WO2022007021A1 - 一种碳包覆富锂氧化物复合材料及其制备方法 - Google Patents

一种碳包覆富锂氧化物复合材料及其制备方法 Download PDF

Info

Publication number
WO2022007021A1
WO2022007021A1 PCT/CN2020/104574 CN2020104574W WO2022007021A1 WO 2022007021 A1 WO2022007021 A1 WO 2022007021A1 CN 2020104574 W CN2020104574 W CN 2020104574W WO 2022007021 A1 WO2022007021 A1 WO 2022007021A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
source
carbon
rich oxide
sintering
Prior art date
Application number
PCT/CN2020/104574
Other languages
English (en)
French (fr)
Inventor
程光春
孙杰
何中林
Original Assignee
湖北融通高科先进材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北融通高科先进材料有限公司 filed Critical 湖北融通高科先进材料有限公司
Priority to US17/783,654 priority Critical patent/US20230121840A1/en
Priority to EP20944429.8A priority patent/EP4057390A1/en
Priority to KR1020227019401A priority patent/KR20220118412A/ko
Priority to JP2022560410A priority patent/JP7436765B2/ja
Publication of WO2022007021A1 publication Critical patent/WO2022007021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium supplementary additives for positive electrodes of lithium batteries, in particular to a carbon-coated lithium-rich oxide composite material and a preparation method thereof.
  • Lithium-ion batteries have the advantages of high energy density and long cycle life, and have a wide range of applications in consumer electronics, power batteries, and energy storage.
  • part of the electrolyte will undergo a reduction reaction on the surface of the negative electrode, forming a dense solid-state electrolyte interface layer, consuming the active lithium in the positive electrode active material, resulting in irreversible capacity loss; in addition, the positive electrode Some irreversible reactions will also occur in the material during the first charge and discharge process, reducing the active lithium content in the lithium battery, and these side reactions will reduce the energy density of the lithium ion battery.
  • the irreversible capacity loss of the lithium-ion battery is compensated by the method of supplementing lithium, so that the capacity of the positive electrode material can be recovered, and the energy density of the lithium-ion battery can be improved, which has attracted the attention of relevant staff.
  • Existing lithium replenishment technologies mainly include schemes such as "adding lithium powder to the surface of the negative electrode sheet", “spraying or dripping an organic lithium solution on the surface of the negative electrode sheet”, and “electrochemical method” and other pre-lithiation schemes.
  • the above methods have high environmental requirements and certain risks, and improper operation may easily lead to accidents.
  • the positive electrode By adding a small amount of lithium-rich oxide to the positive electrode material, the positive electrode can be supplemented with lithium in the existing production process, and the energy density of the battery can be improved.
  • Li 5 FeO 4 and Li 6 CoO 4 with anti-fluorite structure have broad application prospects in lithium supplementation technology due to their ultra-high specific capacity and irreversibility.
  • the purpose of the present invention is to overcome the problems that the existing lithium replenishment methods have high environmental requirements and certain risks, and provide a carbon-coated lithium-rich oxide composite material and a preparation method thereof, which can be used in
  • the carbon-coated lithium-rich oxide composite material is directly prepared on the existing cathode material production line, which is scalable and economical; and the coated carbon layer can effectively overcome the defect of insufficient conductivity of the lithium-rich metal oxide.
  • Lithium oxide can provide sufficient active lithium for the cathode material and improve the energy density of lithium batteries.
  • one aspect of the present invention provides a method for preparing a carbon-coated lithium-rich oxide composite material, the method comprising the following steps:
  • step (3) Mixing the pulverized lithium-rich oxide in step (2) with a carbon source, and sintering to obtain a carbon-coated lithium-rich oxide composite material.
  • the iron source is one or more of ferric oxide, ferric tetroxide, ferric oxyhydroxide, ferric nitrate and ferric citrate.
  • the cobalt source is one or more of cobaltous oxide, cobalt tetroxide, cobalt carbonate, cobalt sulfate, cobalt chloride and cobalt nitrate.
  • the lithium source is one or more of lithium carbonate, lithium hydroxide monohydrate, lithium hydroxide anhydrous and lithium oxide.
  • the sintering process includes: placing an iron source or a mixture of a cobalt source and a lithium source in a sintering furnace, and under inert gas conditions, the temperature is increased to a sintering temperature.
  • the first preset heating rate is 1-10° C./min.
  • the first sintering temperature is 500-1000° C.; the first sintering time is 3-60 h.
  • the lithium-rich oxide is pulverized to an average particle size of 2-50 ⁇ m.
  • the carbon source is one or more of conductive carbon black, ketjen black, carbon nanotubes, acetylene black, vapor grown carbon fiber, graphene and biomass carbon.
  • the proportion of the carbon source is 0.5-10% by weight.
  • the sintering process includes: after uniformly mixing the pulverized lithium-rich oxide with the carbon source, under inert gas conditions, the temperature is raised to the second sintering temperature at a second preset heating rate Sintering is carried out.
  • the second preset heating rate is 1-10°C/min.
  • the second sintering temperature is 200-600° C.; the second sintering time is 2-20 h.
  • a second aspect of the present invention provides a carbon-coated lithium-rich oxide composite material prepared by the aforementioned method, characterized in that the carbon-coated lithium-rich oxide composite material includes a carbon layer and a carbon layer coated with a carbon layer.
  • Lithium-rich oxide wherein the lithium-rich oxide is Li 5 FeO 4 or Li 6 CoO 4 .
  • the carbon-coated lithium-rich oxide composite material prepared by the method of the invention can overcome the defect of insufficient conductivity of the lithium-rich material, has good electrochemical performance, and can effectively make up for the activity lost during the first charge and discharge of the lithium battery lithium.
  • Fig. 1 is the scanning electron microscope photograph of carbon-coated Li 5 FeO 4 material prepared in Example 1 of the present invention
  • Fig. 2 is the scanning electron microscope photograph of carbon-coated Li 6 CoO 4 material prepared in Example 4 of the present invention
  • FIG. 4 is the charge-discharge curve of the carbon-coated Li 6 CoO 4 material prepared in Example 4 of the present invention.
  • One aspect of the present invention provides a method for preparing a carbon-coated lithium-rich oxide composite material, the method comprising the following steps:
  • step (3) Mixing the pulverized lithium-rich oxide in step (2) with a carbon source, and sintering to obtain a carbon-coated lithium-rich oxide composite material.
  • the lithium-rich oxide in the carbon-coated lithium-rich oxide material prepared by the method of the present invention has good crystallinity, no impurity phase, and good electrochemical performance; Stability can also improve its conductivity, which is beneficial to its performance.
  • the iron source in step (1), can be a conventional choice in the field.
  • the iron source may be one or more of ferric oxide, ferric tetroxide, ferric oxyhydroxide, ferric nitrate and ferric citrate.
  • the iron source is ferric oxide.
  • the cobalt source in step (1), can be a conventional choice in the field.
  • the cobalt source may be one or more of cobalt oxide, cobalt tetroxide, cobalt carbonate, cobalt sulfate, cobalt chloride and cobalt nitrate.
  • the cobalt source is cobaltous oxide.
  • the lithium source in step (1), can be a conventional choice in the field.
  • the lithium source may be one or more of lithium carbonate, lithium hydroxide monohydrate, lithium hydroxide anhydrous and lithium oxide.
  • the lithium source is lithium oxide.
  • the molar ratio of the lithium source to the iron source or the cobalt source needs to be controlled within an appropriate range.
  • the molar ratio of the lithium source to the iron source may be 5:1, 7:1, 9:1, 11:1, 13:1, 15:1, 17:1, 19:1 1, 21:1, 23:1, 25:1, and any value within a range of any two of these point values. In a preferred embodiment, the molar ratio of the lithium source to the iron source is 5.5:1.
  • the molar ratio of the lithium source to the cobalt source may be 6:1, 8:1, 10:1, 12:1, 14:1, 16:1, 18:1, 20:1 1, 22:1, 24:1, 26:1, 28:1, 30:1, and any value within a range of any two of these point values. In a preferred embodiment, the molar ratio of the lithium source to the cobalt source is 6.6:1.
  • the sintering process includes: placing an iron source or a mixture of a cobalt source and a lithium source in a sintering furnace, under inert gas protection, with a first preheating Sintering is performed by setting the temperature increase rate to the first sintering temperature.
  • the sintering furnace can be a conventional choice in the field, and preferably, the sintering furnace is a box furnace.
  • the first preset heating rate is 1-10°C/min; specifically, for example, it can be 1°C/min, 2°C/min, 3°C/min, 4°C /min, 5°C/min, 6°C/min, 7°C/min, 8°C/min, 9°C/min or 10°C/min; preferably, the first preset heating rate is 2°C/min.
  • the first sintering temperature is 500-1000°C; 850°C, 900°C, 950°C or 1000°C.
  • the first sintering temperature is 850°C.
  • the first sintering temperature is 700°C.
  • the first sintering time is 3-60h; 40h, 43h, 48h, 52h, 55h, 57h, 60h, and any value in the range of any two of these point values.
  • the first sintering time is 10-40 h, and more preferably, the first sintering time is 12-30 h.
  • the first sintering time is 5-30 h, and more preferably, the first sintering time is 6-24 h.
  • the lithium-rich oxide in step (2), is pulverized to an average particle size of 2-50 ⁇ m; specifically, for example, it can be 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m , 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m and any value in the range formed by any two of these point values; preferably, in step (2), the lithium-rich oxide is pulverized to an average particle size of 25 ⁇ m .
  • the carbon source may be a conductive carbon material conventionally used in the art. Specifically, for example, it can be one or more of conductive carbon black, Ketjen black, carbon nanotubes, acetylene black, vapor-grown carbon fiber, graphene, and biomass carbon; preferably, the carbon source is conductive carbon black ; More preferably, the carbon source is conductive carbon black Super P.
  • step (3) based on the total weight of the lithium-rich oxide and the carbon source, the proportion of the carbon source is 0.5-10% by weight; It is 0.5% by weight, 1% by weight, 2% by weight, 4% by weight, 6% by weight, 8% by weight, 10% by weight and any value in the range formed by any two of these point values; preferably, in step ( In 3), based on the total weight of the lithium-rich oxide and the carbon source, the proportion of the carbon source is 1% by weight.
  • step (3) the sintering process includes: after uniformly mixing the pulverized lithium-rich oxide and the carbon source, under the condition of inert gas, at a second preset heating rate The temperature is raised to the second sintering temperature for sintering.
  • the sintering furnace can be a conventional choice in the field, and preferably, the sintering furnace is a box furnace.
  • the second preset heating rate is 1-10°C/min; specifically, for example, it can be 1°C/min, 2°C/min, 3°C/min, 4°C /min, 5°C/min, 6°C/min, 7°C/min, 8°C/min, 9°C/min or 10°C/min; preferably, the second preset heating rate is 5°C/min.
  • the second sintering temperature is 200-600°C; specifically, for example, it can be 200°C, 300°C, 400°C, 500°C, 600°C and any two of these values. Any value in the constituted range; preferably, the second sintering temperature is 450°C.
  • the second sintering time is 2-20h; specifically, for example, it can be 2h, 5h, 8h, 10h, 13h, 15h, 17h, 20h and any two of these values. Any value in the constituted range; preferably, the second sintering time is 4-10h.
  • Another aspect of the present invention provides a carbon-coated lithium-rich oxide composite material prepared by the aforementioned method, the carbon-coated lithium-rich oxide composite material comprising a carbon layer and a lithium-rich oxide composite material coated by the carbon layer wherein, the lithium-rich oxide is Li 5 FeO 4 or Li 6 CoO 4 with an anti-fluorite structure.
  • the carbon-coated lithium-rich oxide composite material can be used as an additive to provide irreversible lithium consumed during the first charge-discharge process of the cathode material.
  • Examples 1-3 of the present invention are used to illustrate the preparation process of carbon-coated Li 5 FeO 4 composite materials, and Examples 4-6 are used to illustrate the preparation process of carbon-coated Li 6 CoO 4 composite materials.
  • the Li 5 FeO 4 material was prepared according to the method described in Example 1, except that the pulverized Li 5 FeO 4 was not coated with carbon.
  • the Li 6 CoO 4 material was prepared according to the method described in Example 4, except that the pulverized Li 6 CoO 4 was not coated with carbon.
  • the materials prepared in Examples 1-6 and Comparative Examples 1-2 were prepared into lithium ion batteries and detected.
  • the detection steps are as follows: carbon-coated Li 5 FeO 4 , Super-P and PVDF are in a mass ratio of 90:5: 5.
  • Disperse in NMP control the solid content to be about 40%, after uniformly dispersing by defoamer, coat on aluminum foil, vacuum dry, make positive pole pieces, and then carry out button-type 2025 battery assembly in glove box, electrolysis
  • the assembled half-cell was tested for capacity on the Xinwei tester.
  • the charge cut-off voltage was 4.7V
  • the discharge cut-off voltage was 2.0V
  • the charge-discharge rate was 0.05C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及锂电池正极补锂添加剂技术领域,公开了一种碳包覆富锂氧化物复合材料及其制备方法。该方法包括以下步骤:(1)将铁源或钴源与锂源混合,烧结后得到富锂氧化物Li 5FeO 4或Li 6CoO 4,其中,所述锂源与所述铁源的摩尔比为5-25:1,所述锂源与所述钴源的摩尔比为6-30:1;(2)将步骤(1)中得到的富锂氧化物粉碎;(3)将步骤(2)中粉碎后的富锂氧化物与碳源混合,烧结后得到碳包覆富锂氧化物复合材料。本发明所述的方法制备的碳包覆富锂氧化物复合材料能够克服富锂材料导电性不足的缺陷,具有良好的电化学性能,可以有效的弥补锂电池首次充放电过程中损失的活性锂。

Description

一种碳包覆富锂氧化物复合材料及其制备方法
相关申请的交叉引用
本申请要求2020年07月09日提交的中国专利申请202010657297.4的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及锂电池正极补锂添加剂技术领域,具体涉及一种碳包覆富锂氧化物复合材料及其制备方法。
背景技术
锂离子电池具有较高的能量密度和较长的循环寿命等优点,在包括消费者电子、动力电池以及储能领域均有着广泛的应用。然而,锂电池在首次充放电过程中,部分电解液会在负极表面发生还原反应,生成致密的固态电解质界面层,消耗正极活性材料中的活性锂,导致不可逆容量损失;除此之外,正极材料在首次充放电过程中也会发生部分不可逆反应,降低锂电池中的活性锂含量,这些副反应均会降低锂离子电池的能量密度。
采用补锂的方法弥补锂离子电池的不可逆容量损失,使得正极材料的容量得到恢复,可提高锂离子电池的能量密度,吸引了相关工作人员的注意。现有的补锂技术主要包括“向负极片表面添加锂粉”,“将有机锂溶液喷洒或滴加于负极片表面”以及“电化学法”等预锂 化等方案。然而,以上方法对环境要求较高且具有一定的危险性,操作不当容易引发意外。
通过向正极材料中加入少量的富锂氧化物,可以在现有的生产工艺上实现正极补锂,提升电池的能量密度。其中,反萤石结构的Li 5FeO 4,Li 6CoO 4由于其超高的比容量以及不可逆性,在补锂技术中具有广泛的应用前景。
发明内容
本发明的目的是为了克服现有技术存在的补锂方法对环境要求较高且具有一定的危险性的问题,提供一种碳包覆富锂氧化物复合材料及其制备方法,该方法可在现有正极材料产线上直接制备碳包覆富锂氧化物复合物材料,具有可放大性与经济性;且该包覆碳层可以有效克服富锂金属氧化物导电性性不足的缺陷,富锂氧化物则可以为正极材料提供充足的活性锂,提升锂电池能量密度。
为了实现上述目的,本发明一方面提供了一种制备碳包覆富锂氧化物复合材料的方法,该方法包括以下步骤:
(1)将铁源或钴源与锂源混合,烧结后得到富锂氧化物Li 5FeO 4或Li 6CoO 4,其中,所述锂源与所述铁源的摩尔比为5-25∶1,所述锂源与所述钴源的摩尔比为6-30∶1;
(2)将步骤(1)中得到的富锂氧化物粉碎;
(3)将步骤(2)中粉碎后的富锂氧化物与碳源混合,烧结后得到碳包覆富锂氧化物复合材料。
优选地,在步骤(1)中,所述铁源为三氧化二铁、四氧化三铁、羟基氧化铁、硝酸铁和柠檬酸铁中的一种或多种。
优选地,在步骤(1)中,所述钴源为氧化亚钴,四氧化三钴,碳酸钴,硫酸钴,氯化钴和硝酸钴中的一种或多种。
优选地,在步骤(1)中,所述锂源为碳酸锂、单水氢氧化锂、无水氢氧化锂和氧化锂中的一种或多种。
优选地,在步骤(1)中,所述烧结过程包括:将铁源或钴源与锂源的混合物置于烧结炉中,在惰性气体条件下,以第一预设升温速度升温至第一烧结温度进行烧结。
优选地,所述第一预设升温速度为1-10℃/min。
优选地,所述第一烧结温度为500-1000℃;所述第一烧结时间为3-60h。
优选地,在步骤(2)中,将所述富锂氧化物粉碎至平均粒径为2-50μm。
优选地,在步骤(3)中,所述碳源为导电炭黑、科琴黑、碳纳米管、乙炔黑、气相生长碳纤维、石墨烯和生物质碳中的一种或多种。
优选地,在步骤(3)中,以富锂氧化物与碳源的总重量为基准,所述碳源所占的比例为0.5-10重量%。
优选地,在步骤(3)中,所述烧结过程包括:将粉碎后的富锂氧化物与碳源混合均匀后,在惰性气体条件下,以第二预设升温速度升温至第二烧结温度进行烧结。
优选地,所述第二预设升温速度为1-10℃/min。
优选地,所述第二烧结温度为200-600℃;所述第二烧结时间为2-20h。
本发明第二方面提供了一种前文所述的方法制备的碳包覆富锂氧化物复合材料,其特征在于,该碳包覆富锂氧化物复合材料包括碳层和被碳层包覆的富锂氧化物,其中,所述富锂氧化物为Li 5FeO 4或Li 6CoO 4
通过本发明所述的方法制备的碳包覆富锂氧化物复合材料能够克服富锂材料导电性不足的缺陷,具有良好的电化学性能,可以有效的弥补锂电池首次充放电过程中损失的活性锂。
附图说明
图1是本发明实施例1中制备的碳包覆Li 5FeO 4材料的扫描电镜照片;
图2是本发明实施例4中制备的碳包覆Li 6CoO 4材料的扫描电镜照片;
图3是本发明实施例1中制备的碳包覆Li 5FeO 4材料的充放电曲线;
图4是本发明实施例4中制备的碳包覆Li 6CoO 4材料的充放电曲线。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解 的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明一方面提供了一种制备碳包覆富锂氧化物复合材料的方法,该方法包括以下步骤:
(1)将铁源或钴源与锂源混合,烧结后得到富锂氧化物Li 5FeO 4或Li 6CoO 4,其中,所述锂源与所述铁源的摩尔比为5-25∶1,所述锂源与所述钴源的摩尔比为6-30∶1;
(2)将步骤(1)中得到的富锂氧化物粉碎;
(3)将步骤(2)中粉碎后的富锂氧化物与碳源混合,烧结后得到碳包覆富锂氧化物复合材料。
通过本发明所述的方法制备的碳包覆富锂氧化物材料中的富锂氧化物结晶性良好,无杂相,具有良好的电化学性能;包覆碳层既可以提高富锂氧化物的稳定性,也可以提高其导电性,有利于其性能的发挥。
在本发明所述的方法中,在步骤(1)中,所述铁源可以为本领域的常规选择。具体地,所述铁源可以为三氧化二铁、四氧化三铁、羟基氧化铁、硝酸铁和柠檬酸铁中的一种或多种。优选情况下,所述 铁源为三氧化二铁。
在本发明所述的方法中,在步骤(1)中,所述钴源可以为本领域的常规选择。具体地,所述钴源可以为氧化亚钴,四氧化三钴,碳酸钴,硫酸钴,氯化钴和硝酸钴中的一种或多种。优选情况下,所述钴源为氧化亚钴。
在本发明所述的方法中,在步骤(1)中,所述锂源可以为本领域的常规选择。具体地,所述锂源可以为碳酸锂、单水氢氧化锂、无水氢氧化锂和氧化锂中的一种或多种。优选情况下,所述锂源为氧化锂。
为了保证铁源或钴源与锂源能够烧结成具有高结晶度的富锂氧化物,需要将锂源与铁源或钴源的摩尔比控制在合适的范围内。
在具体实施方式中,所述锂源与所述铁源的摩尔比可以为5∶1、7∶1、9∶1、11∶1、13∶1、15∶1、17∶1、19∶1、21∶1、23∶1、25∶1以及这些点值中任意两个所构成范围中的任意值。在优选实施方式中,所述锂源与所述铁源的摩尔比为5.5∶1。
在具体实施方式中,所述锂源与所述钴源的摩尔比可以为6∶1、8∶1、10∶1、12∶1、14∶1、16∶1、18∶1、20∶1、22∶1、24∶1、26∶1、28∶1、30∶1以及这些点值中任意两个所构成范围中的任意值。在优选实施方式中,所述锂源与所述钴源的摩尔比为6.6∶1。
在本发明所述的方法中,在步骤(1)中,所述烧结过程包括:将铁源或钴源与锂源的混合物置于烧结炉中,在惰性气体保护条件下,以第一预设升温速度升温至第一烧结温度进行烧结。
在步骤(1)所述烧结过程中,所述烧结炉可以为本领域的常规选择,优选情况下,所述烧结炉为箱式炉。
在步骤(1)所述烧结过程中,所述第一预设升温速度为1-10℃/min;具体地,例如可以为1℃/min、2℃/min、3℃/min、4℃/min、5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min;优选地,所述第一预设升温速度为2℃/min。
在步骤(1)所述烧结过程中,所述第一烧结温度为500-1000℃;具体地,例如可以为500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃、900℃、950℃或1000℃。
当烧结得到的富锂氧化物为Li 5FeO 4时,优选情况下,所述第一烧结温度为850℃。
当烧结得到的富锂氧化物为Li 6CoO 4时,优选情况下,所述第一烧结温度为700℃。
在步骤(1)所述烧结过程中,所述第一烧结时间为3-60h;具体地,例如可以为3h、5h、8h、10h、13h、16h、20h、23h、25h、30h、35h、40h、43h、48h、52h、55h、57h、60h以及这些点值中任意两个所构成范围中的任意值。
当烧结得到的富锂氧化物为Li 5FeO 4时,优选情况下,所述第一烧结时间为10-40h,更优选地,所述第一烧结时间为12-30h。
当烧结得到的富锂氧化物为Li 6CoO 4时,优选情况下,所述第一烧结时间为5-30h,更优选地,所述第一烧结时间为6-24h。
在本发明所述的方法中,在步骤(2)中,将所述富锂氧化物粉 碎至平均粒径为2-50μm;具体地,例如可以为2μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm以及这些点值中任意两个所构成范围中的任意值;优选地,在步骤(2)中,将所述富锂氧化物粉碎至平均粒径为25μm。
在本发明所述的方法中,在步骤(3)中,所述碳源可以为本领域常规使用的导电碳材料。具体地,例如可以为导电炭黑、科琴黑、碳纳米管、乙炔黑、气相生长碳纤维、石墨烯和生物质碳中的一种或多种;优选地,所述碳源为导电炭黑;更为优选地,所述碳源为导电炭黑Super P。
在本发明所述的方法中,在步骤(3)中,以富锂氧化物与碳源的总重量为基准,所述碳源所占的比例为0.5-10重量%;具体地,例如可以为0.5重量%、1重量%、2重量%、4重量%、6重量%、8重量%、10重量%以及这些点值中任意两个所构成范围中的任意值;优选地,在步骤(3)中,以富锂氧化物与碳源的总重量为基准,所述碳源所占的比例为1重量%。
在本发明所述的方法中,在步骤(3)中,所述烧结过程包括:将粉碎后的富锂氧化物与碳源混合均匀后,在惰性气体条件下,以第二预设升温速度升温至第二烧结温度进行烧结。
在步骤(3)所述烧结过程中,所述烧结炉可以为本领域的常规选择,优选情况下,所述烧结炉为箱式炉。
在步骤(3)所述烧结过程中,所述第二预设升温速度为1-10℃/min;具体地,例如可以为1℃/min、2℃/min、3℃/min、4℃/min、5℃ /min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min;优选地,所述第二预设升温速度为5℃/min。
在步骤(3)所述烧结过程中,所述第二烧结温度为200-600℃;具体地,例如可以为200℃、300℃、400℃、500℃、600℃以及这些点值中任意两个所构成范围中的任意值;优选情况下,所述第二烧结温度为450℃。
在步骤(3)所述烧结过程中,所述第二烧结时间为2-20h;具体地,例如可以为2h、5h、8h、10h、13h、15h、17h、20h以及这些点值中任意两个所构成范围中的任意值;优选情况下,所述第二烧结时间为4-10h。
本发明另一方面提供了一种由前文所述的方法制备的碳包覆富锂氧化物复合材料,该碳包覆富锂氧化物复合材料包括碳层和被碳层包覆的富锂氧化物,其中,所述富锂氧化物为反萤石结构的Li 5FeO 4或Li 6CoO 4。该碳包覆富锂氧化物复合材料可以作为添加剂提供正极材料首次充放电过程中消耗的不可逆锂。
以下将通过实施例对本发明进行详细描述,但本发明的保护范围并不局限于此。
本发明实施例1-3用于说明碳包覆Li 5FeO 4复合材料的制备过程,实施例4-6用于说明碳包覆Li 6CoO 4复合材料的制备过程。
实施例1
将206.2g的Li 2O和200g的Fe 2O 3混合均匀,将得到的混合物放 入厢式炉中,在氮气的保护下,以2℃/min的升温速度升温至850℃烧结24h,将烧结得到的Li 5FeO 4粉碎至平均粒径为35μm后与导电炭黑Super P混合均匀后放入厢式炉中以5℃/min的升温速度升温至450℃,氮气气氛下保温7h,得到碳包覆Li 5FeO 4复合材料(扫描电镜图和充放电曲线如图1和图3所示),Super P占复合材料总重量的3%。
实施例2
将283.8g的LiOH·H 2O和100g的Fe 2O 3混合均匀,将得到的混合物放入厢式炉中,在氮气保护下,以5℃/min的升温速度升温至950℃烧结36h,将烧结得到的Li 5FeO 4粉碎至平均粒径为15μm后与科琴黑混合均匀后放入厢式炉中以10℃/min的升温速度升温至600℃,氮气气氛下保温18h,得到碳包覆Li 5FeO 4复合材料,科琴黑占复合材料总重量的2%。
实施例3
将109.1g的Li 2O和100g的Fe 2O 3混合均匀,将得到的混合物放入厢式炉中,在氮气的保护下,以8℃/min的升温速度升温至750℃烧结40h,将烧结得到的Li 5FeO 4粉碎至平均粒径为50μm后与导电炭黑Super P混合均匀后放入厢式炉中以2℃/min的升温速度升温至300℃,氮气气氛下保温4h,得到碳包覆Li 5FeO 4复合材料,Super P占复合材料总重量的5%。
对比例1
按照实施例1所述的方法制备Li 5FeO 4材料,不同的是,粉碎后的Li 5FeO 4不进行碳包覆。
实施例4
将130.67g的Li 2O和100g的CoO混合均匀,将得到的混合物放入厢式炉中,在氮气的保护下,以2℃/min的升温速度升温至700℃烧结18h,将烧结得到的Li 6CoO 4粉碎至平均粒径为10μm后与导电炭黑Super P混合均匀后放入厢式炉中以8℃/min的升温速度升温至450℃,氮气气氛下保温10h,得到碳包覆Li 6CoO 4复合材料(扫描电镜图和充放电曲线如图2和图4所示),Super P占复合材料总重量的3%。
实施例5
将87.3g的Li 2O和100g的CoCO3混合均匀,将得到的混合物放入厢式炉中,在氮气保护下,以6℃/min升温速度升温至800℃烧结12h,将烧结得到的Li 6CoO 4粉碎至平均粒径为30μm后与碳纳米管混合均匀后放入厢式炉中以4℃/min的升温速度升温至350℃,氮气气氛下保温5h,得到碳包覆L i6CoO 4复合材料,碳纳米管占复合材料总重量的1%。
实施例6
将205.64的LiOH和100g的CoO混合均匀,将得到的混合物放入厢式炉中,在氮气的保护下,以9℃/min升温速度升温至750℃烧结15h,将烧结得到的Li 6CoO 4粉碎至平均粒径为5μm后与导电炭黑KS-6混合均匀后放入厢式炉中以7℃/min升温速度升温至300℃,氮气气氛下保温15h,得到碳包覆Li 6CoO 4复合材料,KS-6占复合材料质量的2%。
对比例2
按照实施例4所述的方法制备Li 6CoO 4材料,不同的是,粉碎后的Li 6CoO 4不进行碳包覆。
测试例
将实施例1-6和对比例1-2的中制备的材料制备成锂离子电池并检测,检测步骤如下:将碳包覆Li 5FeO 4、Super-P以及PVDF按照质量比90∶5∶5分散在NMP中,控制固含量在40%左右,经过消泡机分散均匀后,涂覆在铝箔上,真空烘干,制得正极极片后在手套箱中进行扣式2025电池装配,电解液为1.2mol/L的LiPF 6,其中溶剂体积比为EC∶EMC=3∶7,隔膜为Celgard聚丙烯膜,采用金属锂片为对电极。将装配好的半电池在新威测试仪上进行容量测试,充电截至电压为4.7V,放电截止电压为2.0V,充放电倍率为0.05C,测试结果如表1和表2所示。
表1碳包覆Li 5FeO 4复合材料的测试结果
Figure PCTCN2020104574-appb-000001
由表1的数据可以看出,按照实施例1-3制备的碳包覆Li 5FeO 4复合材料具有明显较高的首次充电比容量,由此表明,按照本发明所述方法制备的碳包覆富锂氧化物复合材料具有明显改善的电化学性能。
表2碳包覆Li 6CoO 4复合材料的测试结果
Figure PCTCN2020104574-appb-000002
由表2的数据可以看出,按照实施例4-6制备的碳包覆Li 6CoO 4复合材料具有明显较高的首次充电比容量,由此表明,按照本发明所述方法制备的碳包覆富锂氧化物复合材料具有明显改善的电化学性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种制备碳包覆富锂氧化物复合材料的方法,其特征在于,该方法包括以下步骤:
    (1)将铁源或钴源与锂源混合,烧结后得到富锂氧化物Li 5FeO 4或Li 6CoO 4,其中,所述锂源与所述铁源的摩尔比为5-25:1,所述锂源与所述钴源的摩尔比为6-30:1;
    (2)将步骤(1)中得到的富锂氧化物粉碎;
    (3)将步骤(2)中粉碎后的富锂氧化物与碳源混合,烧结后得到碳包覆富锂氧化物复合材料。
  2. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述铁源为三氧化二铁、四氧化三铁、羟基氧化铁、硝酸铁和柠檬酸铁中的一种或多种。
  3. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述钴源为氧化亚钴,四氧化三钴,碳酸钴,硫酸钴,氯化钴和硝酸钴中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述锂源为碳酸锂、单水氢氧化锂、无水氢氧化锂和氧化锂中的一种或多种。
  5. 根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述烧结过程包括:将铁源或钴源与锂源的混合物置于烧结炉中,在惰性气体条件下,以第一预设升温速度升温至第一烧结温度进行烧结;
    优选地,所述第一预设升温速度为1-10℃/min;
    优选地,所述第一烧结温度为500-1000℃;所述第一烧结时间为3-60h。
  6. 根据权利要求1所述的方法,其特征在于,在步骤(2)中,将所述富锂氧化物粉碎至平均粒径为2-50μm。
