WO2022032967A1 - 灵敏放大器、存储器和灵敏放大器的控制方法 - Google Patents

灵敏放大器、存储器和灵敏放大器的控制方法 Download PDF

Info

Publication number
WO2022032967A1
WO2022032967A1 PCT/CN2020/139627 CN2020139627W WO2022032967A1 WO 2022032967 A1 WO2022032967 A1 WO 2022032967A1 CN 2020139627 W CN2020139627 W CN 2020139627W WO 2022032967 A1 WO2022032967 A1 WO 2022032967A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
sense amplifier
transistor
bit line
pmos transistor
Prior art date
Application number
PCT/CN2020/139627
Other languages
English (en)
French (fr)
Inventor
卢文娟
葛骏林
何军
应战
李新
曹堪宇
彭春雨
蔺智挺
吴秀龙
陈军宁
Original Assignee
安徽大学
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽大学, 长鑫存储技术有限公司 filed Critical 安徽大学
Priority to US17/474,172 priority Critical patent/US11887655B2/en
Publication of WO2022032967A1 publication Critical patent/WO2022032967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/08Control thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits

Definitions

  • the present disclosure relates to the technical field of semiconductor memory, and in particular, to a sense amplifier, a memory and a control method of the sense amplifier.
  • DRAM Dynamic Random Access Memory
  • a sense amplifier In a DRAM, a sense amplifier is used to read data in a memory cell, and has a bit line BL (read bit line) input terminal and a bit line BLB (reference bit line) input terminal. In the read operation (or refresh operation), the function of the sense amplifier is to read the voltage difference between the bit line BL and the reference bit line BLB, and amplify the voltage difference between the two bit lines.
  • Sense amplifiers include metal-oxide semiconductor field effect transistors (MOSFETs).
  • MOSFETs metal-oxide semiconductor field effect transistors
  • two MOSFETs that are the same theoretically may be mismatched, that is, have different characteristics, making sense amplifiers. Offset noise is generated, and the offset noise can seriously affect the performance of semiconductor memory.
  • the purpose of the present disclosure is to provide a sense amplifier, a memory and a control method for the sense amplifier, thereby at least to a certain extent overcome the problem that the performance of semiconductor memory is affected by the mismatch of transistors in the sense amplifier.
  • a sense amplifier comprising: an amplifying module, which is used for reading data of a storage unit on a first bit line or a second bit line; a control module, which is electrically connected to the amplifying module; wherein , in the case of reading the data in the storage unit on the first bit line, in the offset compensation stage of the sense amplifier, the control module is used to configure the amplifying module to include a first diode structure, a first current mirror structure and an input and output The connected first inverter; in the case of reading the data in the memory cell on the second bit line, in the offset compensation stage of the sense amplifier, the control module is used to configure the amplifying module to include a second diode structure, a first Two current mirror structures and a second inverter connected to the input and output.
  • the amplification module includes: a first PMOS transistor; a second PMOS transistor; a first NMOS transistor, the gate of the first NMOS transistor is connected to the first bit line, and the drain of the first NMOS transistor is connected to the The drain of a PMOS transistor is connected; the second NMOS transistor, the gate of the second NMOS transistor is connected to the second bit line, and the drain of the second NMOS transistor is connected to the drain of the second PMOS transistor through the second node; wherein, In the case of reading the data in the memory cell on the first bit line, in the offset compensation stage of the sense amplifier, the second NMOS transistor is configured as a first diode structure, and the first PMOS transistor and the second PMOS transistor are configured as In the first current mirror structure, the first PMOS tube and the first NMOS tube are configured as a first inverter connected to the input and output; in the case of reading the data in the memory cell on the second bit line, the offset compensation of the sense amplifier In the stage, the first NMOS
  • control module further includes: a first switch, the first end of the first switch is connected to the gate of the first PMOS transistor, the second end of the first switch is connected to the gate of the second PMOS transistor; the second switch , the first end of the second switch is connected to the gate of the second PMOS transistor, the second end of the second switch is connected to the first node; the third switch, the first end of the third switch is connected to the second node, the third The second end of the switch is connected to the gate of the first PMOS transistor; the fourth switch, the first end of the fourth switch is connected to the first node, the second end of the fourth switch is connected to the first line; the fifth switch, The first end of the fifth switch is connected to the second bit line, and the second end of the fifth switch is connected to the second node; wherein, in the case of reading the data in the memory cell on the first bit line, the offset of the sense amplifier is In the compensation stage, the first switch, the second switch, the fourth switch and the fifth switch are closed, and the third switch is open;
  • the sources of the first PMOS transistor and the second PMOS transistor receive the first voltage, and the sources of the first NMOS transistor and the second NMOS transistor are grounded.
  • control module in the case of reading the data in the storage unit on the first bit line, in the first amplification stage of the sense amplifier, the control module is configured to configure the amplification module as a third inverter.
  • the second PMOS transistor and the second NMOS transistor are controlled to be in the cut-off region, and the first PMOS transistor and the second NMOS transistor are controlled to be in the cut-off region.
  • the first NMOS transistor is configured as a third inverter.
  • control module is configured to configure the amplification module as a fourth inverter.
  • the first PMOS transistor and the first NMOS transistor are controlled to be in the cut-off region, and the second PMOS transistor and The second NMOS transistor is configured as a fourth inverter.
  • control module further includes: a sixth switch, the first end of the sixth switch is connected to the second node, the second end of the sixth switch is connected to the first line; a seventh switch, the first end of the seventh switch The terminal is connected to the second bit line, and the second terminal of the seventh switch is connected to the first node; wherein, in the offset compensation stage of the sense amplifier, the sixth switch and the seventh switch are disconnected; in the first amplification stage of the sense amplifier, The first switch, the fourth switch and the fifth switch are turned off, and the second switch, the third switch, the sixth switch and the seventh switch are turned on.
  • the source of the first PMOS transistor receives the first voltage
  • the source of the first NMOS transistor is grounded
  • the source electrode of the second PMOS transistor and the source electrode of the second NMOS transistor receive a second voltage; wherein the second voltage is lower than the first voltage
  • the source of the second PMOS transistor receives the first voltage, and the source of the second NMOS transistor is grounded,
  • the source electrode of the first PMOS transistor and the source electrode of the first NMOS transistor receive a second voltage; wherein the second voltage is lower than the first voltage.
  • control module is configured to configure the amplification module as a cross-coupled amplification structure.
  • the first switch, the fourth switch and the fifth switch are turned off, and the second switch, the third switch, the sixth switch and the seventh switch are turned on.
  • the sources of the first PMOS transistor and the second PMOS transistor receive the first voltage, and the sources of the first NMOS transistor and the second NMOS transistor are grounded.
  • the sense amplifier further includes: a precharge module, configured to precharge the first bit line and the second bit line in a precharge stage before the offset compensation stage of the sense amplifier.
  • a precharge module configured to precharge the first bit line and the second bit line in a precharge stage before the offset compensation stage of the sense amplifier.
  • the first switch, the second switch, the third switch, the sixth switch and the seventh switch are turned off, and the fourth switch and the fifth switch are turned on.
  • the sources of the first PMOS transistor, the second PMOS transistor, the first NMOS transistor and the second NMOS transistor all receive the second voltage.
  • a memory including the sense amplifier as described above.
  • a control method for a sense amplifier includes an amplification module and a control module
  • the control method for the sense amplifier includes: in the case of reading data in a storage unit on a first bit line, in the In the offset compensation stage of the sense amplifier, the control module is used to configure the amplifying module to include a first diode structure, a first current mirror structure and a first inverter connected to the input and output; in reading the storage unit on the second bit line
  • the control module is used to configure the amplifying module to include a second diode structure, a second current mirror structure and a second inverter whose input and output are connected.
  • control module in the case of reading the data in the storage unit on the first bit line, in the first amplification stage of the sense amplifier, the control module is used to configure the amplification module as a third inverter; when reading the second bit line In the case of data in the upper storage unit, in the first amplification stage of the sense amplifier, the control module is used to configure the amplification module as a fourth inverter.
  • control module is used to configure the amplifying module as a cross-coupled amplifying structure.
  • the amplification module is configured to include a diode structure, a current mirror structure, and an inverter connected to an input and an output, and When reading different bit lines, different circuit structures are configured. Based on the circuit configuration of the present disclosure, the voltages of the bit lines on both sides of the sense amplifier can be adjusted, thereby compensating for the effect of offset noise on the voltages of the bit lines on both sides of the sense amplifier, thereby improving the performance of the semiconductor memory.
  • FIG. 1 schematically shows a block diagram of a sense amplifier according to an exemplary embodiment of the present disclosure
  • FIG. 2 schematically shows a circuit diagram of a sense amplifier according to an exemplary embodiment of the present disclosure
  • FIG. 3 schematically shows a circuit diagram of a specific configuration of a sense amplifier according to an embodiment of the present disclosure
  • FIG. 5 schematically shows a circuit diagram of a sense amplifier in a precharge stage when reading data in a memory cell on a first bit line according to an embodiment of the present disclosure
  • FIG. 6 schematically shows a circuit diagram of a sense amplifier in an offset compensation stage when reading data in a memory cell on a first bit line according to an embodiment of the present disclosure
  • FIG. 7 schematically shows a circuit diagram of a sense amplifier in a first amplification stage when reading data in a memory cell on a first bit line according to an embodiment of the present disclosure
  • FIG. 8 schematically shows a circuit diagram of a sense amplifier in a second amplifying stage when reading data in a memory cell on the first bit line according to an embodiment of the present disclosure
  • FIG. 9 schematically shows a timing diagram of each control signal involved in the sense amplifier when reading data in the memory cell on the second bit line according to an embodiment of the present disclosure
  • FIG. 10 schematically shows a circuit diagram of a sense amplifier in a precharge stage when reading data in a memory cell on a second bit line according to an embodiment of the present disclosure
  • FIG. 11 schematically shows a circuit diagram of a sense amplifier in an offset compensation stage when reading data in a memory cell on a second bit line according to an embodiment of the present disclosure
  • FIG. 12 schematically shows a circuit diagram of a sense amplifier in a first amplification stage when reading data in a memory cell on a second bit line according to an embodiment of the present disclosure
  • FIG. 13 schematically shows a circuit diagram of a sense amplifier in a second amplifying stage when reading data in a memory cell on a second bit line according to an embodiment of the present disclosure
  • FIG. 14 schematically shows a flowchart of a control method of a sense amplifier according to an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • numerous specific details are provided in order to give a thorough understanding of the embodiments of the present disclosure.
  • those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details, or other methods, components, devices, steps, etc. may be employed.
  • well-known solutions have not been shown or described in detail to avoid obscuring aspects of the present disclosure.
  • connection mentioned in the present disclosure may include direct connection and indirect connection.
  • direct connection there are no components between the terminals.
  • the first terminal of switch A is connected to the first terminal of switch B, which can be the connection line between the first terminal of switch A and the first terminal of switch B.
  • wires eg, metal wires
  • the indirect connection other components may exist between the terminals.
  • the first terminal of switch C is connected to the first terminal of switch D, which may be the connection between the first terminal of switch C and the first terminal of switch D.
  • connection line in addition to the connection line, there is at least one other component (eg, switch E, etc.) on the connection line.
  • a sense amplifier includes two symmetrically configured NMOS transistors. Ideally, it is hoped that the performance of the two NMOS transistors is exactly the same. However, in practice, the threshold voltages of the two NMOS transistors may be different, which will result in circuit imbalance. If no measures are taken at this time, when reading data from the storage unit, it is possible to read the originally stored "1" as a "0" error output, or read the originally stored "0" as a "1" error output .
  • the present disclosure provides a new sense amplifier.
  • FIG. 1 schematically shows a block diagram of a sense amplifier according to an exemplary embodiment of the present disclosure.
  • the sense amplifier 1 may include an amplification module 11 and a control module 12 .
  • the amplifying module 11 can be used to read the data of the storage unit on the first bit line or the second bit line;
  • the control module 12 is electrically connected to the amplification module 11 .
  • control module 12 is used to configure the amplifying module 11 to include a first diode structure, a first current mirror structure and an input The output is connected to the first inverter.
  • control module 12 is used to configure the amplifying module 11 to include a second diode structure, a second current mirror structure and an input
  • the output is connected to a second inverter.
  • the first diode structure and the second diode structure differ in at least circuit configuration; the first current mirror structure and the second current mirror structure differ in at least circuit configuration; The first inverter and the second inverter differ at least in circuit configuration.
  • the voltage of the bit lines (first bit line and/or the second bit line) on both sides of the sense amplifier can be adjusted, thereby compensating for the effect of offset noise on the voltage of the bit lines on both sides of the sense amplifier, thereby improving the semiconductor performance. memory performance.
  • the offset noise described in the present disclosure refers to the voltage difference generated by the inconsistency between at least two transistors (or components) in the amplifying module 11 .
  • the offset noise refers to the offset noise of the entire amplifying module 11 .
  • the amplifying module 11 may include a first PMOS transistor (hereinafter referred to as transistor P1), a second PMOS transistor (hereinafter referred to as transistor P2), a first NMOS transistor (hereinafter referred to as transistor N1), and a second NMOS transistor (hereinafter referred to as transistor N2).
  • the offset noise may be the offset voltage of the transistor P1 and the transistor P2, the offset voltage of the transistor N1 and the transistor N2, or the combined offset voltage of the two, which is not limited in the present disclosure .
  • FIG. 2 schematically shows a circuit diagram of a sense amplifier according to an exemplary embodiment of the present disclosure.
  • the drain of the transistor P1 is connected to the drain of the transistor N1, and the drain of the transistor P2 is connected to the drain of the transistor N2.
  • the gate of the transistor N1 is connected to the first bit line BL, and the gate of the transistor N2 is connected to the second bit line BLB.
  • the first node nL and the second node nR may be defined in the sense amplifier.
  • the drain of the transistor P1 and the drain of the transistor N1 are connected to the first node nL, and the drain of the transistor P2 and the drain of the transistor N2 are connected to the second node nR.
  • the working stage of the sense amplifier of the exemplary embodiment of the present disclosure may be divided into a precharging stage, an offset compensation stage, a first amplifying stage, and a second amplifying stage.
  • the transistor N2 is configured as a first diode structure, and the transistors P1 and P2 are configured as a first current mirror structure , the transistor P1 and the transistor N1 are configured as a first inverter whose input and output are connected.
  • the transistor N1 is configured as a second diode structure, and the transistors P1 and P2 are configured as a second current mirror structure , the transistor P2 and the transistor N2 are configured as a second inverter whose input and output are connected.
  • the control module may include a first switch (hereinafter referred to as switch K1), a second switch (hereinafter referred to as switch K2), a third switch (hereinafter referred to as switch K3), a fourth switch (hereinafter referred to as switch K4) and a fifth switch switch (hereinafter referred to as switch K5).
  • switch K1 a first switch
  • switch K2 a second switch
  • switch K3 a third switch
  • switch K4 hereinafter referred to as switch K4
  • switch K5 a fifth switch switch switch
  • the first end of the switch K1 is connected to the gate of the transistor P1, the second end of the switch K1 is connected to the gate of the transistor P2; the first end of the switch K2 is connected to the gate of the transistor P2, and the second end of the switch K2 is connected to the gate of the transistor P2.
  • a node nL is connected; the first end of the switch K3 is connected to the second node nR, the second end of the switch K3 is connected to the gate of the transistor P1; the first end of the switch K4 is connected to the first node nL, and the second end of the switch K4
  • the terminal is connected to the first bit line BL; the first terminal of the switch K5 is connected to the second bit line BLB, and the second terminal of the switch K5 is connected to the second node nR.
  • the switch K1, the switch K2, the switch K4 and the switch K5 are closed, and the switch K3 is opened.
  • the switch K1 , the switch K3 , the switch K4 and the switch K5 are closed, and the switch K2 is opened.
  • the present disclosure does not limit the types of switch K1 , switch K2 , switch K3 , switch K4 and switch K5 .
  • the switch K1 can be a PMOS transistor, an NMOS transistor or a CMOS transmission gate
  • the switch K2 can be a PMOS transistor, an NMOS transistor or a CMOS transmission gate
  • the switch K3 can be a PMOS transistor, an NMOS transistor or a CMOS transmission gate
  • the switch K4 can be a PMOS transistor , NMOS tube or CMOS transmission gate
  • switch K5 can be PMOS tube, NMOS tube or CMOS transmission gate.
  • the switch K1 may include a control terminal for controlling the switch state of the switch K1 in response to a first control signal (referred to as the control signal Current); the switch K2 may also include a control terminal for responding to the second control signal A control signal (referred to as control signal CR) controls the switch state of switch K2; switch K3 may also include a control terminal for controlling the switch state of switch K3 in response to a third control signal (referred to as control signal CL).
  • a first control signal referred to as the control signal Current
  • the switch K2 may also include a control terminal for responding to the second control signal
  • a control signal (referred to as control signal CR) controls the switch state of switch K2
  • switch K3 may also include a control terminal for controlling the switch state of switch K3 in response to a third control signal (referred to as control signal CL).
  • the switch K4 may include a control terminal for controlling the switch state of the switch K4 in response to a fourth control signal (referred to as control signal Tran); the switch K5 may also include a control terminal for controlling the switch state of the switch K5 in response to the fourth control signal. That is to say, the control terminals of the switch K4 and the switch K5 can both receive the fourth control signal.
  • control signal Tran a fourth control signal
  • the switch K5 may also include a control terminal for controlling the switch state of the switch K5 in response to the fourth control signal. That is to say, the control terminals of the switch K4 and the switch K5 can both receive the fourth control signal.
  • the source of transistor P1 can receive a fifth control signal (denoted as control signal ACT1)
  • the source of transistor P2 can receive a sixth control signal (denoted as control signal ACT2)
  • the source of transistor N1 can receive a seventh control signal signal (denoted as control signal NLAT1)
  • the source of transistor N2 can receive the eighth control signal (denoted as control signal NLAT2).
  • the sources of the transistors P1 and P2 both receive a first voltage, where the first voltage may be the power supply voltage VCC. That is, at this stage, both the control signal ACT1 and the control signal ACT2 are configured as the first voltage.
  • the transistor N1 and the source of the transistor N2 are grounded, that is, the voltages received by the control signal NLAT1 and the control signal NLAT2 are zero.
  • the control module is used to configure the amplification module as a third inverter.
  • the transistor P2 and the transistor N2 are controlled to be in the cut-off region, and the transistor P1 and the transistor N1 are configured as a third inverter.
  • the control module is configured to configure the amplification module as a fourth inverter.
  • the transistor P1 and the transistor N1 are controlled to be in the cut-off region, and the transistor P2 and the transistor N2 are configured as a fourth inverter.
  • the sense amplifier of the present disclosure may further include a sixth switch (hereinafter referred to as switch K6) and a seventh switch (hereinafter referred to as switch K7).
  • switch K6 a sixth switch
  • switch K7 a seventh switch
  • the first end of the switch K6 is connected to the second node nR, the second end of the switch K6 is connected to the first bit line BL; the first end of the switch K7 is connected to the second bit line BLB, and the second end of the switch K7 is connected to the first bit line BL. Node nL connection.
  • the present disclosure does not limit the types of switch K6 and switch K7.
  • the switch K6 can be a PMOS transistor, an NMOS transistor or a CMOS transmission gate
  • the switch K7 can be a PMOS transistor, an NMOS transistor or a CMOS transmission gate.
  • the switch K6 may include a control terminal for controlling the switch state of the switch K6 in response to a ninth control signal (referred to as a control signal ISO); the switch K7 may also include a control terminal for responding to the ninth control signal (referred to as the control signal ISO)
  • the control signal controls the switching state of the switch K7. That is to say, both the control terminals of the switch K6 and the switch K7 can receive the ninth control signal.
  • switch K6 and switch K7 are turned off.
  • the switch K1, the switch K4 and the switch K5 are turned off, and the switch K2, the switch K3, the switch K6 and the switch K7 are turned on.
  • the source of the transistor P1 receives the first voltage, that is, the control signal ACT1 is VCC; the source of the transistor N1 Ground; the sources of transistor P2 and transistor N2 receive a second voltage that causes transistor P2 and transistor N2 to be in the cut-off region, wherein the second voltage is less than the first voltage.
  • the second voltage may be VCC/2.
  • the source of the transistor P2 receives the first voltage, that is, the control signal ACT2 is VCC; the source of the transistor N2 is grounded; The sources of transistor P1 and transistor N1 receive a second voltage that causes transistor P1 and transistor N1 to be in a cutoff region.
  • control module is further configured to configure the amplification module as a cross-coupled amplification structure.
  • the switch K1, the switch K4 and the switch K5 are turned off, and the switch K2, the switch K3, the switch K6 and the switch K7 are turned on.
  • the sources of the transistor P1 and the transistor P2 receive the first voltage, that is, the control signal ACT1 and the control signal ACT2 are VCC.
  • the sources of the transistor N1 and the transistor N2 are grounded, that is, the control signal NLAT1 and the control signal NLAT2 are 0.
  • the sense amplifier further includes a precharge module for precharging the first bit line and the second bit line in a precharge stage before the offset compensation stage of the sense amplifier.
  • the switch K1, the switch K2, the switch K3, the switch K6 and the switch K7 are opened, and the switch K4 and the switch K5 are closed.
  • the sources of transistor P1, transistor P2, transistor N1 and transistor N2 all receive the second voltage.
  • the switch K4 and the switch 5 can also be turned off, and in this case, the switch K6 and the switch K7 are controlled to be closed, and the precharging can also be realized.
  • FIG. 3 schematically shows a circuit diagram of a sense amplifier according to an embodiment of the present disclosure.
  • the switch K1 is configured as a transistor N3, which controls the switch state in response to the control signal Current;
  • the switch K2 is configured as a transistor N4, which controls the switch state in response to the control signal CR;
  • the switch K3 is configured as a transistor N5, which controls the switch state in response to the control signal CL;
  • the switch K4 is configured as a transistor N6, which controls the switch state in response to the control signal Tran;
  • the switch K5 is configured as a transistor N7, which controls the switch state in response to the control signal Tran;
  • the switch K6 is configured as The transistor N8 controls the switch state in response to the control signal ISO;
  • the switch K7 is configured as a transistor N9 and controls the switch state in response to the control signal ISO.
  • the precharging unit may include a transistor N10, a transistor N11 and a transistor N12.
  • the gates of the transistor N10, the transistor N11 and the transistor N12 may all receive the precharge control signal PCE.
  • the source of the transistor N10 is connected to the second bit line BLB, the drain of the transistor N10 is connected to the first bit line BL; the source of the transistor N11 is connected to the first bit line BL, and the drain of the transistor N11 is connected to the source of the transistor N12 connected to and connected to the precharge voltage Veq, wherein the precharge voltage Veq can be configured as VCC/2; the drain of the transistor N12 is connected to the second bit line BLB.
  • the memory cell corresponding to the first bit line BL is configured to include a transistor N13 and a capacitor C1, and the transistor N13 controls the switching state in response to the word line control signal WL;
  • the memory cell corresponding to the second bit line BLB is configured to include a transistor N14 and a capacitor C2, the transistor N14 controls the switch state in response to the word line control signal WLB.
  • FIG. 4 schematically shows a timing diagram of various control signals involved in the sense amplifier when reading data in the memory cells on the first bit line BL according to an embodiment of the present disclosure. It should be noted that FIG. 4 is only a schematic diagram, and the time value of the abscissa displayed in the figure is not a limitation of the embodiment of the present disclosure.
  • FIG. 5 is for the pre-charging stage of the sense amplifier when the data in the memory cell on the first bit line BL is read.
  • the voltages of the control signal PCE, the control signal Tran, the control signal ACT1, the control signal ACT2, the control signal NLAT1 and the control signal NLAT2 can be respectively It is 1.5 times VCC, 1.5 times VCC, VCC/2, VCC/2, VCC/2, VCC/2, VCC/2, and the voltage of other control signals is 0.
  • the transistor 10 , the transistor 11 , the transistor 12 , the transistor N6 and the transistor N7 are turned on (corresponding to the closed state of the switch).
  • the transistor N3, the transistor N4, the transistor N5, the transistor N8, and the transistor N9 are turned off (corresponding to the off state of the switches).
  • the first bit line BL and the second bit line BLB are connected to the precharge voltage Veq through the transistor N11 and the transistor N12, respectively, and are connected to each other through the transistor N10, so that the first bit line BL and the second bit line BLB is precharged to Veq.
  • the transistor N6 and the transistor N7 are turned on, the first node nL and the second node nR are also precharged to Veq.
  • the transistor N3, the transistor N4, the transistor N5, the transistor N8 and the transistor N9 can also be in a closed state, which can be set as required.
  • the voltages are VCC, 0, VCC, 0, 1.5 times VCC, VCC, VCC, respectively.
  • the transistor N4, the transistor N6 and the transistor N7 are turned on, whereby the transistor P1 and the transistor N1 form an inverter whose input and output are connected. And because the transistor N4 is turned on, the transistor P1 and the transistor P2 form a current mirror structure.
  • the precharge stage After the precharge stage, if there is a mismatch problem in the circuit, that is, there is a mismatch caused by the inconsistency between the transistor P1 and the transistor P2 or the mismatch caused by the inconsistency between the transistor N1 and the transistor N2, it will cause the flow through the transistor P1.
  • the current of the transistor N1 is not equal to the current flowing through the transistor P2 and the transistor N2, that is, the driving capabilities of the two inverters are not the same, which increases the probability of data read errors.
  • the first bit line BL can be compensated to the inversion point of the inverter, and the inversion voltage can be changed based on the degree of offset.
  • the inversion voltage of the inverter composed of the transistor P1 and the transistor N1 is the gate voltage of the transistor P2. Since the transistor P1 and the transistor P2 form a current mirror structure at this time, the current on the branch of the transistor P1 and the transistor N1 is the same as that of the transistor N1. The currents in the branches of transistor P2 and transistor N2 are approximately equal.
  • transistor N2 its gate is connected to the drain to form a diode structure, and is connected to the second bit line BLB, so as to compensate the voltage of the second bit line BLB. In this case, the voltage on the second bit line BLB will vary, causing the overdrive voltage of transistor N2 to vary to meet the current mirror requirements.
  • FIG. 7 is for the first amplification stage of the sense amplifier when reading data in the memory cells on the first bit line BL, control signal ACT1, control signal NLAT1, control signal ACT2, control signal NLAT2, control signal CL, control signal CR and control signal
  • the voltages of ISO are VCC, 0, VCC/2, VCC/2, VCC, VCC, and 1.5 times VCC.
  • the transistor N4, the transistor N5, the transistor N8 and the transistor N9 are turned on, and since the voltages of the control signal ACT1 and the control signal NLAT1 are VCC and 0, respectively, the transistor P1 and the transistor N1 constitute an inverter.
  • the input terminal of the device is the first bit line BL, and the output terminal is the second bit line BLB.
  • the transistor P2 and the transistor N2 are in the off region, that is, the transistor P2 and the transistor N2 do not work.
  • the sense amplifier reads 0 for the memory cells of the first bit line BL
  • the voltage of the first bit line BL decreases, that is, the voltage of the inverter composed of the transistor P1 and the transistor N1 is reduced.
  • the input is relatively low level. Due to the action of the inverter, the voltage of the output terminal of the inverter is continuously increased in the first amplification stage, that is, the voltage of the second bit line BLB is continuously increased.
  • the sense amplifier reads 1 for the memory cell of the first bit line BL
  • the voltage of the first bit line BL increases, that is, the inverter composed of the transistor P1 and the transistor N1
  • the input of is a relatively high level. Due to the action of the inverter, the voltage of the output terminal of the inverter is continuously reduced in the first amplification stage, that is, the voltage of the second bit line BLB is continuously reduced.
  • the voltage difference between the first bit line BL and the second bit line BLB will be greatly increased, which is helpful to further amplify the voltage difference between the two, thereby improving the data The speed of reading, and it is beneficial to avoid the data being wrongly amplified.
  • FIG. 8 is for the second amplification stage of the sense amplifier when reading the data in the memory cells on the first bit line BL, control signal ACT1, control signal NLAT1, control signal ACT2, control signal NLAT2, control signal CL, control signal CR and control signal
  • the voltages of ISO are VCC, 0, VCC, 0, VCC, VCC, and 1.5 times VCC.
  • the transistor P1, the transistor P2, the transistor N1 and the transistor N2 constitute a cross-coupled amplification structure.
  • the sense amplifier When the sense amplifier reads 0 for the memory cell of the first bit line BL, the voltage on the first bit line BL is lower than the voltage on the second bit line BLB. The voltage on bit line BL is discharged to ground through transistor N2. In addition, transistor P1 is turned on, raising the voltage on the second bit line BLB to VCC.
  • the sense amplifier reads 1 for the memory cell of the first bit line BL
  • the voltage on the first bit line BL is higher than the voltage on the second bit line BLB
  • the transistor N1 and the transistor N9 are turned on, and the second bit line
  • the voltage on line BLB is discharged to ground through transistor N1.
  • transistor P2 is turned on, raising the voltage on first bit line BL to VCC.
  • a transition phase may also be included between the offset compensation phase and the first amplification phase.
  • the word line is in an open state
  • the ninth control signal ISO is in a low state
  • the transistor N8 and the transistor N9 are in an off state. , which is beneficial to fully share the charge in the memory cell to the first bit line or the second bit line after the word line is turned on.
  • it is not limited to this, and can be set according to needs.
  • FIG. 9 schematically shows a timing diagram of various control signals involved in the sense amplifier when reading data in the memory cells on the second bit line BLB according to an embodiment of the present disclosure. It should be noted that FIG. 9 is only a schematic diagram, and the time value of the abscissa displayed in the figure is not a limitation of the embodiment of the present disclosure.
  • FIG. 10 is directed to the precharge phase of the sense amplifier when reading data in the memory cells on the second bit line BLB.
  • the precharging process is the same as the process described in FIG. 5 above, and is not repeated here.
  • FIG. 11 is for the offset compensation stage of the sense amplifier when reading the data in the memory cell on the second bit line BLB, the control signal ACT1, the control signal NLAT1, the control signal ACT2, the control signal NLAT2, the control signal Tran, the control signal CL, the control signal Current
  • the voltages are VCC, 0, VCC, 0, 1.5 times VCC, VCC, VCC, respectively.
  • the transistor N5, the transistor N6 and the transistor N7 are turned on, whereby the transistor P2 and the transistor N2 form an inverter whose input and output are connected. And because the transistor N5 is turned on, the transistor P1 and the transistor P2 form a current mirror structure.
  • the precharge stage After the precharge stage, if there is a mismatch problem in the circuit, that is, there is a mismatch caused by the inconsistency between the transistor P1 and the transistor P2 or the mismatch caused by the inconsistency between the transistor N1 and the transistor N2, it will cause the flow through the transistor P1.
  • the current of the transistor N1 is not equal to the current flowing through the transistor P2 and the transistor N2, that is, the driving capabilities of the two inverters are not the same, which increases the probability of data read errors.
  • the read second bit line BLB can be compensated to the inversion point of the inverter, and the inversion voltage can be changed based on the degree of offset.
  • the inversion voltage of the inverter composed of the transistor P2 and the transistor N2 is the gate voltage of the transistor P1. Since the transistor P1 and the transistor P2 form a current mirror structure at this time, the current on the branch of the transistor P1 and the transistor N1 is the same as that of the transistor P1. The currents in the branches of transistor P2 and transistor N2 are approximately equal.
  • transistor N1 its gate is connected to the drain to form a diode structure, and is connected to the first bit line BL, so as to compensate the voltage of the first bit line BL. In this case, the voltage on the first bit line BL will vary, causing the overdrive voltage of transistor N1 to vary to meet the requirements of the current mirror.
  • FIG. 12 is for the first amplification stage of the sense amplifier when reading the data in the memory cells on the second bit line BLB, the control signal ACT1, the control signal NLAT1, the control signal ACT2, the control signal NLAT2, the control signal CL, the control signal CR and the control signal
  • the voltages of ISO are VCC/2, VCC/2, VCC, 0, VCC, VCC, and 1.5 times VCC.
  • the transistor N4, the transistor N5, the transistor N8 and the transistor N9 are turned on, and since the voltages of the control signal ACT2 and the control signal NLAT2 are VCC and 0, respectively, the transistor P2 and the transistor N2 constitute an inverter.
  • the input terminal of the device is the second bit line BLB, and the output terminal is the first bit line BL.
  • the transistor P1 and the transistor N1 are in the off region, that is, the transistor P1 and the transistor N1 do not work.
  • the voltage of the second bit line BLB decreases, that is, the voltage of the inverter composed of the transistor P2 and the transistor N2 decreases.
  • the input is relatively low level. Due to the action of the inverter, the voltage at the output terminal of the inverter is continuously increased in the first amplification stage, that is, the voltage of the first bit line BL is continuously increased.
  • the sense amplifier reads 1 for the memory cell of the second bit line BLB
  • the voltage of the second bit line BLB increases, that is, the inverter composed of the transistor P2 and the transistor N2
  • the input of BL is a relatively high level. Due to the action of the inverter, the voltage of the output terminal of the inverter is continuously reduced in the first amplification stage, that is, the voltage of the first bit line BL is continuously reduced.
  • the voltage difference between the first bit line BL and the second bit line BLB will be greatly increased, which is helpful to further amplify the voltage difference between the two, thereby improving the data The speed of reading, and it is beneficial to avoid the data being wrongly amplified.
  • FIG. 13 is directed to the second amplification stage of the sense amplifier when reading data in the memory cells on the second bit line BLB.
  • the second enlargement stage of FIG. 13 is the same as the process of FIG. 8 described above, and will not be repeated here.
  • a transition phase may also be included between the offset compensation phase and the first amplification phase.
  • the word line is in an open state
  • the ninth control signal ISO is in a low state
  • the transistor N8 and the transistor N9 are in an off state. , which is beneficial to fully share the charge in the memory cell to the first bit line or the second bit line after the word line is turned on.
  • it is not limited to this, and can be set according to needs.
  • the present disclosure also provides a control method for a sense amplifier.
  • FIG. 14 schematically shows a flowchart of a control method of a sense amplifier according to an exemplary embodiment of the present disclosure.
  • the sense amplifier may include an amplification module and a control module.
  • control method of the sense amplifier may include the following steps:
  • control module In the case of reading the data in the memory cell on the second bit line, in the offset compensation stage of the sense amplifier, use the control module to configure the amplifying module to include a second diode structure, a second current mirror structure and an input and output connected second inverter.
  • the control module in the case of reading the data in the memory cell on the first bit line, in the first amplification stage of the sense amplifier, the control module is used to configure the amplification module as a third inverter; In the case of taking the data in the storage unit on the second bit line, in the first amplification stage of the sense amplifier, the control module is used to configure the amplification module as a fourth inverter.
  • the amplification module in the second amplification stage after the first amplification stage of the sense amplifier, is configured as a cross-coupled amplification structure by the control module.
  • the sense amplifier may further include a pre-charging stage, and the details of these stages have been explained in the process of describing the configuration of the sense amplifier above, and will not be repeated here.
  • the voltages of the bit lines on both sides of the sense amplifier can be adjusted according to the difference between the data on the first bit line and the data on the second bit line, so as to compensate for the offset noise The impact on the bit line voltage on both sides of the sense amplifier, thereby improving the performance of the semiconductor memory.
  • the present disclosure also provides a memory including the above-mentioned sense amplifier.
  • the memory according to the exemplary embodiment of the present disclosure better realizes offset compensation and has a low read error rate, the memory performance is greatly improved.

