CN111822031B - 富碳氮化碳纳米管光催化剂及制备方法和应用 - Google Patents

富碳氮化碳纳米管光催化剂及制备方法和应用 Download PDF

Info

Publication number
CN111822031B
CN111822031B CN202010755866.9A CN202010755866A CN111822031B CN 111822031 B CN111822031 B CN 111822031B CN 202010755866 A CN202010755866 A CN 202010755866A CN 111822031 B CN111822031 B CN 111822031B
Authority
CN
China
Prior art keywords
carbon
carbon nitride
rich
photocatalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010755866.9A
Other languages
English (en)
Other versions
CN111822031A (zh
Inventor
许晖
莫曌
徐凡
雷玉成
俞俐敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010755866.9A priority Critical patent/CN111822031B/zh
Publication of CN111822031A publication Critical patent/CN111822031A/zh
Application granted granted Critical
Publication of CN111822031B publication Critical patent/CN111822031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化技术领域,具体涉及富碳氮化碳纳米管光催化剂及制备方法和应用。该方法首先通过水热法得到改性中间体,再通过马弗炉煅烧得到具有管状结构的富碳氮化碳纳米管。利用一维管状结构本身的特性和碳掺杂引起的能带结构变化,解决了现有光催化剂对可见光利用率不高、暴露的活性位点少、对高浓度有机染料降解效率低等问题。

Description

富碳氮化碳纳米管光催化剂及制备方法和应用
技术领域
本发明涉及光催化技术领域,具体涉及富碳氮化碳纳米管光催化剂及制备方法和应用。
背景技术
光催化技术以太阳光为媒介进行氧化还原反应,在解决日益严重的能源和环境问题具有巨大潜力。石墨相氮化碳(g-C3N4)自应用于光催化反应,一直受到研究者的广泛关注。然而,其自身仍存在着一些缺点,如比表面积小、光生载流子分离效率低、电荷输运过程缓慢等,导致光催化性能低下。半导体的光吸收行为是影响光催化性能的重要因素,光诱导过程中光生电荷的激发、弛豫、复合和迁移等行为与光吸收密切相关。研究者对载流子行为进行优化,其中调变能带结构被认为是获得优异光响应的有效策略之一。通过引入空位或在不同带隙半导体之间构建异质结构,扩大光催化剂光吸收范围,从而提高光催化效率。目前,已有许多氮化碳基材料吸光范围从紫外可见光区扩展到近红外(NIR)光区。然而,紫外和可见光的利用率只占整个太阳光谱的56%,光催化效率远低于预期。因此,还需要结合其他方法手段对氮化碳进行改性,如形貌调控、与半导体复合或加入发色团染料等。经调控的光催化剂形貌多样,其中,一维纳米线、纳米管以独特的短直径、长径向、薄壁等结构优化了光生载流子的分离和快速转移途径;同时其表面积较大,有效提升了表界面催化反应效率,提高光催化效率。目前,已有多种方法对材料形貌进行调控,如硬、软模板法和水热法等。其中,水热法实验过程简单可控,形成的材料形貌均一,且结构稳定,是最广泛方法之一。一方面富碳氮化碳纳米管经部分碳掺杂调节了本征氮化碳的价带和导带位置,从而形成了窄带隙结构。另一方面其平面共轭结构将光吸收范围拓展至近红外区,增强了光催化转化效率。同时,富碳氮化碳纳米管的一维空心管状结构形貌,有效提高了光激发电荷分离/迁移能力,从而提高了光催化性能。此前,我们提出过一个氮杂氮化碳催化剂的制备及应用,该方法通过超分子自组装实现了光催化性能的提升,然而,仍存在水热温度过高,能耗较大,管状结构较松散等问题。
发明内容
本发明的一个目的是提供了一种富碳氮化碳纳米管光催化剂的制备方法,在此次提出的技术中,对现有技术问题作出了改进,制备方法更加简单节能,管状结构更加规整有序(见附图1),对g-C3N4的长径比做出了调整,空气中煅烧的富碳氮化碳纳米管呈一维蓬松管状形貌,直径在150-200nm,使其具有更加优异的光催化性能。该方法首先通过水热法得到改性中间体,再通过马弗炉煅烧得到具有管状结构的富碳氮化碳纳米管。利用一维管状结构本身的特性和碳掺杂引起的能带结构变化,解决了现有光催化剂对可见光利用率不高、暴露的活性位点少、对高浓度有机染料降解效率低等问题。
实现本发明目的的技术方案具体为:
1.一种富碳氮化碳纳米管光催化剂的制备方法,其步骤如下:
(1)首先将三聚氰胺、硫酸羟胺和乙醇胺置于去离子水中常温磁力搅拌分散,得到混合分散液;
(2)将所得的混合分散液转移至水热反应釜中进行反应;将所得的反应产物静置后离心分离、洗涤、干燥即可得改性中间体;
(3)将合成的改性中间体放置于马弗炉中,然后以一定的升温速度加热到一定温度,再保持一定时间,即可获得呈橙红色的富碳氮化碳纳米管。
上述的制备方法中,所述步骤(1)中,三聚氰胺、硫酸羟胺、乙醇胺、去离子水的质量比为1:2:0.5:30;所述的搅拌时间为1h。
上述的制备方法中,所述步骤(2)的反应温度为120℃,所述的反应时间为12h,所述的洗涤溶剂为无水乙醇和去离子水(交替洗涤),所述的干燥温度为60℃。
上述的制备方法中,所述步骤(3)的中间体质量为20mg,煅烧温度为500℃,所述的升温速度为2℃/min,所述的煅烧温度保持时间为4h。
本发明与现有技术相比,其显著优点:
1、经部分碳掺杂调节了本征氮化碳的价带和导带位置,增强了光催化转化效率。同时,富碳氮化碳纳米管的一维空心管状结构形貌,有效提高了光激发电荷分离/迁移能力,从而提高了光催化性能。富碳氮化碳纳米管在对无色污染物双酚A降解表现出优异性能。
2、该发明材料的制备方法对设备无特殊要求,具有极高的产量,操作简单,易于控制,重复性好,绿色环保,有利于工业化的大规模生产。
附图说明
图1为本发明制备的富碳氮化碳纳米管的SEM图;
图2为本发明制备的富碳氮化碳纳米管的XRD图;
图3为本发明制备的富碳氮化碳纳米管的FT-IR图;
图4为本发明制备的富碳氮化碳纳米管的X射线光电子能谱图(XPS);
图5为本发明制备的富碳氮化碳纳米管的N2吸附-脱附等温曲线(BET);
图6为本发明制备的富碳氮化碳纳米管的固体紫外漫反射(DRS)图;
图7为本发明制备的富碳氮化碳纳米管光催化剂在不同可见光照射时间下对浓度为10ppm的双酚A(BPA)光催化降解曲线图;
图8为本发明制备的富碳氮化碳纳米管的光电流图。
具体实施方式
下面结合附图对本发明作进一步详细地阐述。
实施例1:本发明富碳氮化碳纳米管光催化剂的制备方法,具体包括以下步骤:
第一步:将1g三聚氰胺和2g硫酸羟胺溶于30mL去离子水中,再加入0.5mL乙醇胺(C2H7NO,8.235mmol)进行混合,常温磁力搅拌分散,搅拌时间1h,得到混合分散液;
第二步:将所得的混合分散液转移至50mL水热反应釜,放入恒温烘箱120℃下反应12h,然后待反应釜自然冷却至室温,用去离子水、乙醇将离心分离后的样品交替清洗三遍,放入60℃烘箱中烘干以备使用;
第三步:称取20mg合成的中间体放置于5mL坩埚中,加盖后放在马弗炉中,在空气气氛下进行煅烧;加热参数如下:设置从室温、在240分钟内匀速升温至500℃,并在500℃下保持4h;然后自然冷却,获得的橙红色固体即为富碳氮化碳纳米管,研磨后使用。
图1为本实施例所制备出的富碳氮化碳纳米管光催化剂的扫描电镜图片。图中显示出空气中煅烧的富碳氮化碳纳米管表面呈蓬松状,直径在150-200nm。
图2为本实施例所制备出的富碳氮化碳纳米管光催化剂的X-射线衍射图谱。富碳氮化碳纳米管在13.1°和27.3°处显示了与体相g-C3N4相同的两个特征峰,由于富碳氮化碳纳米管表面单元结构发生改变,其在(100)处的峰没有突出显现;(002)处的层间堆积也因形成管状形貌而大大减小。
图3为本实施例所制备出的富碳氮化碳纳米管光催化剂的傅里叶变换红外谱图。空气中煅烧的氮化碳纳米管表现出与体相g-C3N4相似的谱图,810cm-1处峰对应于s-三嗪-s环伸缩振动,900cm-1至1800cm-1处峰对应于石墨相氮化碳中典型的杂环C-N和C=N伸缩振动,而3000cm-1到3600cm-1的宽峰一般与N-H伸缩振动相关或来源于吸附H2O。这些峰与bulkg-C3N4大致吻合,表明氮化碳纳米管保持着体相氮化碳的主要化学结构。
图4为本实施例所制备出的富碳氮化碳纳米管光催化剂的X射线光电子能谱图。如富碳氮化碳纳米管的高分辨率C1s光谱图所示,288.9eV处出现一个新峰,可对应于富碳结构中C-OH;同时,富碳氮化碳纳米管在286.4eV处的特征峰也有所增强,这表明富碳氮化碳纳米管的七嗪单元结构边缘上存在着C-NHx,主要是由末端富碳效应引起。
图5为本实施例所制备出的富碳氮化碳纳米管光催化剂的N2吸附-脱附等温曲线。富碳氮化碳纳米管的比表面积约为71.24m2 g-1,与体相g-C3N4相比明显增大。进一步考察其孔径纹理,孔径在2~9nm之间。
图6为本实施例所制备出的富碳氮化碳纳米管光催化剂的固体紫外漫反射图。富碳氮化碳纳米管在整个可见光区域的吸收都大大增强。相较于体相g-C3N4,富碳氮化碳纳米管的吸收边从470nm拓展至520nm处。基于DRS光谱计算体相g-C3N4和富碳氮化碳纳米管的禁带宽度,分别为2.78和2.72eV。相较于体相g-C3N4,富碳氮化碳纳米管的带隙略有减小。
图7为本实施例所制备出的富碳氮化碳纳米管光催化剂在不同可见光照射时间下对浓度为10ppm的双酚A(BPA)光催化降解曲线图。具体包括以下步骤:称取0.025g光催化剂分散于50mL双酚A(BPA,10ppm)中,后置于恒温Pyrex光催化反应器(300W氙灯)中进行活性降解测试。悬浮液先避光磁力搅拌30min,达到BPA和光催化剂吸附-脱附平衡。在光催化反应进行过程中,每间隔30min取3mL悬浮液,离心分离(13000rpm,3min)后通过微孔滤膜获得上清滤液。通过高效液相色谱仪对不同时间点BPA滤液浓度进行检测。结果显示:体相g-C3N4在180min可见光照射后只降解了34.3%的10ppm BPA,而富碳氮化碳纳米管在180min内可以完全降解10ppm BPA。
图8为本实施例所制备出的富碳氮化碳纳米管光催化剂的光电流图。在20s间歇可见光照射下,体相g-C3N4和富碳氮化碳纳米管均出现规则的光电流响应,且此响应经过九次开关灯循环后仍保持稳定性。相较于体相g-C3N4,富碳氮化碳纳米管显示出较大的光电流密度。这说明经修饰的富碳氮化碳纳米管光诱导电荷分离效率高,电子空穴对的复合较少,光催化性能明显提高。

Claims (6)

1.用于光催化降解双酚A的富碳氮化碳纳米管光催化剂的制备方法,其特征在于,具体步骤如下:
(1) 首先将三聚氰胺、硫酸羟胺和乙醇胺置于去离子水中常温磁力搅拌分散,得到混合分散液;
(2) 将所得的混合分散液转移至水热反应釜中进行反应;将所得的反应产物静置后离心分离、洗涤、干燥即可得改性中间体;
(3) 将合成的改性中间体放置于马弗炉中进行煅烧,以一定的升温速度加热到一定温度,再保持一定时间,即可获得呈橙红色的富碳氮化碳纳米管。
2.如权利要求1所述的用于光催化降解双酚A的富碳氮化碳纳米管光催化剂的制备方法,其特征在于,步骤(1)中,三聚氰胺、硫酸羟胺、乙醇胺、去离子水的质量比为1:2:0.5:30;所述的搅拌时间为1 h。
3.如权利要求1所述的用于光催化降解双酚A的富碳氮化碳纳米管光催化剂的制备方法,其特征在于步骤(2)中,反应温度为120℃,所述的反应时间为12 h;洗涤溶剂为无水乙醇和去离子水,交替洗涤;所述的干燥温度为60℃。
4.如权利要求1所述的用于光催化降解双酚A的富碳氮化碳纳米管光催化剂的制备方法,其特征在于,步骤(3)中,中间体质量为20 mg,煅烧温度为500℃,所述的升温速度为2℃/ min,所述的煅烧温度保持时间为4 h。
5.如权利要求1-4任一制备方法制备的富碳氮化碳纳米管光催化剂的用途,其特征在于,用于无色污染物双酚A的降解。
6.如权利要求5所述的用途,其特征在于,所述富碳氮化碳纳米管光催化剂在180 min内能够完全降解10 ppm BPA。
CN202010755866.9A 2020-07-31 2020-07-31 富碳氮化碳纳米管光催化剂及制备方法和应用 Active CN111822031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010755866.9A CN111822031B (zh) 2020-07-31 2020-07-31 富碳氮化碳纳米管光催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010755866.9A CN111822031B (zh) 2020-07-31 2020-07-31 富碳氮化碳纳米管光催化剂及制备方法和应用

