WO2022021873A1 - 一种中空聚合型氮化碳催化剂及其在光催化还原co 2合成乙醛的应用 - Google Patents

一种中空聚合型氮化碳催化剂及其在光催化还原co 2合成乙醛的应用 Download PDF

Info

Publication number
WO2022021873A1
WO2022021873A1 PCT/CN2021/078591 CN2021078591W WO2022021873A1 WO 2022021873 A1 WO2022021873 A1 WO 2022021873A1 CN 2021078591 W CN2021078591 W CN 2021078591W WO 2022021873 A1 WO2022021873 A1 WO 2022021873A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nitride
nitride catalyst
hollow polymeric
diethylacetamide
dicyandiamide
Prior art date
Application number
PCT/CN2021/078591
Other languages
English (en)
French (fr)
Inventor
汪福宪
刘琼
成晖
卫莉玲
Original Assignee
广东省科学院测试分析研究所(中国广州分析测试中心)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院测试分析研究所(中国广州分析测试中心) filed Critical 广东省科学院测试分析研究所(中国广州分析测试中心)
Publication of WO2022021873A1 publication Critical patent/WO2022021873A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/44Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reduction and hydrolysis of nitriles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of photocatalysis, in particular to a hollow polymeric carbon nitride catalyst and its application in photocatalytic reduction of CO 2 to synthesize acetaldehyde.
  • Acetaldehyde is an important chemical raw material, which can be used in the manufacture of acetic acid, acetic anhydride, synthetic resins, rubber, plastics, spices, as well as in tanning, pharmaceuticals, papermaking, medicine, as preservatives, anti-virus agents, imaging agents agents, solvents, reducing agents, etc.
  • the main synthesis methods of acetaldehyde include direct oxidation of ethylene, oxidation of ethanol, direct hydration of acetylene, and deoxygenation of ethanol.
  • the acetylene direct hydration method uses mercury salt as a catalyst, which has the problem of mercury pollution.
  • the ethanol oxidation method consumes a large amount of raw materials. Among them, the direct ethylene oxidation method consumes less raw materials, and the synthesis process route is simple. It is the main method for industrial production of acetaldehyde today, but this method
  • the hydrochloric acid solution of palladium chloride and cupric chloride is mainly used as catalyst, which seriously corrodes the equipment, and requires the use of special materials such as precious metal titanium.
  • the present invention proposes a hollow polymeric carbon nitride catalyst and its application in photocatalytic reduction of CO 2 to synthesize acetaldehyde.
  • the present invention innovatively adopts N,N-diethylacetamide
  • N,N-diethylacetamide was used to control the self-assembly formation mechanism of dicyandiamide, and a polymeric nitridation with hollow bubble-like and high crystallinity/amorphous binary structure was obtained.
  • carbon catalyst was used to modify dicyandiamide by reducing agent.
  • One object of the present invention is to provide a method for preparing a hollow polymeric carbon nitride catalyst, comprising the following steps: adding dicyandiamide and N,N-diethylacetamide into water, mixing, heating, and stirring to obtain dicyandiamide and N,N-diethylacetamide.
  • N,N-diethylacetamide mixed aqueous solution, dicyandiamide and N,N-diethylacetamide mixed aqueous solution were transferred into a hydrothermal reaction vessel for hydrothermal reaction, and after the reaction was completed, it was naturally cooled to room temperature, and the resulting The product is washed and dried to obtain a supramolecular intermediate, and after the supramolecular intermediate is calcined at a high temperature, a hollow polymeric carbon nitride catalyst is obtained.
  • the mass concentration of the dicyandiamide is 1 ⁇ 1000g/L
  • the volume fraction of N,N-diethylacetamide is 0.05% ⁇ 10%
  • the dicyandiamide and N,N-diethylacetamide are
  • the stirring time for the amide aqueous solution to be uniformly stirred is 0.1 to 1 h.
  • the temperature of the hydrothermal reaction is 100°C to 200°C, and the reaction time is 5 to 15 hours.
  • the specific steps for obtaining the supramolecular intermediate after washing and drying the obtained product are: washing the obtained product three times with ethanol and distilled water, respectively, and then placing it in an oven to dry to obtain the supramolecular intermediate.
  • the temperature is 50°C ⁇ 100°C, and the drying time is 6 ⁇ 10h.
  • the high temperature calcination temperature is 400°C to 600°C, and the calcination time is 2 to 10 h.
  • Another object of the present invention is to provide a hollow polymeric carbon nitride catalyst prepared by the above preparation method, wherein the wavelength of the hollow polymeric carbon nitride catalyst to light is 450-600 nm.
