WO2022010222A1 - 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체 - Google Patents

그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체 Download PDF

Info

Publication number
WO2022010222A1
WO2022010222A1 PCT/KR2021/008557 KR2021008557W WO2022010222A1 WO 2022010222 A1 WO2022010222 A1 WO 2022010222A1 KR 2021008557 W KR2021008557 W KR 2021008557W WO 2022010222 A1 WO2022010222 A1 WO 2022010222A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
graft copolymer
polymerization
weight
diene
Prior art date
Application number
PCT/KR2021/008557
Other languages
English (en)
French (fr)
Inventor
전태영
채주병
정유성
김종범
김인석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210087924A external-priority patent/KR20220006469A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180005874.4A priority Critical patent/CN114555663B/zh
Priority to US17/769,817 priority patent/US20220380507A1/en
Priority to EP21836797.7A priority patent/EP4029889A4/en
Publication of WO2022010222A1 publication Critical patent/WO2022010222A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles

Definitions

  • the present invention relates to a method for preparing a graft copolymer and a graft copolymer prepared by the method, and to a method for preparing a graft copolymer having excellent surface properties, impact resistance and workability, and a graft copolymer prepared therefrom is about
  • a diene-based graft copolymer prepared by graft polymerization of a diene-based rubber polymer with monomers such as a (meth)acrylate-based monomer, a vinyl aromatic monomer and a vinyl cyanide-based monomer has excellent rubber properties of a diene-based rubbery polymer. For this reason, it is widely used as an impact modifier for thermoplastic resin compositions.
  • the thermoplastic resin composition containing the diene-based graft copolymer has excellent impact resistance, chemical resistance, and processability, and is widely used in office equipment, electrical/electronic parts, automobile interior materials, and the like.
  • Patent Document 1 KR2039031B
  • the problem to be solved by the present invention is to provide a graft copolymer having excellent surface properties, impact resistance and processability.
  • the present invention comprises the steps of: initiating polymerization by batching a first molecular weight modifier, a diene-based rubbery polymer, a vinyl aromatic monomer, and a vinyl cyanide-based monomer into a reactor; and after initiating polymerization, a second molecular weight regulator, a vinyl aromatic monomer, and a vinyl cinide-based monomer are continuously added to the reactor to perform polymerization, wherein the second molecular weight regulator is an alkyl styrene-based dimer and a mercaptan-based compound. 40.0:60.0 to 70.0:30.0, and the weight ratio of the first molecular weight regulator to the second molecular weight regulator is 5.0:95.0 to 25.0:75.0.
  • the present invention includes a diene-based rubber polymer in which a vinyl aromatic monomer unit and a vinyl cyanide monomer unit are grafted, a weight average molecular weight of 70,000 to 80,000 g/mol or less, and a graft rate of 32 to 40%, A graft copolymer having a molecular weight distribution of 2.0 or less is provided.
  • the present invention provides a thermoplastic resin composition comprising the graft copolymer.
  • the molecular weight distribution can be lowered while maintaining the graft rate and the weight average molecular weight of the graft copolymer at an appropriate level. For this reason, it is possible to prepare a graft copolymer having excellent surface properties, impact resistance and processability.
  • 'diene-based rubber polymer' used in the present invention may refer to a diene-based monomer or a synthetic rubber prepared by cross-linking polymerization of a diene-based monomer and a vinyl aromatic monomer.
  • the diene-based monomer may be at least one selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene, of which 1,3-butadiene is preferable.
  • the average particle diameter of the diene-based rubbery polymer may be 50 to 500 nm, preferably 70 to 400 nm. When the above conditions are satisfied, a graft copolymer having excellent impact resistance and surface properties can be prepared.
  • the term 'vinyl aromatic monomer' used in the present invention includes styrene, ⁇ -methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, 4-fluorostyrene, 4-chlorostyrene, 2-chlorostyrene, 4- It may mean at least one selected from the group consisting of bromostyrene and 2-bromostyrene.
  • the vinyl aromatic monomer is preferably styrene.
  • the term 'vinyl cyanide-based monomer' used in the present invention may mean at least one selected from the group consisting of acrylonitrile, 2-methylacrylonitrile, 2-ethylacrylonitrile and 2-chloroacrylonitrile.
  • the vinyl cyanide-based monomer is preferably acrylonitrile.
  • alkyl styrene-based dimer' used in the present invention may mean at least one selected from the group consisting of ⁇ -methyl styrene dimer, p-methyl styrene dimer, and 2,4-dimethyl styrene dimer.
  • alkyl styrene-based dimer ⁇ -methyl styrene dimer is preferable.
  • the term ‘mercaptan-based compound’ may mean at least one selected from the group consisting of t-dodecyl mercaptan, n-dodecyl mercaptan, and n-octyl mercaptan.
  • t-dodecyl mercaptan is preferable.
  • 'polymerization conversion rate' used in the present invention may mean a polymerization conversion rate calculated by the following formula.
  • Polymerization conversion (%) ⁇ (total weight of monomers added until polymerization is complete)-(total weight of unreacted monomers until polymerization is complete) ⁇ /(total weight of monomers added until polymerization is complete) ⁇ 100
  • 'graft rate' used in the present invention is that 1 g of the graft copolymer powder is dissolved in 50 ml of acetone while stirring for 24 hours, centrifuged to separate the supernatant from the precipitate, and the precipitate is dried with a hot air dryer at 50 °C for 12 hours After drying for a while, the weight of the obtained dried product is measured, and it can be calculated based on the following Equation 1:
  • Graft rate (%) ⁇ (weight 1 of copolymer of grafted monomer mixture) / (weight of diene-based rubbery polymer 2) ) ⁇ ⁇ 100
  • Weight of copolymer of grafted monomer mixture (weight of dry matter) - (weight of diene-based rubbery polymer)
  • Weight of diene-based rubbery polymer theoretically added weight of diene-based rubbery polymer (based on solid content) or weight of diene-based rubbery polymer measured by analyzing graft copolymer by infrared spectroscopy
  • the term 'weight average molecular weight of the graft copolymer' used in the present invention refers to the drying of the supernatant described in the graft rate measurement method in a tetrahydrofuran (THF) solution, followed by filtering through a 1 ⁇ m filter, followed by gel permeation chromatography It can be measured as a value relative to a standard PS (standard polystyrene) sample through the graph.
  • THF tetrahydrofuran
  • the term 'molecular weight distribution' used in the present invention may mean a ratio of the weight average molecular weight of the graft copolymer to the number average molecular weight of the graft copolymer.
  • the number average molecular weight of the graft copolymer may be measured by the method described in Methods for Measuring Weight Average Molecular Weight of the Graft Copolymer.
  • 'polymerization' used in the present invention may mean at least one selected from the group consisting of suspension polymerization, emulsion polymerization, and bulk polymerization. Of these, emulsion polymerization capable of producing a graft copolymer having both excellent surface properties and impact resistance is preferred.
  • 'sum of diene-based rubber polymer, vinyl aromatic monomer and vinyl cyanide monomer' is the total sum of diene rubber polymer, vinyl aromatic monomer and vinyl cyanide monomer added during the preparation of the graft copolymer.
  • the term 'average particle diameter of the diene-based rubber polymer' used in the present invention may mean an arithmetic average particle diameter in a particle size distribution measured by dynamic light scattering, specifically, an average particle diameter of scattering intensity.
  • the average particle diameter of the diene-based rubber polymer can be measured using Nicomp 380 equipment (product name, manufacturer: PSS Nicomp).
  • the term 'average particle diameter of insoluble components in the turbid solution' may be a value measured by a light scattering method after dissolving the thermoplastic resin composition in acetone and stirring, classifying the insoluble components not dissolved in acetone by centrifugation by size.
  • 0.2 g of a specimen prepared by extrusion and injection of the thermoplastic resin composition is dissolved in 50 ml of acetone, stirred for 20 hours, and then centrifuged with a particle size analyzer (UHR 18000, manufactured by CPS Instruments) to centrifuge the insoluble content in acetone. It may be a value measured by a light scattering method after classification by size.
  • a method for producing a graft copolymer according to an embodiment of the present invention includes the steps of: initiating polymerization by batching a first molecular weight modifier, a diene-based rubber polymer, a vinyl aromatic monomer, and a vinyl cyanide-based monomer into a reactor; and performing polymerization by continuously adding a second molecular weight regulator, a vinyl aromatic monomer, and a vinyl cynide monomer to the reactor, wherein the second molecular weight regulator is an alkyl styrene-based dimer and a mercaptan-based compound 40.0:60.0 to 70.0:30.0, and the weight ratio of the first molecular weight modifier to the second molecular weight modifier is 5.0:95.0 to 25.0:75.0.
  • the present inventors continuously added the weight ratio of the alkyl styrene-based dimer and the mercaptan-based compound included in the second molecular weight regulator to a specific ratio in the polymerization step, and set the weight ratio of the first molecular weight regulator and the second molecular weight regulator to a specific ratio. It was found that a graft copolymer having excellent surface properties, impact resistance and processability was prepared by appropriately controlling the weight average molecular weight, graft rate and molecular weight distribution, and thus the present invention was completed.
  • a first molecular weight regulator, a diene-based rubbery polymer, a vinyl aromatic monomer, and a vinyl cyanide-based monomer are collectively added to the reactor to initiate polymerization.
  • the alkyl styrene-based dimer can lower the molecular weight distribution while maintaining the graft rate at an appropriate level compared to the mercaptan-based compound. Accordingly, it is preferable to use an alkyl styrene-based dimer as the first molecular weight control agent.
  • the first molecular weight regulator may be added in an amount of 0.01 to 0.15 parts by weight, preferably 0.03 to 0.08 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl aromatic monomer, and the vinyl cyanide-based monomer.
  • the molecular weight distribution can be lowered while maintaining the graft ratio and the weight average molecular weight of the graft copolymer at an appropriate level, so that the impact resistance of the graft copolymer can be further improved.
  • the polymerization may be initiated in the presence of at least one selected from the group consisting of an emulsifier, an initiator, an activator, and an aqueous solvent.
  • the initiator is a radical initiator, and as a radical initiator, sodium persulfate, potassium persulfate, ammonium persulfate, hydroperoxide, t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanol peroxide, t-butyl peroxide It may be at least one selected from the group consisting of oxyisobutylate, azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis cyclohexanecarbonitrile, and azobis isobutyric acid (butyric acid) methyl;
  • the initiator may be present in an amount of 0.001 to 1.000 parts by weight, preferably 0.010 to 0.800 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl cyanide-based monomer and the vinyl aromatic monomer. If the above-mentioned range is satisfied, the residual amount of the initiator in the graft copolymer powder can be minimized while improving the polymerization stability of the graft polymerization.
  • an activator may be further added.
  • the activator may be at least one selected from the group consisting of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, iron (II) sulfate, dextrose, tetrasodium pyrophosphate, sodium pyrophosphate anhydros and sodium sulfate.
  • at least one selected from the group consisting of tetrasodium pyrophosphate, iron (II) sulfate and sodium aldehyde sulfoxylate is preferable.
  • the activator may be added in an amount of 0.001 to 0.500 parts by weight, preferably 0.010 to 0.300 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl cyanide-based monomer and the vinyl aromatic monomer.
  • the residual amount of the activator in the graft copolymer powder can be minimized while improving the polymerization stability of the graft polymerization.
  • the emulsifiers include sodium dicyclohexyl sulfosuccinate, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, sodium octadecyl sulfate, sodium oleic sulfate, potassium dodecyl sulfate and potassium octadecyl sulfate, potassium rosinate and sodium rosin. It may be at least one selected from the group consisting of nates.
  • the emulsifier may be added in an amount of 0.15 to 2.00 parts by weight, preferably 0.30 to 1.50 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl cyanide-based monomer and the vinyl aromatic monomer.
  • 0.15 to 2.00 parts by weight preferably 0.30 to 1.50 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl cyanide-based monomer and the vinyl aromatic monomer.
  • the aqueous solvent may be ion-exchanged water or pure water.
  • a second molecular weight regulator, a vinyl aromatic monomer, and a vinyl cinide-based monomer are continuously added to the reactor to perform polymerization.
  • the second molecular weight regulator may include the alkyl styrene-based dimer and the mercaptan-based compound in a weight ratio of 40.0:60.0 to 70.0:30.0, preferably 41:59 to 65:35 by weight.
  • a graft copolymer having excellent surface properties, impact resistance and workability can be prepared by lowering the molecular weight distribution and glass transition temperature of the graft copolymer. If it is less than the above range, since the weight average molecular weight and molecular weight distribution of the graft copolymer are high, the surface properties and workability of the graft copolymer may be reduced.
  • the second molecular weight regulator may be added in an amount of 0.2 to 0.7 parts by weight, preferably 0.3 to 0.6 parts by weight, based on 100 parts by weight of the total of the diene-based rubbery polymer, the vinyl aromatic monomer, and the vinyl cyanide-based monomer.
  • the glass transition temperature and particle dispersity of the graft copolymer are lowered, so that the impact resistance and surface properties of the graft copolymer can be improved.
  • the weight ratio of the first molecular weight modifier to the second molecular weight modifier may be 5.0:95.0 to 25.0:75.0, preferably 8.0:92.0 to 22.0:78.0. If the above conditions are satisfied, the impact resistance and processability of the graft copolymer may be improved. If it is less than or exceeding the above conditions, the final polymerization conversion rate of the graft copolymer may be lowered, and the graft rate, weight average molecular weight, impact resistance and surface properties of the graft copolymer may be significantly reduced.
  • the weight ratio of the alkyl styrene-based dimer and the mercaptan-based compound in the second molecular weight regulator satisfies the aforementioned weight ratio, but the first and second molecular weight regulator does not satisfy the aforementioned weight ratio, the final polymerization of the graft copolymer Conversion rate, graft rate, weight average molecular weight, impact resistance and surface properties may be significantly reduced.
  • the surface properties of the graft copolymer This can be significantly reduced.
  • the final polymerization conversion ratio of the graft copolymer, graft ratio, weight average molecular weight, insect resistance Both bran and surface properties may be significantly degraded.
  • the second molecular weight modifier When the second molecular weight modifier is continuously added, it is easier to control the graft rate and weight average molecular weight compared to batch injection, and thus a graft copolymer having a desired graft rate and weight average molecular weight can be prepared.
  • the starting time of continuous input of the second molecular weight regulator may be a time when the polymerization conversion rate is 10% or less, preferably 1 to 5%.
  • the second molecular weight regulator is added from the polymerization propagation step, so that the effect of the second molecular weight regulator can be maximized.
  • the time when the continuous input of the second molecular weight modifier is terminated may be a time when the polymerization conversion rate is 80 to 97%, preferably 90 to 95%.
  • the weight ratio of the vinyl aromatic monomer added in the step of initiating the polymerization to the vinyl aromatic monomer added in the step of performing the polymerization is 10.0:90.0 to 35.0:65.0, preferably 15.0:85.0 to 30.0:70.0 days can When the above conditions are satisfied, a graft copolymer having a uniform composition throughout polymerization can be prepared while polymerization stability is improved.
  • the weight ratio of the vinyl cyanide-based monomer added in the step of initiating the polymerization to the vinyl cyanide-based monomer added in the step of performing the polymerization is 10.0:90.0 to 35.0:65.0, preferably 15.0:85.0 to 30.0: 70.0.
  • a graft copolymer having a uniform composition throughout polymerization can be prepared while polymerization stability is improved.
  • the polymerization may be performed in the presence of at least one selected from the group consisting of an emulsifier, an initiator, an activator, and an aqueous solvent.
  • an emulsifier an initiator, an activator, and an aqueous solvent.
  • the description of the emulsifier, the initiator, the activator and the aqueous solvent is the same as described above.
  • the graft copolymer according to another embodiment of the present invention includes a diene-based rubber polymer in which a vinyl aromatic monomer unit and a vinyl cyanide monomer unit are grafted, and has a weight average molecular weight of 70,000 to 80,000 g/mol or less, and , the graft ratio is 32 to 40%, and the molecular weight distribution is 2.0 or less.
  • the graft copolymer may have a weight average molecular weight of 72,000 to 80,000 g/mol, a graft rate of 32 to 39%, and a molecular weight distribution of 1.7 or less. More preferably, the graft copolymer may have a weight average molecular weight of 75,000 to 80,000 g/mol, a graft rate of 35 to 39%, and a molecular weight distribution of 1.6 or less. When the above conditions are satisfied, the impact resistance, surface properties and processability of the graft copolymer are all excellent.
  • the glass transition temperature of the graft copolymer may be -100 to -90 °C, preferably -95 to -90 °C. If the above conditions are satisfied, the impact resistance of the graft copolymer may be further improved.
  • the graft copolymer may include a copolymer including a vinyl aromatic monomer unit and a vinyl cyanide monomer unit without being grafted to the diene-based rubbery polymer.
  • the graft copolymer may be a graft copolymer prepared by the method for preparing the graft copolymer according to an embodiment of the present invention.
  • thermoplastic resin composition according to another embodiment of the present invention may include the graft copolymer according to another embodiment of the present invention.
  • thermoplastic resin composition may further include a non-graft copolymer including a vinyl aromatic monomer unit and a vinyl cyanide monomer unit.
  • the thermoplastic resin composition may include the graft copolymer and the non-graft copolymer in a weight ratio of 10:90 to 40:60, preferably 20:80 to 30:70. When the above-mentioned range is satisfied, a thermoplastic resin composition having excellent processability and impact resistance can be manufactured.
  • the non-graft copolymer may include a vinyl aromatic monomer unit and a vinyl cyanide monomer unit in a weight ratio of 60.0:40.0 to 80.0:20.0, preferably 65.0:35.0 to 75.0:25.0.
  • a thermoplastic resin composition having excellent processability and chemical resistance can be prepared.
  • the non-grafted copolymer is preferably a styrene/acrylonitrile non-grafted copolymer.
  • thermoplastic resin composition may have a particle dispersion of 5 or less, preferably 2 to 4, calculated by Equation 1 below:
  • Np (average particle diameter of insoluble content in the turbid solution) 3 / (average particle diameter of diene-based rubber polymer) 3
  • the average particle diameter of the insoluble content in the turbid solution is a value measured by the light scattering method after dissolving the thermoplastic resin composition in acetone and stirring, centrifuging the insoluble content insoluble in acetone to classify by size,
  • the average particle diameter of the diene-based rubbery polymer is a value measured by a dynamic light scattering method of the diene-based rubbery polymer added during polymerization.
  • the particle dispersion degree is an index indicating the degree to which the graft copolymer is dispersed in the non-graft copolymer (matrix copolymer) in the thermoplastic resin composition, and the smaller the value, the better the dispersion degree of the graft copolymer is.
  • a molded article having excellent surface properties can be manufactured.
  • the first mixed solution was collectively put into a polymerization reactor filled with nitrogen, polymerization was started at 50 °C.
  • the polymerization reactor was heated to 70° C. and the second mixed solution was continuously added while polymerization was carried out for 2 hours to reach a point where the polymerization conversion rate was 92%.
  • the third mixed solution was batch-injected into the polymerization reactor, and then the temperature was raised to 80° C. for 1 hour, and polymerization was terminated to obtain a graft copolymer latex.
  • 0.4 parts by weight of an antioxidant (OW500 manufactured by LATON) was added to the graft copolymer latex, and agglomerated with 2.0 parts by weight of sulfuric acid. Thereafter, dehydration and hot air drying were performed to prepare a graft copolymer powder having a moisture content of less than 1% by weight.
  • thermoplastic resin composition ⁇ Production of thermoplastic resin composition>
  • thermoplastic resin composition 30 parts by weight of the prepared graft copolymer powder and 70 parts by weight of a styrene/acrylonitrile non-graft copolymer (92HR manufactured by LG Chem) were uniformly mixed to prepare a thermoplastic resin composition.
  • Example 1 a graft polymer powder and a thermoplastic resin composition were prepared in the same manner as in Example 1, except that the first molecular weight regulator and the second molecular weight regulator were added in the amounts shown in Tables 1 to 5 below. did.
  • Polymerization conversion (%) ⁇ (total weight of monomers added until polymerization is complete)-(total weight of unreacted monomers until polymerization is complete) ⁇ /(total weight of monomers added until polymerization is complete) ⁇ 100
  • Graft rate (%) ⁇ (weight 1 of copolymer of grafted monomer mixture) / (weight of diene-based rubbery polymer 2) ) ⁇ ⁇ 100
  • Weight of copolymer of grafted monomer mixture (weight of dry matter) - (weight of diene-based rubbery polymer)
  • Weight of diene-based rubbery polymer theoretically added weight of diene-based rubbery polymer (based on solid content) or weight of diene-based rubbery polymer measured by analyzing the first copolymer by infrared spectroscopy
  • Molecular weight distribution It may mean the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • Mw/Mn weight average molecular weight
  • Mn number average molecular weight
  • Particle dispersion degree (Np) The particle dispersion degree was calculated by the following formula.
  • the particle dispersion degree is an index indicating the degree to which the graft copolymer is dispersed in the non-graft copolymer in the thermoplastic resin composition, and the smaller the value, the better the dispersion degree of the graft copolymer is.
  • Np (average particle diameter of insoluble content in the turbid solution) 3 / (average particle diameter of diene-based rubber polymer) 3
  • the average particle diameter of the insoluble content in the turbid solution was determined by dissolving 0.2 g of the specimen in 50 ml of acetone and stirring slowly for 20 hours, then centrifuging the insoluble content in acetone with a particle size analyzer (UHR 18000, CPS Instruments) by size. After classification, it was measured by the light scattering method.
  • the average particle diameter of the diene-based rubbery polymer was measured by dynamic light scattering using Nicomp 380 equipment (product name, manufacturer: PSS Nicomp) for the diene-based rubbery polymer injected during polymerization.
  • Izod impact strength (kg ⁇ cm/cm, 1/4 inch): It was measured according to ASTM D265.
  • Example 1 Example 2
  • Example 3 Example 4 first molecular weight modifier AMSD 0.05 0.05 0.05 0.05 second molecular weight modifier AMSD 0.14 0.15 0.35 0.45 TDDM 0.20 0.20 0.20 0.20 AMSD:TDDM (weight ratio) About 41.2:58.8 about 42.9:57.1 about 63.6:36.4 About 69.2:30.8 Weight ratio of the first and second molecular weight modifiers About 12.8:87.2 About 12.5:87.5 Approx. 8.3:91.7 Approx.
  • Example 6 Example 7 first molecular weight modifier AMSD 0.10 0.10 0.04 second molecular weight modifier AMSD 0.15 0.30 0.35 TDDM 0.20 0.20 0.40 AMSD:TDDM (weight ratio) about 42.9:57.1 60.0:40.0 about 46.7:53.3 Weight ratio of the first and second molecular weight modifiers About 22.2:77.8 about 16.7:83.3 Approx.
  • ⁇ -methyl styrene dimer and t-dodecyl mercaptan are added as the second molecular weight regulator in a weight ratio of 40.0:60.0 to 70.0:30.0, and the first molecular weight regulator and the second molecular weight regulator
  • the graft copolymers of Examples 1 to 7 having a weight ratio of 5.0:95.0 to 25.0 to 75.0 had a weight average molecular weight of 73,000 to 78,000 g/mol, a graft rate of 32 to 39%, and a molecular weight distribution of 1.7 or less.
  • the glass transition temperature was -90 to -95 °C.
  • the specimens of Examples 1 to 7 prepared with the graft copolymer having these characteristics had an appropriate flow index and thus excellent workability, and a low particle dispersion degree to form fewer surface protrusions, which resulted in excellent surface properties, The impact resistance was also excellent.
  • the graft copolymer of Comparative Example 1 in which the first molecular weight regulator was not added had a graft rate of 38%, a weight average molecular weight of 77,000 g/mol, a molecular weight distribution of 2.1, and a glass transition temperature of -90°C. Since the graft copolymer of Comparative Example 1 had a high molecular weight distribution, the particle dispersion of the specimen prepared therefrom was high, so that many surface protrusions were formed, and the surface properties were deteriorated.
  • the graft copolymers of Comparative Examples 2 and 3 in which the first molecular weight regulator was not added and ⁇ -methyl styrene dimer was not added as the second molecular weight regulator had a graft ratio, a weight average molecular weight, a molecular weight distribution, and a glass transition temperature. was high
  • the specimens of Comparative Examples 2 and 3 prepared with the graft copolymer having these characteristics did not have excellent particle dispersity, so that a lot of surface protrusions were formed, and thus the surface properties were deteriorated.
  • the graft copolymer of Comparative Example 4 in which t-dodecyl mercaptan was added in excess without adding the first molecular weight modifier and without ⁇ -methyl styrene dimer as the second molecular weight modifier had a low weight average molecular weight, and a molecular weight The distribution and glass transition temperature were high. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties. And the impact resistance was also lowered.
  • the graft copolymer of Comparative Example 5 in which ⁇ -methyl styrene dimer and t-dodecyl mercaptan were added in a weight ratio of 37.0:63.0 as the second molecular weight modifier had high weight average molecular weight, molecular weight distribution and glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties.
  • the graft copolymer of Comparative Example 6 in which ⁇ -methyl styrene dimer and t-dodecyl mercaptan were added as the second molecular weight modifier in a weight ratio of 75:25 had low graft rate and low glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties. Moreover, impact resistance also fell.
  • the graft copolymer of Comparative Example 7 in which the weight ratio of the first and second molecular weight modifiers was about 2.8:97.2, had a low graft rate and a low weight average molecular weight, and a high glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties. Moreover, impact resistance also fell.
  • the graft copolymer of Comparative Example 8 in which ⁇ -methyl styrene dimer and t-dodecyl mercaptan were added in a weight ratio of about 23.1:76.9 as the second molecular weight modifier, had high weight average molecular weight, molecular weight distribution and glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties.
  • the second molecular weight regulator As the second molecular weight regulator, ⁇ -methyl styrene dimer and t-dodecyl mercaptan were added in a weight ratio of about 25.0:75.0, and the weight ratio of the first and second molecular weight regulators was about 29.8:70.2.
  • the composite had a low weight average molecular weight and a high glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties. Moreover, impact resistance also fell.
  • the graft copolymer of Comparative Example 10 comprising ⁇ -methyl styrene dimer and t-dodecyl mercaptan as the second molecular weight modifier in a weight ratio of 50.0:50.0, and the weight ratio of the first and second molecular weight modifiers to about 27.3:72.7 has a low weight average molecular weight and a high glass transition temperature. Specimens made of the graft copolymer having these characteristics did not have excellent particle dispersibility, and thus many surface protrusions were formed, which deteriorated the surface properties. Also, the impact resistance was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 반응기에 제1 분자량 조절제, 디엔계 고무질 중합체, 비닐 방향족계 단량체, 및 비닐 시아나이드계 단량체를 일괄 투입하여 중합을 개시하는 단계; 및 중합 개시 후, 상기 반응기에 제2 분자량 조절제, 비닐 방향족계 단량체 및 비닐 시나이드계 단량체를 연속 투입하여 중합을 수행하는 단계를 포함하고, 상기 제2 분자량 조절제는 알킬 스티렌계 다이머 및 머캅탄계 화합물을 40.0:60.0 내지 70.0:30.0의 중량비로 포함하고, 상기 제1 분자량 조절제와 제2 분자량 조절제의 중량비는 5.0:95.0 내지 25.0:75.0인 그라프트 공중합체의 제조방법 및 그라프트 공중합체에 관한 것이다.

Description

그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체
[관련출원과의 상호인용]
본 발명은 2020년 7월 8일에 출원된 한국 특허 출원 제10-2020-0084052호 및 2021년 7월 5일에 출원된 한국 특허 출원 제10-2021-0087924호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체에 관한 것으로서, 표면 특성, 내충격성 및 가공성이 모두 우수한 그라프트 공중합체의 제조방법 및 이로 제조된 그라프트 공중합체에 관한 것이다.
디엔계 고무질 중합체에, (메트)아크릴레이트계 단량체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체 등의 단량체를 그라프트 중합하여 제조한 디엔계 그라프트 공중합체는 디엔계 고무질 중합체의 우수한 고무 특성으로 인해 열가소성 수지 조성물의 충격보강제로 널리 사용되고 있다. 또한, 디엔계 그라프트 공중합체를 포함하는 열가소성 수지 조성물은 내충격성, 내화학성, 가공성이 우수하여 사무용 기기, 전기·전자 부품, 자동차 내장재 등에 널리 사용되고 있다.
이러한 디엔계 그라프트 공중합체의 내충격성, 가공성 및 표면 특성을 개선시키기 위하여, 많은 연구가 있었다. 하지만, 디엔계 그라프트 공중합체의 내충격성을 개선시키기 위하여, 디엔계 그라프트 공중합체의 중량평균분자량 또는 그라프트율을 증가시키면, 가공성 및 표면 특성이 저하되는 문제가 있다. 또한, 디엔계 그라프트 공중합체의 가공성 및 표면 특성을 개선시키기 위하여, 디엔계 그라프트 공중합체의 그라프트율을 감소시키면, 오히려 내충격성이 저하되는 문제가 있다.
이에, 디엔계 그라프트 공중합체의 중량평균분자량과 그라프트율은 유지하면서, 내충격성, 가공성 및 표면 특성이 모두 우수한 디엔계 그라프트 공중합체를 제조하고자 하는 연구가 지속되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR2039031B
본 발명이 해결하고자 하는 과제는 표면 특성, 내충격성 및 가공성이 모두 우수한 그라프트 공중합체를 제공하는 것이다.
상술한 과제를 해결하기 위하여, 본 발명은 반응기에 제1 분자량 조절제, 디엔계 고무질 중합체, 비닐 방향족계 단량체, 및 비닐 시아나이드계 단량체를 일괄 투입하여 중합을 개시하는 단계; 및 중합 개시 후, 상기 반응기에 제2 분자량 조절제, 비닐 방향족계 단량체 및 비닐 시나이드계 단량체를 연속 투입하여 중합을 수행하는 단계를 포함하고, 상기 제2 분자량 조절제는 알킬 스티렌계 다이머 및 머캅탄계 화합물을 40.0:60.0 내지 70.0:30.0의 중량비로 포함하고, 상기 제1 분자량 조절제와 제2 분자량 조절제의 중량비는 5.0:95.0 내지 25.0:75.0인 그라프트 공중합체의 제조방법을 제공한다.
또한, 본 발명은 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하고, 중량평균분자량이 70,000 내지 80,000 g/mol 이하이고, 그라프트율이 32 내지 40 %이고, 분자량 분포가 2.0 이하인 그라프트 공중합체를 제공한다.
또한, 본 발명은 상기 그라프트 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 그라프트 공중합체의 제조방법을 따르면, 그라프트 공중합체의 그라프트율 및 중량평균분자량을 적정 수준으로 유지하면서 분자량 분포를 낮출 수 있다. 이로 인해, 표면 특성, 내충격성 및 가공성이 우수한 그라프트 공중합체를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용되는 용어 ‘디엔계 고무질 중합체’는 디엔계 단량체, 또는 디엔계 단량체와 비닐 방향족계 단량체를 가교 중합하여 제조한 합성 고무를 의미할 수 있다.
디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피페릴렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직하다.
상기 디엔계 고무질 중합체의 평균입경은 50 내지 500 ㎚, 바람직하게는 70 내지 400 ㎚일 수 있다. 상술한 조건을 만족하면, 내충격성 및 표면 특성이 우수한 그라프트 공중합체를 제조할 수 있다.
본 발명에서 사용되는 용어 ‘비닐 방향족계 단량체’는 스티렌, α-메틸 스티렌, p-메틸 스티렌, 2,4-디메틸 스티렌, 4-플루오로스티렌, 4-클로로스티렌, 2-클로로스티렌, 4-브로모스티렌 및 2-브로모스티렌으로 이루어진 군에서 선택되는 1종 이상을 의미할 수 있다. 상기 비닐 방향족계 단량체로는 스티렌이 바람직하다.
본 발명에서 사용되는 용어 ‘비닐 시아나이드계 단량체’는 아크릴로니트릴, 2-메틸아크릴로니트릴, 2-에틸아크릴로니트릴 및 2-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상을 의미할 수 있다. 상기 비닐 시아나이드계 단량체로는 아크릴로니트릴이 바람직하다.
본 발명에서 사용되는 용어 ‘알킬 스티렌계 다이머’는 α-메틸 스티렌 다이머, p-메틸 스티렌 다이머 및 2,4-디메틸 스티렌 다이머로 이루어진 군에서 선택되는 1종 이상을 의미할 수 있다. 상기 알킬 스티렌계 다이머로는 α-메틸 스티렌 다이머가 바람직하다.
본 발명에서 사용되는 용어 ‘머캅탄계 화합물’은 t-도데실 머캅탄, n-도데실 머캅탄 및 n-옥틸 머캅탄으로 이루어진 군에서 선택되는 1종 이상을 의미할 수 있다. 상기 머캅탄계 화합물로는 t-도데실 머캅탄이 바람직하다.
본 발명에서 사용되는 용어 ‘중합전환율’은 하기 식으로 산출되는 중합전환율을 의미할 수 있다.
중합전환율(%)= {(중합 완료 시까지 투입된 단량체의 총 중량)-(중합 완료 시까지 미반응된 단량체의 총 중량)}/(중합 완료 시까지 투입된 단량체의 총 중량) × 100
본 발명에서 사용되는 용어 ‘그라프트율’은 그라프트 공중합체 분말 1 g을 아세톤 50 ㎖에 24 시간 동안 교반하면서 녹인 후, 원심 분리하여 상등액과 침전물을 분리하고, 침전물을 50 ℃의 열풍 건조기로 12 시간 동안 건조한 후, 수득된 건조물의 중량을 측정하고, 하기 수학식 1에 의거하여 계산할 수 있다:
[수학식 1]
그라프트율(%) = {(그라프트된 단량체 혼합물의 공중합물의 중량1)) / (디엔계 고무질 중합체의 중량2))} × 100
1) 그라프트된 단량체 혼합물의 공중합물의 중량 = (건조물의 중량) - (디엔계 고무질 중합체의 중량)
2) 디엔계 고무질 중합체의 중량 = 이론상 투입된 디엔계 고무질 중합체의 중량(고형분 기준) 또는 그라프트 공중합체를 적외선 분광법으로 분석하여 측정한 디엔계 고무질 중합체의 중량
본 발명에서 사용되는 용어 ‘그라프트 공중합체의 중량평균분자량’은 그라프트율 측정방법에서 기재된 상등액을 건조한 건조물을 테트라하이드로퓨란(THF) 용액에 녹인 후, 1 ㎛ 필터를 통해 걸러낸 뒤, 겔 투과 크로마토그래피를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 사용되는 용어 ‘분자량 분포’는 그라프트 공중합체의 수평균분자량에 대한 그라프트 공중합체의 중량평균분자량의 비를 의미할 수 있다. 상기 그라프트 공중합체의 수평균분자량은 그라프트 공중합체의 중량평균분자량 측정방법에서 기재된 방법으로 측정할 수 있다.
본 발명에서 사용되는 용어 ‘중합’은 현탁 중합, 유화 중합 및 괴상 중합으로 이루어진 군에서 선택되는 1종 이상을 의미할 수 있다. 이 중 표면 특성 및 내충격성이 모두 우수한 그라프트 공중합체를 제조할 수 있는 유화 중합이 바람직하다.
본 발명에서 ‘디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 합’은 그라프트 공중합체의 제조 시 투입되는 디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 총 합을 의미할 수 있다.
본 발명에서 사용되는 용어 ‘디엔계 고무질 중합체의 평균입경’은 동적 광산란법(dynamic light scattering)에 의해 측정되는 입도분포에 있어서의 산술 평균입경, 구체적으로는 산란강도 평균입경을 의미할 수 있다. 디엔계 고무질 중합체의 평균입경은 Nicomp 380 장비(제품명, 제조사: PSS Nicomp)를 이용하여 측정할 수 있다.
본 발명에서 사용되는 용어 ‘혼탁액 내 불용분의 평균입경’은 열가소성 수지 조성물을 아세톤에 녹이고 교반한 후, 원심분리로 아세톤에 녹지 않은 불용분을 크기 별로 분류한 후 광산란법으로 측정한 값일 수 있다. 상세하게는 열가소성 수지 조성물을 압출 및 사출하여 제조한 시편 0.2 g을 아세톤 50 ㎖에 녹이고, 20 시간 동안 교반한 후 아세톤에 녹지 않은 불용분을 입도분석기(CPS Instruments 社의 UHR 18000)로 원심분리하여 크기 별로 분류한 후 광산란법으로 측정한 값일 수 있다.
1. 그라프트 공중합체의 제조방법
본 발명의 일 실시예에 따른 그라프트 공중합체의 제조방법은 반응기에 제1 분자량 조절제, 디엔계 고무질 중합체, 비닐 방향족계 단량체, 및 비닐 시아나이드계 단량체를 일괄 투입하여 중합을 개시하는 단계; 및 상기 반응기에 제2 분자량 조절제, 비닐 방향족계 단량체 및 비닐 시나이드계 단량체를 연속 투입하여 중합을 수행하는 단계를 포함하고, 상기 제2 분자량 조절제는 알킬 스티렌계 다이머 및 머캅탄계 화합물을 40.0:60.0 내지 70.0:30.0의 중량비로 포함하고, 상기 제1 분자량 조절제와 제2 분자량 조절제의 중량비는 5.0:95.0 내지 25.0:75.0이다.
본 발명자들은 중합을 수행하는 단계에서 제2 분자량 조절제에 포함된 알킬 스티렌계 다이머 및 머캅탄계 화합물의 중량비를 특정 비율로 조절하여 연속 투입하고, 제1 분자량 조절제와 제2 분자량 조절제의 중량비를 특정 비율로 조절하면, 중량평균분자량, 그라프트율 및 분자량 분포가 적절하게 조절되어 표면 특성, 내충격성 및 가공성이 모두 우수한 그라프트 공중합체가 제조되는 것을 알아내었고, 이에 본 발명을 완성하게 되었다.
이하, 본 발명의 일 실시예에 따른 그라프트 공중합체의 제조방법을 설명한다.
1) 중합의 개시
먼저, 반응기에 제1 분자량 조절제, 디엔계 고무질 중합체, 비닐 방향족계 단량체, 및 비닐 시아나이드계 단량체를 일괄 투입하여 중합을 개시한다.
알킬 스티렌계 다이머는 머캅탄계 화합물보다 그라프트율을 적정 수준으로 유지하면서 분자량 분포를 낮출 수 있다. 이에 제1 분자량 조절제로 알킬 스티렌계 다이머를 이용하는 것이 바람직하다.
상기 제1 분자량 조절제를 상기 디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 합 100 중량부에 대하여, 0.01 내지 0.15 중량부, 바람직하게는 0.03 내지 0.08 중량부로 투입할 수 있다. 상술한 범위를 만족하면, 그라프트 공중합체의 그라프트율 및 중량평균분자량을 적정 수준으로 유지하면서 분자량 분포를 낮출 수 있으므로, 그라프트 공중합체의 내충격성이 보다 개선될 수 있다.
상기 중합은 유화제, 개시제, 활성화제 및 수계 용매로 이루어진 군에서 선택되는 1종 이상의 존재 하에 개시될 수 있다.
상기 개시제는 라디칼 개시제로서 라디칼 개시제로서는 소듐 퍼설페이트, 포타슘 퍼설페이트, 암모늄 퍼설페이트, 하이드로퍼옥사이드, t-부틸 퍼옥사이드, t-부틸 하이드로퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸 쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸 퍼옥시 이소부틸레이트, 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스 시클로헥산카르보니트릴 및 아조비스 이소 낙산(부틸산) 메틸로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 중 하이드로퍼옥사이드가 바람직하다.
상기 개시제는 상기 디엔계 고무질 중합체, 비닐 시아나이드계 단량체 및 비닐 방향족계 단량체의 합 100 중량부에 대하여, 0.001 내지 1.000 중량부, 바람직하게는, 0.010 내지 0.800 중량부로 존재할 수 있다. 상술한 범위를 만족하면, 그라프트 중합의 중합 안정성을 향상시키면서도, 그라프트 공중합체 분말 내 개시제의 잔류량을 최소화할 수 있다.
상기 개시제와 함께 개시 반응을 촉진시키기 위하여, 활성화제가 더 투입될 수 있다. 상기 활성화제는 소듐 포름알데히드 설폭실레이트, 소듐 에틸렌디아민 테트라아세테이트, 황산철(Ⅱ), 덱스트로즈, 테트라소듐 피로포스페이트, 소듐 피로포스페이트 언하이드로스 및 소듐 설페이트로 이루어진 군에서 선택된 1종 이상일 수 있고, 이 중 테트라소듐 피로포스페이트, 황산철(Ⅱ) 및 소듐 알데히드 설폭실레이트로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
상기 활성화제는 상기 디엔계 고무질 중합체, 비닐 시아나이드계 단량체 및 비닐 방향족계 단량체의 합 100 중량부에 대하여, 0.001 내지 0.500 중량부, 바람직하게는 0.010 내지 0.300 중량부로 투입될 수 있다. 상술한 범위를 만족하면, 그라프트 중합의 중합 안정성을 향상시키면서도, 그라프트 공중합체 분말 내 활성화제의 잔류량을 최소화할 수 있다.
상기 유화제는 소듐 디시클로헥실 설포석시네이트, 소듐 도데실 설페이트, 소듐 도데실 벤젠 설포네이트, 소듐 옥타데실 설페이트, 소듐 올레익 설페이트, 칼륨 도데실 설페이트 및 칼륨 옥타데실 설페이트, 포타슘 로지네이트 및 소듐 로지네이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 유화제는 상기 디엔계 고무질 중합체, 비닐 시아나이드계 단량체 및 비닐 방향족계 단량체의 합 100 중량부에 대하여, 0.15 내지 2.00 중량부, 바람직하게는 0.30 내지 1.50 중량부로 투입될 수 있다. 상술한 범위를 만족하면, 그라프트 중합의 중합 안정성을 향상시키면서도, 원하는 평균입경을 갖는 그라프트 공중합체 분말을 제조할 수 있다.
상기 수계 용매는 이온교환수 또는 순수일 수 있다.
2) 중합의 수행
이어서, 상기 반응기에 제2 분자량 조절제, 비닐 방향족계 단량체 및 비닐 시나이드계 단량체를 연속 투입하여 중합을 수행하는 단계를 포함한다.
이때, 상기 제2 분자량 조절제는 알킬 스티렌계 다이머 및 머캅탄계 화합물을 40.0:60.0 내지 70.0:30.0의 중량비로 포함하고, 바람직하게는 41:59 내지 65:35의 중량비로 포함할 수 있다. 상술한 조건을 만족하면, 그라프트 공중합체의 분자량 분포 및 유리전이온도를 낮춤으로써 표면 특성, 내충격성 및 가공성이 모두 우수한 그라프트 공중합체를 제조할 수 있다. 상술한 범위 미만이면, 그라프트 공중합체의 중량평균분자량 및 분자량 분포가 높아지므로, 그라프트 공중합체의 표면 특성 및 가공성이 저하될 수 있다. 또한, 상술한 범위를 초과하면, 그라프트 공중합체의 중합전환율이 저하되므로 제조 효율이 저하되었다. 또한, 그라프트 공중합체의 그라프트율이 낮아져, 그라프트 공중합체의 표면 특성 및 내충격성이 저하되었다.
상기 제2 분자량 조절제를 상기 디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 합 100 중량부에 대하여, 0.2 내지 0.7 중량부, 바람직하게는 0.3 내지 0.6 중량부로 투입할 수 있다. 상술한 조건을 만족하면, 그라프트 공중합체의 유리전이온도 및 입자분산도를 낮아지므로, 그라프트 공중합체의 내충격성 및 표면 특성이 개선될 수 있다.
상기 제1 분자량 조절제와 제2 분자량 조절제의 중량비는 5.0:95.0 내지 25.0:75.0, 바람직하게는 8.0:92.0 내지 22.0:78.0일 수 있다. 상술한 조건을 만족하면, 그라프트 공중합체의 내충격성 및 가공성이 개선될 수 있다. 상술한 조건 미만이거나 초과하면, 그라프트 공중합체의 최종 중합전환율이 저하되고, 그라프트 공중합체의 그라프트율, 중량평균분자량, 내충격성 및 표면특성이 현저하게 저하될 수 있다.
한편, 상기 제2 분자량 조절제 내 알킬 스티렌계 다이머 및 머캅탄계 화합물의 중량비가 상술한 중량비를 만족하되, 상기 제1 및 제2 분자량 조절제가 상술한 중량비를 만족하지 않으면, 그라프트 공중합체의 최종 중합전환율, 그라프트율, 중량평균분자량, 내충격성 및 표면특성이 현저하게 저하될 수 있다. 또한, 상기 제1 및 제2 분자량 조절제가 상술한 중량비를 만족하되, 상기 제2 분자량 조절제 내 알킬 스티렌계 다이머 및 머캅탄계 화합물의 중량비가 상술한 중량비를 만족하지 않으면, 그라프트 공중합체의 표면특성이 현저하게 저하될 수 있다. 또한 상기 제2 분자량 조절제 내 알킬 스티렌계 다이머 및 머캅탄계 화합물의 중량비와 상기 제1 및 제2 분자량 조절제의 중량비를 모두 만족하지 않으면, 그라프트 공중합체의 최종 중합전환율, 그라프트율, 중량평균분자량, 내충겨성 및 표면특성이 모두 현저하게 저하될 수 있다.
상기 제2 분자량 조절제를 연속 투입하면, 일괄 투입하는 것 대비, 그라프트율 및 중량평균분자량을 조절하기 용이하여, 원하는 그라프트율 및 중량평균분자량을 갖는 그라프트 공중합체를 제조할 수 있다.
상기 제2 분자량 조절제의 연속 투입 개시 시점은 중합전환율이 10 % 이하인 시점, 바람직하게는 1 내지 5 %인 시점일 수 있다. 상술한 조건을 만족하면, 중합 전파 단계에서부터 제2 분자량 조절제가 투입되므로 제2 분자량 조절제로 인한 효과가 극대화될 수 있다.
상기 제2 분자량 조절제의 연속 투입 종료 시점은 중합전환율이 80 내지 97 %인 시점, 바람직하게는 90 내지 95 %인 시점일 수 있다. 상술한 조건을 만족하면, 중합 안정성을 개선시키고, 중합전환율을 높일 수 있다.
상기 중합을 개시하는 단계에서 투입되는 비닐 방향족계 단량체와, 상기 중합을 수행하는 단계에서 투입되는 비닐 방향족계 단량체의 중량비는 10.0:90.0 내지 35.0:65.0, 바람직하게는 15.0:85.0 내지 30.0:70.0일 수 있다. 상술한 조건을 만족하면, 중합 안정성이 개선되면서, 중합 전반에 걸쳐 조성이 균일한 그라프트 공중합체가 제조될 수 있다.
상기 중합을 개시하는 단계에서 투입되는 비닐 시아나이드계 단량체와, 상기 중합을 수행하는 단계에서 투입되는 비닐 시아나이드계 단량체의 중량비는 10.0:90.0 내지 35.0:65.0, 바람직하게는 15.0:85.0 내지 30.0:70.0일 수 있다. 상술한 조건을 만족하면, 중합 안정성이 개선되면서, 중합 전반에 걸쳐 조성이 균일한 그라프트 공중합체가 제조될 수 있다.
상기 중합은 유화제, 개시제, 활성화제 및 수계 용매로 이루어진 군에서 선택되는 1종 이상의 존재 하에 수행될 수 있다. 상기 유화제, 개시제, 활성화제 및 수계 용매에 대한 설명은 상술한 바와 같다.
2. 그라프트 공중합체
본 발명의 다른 일 실시예에 따른 그라프트 공중합체는 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하고, 중량평균분자량이 70,000 내지 80,000 g/mol 이하이고, 그라프트율이 32 내지 40 %이고, 분자량 분포가 2.0 이하이다.
바람직하게는 상기 그라프트 공중합체는 중량평균분자량이 72,000 내지 80,000 g/mol이고, 그라프트율이 32 내지 39 %이고, 분자량 분포가 1.7 이하일 수 있다. 보다 바람직하게는 상기 그라프트 공중합체는 중량평균분자량이 75,000 내지 80,000 g/mol이고, 그라프트율이 35 내지 39 %이고, 분자량 분포가 1.6 이하일 수 있다. 상술한 조건을 만족하면, 그라프트 공중합체의 내충격성, 표면 특성 및 가공성이 모두 우수해진다.
한편, 상기 그라프트 공중합체의 유리전이온도는 -100 내지 -90 ℃, 바람직하게는 -95 내지 -90 ℃일 수 있다. 상술한 조건을 만족하면, 그라프트 공중합체의 내충격성이 보다 개선될 수 있다.
상기 그라프트 공중합체는 디엔계 고무질 중합체에 그라프트 되지 않고, 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위를 포함하는 공중합체를 포함할 수 있다.
상기 그라프트 공중합체는 본 발명의 일 실시예에 따른 그라프트 공중합체의 제조방법으로 제조된 그라프트 공중합체일 수 있다.
3. 열가소성 수지 조성물
본 발명의 또 다른 일 실시예에 따른 열가소성 수지 조성물은 본 발명의 다른 일 실시예에 따른 그라프트 공중합체를 포함할 수 있다.
상기 열가소성 수지 조성물은 가공성을 개선시키기 위하여, 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위를 포함하는 비그라프트 공중합체를 더 포함할 수 있다.
상기 열가소성 수지 조성물은 상기 그라프트 공중합체과 비그라프트 공중합체를 10:90 내지 40:60, 바람직하게는 20:80 내지 30:70의 중량비로 포함할 수 있다. 상술한 범위를 만족하면, 가공성 및 내충격성이 우수한 열가소성 수지 조성물을 제조할 수 있다.
상기 비그라프트 공중합체는 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위를 60.0:40.0 내지 80.0:20.0, 바람직하게는 65.0:35.0 내지 75.0:25.0의 중량비로 포함할 수 있다. 상술한 조건을 만족하면, 가공성 및 내화학성이 우수한 열가소성 수지 조성물을 제조할 수 있다.
상기 비그라프트 공중합체는 스티렌/아크릴로니트릴 비그라프트 공중합체인 것이 바람직하다.
상기 열가소성 수지 조성물은 하기 수학식 1에 의해 계산되는 입자분산도가 5 이하, 바람직하게는 2 내지 4일 수 있다:
[수학식 1]
입자분산도(Np) = (혼탁액 내 불용분의 평균입경)3/(디엔계 고무질 중합체의 평균입경)3
상기 수학식 1에서
상기 혼탁액 내 불용분의 평균입경은 열가소성 수지 조성물을 아세톤에 녹이고 교반한 후, 아세톤에 녹지 않은 불용분을 원심분리하여 크기 별로 분류한 후 광산란법으로 측정한 값이고,
상기 디엔계 고무질 중합체의 평균입경은 중합 시 투입된 디엔계 고무질 중합체를 동적 광산란법으로 측정한 값이다.
상기 입자분산도는 열가소성 수지 조성물 내에 그라프트 공중합체가 비그라프트 공중합체(매트릭스 공중합체)에 분산된 정도를 나타내는 지표로서, 값이 작을수록 그라프트 공중합체의 분산도가 우수한 것을 나타낸다. 상술한 값을 만족하면, 표면 특성이 우수한 성형품을 제조할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
<그라프트 공중합체>
이온교환수 100.0 중량부, 부타디엔 고무질 중합체 라텍스(평균입경: 300㎚) 58.0 중량부(고형분 기준), 스티렌 7.5 중량부, 아크릴로니트릴 2.5 중량부, 포타슘 올레이트 0.10 중량부, 테트라부틸하이드로퍼옥사이드 0.050 중량부, 덱스트로즈 0.080 중량부, 테트라소듐 피로포스페이트 0.050 중량부 및 황산철(Ⅱ) 0.001 중량부 및 하기 표 1에 기재된 함량으로 제1 분자량 조절제를 포함하는 제1 혼합 용액을 준비하였다.
또한, 이온교환수 12.0 중량부, 스티렌 24.0 중량부, 아크릴로니트릴 8.0 중량부, 포타슘 올레이트 0.20 중량부, 테트라부틸하이드로퍼옥사이드 0.10 중량부, 및 하기 표 1에 기재된 함량으로 제2 분자량 조절제를 포함하는 제2 혼합 용액을 준비하였다.
또한, 덱스트로즈 0.040 중량부, 테트라소듐 피로포스페이트 0.030 중량부 및 황산철(Ⅱ) 0.0005 중량부를 포함하는 제3 혼합 용액을 준비하였다.
질소 충진된 중합반응기에 상기 제1 혼합 용액을 일괄 투입한 후, 50 ℃에서 중합을 개시하였다. 상기 중합반응기를 70 ℃로 승온하고 상기 제2 혼합용액을 연속 투입하면서 2 시간 동안 중합하여 중합전환율이 92 %인 시점에 도달하였다. 이어서, 상기 중합반응기에 상기 제3 혼합 용액을 일괄 투입한 후, 1 시간 동안 80 ℃로 승온하였고, 중합을 종료하여 그라프트 공중합체 라텍스를 수득하였다. 상기 그라프트 공중합체 라텍스에 산화방지제(LATON 社의 OW500) 0.4 중량부를 투입하고, 황산 2.0 중량부로 응집하였다. 그 후, 탈수 및 열풍 건조하여 수분이 1 중량% 미만인 그라프트 공중합체 분말을 제조하였다.
<열가소성 수지 조성물의 제조>
상기 제조된 그라프트 공중합체 분말 30 중량부 및 스티렌/아크릴로니트릴 비그라프트 공중합체(엘지화학 社의 92HR) 70 중량부를 균일하게 혼합하여 열가소성 수지 조성물을 제조하였다.
실시예 2 내지 7 및 비교예 1 내지 10
상기 실시예 1에서, 하기 표 1 내지 표 5에 기재된 함량으로 제1 분자량 조절제 및 제2 분자량 조절제를 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 그라프트 중합체 분말 및 열가소성 수지 조성물을 제조하였다.
실험예 1
실시예 및 비교예의 그라프트 공중합체 라텍스 또는 분말의 물성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표 1 내지 표 5에 기재하였다.
(1) 중합전환율(%): 하기 식으로 산출하였다.
중합전환율(%)= {(중합 완료 시까지 투입된 단량체의 총 중량)-(중합 완료 시까지 미반응된 단량체의 총 중량)}/(중합 완료 시까지 투입된 단량체의 총 중량) × 100
(2) 그라프트율(%): 그라프트 공중합체 분말 1 g을 아세톤 50 ㎖에 24 시간 동안 교반하면서 녹인 후, 원심 분리하여 상등액과 침전물을 분리하고, 침전물을 50 ℃의 열풍 건조기로 12 시간 건조한 후, 수득된 건조물의 중량을 측정하고, 하기 수학식 1에 의거하여 계산하였다:
[수학식 1]
그라프트율(%) = {(그라프트된 단량체 혼합물의 공중합물의 중량1)) / (디엔계 고무질 중합체의 중량2))} × 100
1) 그라프트된 단량체 혼합물의 공중합물의 중량 = (건조물의 중량) - (디엔계 고무질 중합체의 중량)
2) 디엔계 고무질 중합체의 중량 = 이론상 투입된 디엔계 고무질 중합체의 중량(고형분 기준) 또는 제1 공중합체를 적외선 분광법으로 분석하여 측정한 디엔계 고무질 중합체의 중량
(3) 중량평균분자량(g/mol): 그라프트율 측정방법에서 기재된 상등액을 건조한 건조물을 테트라하이드로퓨란(THF) 용액에 녹인 후, 1 ㎛ 필터를 통해 걸러낸 뒤, 겔 투과 크로마토그래피를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정하였다.
(4) 분자량 분포: 수평균분자량(Mn)에 대한 중량평균분자량(Mw)의 비(Mw/Mn)를 의미할 수 있다. 상기 그라프트 공중합체의 수평균분자량도 그라프트 공중합체의 중량평균분자량 측정방법에서 기재된 방법으로 측정하였다.
(5) 유리전이온도(℃): 그라프트 공중합체 분말을 200 ℃에서 압축 프레스로 필름화한 뒤, 동적기계분석기(DMA) 장비로 측정하였다.
실험예 2
실시예 및 비교예의 열가소성 수지 조성물을 압출 및 사출하여 시편을 제조하고, 시편의 물성을 하기에 기재된 방법으로 측정하고, 그 결과를 하기 표 1 내지 표 5에 기재하였다.
(1) 입자분산도(Np): 하기 식으로 입자분산도를 산출하였다.
입자분산도는 열가소성 수지 조성물 내에 그라프트 공중합체가 비그라프트 공중합체에 분산된 정도를 나타내는 지표로서, 값이 작을수록 그라프트 공중합체의 분산도가 우수한 것을 나타낸다.
입자분산도(Np) = (혼탁액 내 불용분의 평균입경)3/(디엔계 고무질 중합체의 평균입경)3
상기 혼탁액 내 불용분의 평균입경은 시편 0.2 g을 아세톤 50 ㎖에 녹이고 20 시간 동안 천천히 교반한 후, 아세톤에 녹지 않은 불용분을 입도분석기(CPS Instruments 社의 UHR 18000)로 원심분리하여 크기 별로 분류한 후 광산란법으로 측정하였다.
상기 디엔계 고무질 중합체의 평균입경은 중합 시 투입된 디엔계 고무질 중합체를 Nicomp 380 장비(제품명, 제조사: PSS Nicomp)를 이용하여 동적 광산란법으로 측정하였다.
(2) 유동지수(Melt Flow Index, g/10 min): ASTM D1238에 의거하여 220 ℃, 10 ㎏ 조건 하에서 측정하였다.
(3) 아이조드 충격강도(㎏·㎝/㎝, 1/4 Inch): ASTM D265에 의거하여 측정하였다.
(4) 표면 돌기(개): 1 ㎡ 당 시편 내 존재하는 돌기 중 돌기 크기가 50 ㎛ 이상인 것만 세었다.
구분 실시예 1 실시예 2 실시예 3 실시예 4
제1 분자량 조절제 AMSD 0.05 0.05 0.05 0.05
제2 분자량 조절제 AMSD 0.14 0.15 0.35 0.45
TDDM 0.20 0.20 0.20 0.20
AMSD:TDDM
(중량비)
약 41.2:58.8 약 42.9:57.1 약 63.6:36.4 약 69.2:30.8
제1 및 제2 분자량 조절제의 중량비 약 12.8:87.2 약 12.5:87.5 약 8.3:91.7 약 7.1:92.9
그라프트
공중합체
중합전환율 97.3 97.8 97.7 95.2
그라프트율 39 38 37 33
중량평균분자량 78,000 77,000 75,000 73,000
분자량 분포 1.6 1.5 1.5 1.7
유리전이온도 -90 -90 -93 -95
열가소성 수지 조성물 유동지수 21 21 22 23
입자분산도 3.9 3.8 2.7 2.5
아이조드 충격강도 32 33 33 31
표면 돌기 1,350 1,300 1,100 1,000
AMSD: α-메틸 스티렌 다이머
TDDM: t-도데실 머캅탄
구분 실시예 5 실시예 6 실시예 7
제1 분자량 조절제 AMSD 0.10 0.10 0.04
제2 분자량 조절제 AMSD 0.15 0.30 0.35
TDDM 0.20 0.20 0.40
AMSD:TDDM
(중량비)
약 42.9:57.1 60.0:40.0 약 46.7:53.3
제1 및 제2 분자량 조절제의 중량비 약 22.2:77.8 약 16.7:83.3 약 5.1:94.9
그라프트
공중합체
중합전환율 97.7 97.6 97.2
그라프트율 37 36 32
중량평균분자량 76,000 74,000 72,000
분자량 분포 1.5 1.3 1.5
유리전이온도 -91 -94 -93
열가소성 수지 조성물 유동지수 22 23 24
입자분산도 3.5 2.5 2.2
아이조드 충격강도 33 33 32
표면 돌기 1,200 1,000 1,000
AMSD: α-메틸 스티렌 다이머
TDDM: t-도데실 머캅탄
구분 비교예 1 비교예 2 비교예 3 비교예 4
제1 분자량 조절제 AMSD 0 0 0 0
제2 분자량 조절제 AMSD 0.40 0 0 0
TDDM 0.20 0.10 0.20 0.30
AMSD:TDDM
(중량비)
약 66.7:33.3 - - -
제1 및 제2 분자량 조절제의 중량비 - - - -
그라프트 공중합체 중합전환율 97.7 98.2 97.8 97.5
그라프트율 38 48 40 35
중량평균분자량 77,000 93,000 81,000 68,000
분자량 분포 2.1 2.1 2.2 2.3
유리전이온도 -90 -87 -87 -87
열가소성 수지 조성물 유동지수 21 17 20 21
입자분산도 10 37 18 16
아이조드 충격강도 31 32 32 27
표면 돌기 1,700 8,500 4,700 4,000
AMSD: α-메틸 스티렌 다이머
TDDM: t-도데실 머캅탄
구분 비교예 5 비교예 6 비교예 7 비교예 8
제1 분자량 조절제 AMSD 0.05 0.05 0.03 0.03
제2 분자량 조절제 AMSD 0.12 0.60 0.60 0.12
TDDM 0.20 0.20 0.45 0.40
AMSD:TDDM
(중량비)
37.5:62.5 75.0:25.0 약 57.1:42.9 약 23.1:76.9
제1 및 제2 분자량 조절제의 중량비 약 13.5:86.5 약 5.9:94.1 약 2.8:97.2 약 5.5:94.5
그라프트 공중합체 중합전환율 97.6 93.1 92.5 97.3
그라프트율 38 31 28 37
중량평균분자량 81,000 72,000 65,000 79,000
분자량 분포 2.2 1.8 1.8 2.2
유리전이온도 -85 -87 -87 -84
열가소성 수지 조성물 유동지수 19 22 24 20
입자분산도 25 20 17 17
아이조드 충격강도 30 27 22 29
표면 돌기 6,200 5,000 4,300 4,200
AMSD: α-메틸 스티렌 다이머
TDDM: t-도데실 머캅탄
구분 비교예 9 비교예 10
제1 분자량 조절제 AMSD 0.34 0.30
제2 분자량 조절제 AMSD 0.20 0.40
TDDM 0.60 0.40
AMSD:TDDM
(중량비)
약 25.0:75.0 50.0:50.0
제1 및 제2 분자량 조절제의 중량비 약 29.8:70.2 약 27.3:72.7
그라프트 공중합체 중합전환율 94.7 93.0
그라프트율 29 30
중량평균분자량 67,000 68,000
분자량 분포 2.0 2.0
유리전이온도 -86 -87
열가소성 수지 조성물 유동지수 23 23
입자분산도 16 13
아이조드 충격강도 23 24
표면 돌기 4,200 4,500
AMSD: α-메틸 스티렌 다이머
TDDM: t-도데실 머캅탄
상기 표 1 내지 표 5를 참조하면, 제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 40.0:60.0 내지 70.0:30.0의 중량비로 투입하고, 제1 분자량 조절제와 제2 분자량 조절제의 중량비가 5.0:95.0 내지 25.0 내지 75.0인 실시예 1 내지 실시예 7의 그라프트 공중합체는 중량평균분자량이 73,000 내지 78,000 g/mol이었고, 그라프트율이 32 내지 39 %이고, 분자량 분포가 1.7 이하이고, 유리전이온도가 -90 내지 -95 ℃이었다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 실시예 1 내지 실시예 7의 시편은 유동지수가 적절하여 가공성이 우수하고, 입자분산도가 낮아 표면 돌기가 적게 형성되었으며 이로 인해 표면 특성도 우수하였고, 내충격성도 우수하였다.
하지만, 제1 분자량 조절제를 투입하지 않는 비교예 1의 그라프트 공중합체는 그라프트율이 38 %, 중량평균분자량이 77,000 g/mol, 분자량 분포가 2.1이고, 유리전이온도가 -90 ℃이었다. 비교예 1의 그라프트 공중합체는 분자량 분포가 높으므로, 이로 제조된 시편의 입자분산도가 높아 표면 돌기가 많이 형성되어 표면 특성이 저하되었다.
또한, 제1 분자량 조절제를 투입하지 않고, 제2 분자량 조절제로 α-메틸 스티렌 다이머를 투입하지 않은 비교예 2 및 비교예 3의 그라프트 공중합체는 그라프트율, 중량평균분자량, 분자량 분포 및 유리전이온도가 높았다. 그리고 이러한 특성을 갖는 그라프트 공중합체로 제조된 비교예 2 및 비교예 3의 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며 이로 인해 표면 특성이 저하되었다.
제1 분자량 조절제를 투입하지 않고, 제2 분자량 조절제로 α-메틸 스티렌 다이머를 투입하지 않고 t-도데실 머캅탄을 과량으로 투입한 비교예 4의 그라프트 공중합체는 중량평균분자량이 낮고, 분자량 분포 및 유리전이온도가 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다. 그리고 내충격성도 저하되었다.
또한, 제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 37.0:63.0의 중량비로 투입한 비교예 5의 그라프트 공중합체는 중량평균분자량, 분자량 분포 및 유리전이온도가 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다.
제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 75:25의 중량비로 투입한 비교예 6의 그라프트 공중합체는 그라프트율 및 유리전이온도가 낮았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다. 또한, 내충격성도 저하되었다.
제1 및 제2 분자량 조절제의 중량비가 약 2.8:97.2인 비교예 7의 그라프트 공중합체는 그라프트율 및 중량평균분자량이 낮고 유리전이온도는 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다. 또한, 내충격성도 저하되었다.
제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 약 23.1:76.9의 중량비로 투입한 비교예 8의 그라프트 공중합체는 중량평균분자량, 분자량 분포 및 유리전이온도가 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다.
제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 약 25.0:75.0의 중량비로 투입하고, 제1 및 제2 분자량 조절제의 중량비가 약 29.8:70.2인 비교예 9의 그라프트 공중합체는 중량평균분자량이 낮고 유리전이온도가 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다. 또한, 내충격성도 저하되었다.
제2 분자량 조절제로 α-메틸 스티렌 다이머 및 t-도데실 머캅탄을 50.0:50.0의 중량비로 포함하고, 제1 및 제2 분자량 조절제의 중량비가 약 27.3:72.7인 비교예 10의 그라프트 공중합체는 중량평균분자량이 낮고 유리전이온도가 높았다. 이러한 특성을 갖는 그라프트 공중합체로 제조된 시편은 입자분산도가 우수하지 못하여 표면 돌기가 많이 형성되었으며, 이로 인해 표면 특성이 저하되었다. 또한 내충격성도 저하되었다.

Claims (11)

  1. 반응기에 제1 분자량 조절제, 디엔계 고무질 중합체, 비닐 방향족계 단량체, 및 비닐 시아나이드계 단량체를 일괄 투입하여 중합을 개시하는 단계; 및
    중합 개시 후, 상기 반응기에 제2 분자량 조절제, 비닐 방향족계 단량체 및 비닐 시나이드계 단량체를 연속 투입하여 중합을 수행하는 단계를 포함하고,
    상기 제2 분자량 조절제는 알킬 스티렌계 다이머 및 머캅탄계 화합물을 40.0:60.0 내지 70.0:30.0의 중량비로 포함하고,
    상기 제1 분자량 조절제와 제2 분자량 조절제의 중량비는 5.0:95.0 내지 25.0:75.0인 그라프트 공중합체의 제조방법.
  2. 청구항 1에 있어서,
    상기 제2 분자량 조절제는 알킬 스티렌계 다이머와 머캅탄계 화합물을 41.0:59.0 내지 65.0:35.0의 중량비로 포함하는 것인 그라프트 공중합체의 제조방법.
  3. 청구항 1에 있어서,
    상기 제1 분자량 조절제를 상기 디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 합 100 중량부에 대하여, 0.01 내지 0.15 중량부로 투입하는 것인 그라프트 공중합체의 제조방법.
  4. 청구항 1에 있어서,
    상기 제2 분자량 조절제를 상기 디엔계 고무질 중합체, 비닐 방향족계 단량체 및 비닐 시아나이드계 단량체의 합 100 중량부에 대하여, 0.20 내지 0.70 중량부로 투입하는 그라프트 공중합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 제1 분자량 조절제는 알킬 스티렌계 다이머인 것인 그라프트 공중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 제2 분자량 조절제의 연속 투입 개시 시점은 중합전환율이 10 % 이하인 시점이고,
    상기 제2 분자량 조절제의 연속 투입 종료 시점은 중합전환율이 80 내지 97 %인 시점인 것인 그라프트 공중합체의 제조방법.
  7. 청구항 1에 있어서,
    상기 중합을 개시하는 단계에서 투입되는 비닐 방향족계 단량체와, 상기 중합을 수행하는 단계에서 투입되는 비닐 방향족계 단량체의 중량비는 10.0:90.0 내지 35.0:65.0인 것인 그라프트 공중합체의 제조방법.
  8. 청구항 1에 있어서,
    상기 중합을 개시하는 단계에서 투입되는 비닐 시아나이드계 단량체와, 상기 중합을 수행하는 단계에서 투입되는 비닐 시아나이드계 단량체의 중량비는 10.0:90.0 내지 35.0:65.0인 것인 그라프트 공중합체의 제조방법.
  9. 비닐 방향족계 단량체 단위 및 비닐 시아나이드계 단량체 단위가 그라프트된 디엔계 고무질 중합체를 포함하고,
    중량평균분자량이 70,000 내지 80,000 g/mol 이하이고,
    그라프트율이 32 내지 40 %이고,
    분자량 분포가 2.0 이하인 그라프트 공중합체.
  10. 청구항 9에 따른 그라프트 공중합체를 포함하는 열가소성 수지 조성물.
  11. 청구항 10에 있어서,
    하기 수학식 1에 의해 계산되는 입자분산도가 5 이하인 열가소성 수지 조성물:
    [수학식 1]
    입자분산도(Np) = (혼탁액 내 불용분의 평균입경)3/(디엔계 고무질 중합체의 평균입경)3
    상기 수학식 1에서,
    상기 혼탁액 내 불용분의 평균입경은 열가소성 수지 조성물을 아세톤에 녹이고 교반한 후, 아세톤에 녹지 않은 불용분을 원심분리하여 크기 별로 분류한 후 광산란법으로 측정한 값이고,
    상기 디엔계 고무질 중합체의 평균입경은 중합 시 투입된 디엔계 고무질 중합체를 동적 광산란법으로 측정한 값이다.
PCT/KR2021/008557 2020-07-08 2021-07-06 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체 WO2022010222A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180005874.4A CN114555663B (zh) 2020-07-08 2021-07-06 制备接枝共聚物的方法和通过该方法制备的接枝共聚物
US17/769,817 US20220380507A1 (en) 2020-07-08 2021-07-06 Method of preparing graft copolymer and graft copolymer prepared by the same
EP21836797.7A EP4029889A4 (en) 2020-07-08 2021-07-06 METHOD FOR PREPARING A GRAFTED COPOLYMER AND GRAFTED COPOLYMER PREPARED BY THE PREPARATION METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200084052 2020-07-08
KR10-2020-0084052 2020-07-08
KR1020210087924A KR20220006469A (ko) 2020-07-08 2021-07-05 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체
KR10-2021-0087924 2021-07-05

Publications (1)

Publication Number Publication Date
WO2022010222A1 true WO2022010222A1 (ko) 2022-01-13

Family

ID=79553417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008557 WO2022010222A1 (ko) 2020-07-08 2021-07-06 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체

Country Status (4)

Country Link
US (1) US20220380507A1 (ko)
EP (1) EP4029889A4 (ko)
CN (1) CN114555663B (ko)
WO (1) WO2022010222A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959325A (ja) * 1995-08-18 1997-03-04 Japan Synthetic Rubber Co Ltd ゴム強化ビニル系樹脂
KR20020004504A (ko) * 2000-07-06 2002-01-16 안복현 내충격성 및 열안정성이 우수한 열가소성 난연성아크릴로니트릴/부타디엔/스티렌 수지조성물 및 그제조방법
KR100716563B1 (ko) * 2006-02-08 2007-05-09 금호석유화학 주식회사 진공성형성이 우수한 압출용 열가소성 수지 조성물 및 그의 제조 방법
KR100834423B1 (ko) * 2006-11-10 2008-06-09 제일모직주식회사 조성이 균일하고 분자량 분포가 좁은 열가소성 수지 및 그열가소성 수지의 제조방법
KR20160032668A (ko) * 2014-09-16 2016-03-24 주식회사 엘지화학 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
KR102039031B1 (ko) 2016-12-09 2019-11-01 주식회사 엘지화학 열가소성 수지의 제조방법, 이를 포함하는 열가소성 수지 조성물 및사출 성형품의 제조방법
CN110964133A (zh) * 2019-12-23 2020-04-07 万华化学集团股份有限公司 一种低杂质含量abs胶粉及其制备方法和abs树脂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949607B2 (en) * 2000-12-27 2005-09-27 Techno Polymer Co., Ltd. Thermoplastic resin composition and its molded articles
KR100568411B1 (ko) * 2003-11-06 2006-04-05 주식회사 엘지화학 열융착 특성이 우수한 고무강화 열가소성 수지, 이의 제조방법 및 이를 이용한 고무강화 열가소성 수지 조성물
CN1304446C (zh) * 2004-12-27 2007-03-14 上海华谊本体聚合技术开发有限公司 一种制备高抗冲abs聚合物混合体的连续本体聚合工艺
KR102049890B1 (ko) * 2016-11-01 2019-11-28 주식회사 엘지화학 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
CN109485791B (zh) * 2017-09-13 2021-10-19 中国石油化工股份有限公司 线形丁苯共聚物及其制备方法和组合物以及芳族乙烯基树脂及其制备方法
KR102237633B1 (ko) * 2017-12-04 2021-04-08 주식회사 엘지화학 내열 수지 조성물
CN110662780B (zh) * 2018-02-02 2022-03-11 株式会社Lg化学 接枝共聚物的制备方法、接枝共聚物和热塑性树脂模制品
KR102278035B1 (ko) * 2018-02-07 2021-07-15 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
KR102212039B1 (ko) * 2018-05-16 2021-02-05 주식회사 엘지화학 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959325A (ja) * 1995-08-18 1997-03-04 Japan Synthetic Rubber Co Ltd ゴム強化ビニル系樹脂
KR20020004504A (ko) * 2000-07-06 2002-01-16 안복현 내충격성 및 열안정성이 우수한 열가소성 난연성아크릴로니트릴/부타디엔/스티렌 수지조성물 및 그제조방법
KR100716563B1 (ko) * 2006-02-08 2007-05-09 금호석유화학 주식회사 진공성형성이 우수한 압출용 열가소성 수지 조성물 및 그의 제조 방법
KR100834423B1 (ko) * 2006-11-10 2008-06-09 제일모직주식회사 조성이 균일하고 분자량 분포가 좁은 열가소성 수지 및 그열가소성 수지의 제조방법
KR20160032668A (ko) * 2014-09-16 2016-03-24 주식회사 엘지화학 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
KR102039031B1 (ko) 2016-12-09 2019-11-01 주식회사 엘지화학 열가소성 수지의 제조방법, 이를 포함하는 열가소성 수지 조성물 및사출 성형품의 제조방법
CN110964133A (zh) * 2019-12-23 2020-04-07 万华化学集团股份有限公司 一种低杂质含量abs胶粉及其制备方法和abs树脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029889A4

Also Published As

Publication number Publication date
EP4029889A4 (en) 2023-01-25
CN114555663A (zh) 2022-05-27
US20220380507A1 (en) 2022-12-01
EP4029889A1 (en) 2022-07-20
CN114555663B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2014035055A1 (ko) 아크릴로니트릴-아크릴레이트-스티렌 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2015026153A1 (ko) 아크릴레이트-스티렌-아크릴로니트릴 중합체 및 열가소성 수지 조성물
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022010222A1 (ko) 그라프트 공중합체의 제조방법 및 이 제조방법으로 제조된 그라프트 공중합체
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2015016520A1 (ko) 고무강화 열가소성 수지의 제조방법
WO2023008808A1 (ko) 열가소성 수지 조성물
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2022085913A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019112294A1 (ko) 내열 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021836797

Country of ref document: EP

Effective date: 20220411

NENP Non-entry into the national phase

Ref country code: DE