Publications (2)

Publication Number Publication Date
CN111822031A CN111822031A (zh) 2020-10-27
CN111822031B true CN111822031B (zh) 2023-09-22

Family

ID=72920242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010755866.9A Active CN111822031B (zh) 2020-07-31 2020-07-31 富碳氮化碳纳米管光催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN111822031B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185579A (zh) * 2017-06-07 2017-09-22 合肥工业大学 一种富碳g‑C3N4纳米片及其制备方法
CN109046432A (zh) * 2018-08-30 2018-12-21 广州大学 介孔氮化碳的制备方法、N-TiO2/g-C3N4复合光催化剂及其制备方法
CN109331857A (zh) * 2018-11-16 2019-02-15 辽宁大学 一种多孔富碳g-C3N4光催化剂的制备方法和应用
CN109999874A (zh) * 2019-03-11 2019-07-12 江苏大学 一种富氮氮化碳纳米管光催化剂及制备方法和应用
CN110152706A (zh) * 2019-05-09 2019-08-23 北京师范大学 一种以共晶前驱体制备富碳氮化碳可见光催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185579A (zh) * 2017-06-07 2017-09-22 合肥工业大学 一种富碳g‑C3N4纳米片及其制备方法
CN109046432A (zh) * 2018-08-30 2018-12-21 广州大学 介孔氮化碳的制备方法、N-TiO2/g-C3N4复合光催化剂及其制备方法
CN109331857A (zh) * 2018-11-16 2019-02-15 辽宁大学 一种多孔富碳g-C3N4光催化剂的制备方法和应用
CN109999874A (zh) * 2019-03-11 2019-07-12 江苏大学 一种富氮氮化碳纳米管光催化剂及制备方法和应用
CN110152706A (zh) * 2019-05-09 2019-08-23 北京师范大学 一种以共晶前驱体制备富碳氮化碳可见光催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Modifying the bridging N atoms of polymeric carbon nitride to achieve highly enhanced photocatalytic hydrogen evolution";Zehao Li et al.;《Applied Surface Science》;20200720;第530卷;摘要、第2.1节和图7 *

Also Published As

Publication number Publication date
CN111822031A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN109603880B (zh) 中空管状氮化碳光催化剂及其制备方法和应用
CN108144635B (zh) 一种石墨相氮化碳-硫化镉复合材料的制备方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN108380233B (zh) 磷掺杂氮化碳/氮化碳同型异质结光催化剂及其制备方法和应用
CN114367299B (zh) 光催化产氢用石墨相氮化碳光催化剂及其制备方法
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN101711988A (zh) NaBiO3/BiOCl异质结光催化剂及其制备方法
CN113731451B (zh) 用于去除废水中四环素的三元复合催化材料及其制备方法
CN108940281B (zh) 一种新型纳米光催化材料Ag2MoO4-WO3异质结的制备方法
CN115007194B (zh) 一种非晶硼掺杂氮化碳的制备方法及应用
CN114054066B (zh) 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用
CN114849752A (zh) 六方氮化硼/花环状石墨型氮化碳异质结复合光催化剂及其制备方法和应用
CN111822031B (zh) 富碳氮化碳纳米管光催化剂及制备方法和应用
CN117582977A (zh) 一种用于降解四环素的LCQDs/Bi2MoO6球花状复合光催化剂的制备方法与应用
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN116328850A (zh) NH2 -MIL-53(Al)/F-TiO2 (B) S型异质结光催化剂及其制备方法和应用
CN115228485B (zh) 一种锌镉硫化物光催化剂及其制备方法与应用
CN114602450B (zh) 一种Co/Zn-g-C3N4光催化材料及其制备和应用
CN114345383B (zh) 一种氧化铟/磷化铟空心六棱柱p-n结异质结构光催化剂及其制备和应用
CN115715990A (zh) 一种g-C3N4/蛭石/TiO2三元复合材料的制备方法及应用
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN113117720B (zh) 基于g-C3N4的TiO2晶粒堆积三维贯通孔复合结构及其制备方法
CN112495413A (zh) 过硫酸铵诱导多孔氮化碳纳米片及制备方法和应用
CN112742435A (zh) 铁掺杂富缺陷氮化碳纳米管光催化剂及制备方法和应用
CN116371441B (zh) 一种含硫氮化碳材料及其制备方法与在光催化产氢方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant