CN109999874A - 一种富氮氮化碳纳米管光催化剂及制备方法和应用 - Google Patents

一种富氮氮化碳纳米管光催化剂及制备方法和应用 Download PDF

Info

Publication number
CN109999874A
CN109999874A CN201910179747.0A CN201910179747A CN109999874A CN 109999874 A CN109999874 A CN 109999874A CN 201910179747 A CN201910179747 A CN 201910179747A CN 109999874 A CN109999874 A CN 109999874A
Authority
CN
China
Prior art keywords
carbon nano
nano pipe
azotized carbon
photochemical catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910179747.0A
Other languages
English (en)
Inventor
莫曌
许晖
徐凡
李华明
宋艳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910179747.0A priority Critical patent/CN109999874A/zh
Publication of CN109999874A publication Critical patent/CN109999874A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化剂,特指一种富氮氮化碳纳米管光催化剂及制备方法和应用,属于光催化材料和环境治理的技术领域。该方法首先通过低温水热的方法得到形貌规整的棒状超分子中间体,再通过马弗炉煅烧得到一维形貌的富氮氮化碳纳米管。富氮氮化碳管状的一维结构使其具有更大的比表面积,降低电子复合率及提高其量子效率,从而提高了其光催化活性。

Description

一种富氮氮化碳纳米管光催化剂及制备方法和应用
技术领域
本发明涉及光催化剂,特指一种富氮氮化碳纳米管光催化剂及制备方法和应用,属于光催化材料和环境治理的技术领域。
背景技术
氮化碳自2009年发现以来一直在光催化降解环境污染物、还原CO2、可见光下光解水制取氢气等光催化领域是研究热点。其作为一种半导体聚合物光催化剂,具有化学组成简单、可见光响应、能带结构合适、稳定性高、廉价易得等优点。然而,通过传统的热聚合方法制备的石墨相氮化碳仍存在比表面积小、光生电子空穴对复合率高、可见光区的量子效率低等问题,从而导致光催化效率不佳。目前,研究者通过对氮化碳的进行纳米结构的形貌调控、元素掺杂、复合其他半导体材料形成异质结等手段以改善其各种缺点,提高氮化碳的比表面积,改善载流子的传质过程,增加其反应活性位,从而提高氮化碳的光催化性能。制备氮化碳纳米材料最常用的方法有硬模板法、软模板法。其中模板法是以二氧化硅或氧化铝为模板,与前驱体混合热解合成氮化碳,最后用具有强腐蚀性HF或NH4HF2刻蚀剂去除模板,以得到特定形貌结构的氮化碳。但是,此方法在制备氮化碳的过程中含有有毒化学试剂,存在原料成本高、材料制备周期长且对环境造成一定污染等问题。与模板法相比,超分子自组装是一种无需加模板的自模板法,具有操作简单、成本低、周期短、环保等优点。近期研究中,研究者进一步发展了超分子自组装合成氮化碳纳米结构的方法。通过调控自组装水热过程的反应参数和条件来控制氮化碳形貌结构、从而改善其光电性能,进而提高其光催化产氢及降解污染物的活性。
发明内容
本发明的目的是提供一种富氮氮化碳纳米管光催化剂及制备方法和应用,该方法首先通过低温水热的方法得到形貌规整的棒状超分子中间体,再通过马弗炉煅烧得到一维形貌的富氮氮化碳纳米管。富氮氮化碳管状的一维结构使其具有更大的比表面积,降低电子复合率及提高其量子效率,从而提高了其光催化活性。
一种富氮氮化碳纳米管光催化剂的制备方法,其制备步骤如下:
(1)将三聚氰胺和硫酸羟胺置于去离子水中,常温磁力搅拌分散,得到混合分散液;
(2)将所得的混合分散液转移至水热反应釜中进行反应,所得的反应产物静置后离心分离、洗涤、干燥即可得棒状超分子中间体;
(3)在坩埚里面加入超分子中间体,随后放入马弗炉中然后以一定的升温速度加热到一定温度,再保温一定时间,即可得富氮氮化碳纳米管。
上述的制备方法中,所述步骤1的三聚氰胺、硫酸羟胺、去离子水的质量比为0.5-2:1-4:25-50,所述的搅拌时间为30-60min。
上述的制备方法中,所述步骤2的反应温度为100℃-150℃,所述的反应时间为10h-16h。
上述的制备方法中,所述步骤3的超分子中间体质量为1-2g,煅烧温度为450℃-550℃,所述的升温速度为1-4℃/min,所述的煅烧温度保持时间为2-5小时。
本发明与现有技术相比,其显著优点:原料简单易得,产量高,操作简单,重复性好,可控性强。在反应中,只使用三聚氰胺和硫酸羟胺两种药品,且仅以水作为溶剂不使用其他酸碱溶剂和有机溶剂,绿色环保。相较于普通石墨相氮化碳,富氮氮化碳纳米管具有更大的比表面积,更低的价带位置,足以产生羟基自由基(普通氮化碳的价带不足以产生羟基自由基),从而提升了光催化降解性能。在可见光照射下可对有色染料(MB、RhB、MO等)进行有效的降解,并且在降解抗生素双酚A(BPA)协同产氢的系统中,同时实现污染物的降解和绿色氢能的产生,在污水处理和太阳能转化等方面具有良好的应用前景和经济效益。
附图说明
图1为本发明实施例1所制备得富氮氮化碳纳米管的SEM图。
图2为本发明实施例1所制备得富氮氮化碳纳米管的XRD图。
图3为本发明实施例1所制备得富氮氮化碳纳米管的PL图。
图4为本发明实施例1所制备得富氮氮化碳纳米管的价带x射线光电子能谱图。
图5为本发明实施例1所制备得富氮氮化碳纳米管光催化剂在可见光照射5h后光催化产氢活性图。
图6为本发明实施例1所制备得富氮氮化碳纳米管光催化剂在可见光照射下对浓度为10mg/L的双酚A(BPA)光催化降解协同产氢图。
具体实施方式
下面结合附图对本发明作进一步详细地阐述。
实施例1:本发明的超分子自组装富氮氮化碳纳米管光催化剂的制备方法,具体包括以下步骤:
第一步:将2g三聚氰胺和1g硫酸羟胺置于装有50mL去离子水的烧杯中,常温磁力搅拌分散时间为30min,得到混合分散液;
第二步:将所得的混合分散液转移至50mL反应釜,放入恒温烘箱120℃下水热反应12h,待反应釜自然冷却至室温后,在10000-13000r/min下离心3min,用去离子水和乙醇各洗涤三次、放入恒温烘箱60℃下干燥,即可得棒状超分子中间体;
第三步:称取四份2g超分子中间分别体置于四个坩埚内,坩埚加盖,将四个坩埚置于马弗炉温控中心区,在空气气氛下进行煅烧;加热设置参数如下:从室温以匀速(2℃/min)升温在250分钟内到520℃,并在520℃下保持4小时;自然冷却后获得浅黄色固体,无需研磨即为所述光催化剂。
图1为本实施例1所制备出的富氮氮化碳纳米管光催化剂的扫描电镜图片。图A,B可见自组装法制备的超分子中间体已形成一维形貌,从图C,D进一步清晰看出,所制备出的样品是一维空心薄壁管状结构。其管直径为100-250nm。
图2为本实施例1所制备出的富氮氮化碳纳米管光催化剂的X-射线衍射图谱。在13.4°、27.7°出现的衍射峰分别对应于氮化碳的(100)和(002)晶面,这是三嗪单元的层间结构和共轭芳香族的层间堆积而引起。相较于石墨相氮化碳,氮化碳纳米管仍保留着g-C3N4的结构,但是(100)晶面几乎消失,这是因为氮化碳纳米管具有较小的层间平面尺寸。同时(002)晶面的强度明显减弱,这归因于富氮氮化碳纳米管结构的尺寸效应。
图3为本实施例1所制备出的富氮氮化碳纳米管PL图谱。富氮氮化碳纳米管中在360nm波长激发下强度明显减弱,表明氮化碳纳米管的电子与空穴之间的复合速率远低于石墨相氮化碳。同时,氮化碳纳米管在472nm处出现的峰出有轻微的蓝移,这与uv-vis谱相一致证明了氮化碳纳米管电子带隙值的增加。
图4为本实施例1所制备出的富氮氮化碳纳米管光催化剂的价带X射线光电子能谱。石墨相氮化碳价带EVB测定值大约是1.73eV,价带边缘的电位高于标准氧化电位OH-/·OH(1.99V vs NHE),因此产生的光生空穴难以氧化OH-产生·OH。而富氮氮化碳纳米管价带的能带位置大约是2.03eV,其价带可以产生光生空穴氧化OH-产生·OH。因此富氮氮化碳纳米管提高了氧化污染物的能力。
图5为本实施例1所制备出的富氮氮化碳纳米管光催化剂的产氢活性图。较于石墨相氮化碳,在光照条件下,富氮氮化碳纳米管的产氢能力大大提升。其在5小时光照后光催化产氢效率达到903.11μmol。
图6为本实施例1所制备出的富氮氮化碳纳米管光催化剂在可见光照射下对浓度为10mg/L的双酚A(BPA)光催化降解协同产氢曲线图。双酚A的降解效率采用高效液相色谱法(HPLC)测定。HPLC结果表明,在可见光下照射下1h内的BPA降解率约为70%,约为石墨相氮化碳的1.63倍,5h后BPA在光催化协同产氢系统中几乎被去除。此外,如图所示在此系统中同时检测到H2的产生,其产氢量约为13.63mol。
实施例2:本发明的超分子自组装富氮氮化碳纳米管光催化剂的制备方法,具体包括以下步骤:
第一步:将1g三聚氰胺和1g硫酸羟胺置于装有50mL的去离子水的烧杯中,常温磁力搅拌分散时间为30min,得到混合分散液;
第二步:将所得的混合分散液转移至50mL反应釜,放入恒温烘箱120℃下水热反应12h,待反应釜自然冷却至室温后,在10000-13000r/min下离心3min,用去离子水和乙醇各洗涤三次、放入恒温烘箱60℃下干燥,即可得棒状超分子中间体;
第三步:称取四份2g超分子中间分别体置于四个坩埚内,坩埚加盖,将四个坩埚置于马弗炉温控中心区,在空气气氛下进行煅烧;加热设置参数如下:从室温以匀速(2℃/min)升温在250分钟内到520℃,并在520℃下保持4小时;自然冷却后获得的浅黄色固体,无需研磨即为所述光催化剂。
在光照条件下,富氮氮化碳纳米管的产氢能力大大提升。其在5小时光照后光催化产氢效率达到876.54μmol。
HPLC结果表明,在可见光下照射下1h内的BPA降解率约为60%,6h后BPA在光催化协同产氢系统中几乎被去除。
实施例3:本发明的超分子自组装富氮氮化碳纳米管光催化剂的制备方法,具体包括以下步骤:
第一步:将2g三聚氰胺和1g硫酸羟胺置于装有50mL的去离子水的烧杯中,在常温磁力搅拌分散时间为30min,得到混合分散液;
第二步:将所得的混合分散液转移至50mL反应釜,放入恒温烘箱120℃下水热反应10h,待反应釜自然冷却至室温后,在10000-13000r/min下离心3min,用去离子水和乙醇各洗涤三次、放入恒温烘箱60℃下干燥,即可得棒状超分子中间体;
第三步:称取四份2g超分子中间分别体置于四个坩埚内,坩埚加盖,将四个坩埚置于马弗炉温控中心区,在空气气氛下进行煅烧;加热设置参数如下:从室温以匀速(2℃/min)升温在250分钟内到520℃,并在520℃下保持4小时;自然冷却后获得的浅黄色固体,无需研磨即为所述光催化剂。
在光照条件下,富氮氮化碳纳米管的产氢能力大大提升。其在5小时光照后光催化产氢效率达到887.35μmol。
HPLC结果表明,在可见光下照射下1h内的BPA降解率约为65%,5.5h后BPA在光催化协同产氢系统中几乎被去除。

Claims (5)

1.一种富氮氮化碳纳米管光催化剂的制备方法,其特征在于,具体步骤如下:
(1)将三聚氰胺和硫酸羟胺置于去离子水中,常温磁力搅拌分散,得到混合分散液;
(2)将所得的混合分散液转移至水热反应釜中进行反应,所得的反应产物静置后离心分离、洗涤、干燥即可得棒状超分子中间体;
(3)在坩埚里面加入超分子中间体,随后放入马弗炉中然后以一定的升温速度加热到一定温度,再保温一定时间,即可得富氮氮化碳纳米管。
2.如权利要求1所述的一种富氮氮化碳纳米管光催化剂的制备方法,其特征在于,所述步骤(1)中,三聚氰胺、硫酸羟胺、去离子水的质量比为0.5-2:1-4:25-50,所述的搅拌时间为30-60min。
3.如权利要求1所述的一种富氮氮化碳纳米管光催化剂的制备方法,其特征在于,所述步骤(2)中,反应温度为100℃-150℃,所述的反应时间为10h-16h。
4.如权利要求1所述的一种富氮氮化碳纳米管光催化剂的制备方法,其特征在于,所述步骤(3)中,超分子中间体质量为1-2g,煅烧温度为450℃-550℃,所述的升温速度为1-4℃/min,所述的煅烧温度保持时间为2-5小时。
5.如权利要求1-4任一所述方法制备的富氮氮化碳纳米管光催化剂的用途,其特征在于,用于降解抗生素双酚A并产氢。
CN201910179747.0A 2019-03-11 2019-03-11 一种富氮氮化碳纳米管光催化剂及制备方法和应用 Withdrawn CN109999874A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910179747.0A CN109999874A (zh) 2019-03-11 2019-03-11 一种富氮氮化碳纳米管光催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910179747.0A CN109999874A (zh) 2019-03-11 2019-03-11 一种富氮氮化碳纳米管光催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
CN109999874A true CN109999874A (zh) 2019-07-12

Family

ID=67166739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910179747.0A Withdrawn CN109999874A (zh) 2019-03-11 2019-03-11 一种富氮氮化碳纳米管光催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN109999874A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947405A (zh) * 2019-11-08 2020-04-03 武汉科技大学 一种规则排列的g-C3N4纳米管催化剂及其制备方法
CN111822031A (zh) * 2020-07-31 2020-10-27 江苏大学 富碳氮化碳纳米管光催化剂及制备方法和应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用
CN113083341A (zh) * 2021-02-25 2021-07-09 广东省科学院测试分析研究所(中国广州分析测试中心) 一种中空聚合型氮化碳催化剂及其在光催化还原co2合成乙醛的应用
CN114524420A (zh) * 2022-03-09 2022-05-24 重庆大学 一种氮化碳纳米管阵列的制备方法
CN114950502A (zh) * 2022-06-21 2022-08-30 青岛大学 一种具有高效光催化析氢活性和稳定性的纳米棒状红磷光催化剂的制备方法
CN115646530A (zh) * 2022-11-14 2023-01-31 吉林大学 一种双促进型硼掺杂手风琴状石墨氮化碳光催化剂及其制备方法、应用
CN115872391A (zh) * 2022-12-21 2023-03-31 上海懿禾嘉朋新材料科技有限公司 金属有机框架制备的单壁碳纳米管及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600905A (zh) * 2012-02-20 2012-07-25 合肥工业大学 一种半导体异质结/导电聚合物纤维膜复合光催化剂及其制备方法
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN106590815A (zh) * 2016-11-30 2017-04-26 江苏大学 一种g‑C3N4/MoS2纳米复合材料的制备方法
CN107352519A (zh) * 2017-08-01 2017-11-17 江苏理工学院 一种c3n4纳米线的制备方法
CN107961807A (zh) * 2017-11-24 2018-04-27 江苏大学 一种超分子预组装氮化碳纳米管光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600905A (zh) * 2012-02-20 2012-07-25 合肥工业大学 一种半导体异质结/导电聚合物纤维膜复合光催化剂及其制备方法
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN106590815A (zh) * 2016-11-30 2017-04-26 江苏大学 一种g‑C3N4/MoS2纳米复合材料的制备方法
CN107352519A (zh) * 2017-08-01 2017-11-17 江苏理工学院 一种c3n4纳米线的制备方法
CN107961807A (zh) * 2017-11-24 2018-04-27 江苏大学 一种超分子预组装氮化碳纳米管光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEXIN LI ET AL.: ""Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
ZHAO MO ET AL.: ""Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947405A (zh) * 2019-11-08 2020-04-03 武汉科技大学 一种规则排列的g-C3N4纳米管催化剂及其制备方法
CN111822031A (zh) * 2020-07-31 2020-10-27 江苏大学 富碳氮化碳纳米管光催化剂及制备方法和应用
CN111822031B (zh) * 2020-07-31 2023-09-22 江苏大学 富碳氮化碳纳米管光催化剂及制备方法和应用
CN112221532A (zh) * 2020-11-16 2021-01-15 福州大学 一种硫铟锌/石墨相氮化碳分级中空异质结的制备方法及应用
CN113083341A (zh) * 2021-02-25 2021-07-09 广东省科学院测试分析研究所(中国广州分析测试中心) 一种中空聚合型氮化碳催化剂及其在光催化还原co2合成乙醛的应用
CN114524420A (zh) * 2022-03-09 2022-05-24 重庆大学 一种氮化碳纳米管阵列的制备方法
CN114950502A (zh) * 2022-06-21 2022-08-30 青岛大学 一种具有高效光催化析氢活性和稳定性的纳米棒状红磷光催化剂的制备方法
CN114950502B (zh) * 2022-06-21 2024-01-16 青岛大学 一种具有光催化析氢活性和稳定性的纳米棒状红磷光催化剂的制备方法
CN115646530A (zh) * 2022-11-14 2023-01-31 吉林大学 一种双促进型硼掺杂手风琴状石墨氮化碳光催化剂及其制备方法、应用
CN115646530B (zh) * 2022-11-14 2023-12-12 吉林大学 一种双促进型硼掺杂手风琴状石墨氮化碳光催化剂及其制备方法、应用
CN115872391A (zh) * 2022-12-21 2023-03-31 上海懿禾嘉朋新材料科技有限公司 金属有机框架制备的单壁碳纳米管及其制备方法和应用
CN115872391B (zh) * 2022-12-21 2023-11-21 上海懿禾嘉朋新材料科技有限公司 金属有机框架制备的单壁碳纳米管及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109999874A (zh) 一种富氮氮化碳纳米管光催化剂及制备方法和应用
CN110064429A (zh) 硫掺杂氮化碳纳米片的制备方法及其产品和应用
CN106824250B (zh) 一种掺杂锌的氮化碳可见光催化剂及其制备方法和用途
CN107961807B (zh) 一种超分子预组装氮化碳纳米管光催化剂的制备方法
CN104549500B (zh) 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN109395764A (zh) 磷掺杂氮化碳的制备方法及其产品和应用
CN109772409B (zh) B,s共掺杂氮化碳纳米管光催化剂及制备方法和应用
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN106732712A (zh) 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用
CN106882787A (zh) 一种氮掺杂有序介孔碳材料及其制备方法
CN109364933A (zh) 一种铜-铋/钒酸铋复合光催化剂的制备和应用
CN107876079B (zh) 一种硫掺杂氧化锌量子点修饰多孔石墨相碳化氮复合材料的制备方法及其应用
CN110639594B (zh) 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法
CN107098429B (zh) 一种BiVO4/BiPO4复合材料及其制备方法和应用
CN103908960B (zh) 一种V2O5/BiVO4纳米棒复合光催化剂的制备方法
CN111792629A (zh) 一种制备红色晶化氮化碳的方法、红色晶化氮化碳及应用
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN114225957A (zh) 一种碳掺杂超分子聚合氮化碳可见光催化剂及其应用
CN109126852A (zh) 有序分级多孔石墨相氮化碳光催化材料的制备方法
CN107876074A (zh) g‑C3N4纳米颗粒/花状BiOI复合材料的制备方法
CN109999879A (zh) 一种硒辅助的层状石墨相氮化碳光催化剂及其制备方法
CN105381811A (zh) 一种具有高稳定性的介孔复合半导体材料的原位生长制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190712