CN110639594B - 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法 - Google Patents

一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法 Download PDF

Info

Publication number
CN110639594B
CN110639594B CN201911006236.5A CN201911006236A CN110639594B CN 110639594 B CN110639594 B CN 110639594B CN 201911006236 A CN201911006236 A CN 201911006236A CN 110639594 B CN110639594 B CN 110639594B
Authority
CN
China
Prior art keywords
carbon nitride
titanium dioxide
nano titanium
composite photocatalyst
graphite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911006236.5A
Other languages
English (en)
Other versions
CN110639594A (zh
Inventor
李浪
胡军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Dongzhan Technology Co ltd
Original Assignee
Hunan Dongzhan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Dongzhan Technology Co ltd filed Critical Hunan Dongzhan Technology Co ltd
Priority to CN201911006236.5A priority Critical patent/CN110639594B/zh
Publication of CN110639594A publication Critical patent/CN110639594A/zh
Application granted granted Critical
Publication of CN110639594B publication Critical patent/CN110639594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法。包括以下步骤:将偏钛酸、研磨剂加入球磨罐中球磨8~48h,然后在球磨罐中又加入氮化碳的前驱体,继续球磨4~24h后得混合料;将混合料放入刚玉坩埚,加盖,将坩埚放入马弗炉中,升温至200~300℃,保温1~3h,继续升温至500~700℃,保温3~5h,自然冷却至室温,研磨得到纳米二氧化钛/石墨相氮化碳复合光催化剂。该制备方法采用一锅法直接得到纳米复合材料,工艺简单,无溶剂,绿色环保,生产成本低,制得的纳米二氧化钛/石墨相氮化碳复合光催化剂稳定性好,在可见光区响应好,光催化性能优异。

Description

一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法
技术领域
本发明涉及一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,属于光催化剂领域。
背景技术
光催化技术起始于20世纪70年代,通过将光能转变为化学能从而有效的利用太阳能,并有效地降解环境中有机物。其中半导体光催化氧化技术具有效率高、能耗低、操作简便、反应条件温和无二次污染等优点,可以有效地将有机污染物分解为无机小分子,实现安全绿色降解,并且能够降解氯仿、多氯联苯、有机磷化物等常规方法难以去除的物质。因此,半导体光催化氧化技术成为了现代环保领域研究热点之一。
自从Fujishima和Honda在Nature杂志上发表了在二氧化钛电极上光催化水分解的论文,这就已经寓意着一个新的光催化时代的开始。虽然有很多的光催化剂,但是纳米二氧化钛因为无毒,催化活性高,氧化能力强,稳定性好等优良特征,而成为研究的热点。二氧化钛不仅稳定,而且在水相,气相和非水溶剂中都十分有效,同时也在太阳能的存储和利用以及水和空气的净化方面有着很广泛的应用前景。二氧化钛在光催化方面,几乎能将所有有机的污染物降解为二氧化碳和水以及相应的离子如硫酸根、硝酸根、磷酸根、氯离子等。
石墨相氮化碳(g-C3N4)是一种常温下十分稳定的具有类石墨层状结构的导电聚合物材料。2009年首次报道了g-C3N4具有可见光下分解水产氢和产氧的活性。自此,作为一种全新的不含金属的半导体材料,g-C3N4引起了科研工作者的极大兴趣。g-C3N4是可见光响应材料(2.7eV带隙),CB和VB的能量位置分别的-1.1eV和1.6eV(用标准氢电极做参比电极)。此外,g-C3N4具有很强的耐热性,耐酸、强碱性。g-C3N4光催化剂可以通过将廉价的富含N的前驱体如双氰胺,氰胺,三聚氰胺和尿素进行热缩聚而容易地制备。这些优异的性能使g-C3N4可用于光催化水解产氢,光催化还原CO2,有机污染物的光催化降解,催化有机合成和燃料电池。
TiO2自身的局限性,例如,禁带宽度特别大,只有当波长小于387nm的紫外光照射时,才能被激发产生电子和空穴,并且光生载流子又极易复合,而在太阳光符合条件的紫外光只占4%-6%,因此太阳能的利用率特别低;g-C3N4实际应用中也存在不少缺陷,如g-C3N4使得电子空穴复合速率增加,导致其量子产率大大降低,严重影响了光催化的效率。因此,为了改善二氧化钛和g-C3N4光催化活性,得到性能优越的光催化剂,将g-C3N4与二氧化钛复合,形成半导体异质结,是一条切实可行的技术途径。例如CN201610753071.8涉及到一种石墨相氮化碳和纳米二氧化钛复合涂料添加剂的制备方法。在室温条件下,将TiO2颗粒溶解于过氧化氢和氨水的混合溶液中,搅拌至完全澄清后,加入石墨相氮化碳前驱体,产生沉淀,经离心分离、洗净、烘干后,得到固体粉末,将得到的固体粉末在氮气气氛下煅烧,得到石墨相氮化碳与纳米二氧化钛复合涂料添加剂。
然而,进一步的研究表明,上述技术得到的石墨相氮化碳与纳米二氧化钛复合涂料添加剂的催化活性偏低,采用商用P25二氧化钛作为原料,其生产工艺存在成本高,工艺难以控制等缺陷。
发明内容
针对现有技术的不足,本发明的目的在于提供一种工艺简单,无溶剂,绿色环保,生产成本低,并且光催化性能优异,稳定性好,在可见光区响应好的纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法。
为了实现上述目的,采用如下技术方案:
本发明一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,包括以下步骤:将偏钛酸与研磨剂球磨≥8h,然后加入氮化碳前驱体,继续球磨≥4h得到混合料;将混合料煅烧、研磨即得到纳米二氧化钛/石墨相氮化碳复合光催化剂。
本发明的技术方案,仅需要将偏钛酸、氮化碳前驱体共同球磨后,经煅烧即可获得纳米二氧化钛/石墨相氮化碳复合光催化剂。目前在现有技术中还没采用偏钛酸为原料来制备纳米二氧化钛/石墨相氮化碳复合光催化剂,即使是采用偏钛酸来单纯的制备纳米二氧化钛,也需要复杂的工艺流程,仅通过球磨与煅烧由偏钛酸无法获得纳米级的二氧化钛,而本发明通过偏钛酸、氮化碳前驱体共同球磨却意料之外的获得了具有光催化性能优异,稳定性好,在可见光区响应好的纳米二氧化钛/石墨相氮化碳复合光催化剂。
在本发明中,研磨剂的加入是至关重要的,若不加入研磨剂预先对偏钛酸球磨,则同样无法获得钠米二氧化钛,只能得到微米级的二氧化钛。不过在本发明中对研磨剂的选择没有苛刻的要求,采用现有技术常用的气体研磨剂、固体研磨剂、液体研磨剂都可以达到本发明的制备目的。
优选的方案,所述研磨剂选自丙酮、硝基甲烷、甲醇,水蒸汽、硬脂酸、胶体SiO2、炭黑、MgO粉、胶体石墨、十二烷基硫醇、聚乙烯醇、司班系列、吐温系列、一乙醇胺、二乙醇胺、三乙醇胺、有机硅中的至少一种。
进一步的优选,所述研磨剂选自丙酮、硝基甲烷、甲醇,水蒸汽、硬脂酸、聚乙烯醇、胶体石墨、十二烷基硫醇、司班系列、吐温系列、一乙醇胺、二乙醇胺、三乙醇胺中的至少一种。在该优选范围选择的研磨剂能够在后续的煅烧过程中完全分解的,进一步提升纳米二氧化钛/石墨相氮化碳复合光催化剂的纯度。
更进一步的优选,所述研磨剂选自三乙醇胺、聚乙烯醇中的至少一种。将该优选范围中的研磨剂与偏钛酸共同球磨,可对偏钛酸产生最佳的活化效果。
优选的方案,所述的氮化碳前驱体为尿素、双氰胺、三聚氰胺中的至少一种。
优选的方案,所述的偏钛酸和研磨剂的质量比例为:1∶(0.001~0.05)。
在本发明中,由于纳米二氧化钛与石墨相氮化碳均具有光催化性能,按照目标产物纳米二氧化钠在复合光催化剂中的质量比大于1%,以加入氮化碳前驱体即使得催化性能得到提升。
优选的方案,所述氮化碳前驱体的加入量为偏钛酸质量的60%~100%。在该优选范围内,纳米二氧化钛的粒径可以氮化碳前驱体的协同作用下,达到最细,且获得最好的分散。
优选的方案,所述球磨时,公转转速为30~300r/min,自转转速为60~600r/min。
在本发明中,球磨时转速需要有效控制,过低无法达到充份活化与分散的需求。
进一步的优选,所述球磨时,公转转速为80~120r/min,自转转速为300~500r/min。在该优选范围内,物料可得充份的活化与分散。
优选的方案,所述球磨时,球料比为2~5:1。
在本发明中,对于球磨机的选择没有特别的限制,如采用现有技术中的行星式球磨机。同时偏钛酸与研磨剂球磨以及加入氮化碳前驱体后保持一致的球磨转速,可达到最佳的分散效果。
优选的方案,将偏钛酸与研磨剂球磨8~48h,然后加入氮化碳前驱体,继续球磨4~24h得到混合料。
优选的方案,所述煅烧程序:首先以1~30℃/min的升温速度升到200~300℃,保温1~3h;然后以1~10℃/min的升温速度升到500~700℃,保温3~5h。
优选的方案,所得纳米二氧化钛/石墨相氮化碳复合光催化剂中,纳米二氧化钛的质量分数≥1%。
本发明的技术原理:
偏钛酸在研磨剂的作用下,通过机械活性化,降低了粒径,增加了活性,降低了加热分解过程的活化能。偏钛酸在加热的条件下分解生成二氧化钛。
H2TiO3=====TiO2+H2O
加入氮化碳前驱体继续球磨,增加了前驱体的活性,也使得氮化碳前驱体与偏钛酸完全结合,相互分散均匀。
尿素等前驱体在加热的条件下,通过热聚合等得到石墨相氮化碳。
Figure BDA0002242864610000041
本发明将两个化学反应有机地结合起来,采用一锅法直接得到复合光催化剂。
本发明的有益效果:
本发明先采用机械活性法对偏钛酸和氮化碳前驱体球磨,增加了反应物的活性,并使得二氧化钛和氮化碳前驱体完全结合,相互分散均匀;然后通过一锅法二阶段升温,直接得到粒径均匀、分散性好、可见光响应好、光催化性能优异的复合光催化剂。原料便宜易得,生产设备要求低,生产容量大。生产工艺简单,无溶剂,绿色环保,易于产业化,有较高的社会经济效益。
附图说明
图1为X射线粉末衍射获得的实施例1中纳米TiO2/g-C3N4的XRD图
图2为通过透射电镜(TEM)获得的实施例1中纳米TiO2/g-C3N4的形貌图
图3为在可见光照射下,各种光催化剂对甲基橙的降解图,其中曲线1~5分别为为德国德固赛商品p25、实施例4、实施例2、实施例1、实施例3对甲基橙的降解图。
具体实施方式
以下实施例旨在进一步说明本发明,而不是对本发明的保护范围的限制。
实施例1
称取50g偏钛酸,0.1g三乙醇胺,加入500ml陶瓷球磨罐,再加入200g氧化锆研磨球,在行星式球磨机球磨,球磨机的公转转速设定为90r/min,自转转速为400r/min,球磨48h。在球磨罐中加入双氰胺50g,继续球磨24h得混合料。
将混合料分离出研磨球后加入250ml的刚玉坩埚中,盖好上盖,将装好混合料的坩埚置入马弗炉中,在空气氛中加热,首先以5℃/min的升温速度升到300℃,保温3h;然后以10℃/min的升温速度升到550℃,保温4h。随炉冷却至室温,研磨即得纳米二氧化钛/石墨相氮化碳复合光催化剂。
光催化性能的评价:
以甲基橙为目标物,根据甲基橙的降解来考察光催化剂的光催化性能。光化学反应仪采取的光源功率为400W的金卤灯,在光源周围10cm距离摆放着5个反应管,在反应管内首先倒入事先配制好的25mg/L的甲基橙溶液150ml,然后再在反应管中加入0.2g待测试的光催化剂样品,进行光照反应,加入磁力搅拌子开始搅拌,打开金卤灯和冷却循环装置,从灯打开的那一刻开始计时,每隔10分钟,用0.25μm的针式过滤器取一次样,测量甲基橙的吸光度,根据标准曲线来计算甲基橙的浓度。
图1为煅烧研磨后生成物的XRD,不仅反映了锐钛矿型的TiO2的衍射峰(PDF#21-1272),也反映了g-C3N4衍射峰(PDF#87-1526),证明了生成物就是纳米TiO2/g-C3N4复合光催化剂。
图2为纳米TiO2/g-C3N4复合光催化剂的TEM图,从图片中可以看出纳米二氧化钛颗粒尺寸在30~50nm,分散分布附着在石墨相氮化碳的层状薄膜上。
图3中的曲线2、3、4、5分别为实施例4、实施例2、实施例1、实施例3所制备的光催化剂对甲基橙的降解曲线,对比德国德固赛p25的曲线1,可知本发明所制备的光催化剂的光催化性能表现更加优越。
实施例2
按照实施例1的合成方法和条件,仅将氮化碳的前驱体替换为三聚氰胺和双氰胺各15g。
实施例3
按照实施例1的合成方法和条件,仅将氮化碳的前驱体替换为尿素和双氰胺各15g。
实施例4
按照实施例1的合成方法和条件,仅将研磨剂替换为聚乙烯醇,将氮化碳的前驱体替换为三聚氰胺。
对比例1
称取50g偏钛酸,0.1g三乙醇胺,加入500ml陶瓷球磨罐,再加入200g氧化锆研磨球,在行星式球磨机球磨,球磨机的公转转速设定为90r/min,自转转速为400r/min,球磨48h+24h,获得球磨料。
将球磨料分离出研磨球后加入250ml的刚玉坩埚中,盖好上盖,将装好混合料的坩埚置入马弗炉中,在空气氛中加热,首先以5℃/min的升温速度升到300℃,保温3h;然后以10℃/min的升温速度升到550℃,保温4h。随炉冷却至室温,研磨即得二氧化钛。经煅烧研磨后生成物的XRD检测后,具有锐钛矿型的TiO2的衍射峰(PDF#21-1272),说明形成的TiO2。然而所得TiO2粒径为亚微米级,不属于纳米范围。从对比例1与实施例1的对比可以看出,加入氮化碳前驱体可以对二氧化钛起到进一步的细化二氧化钛的作用。
对比例2
按照实施例1的合成方法和条件,仅未加入研磨剂,煅烧研磨后生成物的XRD,检测到g-C3N4衍射峰(PDF#87-1526),也检测到锐钛矿型的TiO2的衍射峰(PDF#21-1272),但是所得TiO2粒径更大,达到微米级,即所得产物为微米二氧化钛/石墨相氮化碳复合光催化剂,光催化性能大幅下降。

Claims (7)

1.一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,包括以下步骤:将偏钛酸与研磨剂球磨≥8h,然后加入氮化碳前驱体,继续球磨≥4h得到混合料;将混合料煅烧、研磨即得到纳米二氧化钛/石墨相氮化碳复合光催化剂;
所述研磨剂选自丙酮、硝基甲烷、甲醇,水蒸汽、硬脂酸、胶体SiO2、炭黑、MgO粉、胶体石墨、十二烷基硫醇、聚乙烯醇、司班系列、吐温系列、一乙醇胺、二乙醇胺、三乙醇胺、有机硅中的至少一种;
所述的氮化碳前驱体选自尿素、双氰胺、三聚氰胺中至少一种;
所述煅烧程序:首先以1~30℃/min的升温速度升到200~300℃,保温1~3h;然后以1~10℃/min的升温速度升到500~700℃,保温3~5h。
2.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,所述的偏钛酸和研磨剂的质量比例为:1∶(0.001~0.05) 。
3.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,所述球磨时,公转转速为30~300r/min,自转转速为60~600r/min。
4.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,所述氮化碳前驱体的加入量为偏钛酸质量的60%~100%。
5.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,将偏钛酸与研磨剂球磨8~48h,然后加入氮化碳前驱体,继续球磨4~24h得到混合料。
6.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,首先以1~30℃/min的升温速度升到200~300℃,保温1~3h;然后以1~10℃/min的升温速度升到500~700℃,保温3~5h。
7.如权利要求1所述的一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法,其特征在于,所得纳米二氧化钛/石墨相氮化碳复合光催化剂中,纳米二氧化钛的质量分数≥1%。
CN201911006236.5A 2019-10-22 2019-10-22 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法 Active CN110639594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911006236.5A CN110639594B (zh) 2019-10-22 2019-10-22 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911006236.5A CN110639594B (zh) 2019-10-22 2019-10-22 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110639594A CN110639594A (zh) 2020-01-03
CN110639594B true CN110639594B (zh) 2022-08-19

Family

ID=69013333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911006236.5A Active CN110639594B (zh) 2019-10-22 2019-10-22 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110639594B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295585A (zh) * 2020-10-27 2021-02-02 南昌航空大学 一种钛酸镁/石墨相氮化碳复合可见光催化剂的制备方法及应用
CN112915987A (zh) * 2021-01-26 2021-06-08 宿州学院 一种具有降解甲醛效果的TiO2@C3N4光催化剂及其制备方法
CN115418146A (zh) * 2022-08-30 2022-12-02 上海科丽艾环保科技有限公司 环保绿色乳胶漆及其制备方法
CN115364839B (zh) * 2022-09-05 2023-10-03 聊城大学 一种低温下制备可见光下响应TiO2光催化剂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391091A (zh) * 2016-11-11 2017-02-15 江西德弘新材料有限公司 一种具有可见光响应的光催化剂及其制备方法
CN109529872A (zh) * 2018-12-19 2019-03-29 河北麦森钛白粉有限公司 非晶态纳米二氧化钛可见光催化剂复合物及其制备方法
CN109675540A (zh) * 2018-12-19 2019-04-26 河北麦森钛白粉有限公司 一种非晶态纳米二氧化钛光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391091A (zh) * 2016-11-11 2017-02-15 江西德弘新材料有限公司 一种具有可见光响应的光催化剂及其制备方法
CN109529872A (zh) * 2018-12-19 2019-03-29 河北麦森钛白粉有限公司 非晶态纳米二氧化钛可见光催化剂复合物及其制备方法
CN109675540A (zh) * 2018-12-19 2019-04-26 河北麦森钛白粉有限公司 一种非晶态纳米二氧化钛光催化剂的制备方法

Also Published As

Publication number Publication date
CN110639594A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110639594B (zh) 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法
Zhang et al. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method
Chen et al. In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity
CN106824246B (zh) 一种TiO2/g-C3N4复合可见光催化剂的制备方法
Liu et al. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties
Qin et al. Zinc-doped g-C3N4/BiVO4 as a Z-scheme photocatalyst system for water splitting under visible light
Cheng et al. Facile synthesis of size-tunable CuO/graphene composites and their high photocatalytic performance
Kong et al. Preparation, characterization and photocatalytic properties of ZnTiO3 powders
Sekar et al. Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation
Li et al. Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance
Huang et al. Synergetic adsorption and photocatalysis performance of g-C3N4/Ce-doped MgAl-LDH in degradation of organic dye under LED visible light
Song et al. Preparation of visible-light photocatalysts of Bi2O3/Bi embedded in porous carbon from Bi-based metal organic frameworks for highly efficient Rhodamine B removal from water
Zhan et al. g-C3N4/ZnWO4 films: preparation and its enhanced photocatalytic decomposition of phenol in UV
CN110721698B (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
CN108067281A (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN108479752A (zh) 一种二维碳层负载的BiVO4/TiO2异质可见光催化剂的制备方法
CN109126856A (zh) 一种具有紧密连接的可见光催化剂的制备方法
Luo et al. Nitrogen rich carbon nitride synthesized by copolymerization with enhanced visible light photocatalytic hydrogen evolution
Grodziuk et al. Photocatalytic activity of nanostructured composites based on layered niobates and C3N4 in the hydrogen evolution reaction from electron donor solutions under visible light
Sun et al. Facile synthesis of free-metal ternary composites for ultra-fast photocatalytic degradation of organic pollutant
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
Wu et al. Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies
CN113751049B (zh) 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
Xu et al. Sulfur/g-C3N4 composites with enhanced visible light photocatalytic activity
Simsek Construction of CaTiO3 nanosheets with boron nitride quantum dots as effective photogenerated hole extractor for boosting photocatalytic performance under simulated sunlight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant