は、部分的に、非晶質炭素、易黒鉛化炭素、難黒鉛化炭素を含んでもよい。
 黒鉛とは、黒鉛型結晶構造が発達した炭素質材料である。X線回折法により測定される黒鉛の(002)面の平均面間隔d002は、例えば、0.340nm以下であってもよく、0.3354nm以上、0.340nm以下であってもよい。また、黒鉛の結晶子サイズLc(002)は、例えば、5nm以上であってもよく、5nm以上、200nm以下であってもよい。結晶子サイズLc(002)は、例えばシェラー(Scherrer)法により測定される。黒鉛の(002)面の平均面間隔d002および結晶子サイズLc(002)が上記範囲内である場合、高容量が得られ易い。
 負極活物質中、Si含有材料および炭素質材料(Si相を含まない炭素質材料)の総量が占める比率は、90質量%以上が好ましく、95質量%以上または98質量%以上であってもよい。負極活物質中、Si含有材料および炭素質材料の総量が占める比率は、100質量%以下である。負極活物質を、Si含有材料および炭素質材料のみで構成してもよい。
 (結着剤)
 結着剤としては、例えば、樹脂材料が用いられる。結着剤としては、例えば、フッ素樹脂(例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン)、ポリオレフィン樹脂(例えば、ポリエチレン、ポリプロピレン)、ポリアミド樹脂(例えば、アラミド樹脂)、ポリイミド樹脂(例えば、ポリイミド、ポリアミドイミド)、アクリル樹脂(例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸-メタクリル酸共重合体、エチレン-アクリル酸共重合体、またはこれらの塩)、ビニル樹脂(例えば、ポリ酢酸ビニル)、ゴム状材料(例えば、スチレン-ブタジエン共重合ゴム(SBR))挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (増粘剤)
 増粘剤としては、例えば、セルロースエーテルなどのセルロース誘導体が挙げられる。セルロース誘導体としては、CMCおよびその変性体、メチルセルロースなどが挙げられる。CMCの変性体には、CMCの塩も含まれる。塩としては、アルカリ金属塩(例えば、ナトリウム塩)、アンモニウム塩などが挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (導電剤)
 導電剤としては、例えば、導電性繊維、導電性粒子が挙げられる。導電性繊維としては、炭素繊維、金属繊維などが挙げられる。炭素繊維には、カーボンナノチューブ(CNT)も含まれる。導電性粒子としては、導電性炭素(カーボンブラックなど)、金属粉末などが挙げられる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 Si含有材料は、充放電時の膨張収縮に伴う体積変化が大きい。負極合剤がCNTを含む場合、Si含有材料の膨張収縮に伴い、粒子の割れが生じても、CNTによって導電パスの切断が抑制され、より高いサイクル特性が得られ易い。特に、負極活物質に占めるSi含有材料の含有率が大きい場合(例えば、4質量%以上である場合)には、CNTによる効果が顕著に現れる。
 CNTは、炭素原子により形成される六員環ネットワークのシート(グラフェン)を筒状に巻いた構造を有する、直径がナノサイズの炭素質材料である。CNTは、優れた導電性を有する。筒状構造を構成するグラフェンの層数が1つの場合、単層CNT(SWCNT:single-walled carbon nanotube)と称する。上記の層数が複数の場合、複層CNT(MWCNT:multi-walled carbon
 nanotube)と称する。
 CNTは、SWCNTを含むことが好ましい。この場合、より高いサイクル特性を確保しやすい。
 CNTに占めるSWCNTの割合は、例えば、50%以上であり、75%以上であってもよく、90%以上であってもよい。CNTに占めるSWCNTの割合は、100%以下である。なお、CNTに占めるSWCNTの割合とは、CNT全体に対するSWCNTの本数の比率である。
 負極合剤にCNTが含まれることは、例えば、負極合剤層の断面の走査型電子顕微鏡(SEM:Scanning Electron Microscope)の画像により確認することができる。
 負極合剤に含まれるCNTに占めるSWCNTの割合は、以下の方法により求められる。
 SEMを用いて負極合剤層の断面またはCNTの画像を得る。SEM画像において、複数本(例えば50本以上200本以下)のCNTを任意に選出して観察し、SWCNTの本数を求め、選出したCNTの総本数に対するSWCNTの本数の割合を算出する。
 CNTの定量分析は、例えば、ラマン分光法および熱重量分析法を組み合わせて行われる。
 充放電時の導電パスの切断を低減する観点から、CNTの平均直径は、例えば、1nm以上10nm以下であり、1nm以上5nm以下であってもよい。
 充放電時の導電パスの切断を低減する観点から、CNTの平均長さは、例えば、1μm以上100μm以下であり、5μm以上20μm以下であってもよい。
 CNTの平均長さおよび平均直径は、SEMおよびTEMの少なくとも一方を用いて負極合剤層の断面またはCNTの画像から求めることができる。より具体的には、撮影した画像において、複数本(例えば50本以上200本以下)のCNTを任意に選出し、長さおよび直径を計測し、それぞれ平均化することにより平均長さおよび平均直径が求められる。なお、CNTの長さとは、CNTを直線状に伸ばしたときの長さを意味する。
 負極合剤中のCNTの含有率は、例えば、0.005質量%以上1質量%以下であり、0.01質量%以上1質量%以下であってもよく、0.01質量%以上0.05質量%以下であってもよい。負極合剤中のCNTの含有率がこのような範囲である場合、負極の導電性の向上や、充放電サイクルの初期における容量維持率の改善効果が大きくなる。
 (負極集電体)
 負極集電体は、非水電解質二次電池の種類に応じて選択される。負極集電体としては、例えば、シート状の集電体が挙げられる。集電体としては、金属箔などを用いてもよい。また、集電体として多孔質の集電体を用いてもよい。多孔質の集電体としては、例えば、網状物、パンチングシート、エキスパンドメタルが挙げられる。
 負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金が例示される。
 負極集電体の厚さは、特に限定されず、例えば、1μm以上50μm以下であり、5μm以上30μm以下であってもよい。
 (その他)
 負極は、例えば、負極合剤の構成成分を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。
 分散媒としては、特に制限されず、例えば、水、アルコール(例えば、エタノール)、エーテル(例えば、テトラヒドロフラン)、アミド(例えば、ジメチルホルムアミド)、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒が挙げられる。
 (正極)
 正極は、正極集電体と、正極集電体の表面に保持された正極合剤層とを備えてもよい。正極合剤層は、正極合剤を分散媒に分散させた正極スラリを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤等を含むことができる。分散媒としては、例えば、負極について例示した分散媒から選択できる。
 正極活物質としては、例えば、リチウムと遷移金属とを含む複合酸化物が用いられる。遷移金属としては、例えば、Ni、Co、Mn等が挙げられる。リチウムと遷移金属とを含む複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCob1Ni1-b1、LiCob11-b1c1、LiNi1-b1b1c1、LiMn、LiMn2-b1b1が挙げられる。ここで、a=0~1.2、b1=0~0.9、c1=2.0~2.3である。Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択される少なくとも1種である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 中でも、LiNib21-b2(0<a≦1.2、0.3≦b2≦1であり、Mは、Mn、CoおよびAlからなる群より選択される少なくとも1種である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.8≦b2≦1または0.85≦b2≦1を満たすことがより好ましい。結晶構造の安定性の観点から、LiNib2Coc2Al(0<a≦1.2、0.8≦b2<1、0<c2<0.2(または0<c2≦0.18)、0<d≦0.1、b2+c2+d=1)が更に好ましい。
 結着剤としては、負極で例示した樹脂材料などを用いることができる。導電剤としては、例えば、負極で例示した導電剤から選択できる。導電剤として、黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体について説明した形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンが挙げられる。
 (セパレータ)
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、例えば、微多孔薄膜、織布、および不織布が挙げられる。セパレータは、単層構造であってもよく、多層構造であってもよい。多層構造のセパレータとしては、微多孔薄膜、織布、および不織布からなる群より選択される少なくとも2つを層として含む積層体であってもよい。セパレータの材質としては、ポリオレフィン(例えば、ポリプロピレン、ポリエチレン)が好ましい。
 (非水電解質)
 非水電解質は、通常、液状で用いられるが、ゲル化剤などで流動性が制限された状態であってもよい。非水電解質は、通常、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含み、これらに加えて添加剤を含む。本開示では、非水電解質は、S含有環状化合物成分を含む。非水電解質は、S含有環状化合物成分以外の添加剤をさらに含んでもよい。
 (非水溶媒)
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル(MA)、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水電解質は、非水溶媒を1種含んでもよく、2種以上組み合わせて含んでもよい。
 (リチウム塩)
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、リン酸塩、ホウ酸塩、イミド塩が挙げられる。リン酸塩としては、ジフルオロリン酸リチウム(LiPO)、ジフルオロビス(オキサラト)リン酸リチウム(LiDFBOP)、テトラフルオロ(オキサラト)リン酸リチウム等が挙げられる。ホウ酸塩としては、ビス(オキサラト)ホウ酸リチウム(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiDFOB)等が挙げられる。イミド塩としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。非水電解質は、リチウム塩を、1種含んでもよく、2種以上組み合わせて含んでもよい。
 電解液中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。
 (S含有環状化合物成分)
 S含有環状化合物成分は、S元素を環の構成元素として含む環状化合物成分である。S含有環状化合物成分に含まれる環状化合物は、環を構成するS元素に加え、酸素元素を含んでもよい。S含有環状化合物は、例えば、環の構成元素として酸素原子を含んでもよく、環に置換基として結合したオキソ基(=O)を含んでもよく、これらの双方を含んでもよい。オキソ基は、環を構成する炭素元素に結合していてもよいが、環を構成するS元素に結合していていることが好ましい。
 このようなS含有環状化合物は、例えば、硫酸エステル、亜硫酸エステルおよびスルホン酸エステルからなる群より選択される少なくとも1種であってもよい。硫酸エステルは、-O-S(=O)-O-構造を有する。亜硫酸エステルは、-O-S(=O)-O-構造を有する。スルホン酸エステルには、-S(=O)-O-構造を有する。環状化合物は、これらのエステルの塩も包含される。中でも、環状亜硫酸エステル、環状スルホン酸エステルが好ましい。
 環状硫酸エステルとしては、硫酸アルキレンおよび硫酸アルケニレンなどが挙げられる。環状硫酸エステルの具体例としては、エチレンサルフェート、プロピレンサルフェート、トリメチレンサルフェート、ブチレンサルフェート、ビニレンサルフェートが挙げられる。環状亜硫酸エステルとしては、例えば、アルキレンサルファイトおよびアルケニレンサルファイトからなる群より選択される少なくとも一種が挙げられる。環状亜硫酸エステルの具体例としては、エチレンサルファイト、プロピレンサルファイト、トリメチレンサルファイト、ブチレンサルファイト、ビニレンサルファイトが挙げられる。環状スルホン酸エステルとしては、例えば、アルカンスルトンおよびアルケンスルトンからなる群より選択される少なくとも一種が挙げられる。環状スルホン酸エステルの具体例としては、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトンが挙げられる。
 S含有環状化合物は、上記で例示した化合物の1つまたは2つ以上の水素原子が置換基で置換されていてもよい。置換基としては、アルキル基、アルケニル基、ヒドロキシアルキル基、ヒドロキシ基、アルコキシ基、ハロゲン原子などが挙げられる。置換基の炭素数は、1以上4以下または1以上3以下であってもよい。ハロゲン原子としては、塩素原子、フッ素原子などが挙げられる。
 S含有環状化合物に含まれるS含有環は、通常、5員または6員である。
 S含有環状化合物成分は、これらのS含有環状化合物を1種含んでもよく、2種以上組み合わせて含んでもよい。S含有環状化合物成分は、炭素-炭素不飽和結合を有するS含有環状化合物を含むことが好ましい。炭素-炭素不飽和結合は、S含有環の一部を構成していてもよく、S含有環の置換基が含んでもよい。このような置換基としては、ビニル基、アリル基などのアルケニル基(C2-4アルケニル基など)が挙げられる。このようなS含有環状化合物の具体例としては、1,3-プロペンスルトン、ビニレンサルファイト、ビニルエチレンサルファイト、ビニレンサルフェートが挙げられる。S含有環状化合物成分が、少なくとも1,3-プロペンスルトンを含む場合、膜質に優れる被膜が、新生面を含めて負極活物質粒子の表面に形成され易く、より高いサイクル特性が得られる。S含有環状化合物成分は、1,3-プロペンスルトンと他のS含有環状化合物とを含んでもよい。
 非水電解質二次電池において非水電解質中のS含有環状化合物成分の濃度は、例えば、2質量%以下であり、1質量%以下であってもよい。このS含有環状化合物成分の濃度は、初期の非水電解質二次電池から採取される非水電解質について求められる値である。非水電解質二次電池では、S含有環状化合物成分が被膜形成に利用されるため、保存期間中もしくは充放電サイクルの期間中に非水電解質中のS含有環状化合物成分の濃度が変化する。そのため、初期の非水電解質二次電池から採取される非水電解質中に、S含有環状化合物成分が検出限界以上の濃度で残存していればよい。電解液中のS含有環状化合物成分の含有量は、0.01質量%以上であってもよく、0.1質量%以上であってもよく、0.25質量%以上であってもよく、0.5質量%以上であってもよい。1,3-プロペンスルトンの濃度が上記の範囲であってもよい。
 初期の非水電解質二次電池とは、例えば、非水電解質二次電池を組み立て、慣らし充放電(および必要に応じてエージング)を行った後の非水電解質二次電池である。市販の非水電解質二次電池を初期の非水電解質二次電池として、非水電解質を採取して、分析に供してもよい。
 非水電解質二次電池の製造に用いられる非水電解質中のS含有環状化合物成分の濃度は、0.1質量%以上であってもよく、0.2質量%以上または0.25質量%以上であってもよく、0.5質量%以上であってもよい。非水電解質二次電池の製造に用いられる電解液中のS含有環状化合物成分の含有量は、例えば、2質量%以下である。1,3-プロペンスルトンの濃度が上記の範囲であってもよい。
 (その他)
 非水電解質は、S含有環状化合物成分以外の添加剤を含んでもよい。このような添加剤として、上記S含有環状化合物成分以外の硫黄元素含有化合物、リン元素含有化合物、窒素含有化合物、ビニルエチレンカーボネート、FEC、芳香族化合物(シクロヘキシルベンゼン、フルオロベンゼンなど)が挙げられる。硫黄元素含有化合物(S含有化合物)としては、鎖状硫酸エステル(エチル硫酸、メチル硫酸など)、鎖状亜硫酸エステルおよび鎖状スルホン酸エステルからなる群より選択される少なくとも1種が挙げられる。S含有化合物には、これらのエステルの塩(エチル硫酸塩、メチル硫酸塩など)も包含される。非水電解質は、これらの添加剤を1種含んでもよく、2種以上組み合わせて含んでもよい。
 非水電解質二次電池は、FECを含むことが好ましい。この場合、より高いサイクル特性が得られ易い。FECは、添加剤として少量(例えば、0.1質量%以上2質量%以下)含まれていてもよく、非水電解質中に非水溶媒として比較的多くの量で(例えば、2質量%より多く)含まれていてもよい。
 (その他)
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回された電極群が非水電解質と共に外装体に収容された構造が挙げられる。ただし、非水電解質二次電池の構造は、このような構造に限定されない。例えば、電極群は、正極と負極とがセパレータを介して積層された積層型でもよい。非水電解質二次電池の形態も限定されず、例えば、円筒型、角型、コイン型、ボタン型、ラミネート型であってもよい。
 図1は、本開示の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。非水電解質二次電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および電解液(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には電解液の注入孔があり、注液後に封栓8により塞がれる。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。
《実施例1~3および比較例1~8》
 下記の手順で、非水電解質二次電池を作製し、評価を行った。
(1)負極の作製
 負極合剤に適量の水を加え、混合し、負極スラリを得た。負極合剤には、負極活物質と、結着剤と、導電剤との混合物を用いた。
 負極活物質としては、表1に示す成分を、負極活物質全体に占める含有率が表1に示す値となるように用いた。ただし、各負極活物質の含有率は、導電層を除いた比率とした。
 表1に示す負極活物質は以下の通りである。
 (a)炭素複合粒子:炭素相と炭素相内に分散されたSi相とを含み、表面が導電性炭素を含む導電層で被覆され炭素複合粒子(導電層を除く粒子中のSi相の含有率50質量%、平均粒径(D50)6μm)
 (b)ケイ素酸化物:表面が導電性炭素を含む導電層で被覆されたSiO粒子(x=1、平均粒径(D50)5μm)
 (c)シリケート複合粒子:表面が導電性炭素を含む導電層で被覆されたLi2ySiO2+y粒子(y=0.5、平均粒径(D50)10μm)
 (d)黒鉛粒子:平均粒径(D50)25μm
 結着剤には、ポリアクリル酸ナトリウム(PAA-Na)と、CMCのナトリウム塩(CMC-Na)と、SBRとを用いた。導電剤には、SWCNTを90%以上含むCNT(平均直径1.6nm程度、平均長さ5μm程度)を用いた。
 負極合剤(乾燥固形分)中のCNTの含有率は、0.05質量%とした。負極合剤中のPAA-Na、CMC-Na、およびSBRの含有量は、それぞれ、乾燥固形分で、1質量%とした。
 次に、銅箔の表面に負極スラリを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層(厚み80μm、密度1.6g/cm)を形成し、負極を得た。
(2)正極の作製
 リチウム含有複合酸化物(LiNi0.8Co0.18Al0.02)95質量部に、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部と、適量のNMPとを加え、混合し、正極スラリを得た。次に、アルミニウム箔の表面に正極スラリを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極合剤層(厚み95μm、密度3.6g/cm)を形成し、正極を得た。
(3)非水電解質の調製
 ECとDMCとMAとの混合溶媒(EC:DMC:MA=20:60:20(体積比))に、LiPFおよび必要に応じて1,3-プロペンスルトン(PRES)を溶解させるとともに、FECを混合することにより、非水電解質を調製した。非水電解質中のLiPFの濃度は、1.35mol/Lとした。非水電解質中のPRESの濃度(非水電解質調製時の濃度)は、表1中に示される値(質量%)とした。非水電解質中のFECの濃度は、1質量%とした。
(4)非水電解質二次電池の作製
 上記で得られた正極にAl製の正極リードを取り付け、上記で得られた負極にNi製の負極リードを取り付けた。不活性ガス雰囲気中で、正極と負極とをポリエチレン薄膜(セパレータ)を介して渦巻状に捲回し、捲回型の電極群を作製した。電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、上記電解液の所定量を注入した後、外装体を封止して非水電解質二次電池を作製した。なお、電極群を外装体に収容する際、正極リードおよび負極リードの一部は、それぞれ外装体より外部に露出させた。
《評価》
 得られた非水電解質二次電池を用いて下記の評価を行った。
(1)初期容量
 45℃環境下で、非水電解質二次電池の電圧が4.2Vになるまで0.5C(180mA)の電流で定電流充電を行い、その後、電流が0.05C(18mA)になるまで4.2Vの電圧で定電圧充電を行った。10分の休止の後、非水電解質二次電池の電圧が2.5Vになるまで0.7C(252mA)の電流で定電流放電を行った。このときの放電容量(Ci)を初期容量として求めた。
(2)サイクル特性
 放電容量Ciを求める際の充電、休止および放電のサイクルを1サイクルとして、100サイクル繰り返し、100サイクル目の放電容量(Cc)を求めた。初期の放電容量Ciを100%としたときの放電容量Ccの比率(%)を容量維持率として求め、サイクル特性の指標とした。
 実施例および比較例の結果を表1に示す。表1中、E1~E3は、実施例1~3であり、C1~C8は、比較例1~8である。初期容量は、比較例1の初期容量Ciを100%としたときの各例の初期容量Ciの比率(%)で表した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、炭素相内にSi相が分散した炭素複合粒子を用いる場合には、Si相を含まない炭素質材料を負極活物質として用いる場合に比較して、初期容量は高いものの、サイクル特性が低下する(C1とC3およびC4との比較)。負極活物質が炭素複合粒子に加え、ケイ素酸化物を含む場合には、サイクル特性の低下幅が大きくなる(C3とC4との比較)。
 一方、負極活物質として、Si相を含まない炭素質材料のみを用いる場合には、S含有環状化合物成分を含む非水電解質を用いても、S含有環状化合物成分を含まない非水電解質を用いる場合と初期容量およびサイクル特性はほとんど変わらない(C1とC2と比較)。
 それに対し、炭素複合粒子を用いる場合に、S含有環状化合物成分を含む非水電解質を用いる場合には、高い初期容量を維持した状態で、サイクル特性の低下が抑制され、優れたサイクル特性が得られる(E1~E3)。これは、炭素複合粒子を含むケイ素含有材料の粒子の表面にS含有環状化合物成分の作用によって、低抵抗の被膜が形成されることで、負極活物質の高容量を有効に活用できるとともに、充放電が阻害されずに、充放電を繰り返しても容量の低下が抑制されるためと考えられる。
 負極活物質として、炭素複合粒子を用いずに、ケイ素酸化物やシリケート複合粒子を用いる場合には、ある程度高い初期容量が得られるが、サイクル特性はC1に比べて大きく低下する(C1とC6およびC8との比較)。このような負極活物質を用いる場合に、S含有環状化合物成分を含む非水電解質を組み合わせると、サイクル特性はある程度向上するものの、C1と同程度である。このような結果から、S含有環状化合物成分を含む非水電解質を、炭素複合粒子を含む負極活物質と組み合わせた場合に、サイクル特性の特に優れた向上効果が得られることが分かる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示の非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。しかし、これらは単なる例示であり、非水電解質二次電池の用途は、これらに限定されない。
1:電極群
2:正極リード
3:負極リード
4:電池ケース
5:封口板
6:負極端子
7:ガスケット
8:封栓

Claims (8)

  1.  負極合剤を含む負極と、セパレータと、前記セパレータを介して前記負極と対向する正極と、非水電解質とを含み、
     前記負極合剤は、負極活物質を含み、
     前記負極活物質は、3質量%以上のケイ素含有材料を含み、
     前記ケイ素含有材料は、炭素複合粒子を含み、
     前記炭素複合粒子は、炭素相と、前記炭素相内に分散したケイ素相と、を含み、
     前記非水電解質は、硫黄元素を環の構成元素として含む5員または6員の環状化合物成分を含む、非水電解質二次電池。
  2.  前記ケイ素含有材料は、さらにケイ素酸化物を含む、請求項1に記載の非水電解質二次電池。
  3.  前記ケイ素含有材料は、さらに、シリケート複合粒子を含み、
     前記シリケート複合粒子は、シリケート相と、前記シリケート相内に分散したケイ素相と、を含む、請求項1または2に記載の非水電解質二次電池。
  4.  前記環状化合物成分は、前記硫黄元素を環の構成元素として含むとともに、炭素-炭素不飽和結合を有する環状化合物を含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記環状化合物成分は、1,3-プロペンスルトンを含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記非水電解質中の前記環状化合物成分の濃度は、2質量%以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記負極合剤は、さらにカーボンナノチューブを含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記非水電解質は、さらにフルオロエチレンカーボネートを含む、請求項1~7のいずれか1項に記載の非水電解質二次電池。
PCT/JP2022/031271 2021-09-30 2022-08-18 非水電解質二次電池 WO2023053764A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280065200.8A CN118056306A (zh) 2021-09-30 2022-08-18 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161383 2021-09-30
JP2021-161383 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053764A1 true WO2023053764A1 (ja) 2023-04-06

Family

ID=85782314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031271 WO2023053764A1 (ja) 2021-09-30 2022-08-18 非水電解質二次電池

Country Status (2)

Country Link
CN (1) CN118056306A (ja)
WO (1) WO2023053764A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311211A (ja) * 2007-05-16 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013105745A (ja) * 2011-11-14 2013-05-30 Samsung Sdi Co Ltd リチウム2次電池用電解液およびこれを含むリチウム2次電池
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2016013967A (ja) * 2014-07-03 2016-01-28 オーシーアイ カンパニー リミテッドOCI Company Ltd. 炭素‐シリコン複合体及びその製造方法
WO2018088248A1 (ja) * 2016-11-11 2018-05-17 昭和電工株式会社 負極材料及びリチウムイオン電池
KR20200054097A (ko) * 2018-11-09 2020-05-19 주식회사 엘지화학 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021172443A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 二次電池用負極およびその製造方法ならびに二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311211A (ja) * 2007-05-16 2008-12-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013105745A (ja) * 2011-11-14 2013-05-30 Samsung Sdi Co Ltd リチウム2次電池用電解液およびこれを含むリチウム2次電池
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2016013967A (ja) * 2014-07-03 2016-01-28 オーシーアイ カンパニー リミテッドOCI Company Ltd. 炭素‐シリコン複合体及びその製造方法
WO2018088248A1 (ja) * 2016-11-11 2018-05-17 昭和電工株式会社 負極材料及びリチウムイオン電池
KR20200054097A (ko) * 2018-11-09 2020-05-19 주식회사 엘지화학 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021172443A1 (ja) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 二次電池用負極およびその製造方法ならびに二次電池

Also Published As

Publication number Publication date
CN118056306A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP6588079B2 (ja) 非水電解質二次電池
JP7223980B2 (ja) 正極材料および二次電池
JP7390597B2 (ja) 二次電池および電解液
JP7165913B2 (ja) 非水電解質二次電池
WO2020195335A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
US20230307610A1 (en) Nonaqueous electrolyte secondary battery
JP2017199547A (ja) リチウムイオン二次電池
WO2021172005A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2023053764A1 (ja) 非水電解質二次電池
WO2021124970A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP7458036B2 (ja) 非水電解質二次電池
WO2023054060A1 (ja) 非水電解質二次電池
WO2023127227A1 (ja) 非水電解質二次電池
US20230170527A1 (en) Nonaqueous electrolyte secondary battery
JP2017126488A (ja) 非水電解液二次電池用非水電解液及び非水電解液二次電池
WO2023032499A1 (ja) 非水電解質二次電池
WO2024071116A1 (ja) 二次電池用負極活物質、二次電池、および二次電池用負極活物質の製造方法
WO2022092136A1 (ja) 非水電解質二次電池
WO2024029333A1 (ja) 非水電解質蓄電素子
WO2023286718A1 (ja) 蓄電素子
WO2023281960A1 (ja) 正極、蓄電素子及び蓄電装置
WO2024111284A1 (ja) 非水電解質および二次電池
WO2023189140A1 (ja) 蓄電素子用正極、蓄電素子及び蓄電装置
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2023199942A1 (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550445

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022875637

Country of ref document: EP

Effective date: 20240430