  • the hollow polymeric carbon nitride catalyst has a hollow nano-bubble-like morphology, a bubble-like edge structure and a highly crystalline bubble-like inner amorphous binary crystal structure, and has a broad spectrum (450-600nm) photoactive response.
  • the invention also protects the application of the hollow polymeric carbon nitride catalyst in photocatalytic reduction of CO 2 to synthesize acetaldehyde.
  • the hollow polymeric carbon nitride catalyst is used for photocatalytic reduction of CO 2 to synthesize acetaldehyde.
  • the catalyst has high acetaldehyde selectivity and stable catalytic activity, and can realize efficient photocatalytic synthesis of acetaldehyde at room temperature and pressure.
  • the method includes the following steps: mixing the hollow polymeric carbon nitride catalyst with an aqueous solution of acetonitrile, and under the irradiation of white light, introducing CO 2 gas to carry out a photocatalytic reaction, and reducing CO 2 to generate acetaldehyde, and the photocatalytic reaction time is 0.5 ⁇ 12h.
  • the mass fraction of acetonitrile in the acetonitrile aqueous solution is 5% to 99%
  • the mass ratio of the hollow polymeric carbon nitride catalyst to acetonitrile is 0.01 to 0.2:1
  • the inflow of CO 2 is 0.1 to 10 mL/ min.
  • the light source is 5W LED white light
  • the irradiation intensity of the white light source is 1-1000 mW/cm 2 .
  • the present invention Compared with the prior art, the present invention has the following advantages: the present invention uses N,N-diethylacetamide as the reducing agent to modify dicyandiamide for the first time, and uses N,N-diethylacetamide to self-assemble in the dicyandiamide
  • the formation mechanism is regulated at the same time, and the prepared polymeric carbon nitride catalyst has a hollow bubble-like and high crystallinity/amorphous binary structure.
  • the present invention realizes the photocatalytic reduction of CO2 at room temperature and pressure to synthesize acetaldehyde for the first time, and the synthesis reaction has stable catalytic activity and high product acetaldehyde selectivity.
  • Fig. 1 is the transmission electron microscope (TEM) of the hollow polymeric carbon nitride catalyst prepared in Example 1;
  • Fig. 2 is the Fourier transform infrared spectrum (FTIR) diagram of the hollow polymeric carbon nitride catalyst prepared in Example 1, Comparative Example 1 and Comparative Example 2;
  • FTIR Fourier transform infrared spectrum
  • Fig. 3 is the ultraviolet diffuse reflection absorption spectrogram of the hollow polymeric carbon nitride catalyst prepared by Example 1, Comparative Example 1 and Comparative Example 2;
  • Fig. 4 is the mass spectrum of the product obtained by utilizing the hollow polymeric carbon nitride catalyst prepared in Example 1 to carry out the photocatalytic reaction;
  • FIG. 6 is a photocatalytic reaction cycle diagram of the hollow polymeric carbon nitride catalyst prepared in Example 1.
  • a preparation method of a hollow polymeric carbon nitride catalyst comprises the following steps: adding a certain amount of dicyandiamide and N,N-diethylacetamide into water, mixing, heating and stirring to obtain dicyandiamide and N,N- Diethylacetamide mixed aqueous solution, dicyandiamide and N,N-diethylacetamide mixed aqueous solution were transferred into a hydrothermal reaction vessel, placed in an oven for hydrothermal reaction, and after naturally cooled to room temperature, the obtained The product was washed three times with ethanol and distilled water, respectively, and then placed in an oven to dry to obtain a supramolecular intermediate. The supramolecular intermediate was transferred to a porcelain crucible and calcined at a high temperature in a muffle furnace to obtain a hollow polymeric carbon nitride catalyst. .
  • N,N-diethylacetamide is a reducing agent-modified dicyandiamide.
  • the present invention has no special limitation on the sources of N,N-diethylacetamide and dicyandiamide, and commercially available products or self-made products well known to those skilled in the art can be used.
  • the mass concentration of dicyandiamide is 1 ⁇ 1000g/L
  • the volume fraction of N,N-diethylacetamide is 0.05% ⁇ 10%
  • the aqueous solution of dicyandiamide and N,N-diethylacetamide is stirred evenly
  • the time is 0.1 ⁇ 1h.
  • the temperature of the hydrothermal reaction is 100°C to 200°C, and the reaction time is 5 to 15 hours.
  • the drying temperature of drying in the oven is 50°C ⁇ 100°C, and the drying time is 6 ⁇ 10h.
  • the high-temperature calcination temperature is 400 DEG C to 600 DEG C, and the calcination time is 2 to 10 hours.
  • the method for synthesizing acetaldehyde by photocatalytic reduction of CO 2 with a hollow polymeric carbon nitride catalyst comprises the following steps: mixing the hollow polymeric carbon nitride catalyst with an aqueous solution of acetonitrile, and under the irradiation of white light as a light source, introducing CO 2 gas , reducing CO2 to produce acetaldehyde.
  • the mass fraction of acetonitrile in the acetonitrile aqueous solution is 5% to 99%
  • the mass ratio of the hollow polymeric carbon nitride catalyst to acetonitrile is 0.01 to 0.2:1
  • the photocatalytic reaction time is 0.5 to 12h
  • the CO 2 The throughput is 0.1 to 10 mL/min.
  • the light source is 5W LED white light
  • the irradiation intensity of the white light source is 1-1000 mW/cm 2 .
  • a preparation method of a hollow polymeric carbon nitride catalyst comprising the following steps:
  • Fig. 1 is a transmission electron microscope image of the polymerized carbon nitride catalyst obtained in this example. It can be seen from Fig. 1 that the catalyst has a hollow nano-bubble-like morphology, with thick edges and thin middles, and the edges are highly ordered crystals. lattice fringes, while the interior is an amorphous crystal structure.
  • Example 1 the difference is that the volume fraction of N,N-diethylacetamide in the mixed aqueous solution is 0.1%, placed in an oven and heated to 180°C, reacted for 10h, and the supramolecular intermediate was transferred to a porcelain crucible calcined at a high temperature in a muffle furnace at 550° C. to obtain a polymeric carbon nitride catalyst PCN-N 2 .
  • Example 1 the difference is that the volume fraction of N,N-diethylacetamide in the mixed aqueous solution is 0.2% to obtain a polymeric carbon nitride catalyst PCN-N 3 .
  • Example 1 the difference is that the volume fraction of N,N-diethylacetamide in the mixed aqueous solution is 0.4%, and a polymeric carbon nitride catalyst PCN-N 4 is obtained.
  • the difference is that the mass concentration of dicyandiamide in the mixed aqueous solution is 1000 g/L, the volume fraction of N,N-diethylacetamide is 10%, and the stirring time is 1 h.
  • the difference is that the temperature of the hydrothermal reaction is 200°C and the reaction time is 15h.
  • the difference is that the drying temperature is 100° C. and the drying time is 10 h.
  • the difference is that the high temperature calcination temperature is 600° C. and the calcination time is 10h.
  • Fig. 2 is the Fourier transform infrared spectrum (FTIR) diagram of the polymeric carbon nitride catalysts prepared in Example 1, Comparative Example 1 and Comparative Example 2. It can be seen from Fig. 2 that the comparison of three catalysts PCN-N 1 , PCN and PCN-H, the Fourier transform infrared (FTIR) spectra of the three catalysts are basically the same, containing surface -NH 2 , containing CN conjugated heterocycle, and triazine ring; it can be seen at 805cm -1 , after hydrothermal treatment, the triazine ring will be cheap to a high wave number, and the structure will change slightly.
  • FTIR Fourier transform infrared spectrum
  • Figure 3 is the ultraviolet diffuse reflection absorption spectrum of the polymeric carbon nitride catalysts prepared in Example 1, Comparative Example 1 and Comparative Example 2.
  • PCN-H has obvious energy band edges compared to PCN. The blue shift of , the energy band increases, but after the addition of N,N-diethylacetamide, the light absorption range increases, and it has obvious absorption in the region around 450-600nm.
  • PCN-N 2 can reduce CO 2 to produce acetaldehyde of about 610umolg -1 h -1 under illumination, and it has a high acetaldehyde selectivity of 94.1%. sex.
  • the mass fraction of the acetonitrile aqueous solution is 5%
  • the mass ratio of the hollow polymeric carbon nitride catalyst to acetonitrile is 0.01:1
  • the irradiation intensity is 1000 mW/cm 2
  • the flow rate of CO 2 is 0.01:1.
  • the input amount was 0.1 mL/min.
  • the photocatalytic reaction time was 12h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种中空聚合型氮化碳催化剂及其在光催化还原CO 2合成乙醛的应用。该中空聚合型氮化碳催化剂的制备方法,包括以下步骤:将双氰胺和N,N-二乙基乙酰胺加入水中混合加热搅拌均匀后得到双氰胺和N,N-二乙基乙酰胺混合水溶液,将双氰胺和N,N-二乙基乙酰胺混合水溶液转移至水热反应容器内进行水热反应,待反应完成后自然冷却至室温,所得产物经洗涤和干燥后得到超分子中间体,将超分子中间体进行高温煅烧后,得到中空聚合型氮化碳催化剂。采用N,N-二乙基乙酰胺为还原剂改性双氰胺,利用N,N-二乙基乙酰胺调控双氰胺的自组装形成机制,得到一种中空泡状且高结晶度/无定型二元结构的聚合型氮化碳催化剂。

Description

一种中空聚合型氮化碳催化剂及其在光催化还原CO 2合成乙醛的应用 技术领域:
本发明涉及光催化技术领域,具体涉及一种中空聚合型氮化碳催化剂及其在光催化还原CO 2合成乙醛的应用。
背景技术:
乙醛是一种重要的化工原料,可以用于制造醋酸、醋酐、合成树脂、橡胶、塑料、香料,也用于制革、制药、造纸、医药,用作防腐剂、防毒剂、显像剂、溶剂、还原剂等。
乙醛的主要合成方法有乙烯直接氧化法、乙醇氧化法、乙炔直接水合法、乙醇脱氧法等。乙炔直接水合法采用汞盐做催化剂,存在汞污染问题,乙醇氧化法原料消耗大,其中乙烯直接氧化法原料单耗少,合成工艺路线简单,是现今工业化生产乙醛的主要方法,但是此方法主要采用氯化钯、氯化铜的盐酸溶液作为催化剂,对设备的腐蚀严重,而且需要使用贵金属钛等特殊材料。
发明内容:
为了解决现有技术存在的问题,本发明提出一种中空聚合型氮化碳催化剂及其在光催化还原CO 2合成乙醛的应用,本发明创新性地采用N,N-二乙基乙酰胺为还原剂改性双氰胺,利用N,N-二乙基乙酰胺调控双氰胺的自组装形成机制,得到一种中空泡状且高结晶度/无定型二元结构的聚合型氮化碳催化剂。
本发明的一个目的是提供一种中空聚合型氮化碳催化剂的制备方法,包括以下步骤:将双氰胺和N,N-二乙基乙酰胺加入水中混合加热搅拌均匀后得到双氰胺和N,N-二乙基乙酰胺混合水溶液,将双氰胺和N,N-二乙基乙酰胺混合水溶液转移至水热反应容器内进行水热 反应,待反应完成后自然冷却至室温,所得产物经洗涤和干燥后得到超分子中间体,将超分子中间体进行高温煅烧后,得到中空聚合型氮化碳催化剂。
优选地,所述的双氰胺的质量浓度为1~1000g/L,N,N-二乙基乙酰胺的体积分数为0.05%~10%,双氰胺和N,N-二乙基乙酰胺水溶液搅拌均匀的搅拌时间为0.1~1h。
优选地,所述的水热反应的温度为100℃~200℃,反应时间为5~15h。
优选地,将所得产物经洗涤和干燥后得到超分子中间体具体步骤为:将所得产物分别用乙醇和蒸馏水洗涤三次后将其放置在烘箱中干燥,得到超分子中间体,烘箱中干燥的干燥温度为50℃~100℃,干燥时间为6~10h。
优选地,所述的高温煅烧温度为400℃~600℃,煅烧时间为2~10h。
本发明另一个目的是提供上述制备方法制备得到的中空聚合型氮化碳催化剂,中空聚合型氮化碳催化剂对光的响应的波长为450-600nm。该中空聚合型氮化碳催化剂具有中空纳米泡状形貌,具有泡状的边缘结构高度结晶/泡状内部无定型的二元晶体结构,具有宽光谱(450-600nm)光活性响应。
本发明还保护所述的中空聚合型氮化碳催化剂在光催化还原CO 2合成乙醛的应用。
本发明将中空聚合型氮化碳催化剂用于光催化还原CO 2合成乙醛。该催化剂具有较高的乙醛选择性,催化活性稳定,能够实现常温常压光催化高效合成乙醛。
优选地,包括如下步骤:将中空聚合型氮化碳催化剂与乙腈水溶液混合,在光源为白光照射下,通入CO 2气体进行光催化反应,将CO 2还原产生乙醛,光催化反应时间为0.5~12h。
进一步优选,所述的乙腈水溶液中乙腈的质量分数为5%~99%,中空聚合型氮化碳催化剂与乙腈的质量比为0.01~0.2:1,CO 2的通入量为0.1~10mL/min。
进一步优选,所述的光源为5W LED白光,所述的白光光源辐照强度为1~1000mW/cm 2
本发明跟现有技术相比具有如下优点:本发明首次采用N,N-二乙基乙酰胺为还原剂改性双氰胺,使用N,N-二乙基乙酰胺在双氰胺自组装时调控其形成机制,制备得到的聚合型氮化碳催化剂具有中空泡状且高结晶度/无定型二元结构。同时本发明首次实现常温常压光催化还原CO 2合成乙醛,合成反应具有催化活性稳定,产物乙醛选择性高。
附图说明:
图1为实施例1制备得到中空聚合型氮化碳催化剂的透射电镜图(TEM);
图2为实施例1、对比例1和对比例2制备得到中空聚合型氮化碳催化剂的傅里叶红外光谱(FTIR)图;
图3为实施例1、对比例1和对比例2制备得到中空聚合型氮化碳催化剂的紫外漫反射吸收光谱图;
图4为利用实施例1制备得到中空聚合型氮化碳催化剂进行光催化反应所得产物的质谱图;
图5为实施例1-4、对比例1和对比例2得到的不同聚合型氮化碳催化剂的光催化反应图;
图6为实施例1制备得到中空聚合型氮化碳催化剂的光催化反应循环图。
具体实施方式:
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的的所有其他实施例,都属于本发明保护的范围。除特别说明,本发明使用的设备和试剂为本技术领域常规市购产品。质谱的测试 仪器为GC-MS Agilent 7890B-7250。
一种中空聚合型氮化碳催化剂的制备方法,包括以下步骤:将一定量的双氰胺和N,N-二乙基乙酰胺加入水中混合加热搅拌均匀后得到双氰胺和N,N-二乙基乙酰胺混合水溶液,将双氰胺和N,N-二乙基乙酰胺混合水溶液转移至水热反应容器内,放置在烘箱中进行水热反应,待自然冷却至室温后,将所得产物分别用乙醇和蒸馏水洗涤三次后将其放置在烘箱中干燥,得到超分子中间体,将超分子中间体转移至瓷坩埚中置于马弗炉高温煅烧后,得到中空聚合型氮化碳催化剂。
在本发明中,N,N-二乙基乙酰胺为还原剂改性双氰胺。本发明对N,N-二乙基乙酰胺和双氰胺的来源没有特殊限制,采用本领域技术人员熟知的市售商品或自制品均可。双氰胺的质量浓度为1~1000g/L,N,N-二乙基乙酰胺的体积分数为0.05%~10%,双氰胺和N,N-二乙基乙酰胺水溶液搅拌均匀的搅拌时间为0.1~1h。
在本发明中,水热反应的温度为100℃~200℃,反应时间为5~15h。烘箱中干燥的干燥温度为50℃~100℃,干燥时间为6~10h。所述的高温煅烧温度为400℃~600℃,煅烧时间为2~10h。
中空聚合型氮化碳催化剂光催化还原CO 2高选择性合成乙醛的方法,包括如下步骤:将中空聚合型氮化碳催化剂与乙腈水溶液混合,在光源为白光照射下,通入CO 2气体,将CO 2还原产生乙醛。
在本发明中,乙腈水溶液中乙腈的质量分数为5%~99%,中空聚合型氮化碳催化剂与乙腈的质量比为0.01~0.2:1,光催化反应时间为0.5~12h,CO 2的通入量为0.1~10mL/min。光源为5W LED白光,所述的白光光源辐照强度为1~1000mW/cm 2
实施例1
一种中空聚合型氮化碳催化剂的制备方法,包括如下步骤:
将双氰胺和N,N-二乙基乙酰胺加入水中配成混合水溶液,混合水溶液中双氰胺的质量浓度为1g/L,N,N-二乙基乙酰胺的体积分数0.05%,待加热搅拌0.1h后,转移至水热反应釜内,放置在烘箱中加热至100℃,反应5h,水热反应过程中N,N-二乙基乙酰胺作为有机还原剂调控双氰胺的自组装形成机制,待自然冷却至室温后,将所得产物分别用乙醇和蒸馏水洗涤三次后将其放置在烘箱中,在温度为50℃下干燥6h,得到超分子中间体,将超分子中间体转移至瓷坩埚中置于400℃的马弗炉中高温煅烧2h,得到聚合型氮化碳催化剂PCN-N 1
图1为本实施例所得聚合型氮化碳催化剂的透射电镜图,图1中可以看出,催化剂为中空的纳米泡泡状形貌,边缘厚,中间薄,边缘为具有高度有序的晶格条纹,而内部为无定型晶体结构。
实施例2
参考实施例1,不同之处在于,混合水溶液中N,N-二乙基乙酰胺的体积分数为0.1%,放置在烘箱中加热至180℃,反应10h,将超分子中间体转移至瓷坩埚中置于550℃的马弗炉中高温煅烧,得到聚合型氮化碳催化剂PCN-N 2
实施例3
参考实施例1,不同之处在于,混合水溶液中N,N-二乙基乙酰胺的体积分数为0.2%,得到聚合型氮化碳催化剂PCN-N 3
实施例4
参考实施例1,不同之处在于,混合水溶液中N,N-二乙基乙酰胺的体积分数为0.4%,得 到一种聚合型氮化碳催化剂PCN-N 4
实施例5
参考实施例1,不同之处在于,混合水溶液中双氰胺的质量浓度为1000g/L,N,N-二乙基乙酰胺的体积分数为10%,搅拌时间为1h。
实施例6
参考实施例1,不同之处在于,水热反应的温度为200℃,反应时间为15h。
实施例7
参考实施例1,不同之处在于,干燥温度为100℃,干燥时间为10h。
实施例8
参考实施例1,不同之处在于,高温煅烧温度为600℃,煅烧时间为10h。
对比例1
将1g双氰胺放置于550℃的马弗炉中高温煅烧2h,得到聚合型氮化碳催化剂PCN。
对比例2
配置1g/L的双氰胺水溶液,加热搅拌0.1h后,转移至水热反应釜内,放置在烘箱中加热至100℃,反应5h,待自然冷却至室温后,将所得产物分别用乙醇和蒸馏水洗涤三次后将其放置在烘箱中,在温度为50℃下干燥6h将干燥后的产物体转移至瓷坩埚中置于550℃的马弗炉中高温煅烧2h,得到聚合型氮化碳催化剂PCN-H。
图2为实施例1、对比例1和对比例2所制得的聚合型氮化碳催化剂的傅里叶红外光谱(FTIR)图,图2中可以看出,对比三个催化剂PCN-N 1、PCN以及PCN-H,三种催化剂的傅里叶红外光谱(FTIR)图基本保持一致,含有表面-NH 2,含有C-N共轭杂环,以及三嗪环; 可以看到在805cm -1处,经过水热处理后,三嗪环会往高波数便宜,结构有部分轻微变化。
图3为实施例1、对比例1和对比例2所制得的聚合型氮化碳催化剂的紫外漫反射吸收光谱图,图3中可以看出,PCN-H相比PCN能带边缘有着明显的蓝移,能带增大,但N,N-二乙基乙酰胺的加入后,光吸收范围随着增加,其在450-600nm附近区域有着明显的吸收。
应用例1
取上述实施例2所得的聚合型氮化碳催化剂20mg,与40g的乙腈水溶液(质量分数为5%)混合,在光源为5W LED白光照射下,辐照强度为100mW/cm 2的条件下通入CO 2进行光催化反应1h,CO 2的通入量为0.5mL/min。利用GC-MS Agilent 7890B-7250检测所得产物,如图4所示,发现没有气相产物产生,只有液相产物。
应用例2
将上述实施例1~4,对比例1和对比例2所得的聚合型氮化碳催化剂各取20mg,与40g质量分数为5%的乙腈水溶液混合,在光源为5W LED白光照射下,辐照强度为100mW/cm 2的条件下通入CO 2进行光催化反应1h,CO 2的通入量为0.5mL/min。检测催化反应产出速率。结果如图5所示,从其反应活性可以看出,在光照下,PCN-N 2能够将CO 2还原产生610umolg -1h -1左右的乙醛,同时其具有94.1%的乙醛高选择性。
应用例3
取上述实施例1所得的聚合型氮化碳催化剂60mg,与6g质量分数为5%的乙腈水溶液混合,在光源为5W LED白光照射下,辐照强度为100mW/cm 2的条件下通入CO 2进行光催化反应1h,CO 2的通入量为0.5mL/min。检测催化反应速率。过滤出检测完催化反应速率催化剂并干燥后,重复以上步骤五次。结果如图6所示,六次循环后,其催化活性基本不变, 具有高度的催化活性稳定性。
应用例4
与应用例1相同,不同之处在于:乙腈水溶液的质量分数为99%,中空聚合型氮化碳催化剂与乙腈的质量比为0.2:1,辐照强度为1000mW/cm 2,CO 2的通入量为10mL/min。光催化反应时间为0.5h。
应用例5
与应用例1相同,不同之处在于:乙腈水溶液的质量分数为5%,中空聚合型氮化碳催化剂与乙腈的质量比为0.01:1,辐照强度为1000mW/cm 2,CO 2的通入量为0.1mL/min。光催化反应时间为12h。
以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想,应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种中空聚合型氮化碳催化剂的制备方法,其特征在于,包括以下步骤:将双氰胺和N,N-二乙基乙酰胺加入水中混合加热搅拌均匀后得到双氰胺和N,N-二乙基乙酰胺混合水溶液,将双氰胺和N,N-二乙基乙酰胺混合水溶液转移至水热反应容器内进行水热反应,待反应完成后自然冷却至室温,所得产物经洗涤和干燥后得到超分子中间体,将超分子中间体进行高温煅烧后,得到中空聚合型氮化碳催化剂。
  2. 根据权利要求1所述的中空聚合型氮化碳催化剂的制备方法,其特征在于,所述的双氰胺和N,N-二乙基乙酰胺混合水溶液中双氰胺的质量浓度为1~1000g/L,N,N-二乙基乙酰胺的体积分数为0.05%~10%,双氰胺和N,N-二乙基乙酰胺混合水溶液搅拌均匀的搅拌时间为0.1~1h。
  3. 根据权利要求1所述的中空聚合型氮化碳催化剂的制备方法,其特征在于,所述的水热反应的温度为100℃~200℃,反应时间为5~15h。
  4. 根据权利要求1所述的中空聚合型氮化碳催化剂的制备方法,其特征在于,将所得产物经洗涤和干燥后得到超分子中间体具体步骤为:将所得产物分别用乙醇和蒸馏水洗涤三次后将其放置在烘箱中干燥,得到超分子中间体,烘箱中干燥的干燥温度为50℃~100℃,干燥时间为6~10h。
  5. 根据权利要求1所述的中空聚合型氮化碳催化剂的制备方法,其特征在于,所述的高温煅烧温度为400℃~600℃,煅烧时间为2~10h。
  6. 权利要求1所述的中空聚合型氮化碳催化剂的制备方法制备得到的中空聚合型氮化碳催化剂,其特征在于,中空聚合型氮化碳催化剂对光的响应的波长为450-600nm。
  7. 权利要求6所述的中空聚合型氮化碳催化剂在光催化还原CO 2合成乙醛的应用。
  8. 根据权利要求7所述的中空聚合型氮化碳催化剂在光催化还原CO 2合成乙醛的应用,其特征在于,包括如下步骤:将中空聚合型氮化碳催化剂与乙腈水溶液混合,在光源为白光照射下,通入CO 2气体进行光催化反应,将CO 2还原产生乙醛。
  9. 根据权利要求8所述的中空聚合型氮化碳催化剂在光催化还原CO 2合成乙醛的应用,其特征在于,所述的乙腈水溶液中乙腈的质量分数为5%~99%,中空聚合型氮化碳催化剂与乙腈的质量比为0.01~0.2:1,CO 2的通入量为0.1~10mL/min,光催化反应时间为0.5~12h。
  10. 根据权利要求7所述的中空聚合型氮化碳催化剂在光催化还原CO 2合成乙醛的应用,其特征在于,所述的光源为5W LED白光,所述的白光光源辐照强度为1~1000mW/cm 2
PCT/CN2021/078591 2021-02-25 2021-03-02 一种中空聚合型氮化碳催化剂及其在光催化还原co 2合成乙醛的应用 WO2022021873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110212941.1 2021-02-25
CN202110212941.1A CN113083341A (zh) 2021-02-25 2021-02-25 一种中空聚合型氮化碳催化剂及其在光催化还原co2合成乙醛的应用

Publications (1)

Publication Number Publication Date
WO2022021873A1 true WO2022021873A1 (zh) 2022-02-03

Family

ID=76667860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078591 WO2022021873A1 (zh) 2021-02-25 2021-03-02 一种中空聚合型氮化碳催化剂及其在光催化还原co 2合成乙醛的应用

Country Status (2)

Country Link
CN (1) CN113083341A (zh)
WO (1) WO2022021873A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618556A (zh) * 2022-04-02 2022-06-14 中山大学 富有硫空位的二硫化钼复合氮化碳材料的制备及其在光催化产氢方面的应用
CN114887646A (zh) * 2022-06-21 2022-08-12 江西农业大学 Fe单原子负载孔状氮化碳光催化材料及其制备方法和应用
CN114904550A (zh) * 2022-05-18 2022-08-16 安徽大学 一种高效制备三聚氰胺自组装超分子材料的方法
CN115254171A (zh) * 2022-08-24 2022-11-01 江苏金聚合金材料有限公司 一种具有空心核壳结构的高分散铜基酯加氢催化剂及其制备方法和应用
CN115722250A (zh) * 2022-11-29 2023-03-03 西安交通大学 一种cn/bst同质结光催化剂及其制备方法和应用
CN115814834A (zh) * 2022-11-30 2023-03-21 江汉大学 一种简单的溶剂后处理增强石墨氮化碳材料性能改性方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099563A (zh) * 2022-12-13 2023-05-12 广东省科学院测试分析研究所(中国广州分析测试中心) K、Rb共掺杂C3N4光催化剂及其在光催化CO2还原协同乙醇氧化制乙醛中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582760A (zh) * 2016-11-07 2017-04-26 阜阳师范学院 一种金属元素掺杂的cnb光催化剂及其制备方法
CN110170330A (zh) * 2019-05-31 2019-08-27 上海纳米技术及应用国家工程研究中心有限公司 一种丝状氮化碳的制备方法及其产品和应用
CN110743597A (zh) * 2019-11-04 2020-02-04 济南大学 一种空心梭状氮化碳微米结构及其制备方法和应用
CN111330613A (zh) * 2018-12-19 2020-06-26 南京理工大学 一种空心多孔棱柱状石墨相氮化碳的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014000888B4 (de) * 2014-01-23 2017-03-09 Kevin Jablonka Josef und Danuta, als gesetzliche Vertreter des minderjährigen Jablonka Vorrichtung zur katalytischen, photochemischen Aufspaltung von Wasser zur Gewinnung von Wasserstoff
CN109999874A (zh) * 2019-03-11 2019-07-12 江苏大学 一种富氮氮化碳纳米管光催化剂及制备方法和应用
CN110064430A (zh) * 2019-05-31 2019-07-30 上海纳米技术及应用国家工程研究中心有限公司 硫掺杂中空管状氮化碳的制备方法及其产品和应用
CN110064429A (zh) * 2019-05-31 2019-07-30 上海纳米技术及应用国家工程研究中心有限公司 硫掺杂氮化碳纳米片的制备方法及其产品和应用
CN110860315A (zh) * 2019-12-03 2020-03-06 青岛大学 光催化剂载体二乙烯三胺改性氮化碳的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582760A (zh) * 2016-11-07 2017-04-26 阜阳师范学院 一种金属元素掺杂的cnb光催化剂及其制备方法
CN111330613A (zh) * 2018-12-19 2020-06-26 南京理工大学 一种空心多孔棱柱状石墨相氮化碳的制备方法
CN110170330A (zh) * 2019-05-31 2019-08-27 上海纳米技术及应用国家工程研究中心有限公司 一种丝状氮化碳的制备方法及其产品和应用
CN110743597A (zh) * 2019-11-04 2020-02-04 济南大学 一种空心梭状氮化碳微米结构及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN YILIN; HE XINGCHEN; GUO DONGSHENG; CAI YANQIN; CHEN JINGLING; ZHENG YUN; GAO BIFEN; LIN BIZHOU: "Supramolecular electrostatic self-assembly of mesoporous thin-walled graphitic carbon nitride microtubes for highly efficient visible-light photocatalytic activities", JOURNAL OF ENERGY CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 49, 5 March 2020 (2020-03-05), AMSTERDAM, NL , pages 214 - 223, XP086168358, ISSN: 2095-4956, DOI: 10.1016/j.jechem.2020.02.035 *
LI XIANYANG; DING CHAO; ZHAO CHENGXIAO; WANG FEI; LI CAOLONG; YANG XIAOFEI: "Activation of graphitic carbon nitride by solvent-mediated supramolecular assembly for enhanced hydrogen evolution", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 525, 28 April 2020 (2020-04-28), AMSTERDAM, NL , XP086194211, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2020.146444 *
LIU QIONG, CHENGCHENG CHEN, KUNJIE YUAN, CHRIS D. SEWELL, ZHENGGUO ZHANG, XIAOMING FANG, ZHIQUN LIN: "Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion", NANO ENERGY, ELSEVIER, NL, vol. 77, 19 July 2020 (2020-07-19), NL , XP055892049, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2020.105104 *
TANG DAN; CHEN YEFENG; YIN MENGYUN; YANG QIN; ZHOU YAFEN; ZHOU LIMEI: "Supramolecular self-assembly production of porous carbon nitride nanosheets with excellent photocatalytic activity by a melamine derivative as doping molecule", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING., ELSEVIER SCIENCE PUBLISHERS B.V., BARKING., UK, vol. 105, 13 September 2019 (2019-09-13), UK , XP085890221, ISSN: 1369-8001, DOI: 10.1016/j.mssp.2019.104735 *
ZHENG YUN, XINCHEN WANG: "Synthesis of Polymeric Carbon Nitride Photocatalysts by Supramolecular Self -Assembly", MATERIALS CHINA, vol. 36, no. 1, 23 January 2017 (2017-01-23), XP055892045, ISSN: 1674-3962, DOI: 10.7502/j.issn.1674-3962.2017.01.04 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618556A (zh) * 2022-04-02 2022-06-14 中山大学 富有硫空位的二硫化钼复合氮化碳材料的制备及其在光催化产氢方面的应用
CN114618556B (zh) * 2022-04-02 2023-09-22 中山大学 富有硫空位的二硫化钼复合氮化碳材料的制备及其在光催化产氢方面的应用
CN114904550A (zh) * 2022-05-18 2022-08-16 安徽大学 一种高效制备三聚氰胺自组装超分子材料的方法
CN114904550B (zh) * 2022-05-18 2024-03-19 安徽大学 一种制备三聚氰胺自组装超分子材料的方法
CN114887646A (zh) * 2022-06-21 2022-08-12 江西农业大学 Fe单原子负载孔状氮化碳光催化材料及其制备方法和应用
CN114887646B (zh) * 2022-06-21 2024-04-12 江西农业大学 Fe单原子负载孔状氮化碳光催化材料及其制备方法和应用
CN115254171A (zh) * 2022-08-24 2022-11-01 江苏金聚合金材料有限公司 一种具有空心核壳结构的高分散铜基酯加氢催化剂及其制备方法和应用
CN115722250A (zh) * 2022-11-29 2023-03-03 西安交通大学 一种cn/bst同质结光催化剂及其制备方法和应用
CN115814834A (zh) * 2022-11-30 2023-03-21 江汉大学 一种简单的溶剂后处理增强石墨氮化碳材料性能改性方法

Also Published As

Publication number Publication date
CN113083341A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022021873A1 (zh) 一种中空聚合型氮化碳催化剂及其在光催化还原co 2合成乙醛的应用
US20220355284A1 (en) Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water
CN112007629B (zh) 一种由mof衍生的混合相二氧化钛可见光催化剂的制备方法
CN104722302B (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
WO2022021506A1 (zh) 一种超薄多孔纳米氮化碳光催化剂的制备及其在光催化氧化果糖合成乳酸中的应用
CN109499619B (zh) TiO2/MIL-101光催化剂及其制备方法
CN104785270B (zh) 一种用于处理亚甲基蓝染料废水的可见光催化剂及其制备方法
CN104826623B (zh) 一种氧化铋光催化剂及其制备方法和应用
JP3845720B2 (ja) ニオブ酸カリウム光触媒およびその製造方法
CN110813356A (zh) 一种CdIn2S4-C3N4复合光催化剂及其制备方法和应用
CN113828345A (zh) 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
Wang et al. Enhancing catalytic aerobic oxidation performance of cyclohexane via size regulation of mixed-valence {V 16} cluster-based metal–organic frameworks
Lin et al. Preparation of ZnO nanoparticles using a rotating packed bed
CN111589441A (zh) 一种锰掺杂的氧化钨催化剂、其制备方法及应用
CN111111781A (zh) 一种多孔NH2-UiO-66-d/硫化铟锌复合可见光催化剂的制备方法
CN109133169A (zh) 一种钒酸铋及其制备方法和应用
JP3482461B2 (ja) チタン酸カリウム光触媒及びその製造方法
CN109225294B (zh) 一种绿色催化合成安息香的方法
CN109046322A (zh) 一种可见光光催化TiO2/CQDs/Bi2WO6及其制备方法和应用
CN111068671B (zh) 一种高选择性氨基酸脱羧催化剂及其制备方法
CN110713606B (zh) 锌-金属有机框架材料及其制备方法和应用
WO2023004640A1 (zh) 铈锰复合氧化物催化剂及其制备方法
JP3136339B2 (ja) 酸化チタン光触媒及びその製造方法
CN106117037B (zh) 对异丙基苯甲酸的制备方法
WO2020098162A1 (zh) 催化氧化糠醛制备马来酸的催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849754

Country of ref document: EP

Kind code of ref document: A1