Abstract

一种灵敏放大器、存储器和灵敏放大器的控制方法,涉及半导体存储器技术领域。灵敏放大器(1)包括:放大模块(11);控制模块(12),与放大模块(11)电连接;其中,在读取第一位线上存储单元中数据的情况下,在灵敏放大器(1)的失调补偿阶段,控制模块(12)用于将放大模块(11)配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器(1)的失调补偿阶段,控制模块(12)用于将放大模块(11)配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。可以实现灵敏放大器的失调补偿,进而提高半导体存储器的性能。

Description

灵敏放大器、存储器和灵敏放大器的控制方法
相关申请的交叉引用
本申请要求于2020年08月13日提交的申请号为202010811719.9、名称为“灵敏放大器、存储器和灵敏放大器的控制方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及半导体存储器技术领域,具体而言,涉及一种灵敏放大器、存储器和灵敏放大器的控制方法。
背景技术
随着手机、平板、个人计算机等电子设备的普及,半导体存储器技术也得到了快速的发展。例如DRAM(Dynamic Random Access Memory,动态随机存取存储器),由于高密度、低功耗、低价格等优点,已广泛应用于各种电子设备中。
在DRAM中,灵敏放大器用于读取存储单元中的数据,具有一个位线BL(读取位线)输入端和一个位线BLB(参考位线)输入端。在读取操作(或刷新操作)中,灵敏放大器的作用就是读取位线BL和参考位线BLB之间的电压差,并放大两个位线间的电压差。
灵敏放大器中包括金属-氧化物半导体场效应晶体管(MOSFET),然而,在半导体技术中,由于工艺和温度的变化,理论上相同的两个MOSFET可能失配,即具有不同的特性,使灵敏放大器产生失调噪声,而失调噪声会严重影响半导体存储器的性能。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种灵敏放大器、存储器和灵敏放大器的控制方法,进而至少在一定程度上克服由于灵敏放大器中晶体管的失配而影响半导体存储器性能的问题。
根据本公开的第一方面,提供一种灵敏放大器,包括:放大模块,放大模块用于读取第一位线或第二位线上存储单元的数据;控制模块,与放大模块电连接;其中,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,控制模块用于将放大模块配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,控制模块用于将放大模块配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
可选地,放大模块包括:第一PMOS管;第二PMOS管;第一NMOS管,第一NMOS 管的栅极与第一位线连接,第一NMOS管的漏极通过第一节点与第一PMOS管的漏极连接;第二NMOS管,第二NMOS管的栅极与第二位线连接,第二NMOS管的漏极通过第二节点与第二PMOS管的漏极连接;其中,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,第二NMOS管被配置为第一二极管结构,第一PMOS管和第二PMOS管被配置为第一电流镜结构,第一PMOS管和第一NMOS管被配置为输入输出相连的第一反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,第一NMOS管被配置为第二二极管结构,第一PMOS管和第二PMOS管被配置为第二电流镜结构,第二PMOS管和第二NMOS管被配置为输入输出相连的第二反相器。
可选地,控制模块还包括:第一开关,第一开关的第一端与第一PMOS管的栅极连接,第一开关的第二端与第二PMOS管的栅极连接;第二开关,第二开关的第一端与第二PMOS管的栅极连接,第二开关的第二端与第一节点连接;第三开关,第三开关的第一端与第二节点连接,第三开关的第二端与第一PMOS管的栅极连接;第四开关,第四开关的第一端与第一节点连接,第四开关的第二端与第一位线连接;第五开关,第五开关的第一端与第二位线连接,第五开关的第二端与第二节点连接;其中,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,第一开关、第二开关、第四开关和第五开关闭合,第三开关断开;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,第一开关、第三开关、第四开关和第五开关闭合,第二开关断开。
可选地,在灵敏放大器的失调补偿阶段,第一PMOS管和第二PMOS管的源极接收第一电压,第一NMOS管和第二NMOS管的源极接地。
可选地,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,控制模块用于将放大模块配置为第三反相器。
可选地,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,第二PMOS管和第二NMOS管被控制为处于截止区,第一PMOS管和第一NMOS管被配置为第三反相器。
可选地,在读取第二位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,控制模块用于将放大模块配置为第四反相器。
可选地,在读取第二位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,第一PMOS管和第一NMOS管被控制为处于截止区,第二PMOS管和第二NMOS管被配置为第四反相器。
可选地,控制模块还包括:第六开关,第六开关的第一端与第二节点连接,第六开关的第二端与第一位线连接;第七开关,第七开关的第一端与第二位线连接,第七开关的第二端与第一节点连接;其中,在灵敏放大器的失调补偿阶段,第六开关和第七开关断开;在灵敏放大器的第一放大阶段,第一开关、第四开关和第五开关断开,第二开关、第三开关、第六开关和第七开关闭合。
可选地,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,第一PMOS管的源极接收第一电压,第一NMOS管的源极接地,第二PMOS管的源极和第二NMOS管的源极接收第二电压;其中,第二电压小于第一电压。
可选地,在读取第二位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,第二PMOS管的源极接收第一电压,第二NMOS管的源极接地,第一PMOS管的源极和第一NMOS管的源极接收第二电压;其中,第二电压小于第一电压。
可选地,在灵敏放大器的第一放大阶段之后的第二放大阶段,控制模块用于将放大模块配置为交叉耦合放大结构。
可选地,在灵敏放大器的第二放大阶段,第一开关、第四开关、第五开关断开,第二开关、第三开关、第六开关和第七开关闭合。
可选地,在灵敏放大器的第二放大阶段,第一PMOS管和第二PMOS管的源极接收第一电压,第一NMOS管和第二NMOS管的源极接地。
可选地,在灵敏放大器还包括:预充模块,用于在灵敏放大器的失调补偿阶段之前的预充阶段,对第一位线和第二位线进行预充电。
可选地,在灵敏放大器的预充阶段,第一开关、第二开关、第三开关、第六开关和第七开关断开,第四开关和第五开关闭合。
可选地,在灵敏放大器的预充阶段,第一PMOS管、第二PMOS管、第一NMOS管和第二NMOS管的源极均接收第二电压。
根据本公开的第二方面,提供一种存储器,包括如上述任意一项的灵敏放大器。
根据本公开的第三方面,提供一种灵敏放大器的控制方法,灵敏放大器包括放大模块和控制模块,灵敏放大器的控制方法包括:在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,利用控制模块将放大模块配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,利用控制模块将放大模块配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
可选地,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,利用控制模块将放大模块配置为第三反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,利用控制模块将放大模块配置为第四反相器。
可选地,在灵敏放大器的第一放大阶段之后的第二放大阶段,利用控制模块将放大模块配置为交叉耦合放大结构。
在本公开的一些实施例所提供的技术方案中,通过控制模块的控制,在灵敏放大器的失调补偿阶段,将放大模块配置为包括二极管结构、电流镜结构和输入输出相连的反相器,并且在读取不同位线时,配置不同的电路结构。基于本公开的电路配置,可以调节灵敏放大器两边位线的电压,从而补偿由于失调噪声给灵敏放大器两边位线电压带来的影响,进而提高半导体存储器的性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示意性示出了根据本公开的示例性实施方式的灵敏放大器的框图;
图2示意性示出了根据本公开的示例性实施方式的灵敏放大器的电路图;
图3示意性示出了根据本公开一实施例的灵敏放大器的具体配置方式的电路图;
图4示意性示出了根据本公开实施例的读取第一位线上存储单元中数据时灵敏放大器中所涉各控制信号的时序图;
图5示意性示出了根据本公开实施例的读取第一位线上存储单元中数据时在预充阶段灵敏放大器的电路图;
图6示意性示出了根据本公开实施例的读取第一位线上存储单元中数据时在失调补偿阶段灵敏放大器的电路图;
图7示意性示出了根据本公开实施例的读取第一位线上存储单元中数据时在第一放大阶段灵敏放大器的电路图;
图8示意性示出了根据本公开实施例的读取第一位线上存储单元中数据时在第二放大阶段灵敏放大器的电路图;
图9示意性示出了根据本公开实施例的读取第二位线上存储单元中数据时灵敏放大器中所涉各控制信号的时序图;
图10示意性示出了根据本公开实施例的读取第二位线上存储单元中数据时在预充阶段灵敏放大器的电路图;
图11示意性示出了根据本公开实施例的读取第二位线上存储单元中数据时在失调补偿阶段灵敏放大器的电路图;
图12示意性示出了根据本公开实施例的读取第二位线上存储单元中数据时在第一放大阶段灵敏放大器的电路图;
图13示意性示出了根据本公开实施例的读取第二位线上存储单元中数据时在第二放大阶段灵敏放大器的电路图;
图14示意性示出了根据本公开的示例性实施方式的灵敏放大器的控制方法的流程图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实 施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”、“第八”、“第九”的描述仅是为了区分,不应作为本公开的限制。
需要说明的是,本公开所说的术语“连接”,可以包括直接连接和间接连接。在直接连接中,端与端之间没有元器件,例如,开关A的第一端与开关B的第一端连接,可以是在开关A的第一端与开关B的第一端的连接线路上,只有连接线(如,金属线),而不存在其他元器件。在间接连接中,端与端之间可以存在其他元器件,例如,开关C的第一端与开关D的第一端连接,可以是在开关C的第一端与开关D的第一端的连接线路上,除连接线外,连接线上还存在至少一个其他元器件(如,开关E等)。
在灵敏放大器中,由于制程上的差异以及工作环境的影响,可能导致晶体管的尺寸、迁移率、阈值电压等存在差别,各晶体管的性能通常不可能完全相同,这就会造成灵敏放大器失调,相当于出现了失调噪声,严重影响存储器读取数据的正确性。
例如,灵敏放大器包括两个对称配置的NMOS管,理想状态下,希望这两个NMOS管的性能完全相同。然而,在实际中,这两个NMOS管的阈值电压可能不同,这就会出现电路失调的情况。此时若不采取任何措施,在从存储单元读取数据时,就有可能将原本存储的“1”读成“0”错误输出,或者将原本存储的“0”读成“1”错误输出。
鉴于此,本公开提供了一种新的灵敏放大器。
图1示意性示出了根据本公开的示例性实施方式的灵敏放大器的框图。如图1所示,灵敏放大器1可以包括放大模块11和控制模块12。
放大模块11可以用于读取第一位线或第二位线上存储单元的数据;
控制模块12与放大模块11电连接。
在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,控制模块12用于将放大模块11配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器。
在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,控制模块12用于将放大模块11配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
在本公开的示例性实施方式中,第一二极管结构与第二二极管结构至少在电路配置上存在差异;第一电流镜结构与第二电流镜结构至少在电路配置上存在差异;第一反相器与第二反相器至少在电路配置上存在差异。
基于本公开的电路配置,可以调节灵敏放大器两边位线(第一位线和/或第二位线)的电压,从而补偿由于失调噪声给灵敏放大器两边位线电压带来的影响,进而提高半导体存储器的性能。
应当理解的是,本公开所述的失调噪声指的是放大模块11中至少两个晶体管(或元器件)之间的不一致而产生的电压差。在综合所有晶体管(或元器件)之间的电压差的情况下,失调噪声指代整个放大模块11的失调噪声。
放大模块11可以包括第一PMOS管(下面简称晶体管P1)、第二PMOS管(下面简称晶体管P2)、第一NMOS管(下面简称晶体管N1)、第二NMOS管(下面简称晶体管N2)。
在这种情况下,失调噪声可以是晶体管P1与晶体管P2的失调电压,也可以是晶体管N1与晶体管N2的失调电压,还可以是这二者综合后的失调电压,本公开对此不做限制。
图2示意性示出了根据本公开的示例性实施方式的灵敏放大器的电路图。
参考图2,晶体管P1的漏极与晶体管N1的漏极连接,晶体管P2的漏极与晶体管N2的漏极连接。另外,晶体管N1的栅极与第一位线BL连接,晶体管N2的栅极与第二位线BLB连接。
为了随后描述方便,可以在灵敏放大器中定义第一节点nL和第二节点nR。晶体管P1的漏极与晶体管N1的漏极连接于第一节点nL,晶体管P2的漏极与晶体管N2的漏极连接于第二节点nR。
本公开示例性实施方式的灵敏放大器的工作阶段可以被划分为:预充阶段、失调补偿阶段、第一放大阶段和第二放大阶段。
在读取第一位线BL上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,晶体管N2被配置为第一二极管结构,晶体管P1和晶体管P2被配置为第一电流镜结构,晶体管P1和晶体管N1被配置为输入输出相连的第一反相器。
在读取第二位线BLB上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,晶体管N1被配置为第二二极管结构,晶体管P1和晶体管P2被配置为第二电流镜结构,晶体管P2和晶体管N2被配置为输入输出相连的第二反相器。
本公开示例性实施方式通过控制模块来实现上述配置。参考图2,控制模块可以包括第一开关(下面简称开关K1)、第二开关(下面简称开关K2)、第三开关(下面简称开关K3)、第四开关(下面简称开关K4)和第五开关(下面简称开关K5)。
开关K1的第一端与晶体管P1的栅极连接,开关K1的第二端与晶体管P2的栅极连接;开关K2的第一端与晶体管P2的栅极连接,开关K2的第二端与第一节点nL连接; 开关K3的第一端与第二节点nR连接,开关K3的第二端与晶体管P1的栅极连接;开关K4的第一端与第一节点nL连接,开关K4的第二端与第一位线BL连接;开关K5的第一端与第二位线BLB连接,开关K5的第二端与第二节点nR连接。
在读取第一位线BL上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,开关K1、开关K2、开关K4和开关K5闭合,开关K3断开。
在读取第二位线BLB上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,开关K1、开关K3、开关K4和开关K5闭合,开关K2断开。
其中,本公开对开关K1、开关K2、开关K3、开关K4和开关K5的类型不做限制。例如,开关K1可以是PMOS管、NMOS管或CMOS传输门;开关K2可以是PMOS管、NMOS管或CMOS传输门;开关K3可以是PMOS管、NMOS管或CMOS传输门;开关K4可以是PMOS管、NMOS管或CMOS传输门;开关K5可以是PMOS管、NMOS管或CMOS传输门。
在本公开的一些实施例中,开关K1可以包括控制端,用于响应第一控制信号(记为控制信号Current)控制开关K1的开关状态;开关K2也可以包括控制端,用于响应第二控制信号(记为控制信号CR)控制开关K2的开关状态;开关K3也可以包括控制端,用于响应第三控制信号(记为控制信号CL)控制开关K3的开关状态。
开关K4可以包括控制端,用于响应第四控制信号(记为控制信号Tran)控制开关K4的开关状态;开关K5也可以包括控制端,用于响应第四控制信号控制开关K5的开关状态。也就是说,开关K4与开关K5的控制端均可以接收第四控制信号。
此外,晶体管P1的源极可以接收第五控制信号(记为控制信号ACT1),晶体管P2的源极可以接收第六控制信号(记为控制信号ACT2),晶体管N1的源极可以接收第七控制信号(记为控制信号NLAT1),晶体管N2的源极可以接收第八控制信号(记为控制信号NLAT2)。
在灵敏放大器的失调补偿阶段,晶体管P1和晶体管P2的源极均接收第一电压,其中,第一电压可以是电源电压VCC。也就是说,在此阶段,控制信号ACT1和控制信号ACT2均被配置为第一电压。
在此阶段,晶体管N1与晶体管N2的源极接地,也就是说,控制信号NLAT1和控制信号NLAT2接收的电压是0。
此外,在读取第一位线BL上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,控制模块用于将放大模块配置为第三反相器。具体的,晶体管P2和晶体管N2被控制为处于截止区,晶体管P1和晶体管N1被配置为第三反相器。
在读取第二位线BLB上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,控制模块用于将放大模块配置为第四反相器。具体的,晶体管P1和晶体管N1被控制为处于截止区,晶体管P2和晶体管N2被配置为第四反相器。
在这种情况下,参考图2,本公开的灵敏放大器还可以包括第六开关(下面简称开关 K6)和第七开关(下面简称开关K7)。
开关K6的第一端与第二节点nR连接,开关K6的第二端与第一位线BL连接;开关K7的第一端与第二位线BLB连接,开关K7的第二端与第一节点nL连接。
类似地,本公开对开关K6和开关K7的类型不做限制。例如,开关K6可以是PMOS管、NMOS管或CMOS传输门;开关K7可以是PMOS管、NMOS管或CMOS传输门。
在本公开的一些实施例中,开关K6可以包括控制端,用于响应第九控制信号(记为控制信号ISO)控制开关K6的开关状态;开关K7也可以包括控制端,用于响应第九控制信号控制开关K7的开关状态。也就是说,开关K6与开关K7的控制端均可以接收第九控制信号。
在灵敏放大器的失调补偿阶段,开关K6和开关K7断开。在灵敏放大器的第一放大阶段,开关K1、开关K4和开关K5断开,开关K2、开关K3、开关K6和开关K7闭合。
另外,在读取第一位线BL上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,晶体管P1的源极接收第一电压,即控制信号ACT1为VCC;晶体管N1的源极接地;晶体管P2和晶体管N2的源极接收第二电压,该第二电压使得晶体管P2和晶体管N2处于截止区,其中,第二电压小于第一电压。在一个实施例中,第二电压可以是VCC/2。
在读取第二位线BLB上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,晶体管P2的源极接收第一电压,即控制信号ACT2为VCC;晶体管N2的源极接地;晶体管P1和晶体管N1的源极接收第二电压,该第二电压使得晶体管P1和晶体管N1处于截止区。
在灵敏放大器的第一放大阶段之后的第二放大阶段,控制模块还用于将放大模块配置为交叉耦合放大结构。
具体的,在第二放大阶段,开关K1、开关K4和开关K5断开,开关K2、开关K3、开关K6和开关K7闭合。并且,晶体管P1和晶体管P2的源极接收第一电压,即控制信号ACT1和控制信号ACT2为VCC。晶体管N1和晶体管N2的源极接地,即控制信号NLAT1和控制信号NLAT2为0。
此外,灵敏放大器还包括预充模块,用于在灵敏放大器的失调补偿阶段之前的预充阶段,对第一位线和第二位线进行预充电。
在预充阶段,开关K1、开关K2、开关K3、开关K6和开关K7断开,开关K4和开关K5闭合。另外,晶体管P1、晶体管P2、晶体管N1和晶体管N2的源极均接收第二电压。
应当理解的是,在预充阶段,还可以将开关K4和开关5断开,在这种情况下,控制开关K6和开关K7闭合,也可以实现预充电。
图3示意性示出了根据本公开一实施例的灵敏放大器的电路图。
在图3所示的实施例中,开关K1被配置为晶体管N3,响应控制信号Current来控制开关状态;开关K2被配置为晶体管N4,响应控制信号CR来控制开关状态;开关K3被 配置为晶体管N5,响应控制信号CL来控制开关状态;开关K4被配置为晶体管N6,响应控制信号Tran来控制开关状态;开关K5被配置为晶体管N7,响应控制信号Tran来控制开关状态;开关K6被配置为晶体管N8,响应控制信号ISO来控制开关状态;开关K7被配置为晶体管N9,响应控制信号ISO来控制开关状态。
预充单元可以包括晶体管N10、晶体管N11和晶体管N12。
晶体管N10、晶体管N11和晶体管N12的栅极均可以接收预充控制信号PCE。晶体管N10的源极与第二位线BLB连接,晶体管N10的漏极与第一位线BL连接;晶体管N11的源极与第一位线BL连接,晶体管N11的漏极与晶体管N12的源极连接,且连接于预充电压Veq,其中,预充电压Veq可以被配置为VCC/2;晶体管N12的漏极与第二位线BLB连接。
与第一位线BL对应的存储单元被配置为包括晶体管N13和电容C1,晶体管N13响应字线控制信号WL控制开关状态;与第二位线BLB对应的存储单元被配置为包括晶体管N14和电容C2,晶体管N14响应字线控制信号WLB控制开关状态。
下面将分别对读取第一位线BL上数据的过程和读取第二位线BLB上数据的过程进行说明。
图4示意性示出了根据本公开实施例的读取第一位线BL上存储单元中数据时灵敏放大器中所涉各控制信号的时序图。需要注意的是,图4仅为示意图,图中显示的横坐标时间值并不作为本公开实施例的限定。
下面将结合图4的时序图,对本公开实施例的读取第一位线BL上存储单元中数据时灵敏放大器的工作阶段进行说明。
图5针对读取第一位线BL上存储单元中数据时灵敏放大器的预充阶段,控制信号PCE、控制信号Tran、控制信号ACT1、控制信号ACT2、控制信号NLAT1、控制信号NLAT2的电压可以分别为1.5倍VCC、1.5倍VCC、VCC/2、VCC/2、VCC/2、VCC/2,其余控制信号的电压为0。
对应的,晶体管10、晶体管11、晶体管12、晶体管N6和晶体管N7导通(对应开关的闭合状态)。晶体管N3、晶体管N4、晶体管N5、晶体管N8和晶体管N9关断(对应开关的断开状态)。
在这种情况下,第一位线BL和第二位线BLB分别通过晶体管N11和晶体管N12连接至预充电压Veq,并通过晶体管N10彼此相连,从而第一位线BL和第二位线BLB被预充至Veq。另外,由于晶体管N6和晶体管N7导通,因此,第一节点nL和第二节点nR也被预充至Veq。
需要注意的是,在预充阶段,晶体管N3、晶体管N4、晶体管N5、晶体管N8和晶体管N9也可处于闭合状态,可根据需要自行设置。
图6针对读取第一位线BL上存储单元中数据时灵敏放大器的失调补偿阶段,控制信号ACT1、控制信号NLAT1、控制信号ACT2、控制信号NLAT2、控制信号Tran、控制 信号CR、控制信号Current的电压分别为VCC、0、VCC、0、1.5倍VCC、VCC、VCC。
在这种情况下,晶体管N4、晶体管N6和晶体管N7导通,由此,晶体管P1与晶体管N1形成了一个输入输出相连的反相器。而因为晶体管N4导通,因此,晶体管P1和晶体管P2构成了一个电流镜结构。
在预充阶段后,如果电路中存在失配的问题,即存在晶体管P1与晶体管P2的不一致而导致的失配或者晶体管N1与晶体管N2的不一致而导致的失配,则会导致流经晶体管P1和晶体管N1的电流,与流经晶体管P2和晶体管N2的电流不相等,即两个反相器的驱动能力不相同,造成数据读错的概率增加。
通过图6所示的失调补偿阶段,基于输入输出相连的反相器,可以将第一位线BL补偿到该反相器的翻转点,翻转电压可以基于失调的程度而变化。另外,晶体管P1与晶体管N1组成的反相器的翻转电压为晶体管P2的栅极电压,由于此时晶体管P1和晶体管P2构成电流镜结构,从而使得晶体管P1和晶体管N1的支路上的电流,与晶体管P2和晶体管N2的支路上的电流近似相等。针对晶体管N2,其栅极与漏极相连,形成二极管结构,并与第二位线BLB连接,从而补偿第二位线BLB的电压。在这种情况下,第二位线BLB上的电压会变化,使晶体管N2的过驱动电压变化,以满足电流镜的要求。
图7针对读取第一位线BL上存储单元中数据时灵敏放大器的第一放大阶段,控制信号ACT1、控制信号NLAT1、控制信号ACT2、控制信号NLAT2、控制信号CL、控制信号CR和控制信号ISO的电压分别为VCC、0、VCC/2、VCC/2、VCC、VCC、1.5倍VCC。
对应的,晶体管N4、晶体管N5、晶体管N8和晶体管N9导通,又由于控制信号ACT1、控制信号NLAT1的电压分别为VCC、0,因此,晶体管P1与晶体管N1构成一个反相器,该反相器的输入端为第一位线BL,输出端为第二位线BLB。另外,鉴于控制信号ACT2、控制信号NLAT2的电压均为Veq(VCC/2),由此,晶体管P2和晶体管N2处于截止区,也就是说,晶体管P2和晶体管N2不工作。
在灵敏放大器针对第一位线BL的存储单元读0时,字线控制信号WL为高电平后,第一位线BL的电压降低,即,由晶体管P1和晶体管N1组成的反相器的输入为相对低电平,由于反相器的作用,使得反相器输出端的电压在第一放大阶段不断升高,即第二位线BLB的电压不断升高。
在灵敏放大器针对第一位线BL的存储单元读1时,字线控制信号WL为高电平后,第一位线BL的电压升高,即,由晶体管P1和晶体管N1组成的反相器的输入为相对高电平,由于反相器的作用,使得反相器输出端的电压在第一放大阶段不断降低,即第二位线BLB的电压不断降低。
因此,在本公开灵敏放大器的第一放大阶段,第一位线BL与第二位线BLB之间的电压差会大幅度增大,有助于对二者电压差进行进一步放大,从而提高数据读取的速度,且有利于避免数据被错误放大。
图8针对读取第一位线BL上存储单元中数据时灵敏放大器的第二放大阶段,控制信 号ACT1、控制信号NLAT1、控制信号ACT2、控制信号NLAT2、控制信号CL、控制信号CR和控制信号ISO的电压分别为VCC、0、VCC、0、VCC、VCC、1.5倍VCC。相比于图7所示的电路配置方式,控制信号ACT2、控制信号NLAT2的电压分别切换为VCC、0。由此,晶体管P1、晶体管P2、晶体管N1和晶体管N2构成交叉耦合放大结构。
在灵敏放大器针对第一位线BL的存储单元读0时,第一位线BL上的电压低于第二位线BLB上的电压,此时,晶体管N2和晶体管N8导通,可以将第一位线BL上的电压通过晶体管N2放电至地。另外,晶体管P1导通,将第二位线BLB上的电压升高至VCC。
在灵敏放大器针对第一位线BL的存储单元读1时,第一位线BL上的电压高于第二位线BLB上的电压,此时,晶体管N1和晶体管N9导通,将第二位线BLB上的电压通过晶体管N1放电至地。另外,晶体管P2导通,将第一位线BL上的电压升高至VCC。
由此,通过这种交叉耦合放大结构,可以实现位线从存储单元中读取出来的小电压差放大至全摆幅(0或1)的目的。
需要注意的是,在失调补偿阶段和第一放大阶段之间还可以包括过渡阶段,在过渡阶段,字线处于打开状态,第九控制信号ISO处于低状态,晶体管N8和晶体管N9处于断开状态,有利于字线打开后,存储单元中的电荷充分分享至第一位线或第二位线。但也不限定于此,可根据需要自行设置。
图9示意性示出了根据本公开实施例的读取第二位线BLB上存储单元中数据时灵敏放大器中所涉各控制信号的时序图。需要注意的是,图9仅为示意图,图中显示的横坐标时间值并不作为本公开实施例的限定。
下面将结合图9的时序图,对本公开实施例的读取第二位线BLB上存储单元中数据时灵敏放大器的工作阶段进行说明。
图10针对读取第二位线BLB上存储单元中数据时灵敏放大器的预充阶段。预充过程与上面描述图5的过程相同,在此不再赘述。
图11针对读取第二位线BLB上存储单元中数据时灵敏放大器的失调补偿阶段,控制信号ACT1、控制信号NLAT1、控制信号ACT2、控制信号NLAT2、控制信号Tran、控制信号CL、控制信号Current的电压分别为VCC、0、VCC、0、1.5倍VCC、VCC、VCC。
在这种情况下,晶体管N5、晶体管N6和晶体管N7导通,由此,晶体管P2与晶体管N2形成了一个输入输出相连的反相器。而因为晶体管N5导通,因此,晶体管P1和晶体管P2构成了一个电流镜结构。
在预充阶段后,如果电路中存在失配的问题,即存在晶体管P1与晶体管P2的不一致而导致的失配或者晶体管N1与晶体管N2的不一致而导致的失配,则会导致流经晶体管P1和晶体管N1的电流,与流经晶体管P2和晶体管N2的电流不相等,即两个反相器的驱动能力不相同,造成数据读错的概率增加。
通过图11所示的失调补偿阶段,基于输入输出相连的反相器,可以将读取第二位线BLB补偿到该反相器的翻转点,翻转电压可以基于失调的程度而变化。另外,晶体管P2 与晶体管N2组成的反相器的翻转电压为晶体管P1的栅极电压,由于此时晶体管P1和晶体管P2构成电流镜结构,从而使得晶体管P1和晶体管N1的支路上的电流,与晶体管P2和晶体管N2的支路上的电流近似相等。针对晶体管N1,其栅极与漏极相连,形成二极管结构,并与第一位线BL连接,从而补偿第一位线BL的电压。在这种情况下,第一位线BL上的电压会变化,使晶体管N1的过驱动电压变化,以满足电流镜的要求。
图12针对读取第二位线BLB上存储单元中数据时灵敏放大器的第一放大阶段,控制信号ACT1、控制信号NLAT1、控制信号ACT2、控制信号NLAT2、控制信号CL、控制信号CR和控制信号ISO的电压分别为VCC/2、VCC/2、VCC、0、VCC、VCC、1.5倍VCC。
对应的,晶体管N4、晶体管N5、晶体管N8和晶体管N9导通,又由于控制信号ACT2、控制信号NLAT2的电压分别为VCC、0,因此,晶体管P2与晶体管N2构成一个反相器,该反相器的输入端为第二位线BLB,输出端为第一位线BL。另外,鉴于控制信号ACT1、控制信号NLAT1的电压均为Veq(VCC/2),由此,晶体管P1和晶体管N1处于截止区,也就是说,晶体管P1和晶体管N1不工作。
在灵敏放大器针对第二位线BLB的存储单元读0时,字线控制信号WLB为高电平后,第二位线BLB的电压降低,即,由晶体管P2和晶体管N2组成的反相器的输入为相对低电平,由于反相器的作用,使得反相器输出端的电压在第一放大阶段不断升高,即第一位线BL的电压不断升高。
在灵敏放大器针对第二位线BLB的存储单元读1时,字线控制信号WLB为高电平后,第二位线BLB的电压升高,即,由晶体管P2和晶体管N2组成的反相器的输入为相对高电平,由于反相器的作用,使得反相器输出端的电压在第一放大阶段不断降低,即第一位线BL的电压不断降低。
因此,在本公开灵敏放大器的第一放大阶段,第一位线BL与第二位线BLB之间的电压差会大幅度增大,有助于对二者电压差进行进一步放大,从而提高数据读取的速度,且有利于避免数据被错误放大。
图13针对读取第二位线BLB上存储单元中数据时灵敏放大器的第二放大阶段。图13的第二放大阶段与上面描述图8的过程相同,在此不再赘述。
需要注意的是,在失调补偿阶段和第一放大阶段之间还可以包括过渡阶段,在过渡阶段,字线处于打开状态,第九控制信号ISO处于低状态,晶体管N8和晶体管N9处于断开状态,有利于字线打开后,存储单元中的电荷充分分享至第一位线或第二位线。但也不限定于此,可根据需要自行设置。
进一步的,本公开还提供了一种灵敏放大器的控制方法。
图14示意性示出了根据本公开的示例性实施方式的灵敏放大器的控制方法的流程图。如上所述,灵敏放大器可以包括放大模块和控制模块。
参考图14,灵敏放大器的控制方法可以包括以下步骤:
S142.在读取第一位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,利用控制模块将放大模块配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;
S144.在读取第二位线上存储单元中数据的情况下,在灵敏放大器的失调补偿阶段,利用控制模块将放大模块配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
根据本公开的示例性实施例,在读取第一位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,利用控制模块将放大模块配置为第三反相器;在读取第二位线上存储单元中数据的情况下,在灵敏放大器的第一放大阶段,利用控制模块将放大模块配置为第四反相器。
根据本公开的示例性实施例,在灵敏放大器的第一放大阶段之后的第二放大阶段,利用控制模块将放大模块配置为交叉耦合放大结构。
如上所述,灵敏放大器还可以包括预充阶段,这些阶段的细节在上面描述灵敏放大器的配置的过程中均已说明,在此不再赘述。
通过本公开示例性实施方式的灵敏放大器的控制方法,可以根据读取第一位线上数据与第二位线上数据的不同,来分别调节灵敏放大器两边位线的电压,从而补偿由于失调噪声给灵敏放大器两边位线电压带来的影响,进而提高半导体存储器的性能。
进一步的,本公开还提供了一种存储器,该存储器包括上述灵敏放大器。
本公开示例性实施方式的存储器由于较好地实现了失调补偿,读取错误率低,因此,存储器性能得到了较大幅度的提升。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (21)

  1. 一种灵敏放大器,包括:
    放大模块,所述放大模块用于读取第一位线或第二位线上存储单元的数据;
    控制模块,与所述放大模块电连接;
    其中,在读取第一位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述控制模块用于将所述放大模块配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;在读取第二位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述控制模块用于将所述放大模块配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
  2. 根据权利要求1所述的灵敏放大器,其中,所述放大模块包括:
    第一PMOS管;
    第二PMOS管;
    第一NMOS管,所述第一NMOS管的栅极与所述第一位线连接,所述第一NMOS管的漏极通过第一节点与所述第一PMOS管的漏极连接;
    第二NMOS管,所述第二NMOS管的栅极与所述第二位线连接,所述第二NMOS管的漏极通过第二节点与所述第二PMOS管的漏极连接;
    其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述第二NMOS管被配置为第一二极管结构,所述第一PMOS管和所述第二PMOS管被配置为第一电流镜结构,所述第一PMOS管和所述第一NMOS管被配置为输入输出相连的第一反相器;在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述第一NMOS管被配置为第二二极管结构,所述第一PMOS管和所述第二PMOS管被配置为第二电流镜结构,所述第二PMOS管和所述第二NMOS管被配置为输入输出相连的第二反相器。
  3. 根据权利要求2所述的灵敏放大器,其中,所述控制模块还包括:
    第一开关,所述第一开关的第一端与所述第一PMOS管的栅极连接,所述第一开关的第二端与所述第二PMOS管的栅极连接;
    第二开关,所述第二开关的第一端与所述第二PMOS管的栅极连接,所述第二开关的第二端与所述第一节点连接;
    第三开关,所述第三开关的第一端与所述第二节点连接,所述第三开关的第二端与所述第一PMOS管的栅极连接;
    第四开关,所述第四开关的第一端与所述第一节点连接,所述第四开关的第二端与所述第一位线连接;
    第五开关,所述第五开关的第一端与所述第二位线连接,所述第五开关的第二端与所述第二节点连接;
    其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述第一开关、所述第二开关、所述第四开关和所述第五开关闭合,所述第三开关断开;在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,所述第一开关、所述第三开关、所述第四开关和所述第五开关闭合,所述第二开关断开。
  4. 根据权利要求3所述的灵敏放大器,其中,在所述灵敏放大器的失调补偿阶段,所述第一PMOS管和所述第二PMOS管的源极接收第一电压,所述第一NMOS管和所述第二NMOS管的源极接地。
  5. 根据权利要求4所述的灵敏放大器,其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述控制模块用于将所述放大模块配置为第三反相器。
  6. 根据权利要求5所述的灵敏放大器,其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述第二PMOS管和所述第二NMOS管被控制为处于截止区,所述第一PMOS管和所述第一NMOS管被配置为第三反相器。
  7. 根据权利要求4所述的灵敏放大器,其中,在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述控制模块用于将所述放大模块配置为第四反相器。
  8. 根据权利要求7所述的灵敏放大器,其中,在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述第一PMOS管和所述第一NMOS管被控制为处于截止区,所述第二PMOS管和所述第二NMOS管被配置为第四反相器。
  9. 根据权利要求5所述的灵敏放大器,其中,所述控制模块还包括:
    第六开关,所述第六开关的第一端与所述第二节点连接,所述第六开关的第二端与所述第一位线连接;
    第七开关,所述第七开关的第一端与所述第二位线连接,所述第七开关的第二端与所述第一节点连接;
    其中,在所述灵敏放大器的失调补偿阶段,所述第六开关和所述第七开关断开;在所述灵敏放大器的第一放大阶段,所述第一开关、所述第四开关和所述第五开关断开,所述第二开关、所述第三开关、所述第六开关和所述第七开关闭合。
  10. 根据权利要求6所述的灵敏放大器,其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述第一PMOS管的源极接收所述第一电压,所述第一NMOS管的源极接地,所述第二PMOS管的源极和所述第二NMOS管的源极接收第二电压;
    其中,所述第二电压小于所述第一电压。
  11. 根据权利要求8所述的灵敏放大器,其中,在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,所述第二PMOS管的源极接收所述第 一电压,所述第二NMOS管的源极接地,所述第一PMOS管的源极和所述第一NMOS管的源极接收第二电压;
    其中,所述第二电压小于所述第一电压。
  12. 根据权利要求9所述的灵敏放大器,其中,在所述灵敏放大器的第一放大阶段之后的第二放大阶段,所述控制模块用于将所述放大模块配置为交叉耦合放大结构。
  13. 根据权利要求12所述的灵敏放大器,其中,在所述灵敏放大器的第二放大阶段,所述第一开关、所述第四开关、所述第五开关断开,所述第二开关、所述第三开关、所述第六开关和所述第七开关闭合。
  14. 根据权利要求13所述的灵敏放大器,其中,在所述灵敏放大器的第二放大阶段,所述第一PMOS管和所述第二PMOS管的源极接收所述第一电压,所述第一NMOS管和所述第二NMOS管的源极接地。
  15. 根据权利要求14所述的灵敏放大器,其中,在所述灵敏放大器还包括:
    预充模块,用于在所述灵敏放大器的失调补偿阶段之前的预充阶段,对所述第一位线和所述第二位线进行预充电。
  16. 根据权利要求15所述的灵敏放大器,其中,在所述灵敏放大器的预充阶段,所述第一开关、所述第二开关、所述第三开关、所述第六开关和所述第七开关断开,所述第四开关和所述第五开关闭合。
  17. 根据权利要求16所述的灵敏放大器,其中,在所述灵敏放大器的预充阶段,所述第一PMOS管、所述第二PMOS管、所述第一NMOS管和所述第二NMOS管的源极均接收第二电压。
  18. 一种存储器,包括如权利要求1所述的灵敏放大器。
  19. 一种灵敏放大器的控制方法,所述灵敏放大器包括放大模块和控制模块,所述灵敏放大器的控制方法包括:
    在读取第一位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,利用所述控制模块将所述放大模块配置为包括第一二极管结构、第一电流镜结构和输入输出相连的第一反相器;
    在读取第二位线上存储单元中数据的情况下,在所述灵敏放大器的失调补偿阶段,利用所述控制模块将所述放大模块配置为包括第二二极管结构、第二电流镜结构和输入输出相连的第二反相器。
  20. 根据权利要求19所述的灵敏放大器的控制方法,其中,在读取所述第一位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,利用所述控制模块将所述放大模块配置为第三反相器;
    在读取所述第二位线上存储单元中数据的情况下,在所述灵敏放大器的第一放大阶段,利用所述控制模块将所述放大模块配置为第四反相器。
  21. 根据权利要求20所述的灵敏放大器的控制方法,其中,在所述灵敏放大器的第 一放大阶段之后的第二放大阶段,利用所述控制模块将所述放大模块配置为交叉耦合放大结构。
PCT/CN2020/139627 2020-08-13 2020-12-25 灵敏放大器、存储器和灵敏放大器的控制方法 WO2022032967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/474,172 US11887655B2 (en) 2020-08-13 2021-09-14 Sense amplifier, memory, and method for controlling sense amplifier by configuring structures using switches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010811719.9A CN111863055B (zh) 2020-08-13 2020-08-13 灵敏放大器、存储器和灵敏放大器的控制方法
CN202010811719.9 2020-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/474,172 Continuation US11887655B2 (en) 2020-08-13 2021-09-14 Sense amplifier, memory, and method for controlling sense amplifier by configuring structures using switches

Publications (1)

Publication Number Publication Date
WO2022032967A1 true WO2022032967A1 (zh) 2022-02-17

Family

ID=72969785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139627 WO2022032967A1 (zh) 2020-08-13 2020-12-25 灵敏放大器、存储器和灵敏放大器的控制方法

Country Status (2)

Country Link
CN (1) CN111863055B (zh)
WO (1) WO2022032967A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116434794A (zh) * 2023-04-18 2023-07-14 安徽大学 基于下交叉耦合的自适应关断型sram灵敏放大器电路、模块
CN116994616A (zh) * 2023-08-17 2023-11-03 合芯科技(苏州)有限公司 灵敏放大器、静态随机存储器及灵敏放大器的控制方法
US20230386545A1 (en) * 2022-05-31 2023-11-30 Micron Technology, Inc. PMOS THRESHOLD COMPENSATION SENSE AMPLIFIER FOR FeRAM DEVICES

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11887655B2 (en) 2020-08-13 2024-01-30 Anhui University Sense amplifier, memory, and method for controlling sense amplifier by configuring structures using switches
CN111863055B (zh) * 2020-08-13 2022-10-28 安徽大学 灵敏放大器、存储器和灵敏放大器的控制方法
US11929111B2 (en) 2020-09-01 2024-03-12 Anhui University Sense amplifier, memory and method for controlling sense amplifier
US11862285B2 (en) 2020-09-01 2024-01-02 Anhui University Sense amplifier, memory and control method of sense amplifier
US11894101B2 (en) 2021-03-24 2024-02-06 Changxin Memory Technologies, Inc. Sense amplifier, memory and control method
CN112992200B (zh) * 2021-03-24 2022-05-17 长鑫存储技术有限公司 灵敏放大器、存储器以及控制方法
CN112992202B (zh) * 2021-03-24 2022-08-05 长鑫存储技术有限公司 灵敏放大器、存储器以及控制方法
CN112992201B (zh) * 2021-03-24 2022-05-10 长鑫存储技术有限公司 灵敏放大器、存储器以及控制方法
US11823763B2 (en) 2021-03-24 2023-11-21 Changxin Memory Technologies, Inc. Sense amplifier, memory and control method
CN115148241A (zh) * 2022-06-30 2022-10-04 长鑫存储技术有限公司 灵敏放大器和半导体存储器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831921A (zh) * 2012-08-24 2012-12-19 北京大学 Flash灵敏放大器
US20150008841A1 (en) * 2013-04-25 2015-01-08 Boe Technology Group Co., Ltd. Sensing circuit for external compensation, sensing method thereof and display apparatus
US20150194209A1 (en) * 2014-01-06 2015-07-09 Qualcomm Incorporated Sense amplifiers employing control circuitry for decoupling resistive memory sense inputs during state sensing to prevent current back injection, and related methods and systems
CN108231100A (zh) * 2018-03-26 2018-06-29 安徽大学 失调电压自适应数字校准型灵敏放大器
CN109448768A (zh) * 2018-12-21 2019-03-08 安徽大学 一种具有超低失调的灵敏放大器电路
CN109686387A (zh) * 2018-12-28 2019-04-26 中国电子科技集团公司第五十八研究所 灵敏放大器
CN111863055A (zh) * 2020-08-13 2020-10-30 安徽大学 灵敏放大器、存储器和灵敏放大器的控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437464B1 (ko) * 2002-07-02 2004-06-23 삼성전자주식회사 오프셋 보상 감지 방식을 갖는 반도체 메모리 장치
US7221605B2 (en) * 2004-08-31 2007-05-22 Micron Technology, Inc. Switched capacitor DRAM sense amplifier with immunity to mismatch and offsets
KR101108906B1 (ko) * 2008-03-17 2012-02-06 엘피다 메모리 가부시키가이샤 단일-종단 감지 증폭기를 갖는 반도체 디바이스
US8014218B2 (en) * 2008-12-24 2011-09-06 International Business Machines Corporation Capacitively isolated mismatch compensated sense amplifier
CN102394094B (zh) * 2011-10-09 2013-11-06 中国科学院微电子研究所 一种全电流灵敏放大器
ITUB20155867A1 (it) * 2015-11-24 2017-05-24 St Microelectronics Srl Circuito amplificatore di lettura con compensazione dell'offset per un dispositivo di memoria non volatile
CN210606637U (zh) * 2019-09-20 2020-05-22 长鑫存储技术有限公司 灵敏放大器、存储器读写电路以及存储器
CN210575115U (zh) * 2019-11-28 2020-05-19 长鑫存储技术有限公司 灵敏放大器
CN111313848B (zh) * 2020-02-26 2023-08-22 上海华虹宏力半导体制造有限公司 电荷转移型灵敏放大器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831921A (zh) * 2012-08-24 2012-12-19 北京大学 Flash灵敏放大器
US20150008841A1 (en) * 2013-04-25 2015-01-08 Boe Technology Group Co., Ltd. Sensing circuit for external compensation, sensing method thereof and display apparatus
US20150194209A1 (en) * 2014-01-06 2015-07-09 Qualcomm Incorporated Sense amplifiers employing control circuitry for decoupling resistive memory sense inputs during state sensing to prevent current back injection, and related methods and systems
CN108231100A (zh) * 2018-03-26 2018-06-29 安徽大学 失调电压自适应数字校准型灵敏放大器
CN109448768A (zh) * 2018-12-21 2019-03-08 安徽大学 一种具有超低失调的灵敏放大器电路
CN109686387A (zh) * 2018-12-28 2019-04-26 中国电子科技集团公司第五十八研究所 灵敏放大器
CN111863055A (zh) * 2020-08-13 2020-10-30 安徽大学 灵敏放大器、存储器和灵敏放大器的控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230386545A1 (en) * 2022-05-31 2023-11-30 Micron Technology, Inc. PMOS THRESHOLD COMPENSATION SENSE AMPLIFIER FOR FeRAM DEVICES
CN116434794A (zh) * 2023-04-18 2023-07-14 安徽大学 基于下交叉耦合的自适应关断型sram灵敏放大器电路、模块
CN116434794B (zh) * 2023-04-18 2023-09-29 安徽大学 基于下交叉耦合的自适应关断型sram灵敏放大器电路、模块
CN116994616A (zh) * 2023-08-17 2023-11-03 合芯科技(苏州)有限公司 灵敏放大器、静态随机存储器及灵敏放大器的控制方法
CN116994616B (zh) * 2023-08-17 2024-02-27 合芯科技(苏州)有限公司 灵敏放大器、静态随机存储器及灵敏放大器的控制方法

Also Published As

Publication number Publication date
CN111863055B (zh) 2022-10-28
CN111863055A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2022032967A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022021777A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022048074A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022032965A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022021776A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022021772A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
WO2022048073A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
US11869624B2 (en) Sense amplifier, memory and method for controlling sense amplifier
US11862284B2 (en) Sense amplifier, memory and data readout method
WO2022021773A1 (zh) 灵敏放大器、存储器和灵敏放大器的控制方法
CN115811279B (zh) 一种补偿位线失调电压的灵敏放大器及芯片与放大电路
US11929111B2 (en) Sense amplifier, memory and method for controlling sense amplifier
US5305272A (en) Sense amplifier circuit
CN211788182U (zh) 灵敏放大器和存储器
CN116168736B (zh) 基于上交叉耦合的自适应关断型sram灵敏放大器电路、模块
JPH04238197A (ja) センスアンプ回路
US11862285B2 (en) Sense amplifier, memory and control method of sense amplifier
US11929716B2 (en) Sense amplifier, memory and method for controlling sense amplifier
US11887655B2 (en) Sense amplifier, memory, and method for controlling sense amplifier by configuring structures using switches
CN113270131A (zh) 一种半电压预充型灵敏放大器
KR19990003859A (ko) 반도체 메모리 소자의 감지 증폭기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949458

Country of ref document: EP

Kind code of ref document: A1