  7. 根据权利要求1所述的方法,其特征在于,在步骤(3)中,所述碳源为导电炭黑、科琴黑、碳纳米管、乙炔黑、气相生长碳纤维、石墨烯和生物质碳中的一种或多种。
  8. 根据权利要求1所述的方法,其特征在于,在步骤(3)中,以富锂氧化物与碳源的总重量为基准,所述碳源所占的比例为0.5-10重量%。
  9. 根据权利要求1所述的方法,其特征在于,在步骤(3)中,所述烧结过程包括:将粉碎后的富锂氧化物与碳源混合均匀后,在惰性气体条件下,以第二预设升温速度升温至第二烧结温度进行烧结;
    优选地,所述第二预设升温速度为1-10℃/min;
    优选地,所述第二烧结温度为200-600℃;所述第二烧结时间为2-20h。
  10. 权利要求1-9中任意一项所述的方法制备的碳包覆富锂氧化物复合材料,其特征在于,该碳包覆富锂氧化物复合材料包括碳层和被碳层包覆的富锂氧化物,其中,所述富锂氧化物为Li 5FeO 4或Li 6CoO 4
PCT/CN2020/104574 2020-07-09 2020-07-24 一种碳包覆富锂氧化物复合材料及其制备方法 WO2022007021A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/783,654 US20230121840A1 (en) 2020-07-09 2020-07-24 Carbon-coated lithium-rich oxide composite material and preparation method thereof
EP20944429.8A EP4057390A1 (en) 2020-07-09 2020-07-24 Carbon-coated lithium-rich oxide composite material and preparation method therefor
KR1020227019401A KR20220118412A (ko) 2020-07-09 2020-07-24 탄소 코팅된 리튬-풍부 산화물 복합재료 및 이의 제조방법
JP2022560410A JP7436765B2 (ja) 2020-07-09 2020-07-24 炭素被覆リチウムリッチ酸化物複合材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010657297.4A CN111725576B (zh) 2020-07-09 2020-07-09 一种碳包覆富锂氧化物复合材料及其制备方法
CN202010657297.4 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022007021A1 true WO2022007021A1 (zh) 2022-01-13

Family

ID=72572197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104574 WO2022007021A1 (zh) 2020-07-09 2020-07-24 一种碳包覆富锂氧化物复合材料及其制备方法

Country Status (6)

Country Link
US (1) US20230121840A1 (zh)
EP (1) EP4057390A1 (zh)
JP (1) JP7436765B2 (zh)
KR (1) KR20220118412A (zh)
CN (1) CN111725576B (zh)
WO (1) WO2022007021A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702078A (zh) * 2022-03-21 2022-07-05 湖北亿纬动力有限公司 一种碳包覆铁酸锂材料及其制备方法
CN115000536A (zh) * 2022-06-02 2022-09-02 深圳市德方创域新能源科技有限公司 正极补锂材料及其制备方法与应用
CN115799674A (zh) * 2022-11-29 2023-03-14 楚能新能源股份有限公司 正极补锂材料及其制备方法和锂离子电池
WO2024016446A1 (zh) * 2022-07-20 2024-01-25 广东邦普循环科技有限公司 一种核壳结构富锂氧化物及制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115347187A (zh) * 2021-05-12 2022-11-15 深圳市德方创域新能源科技有限公司 富锂铁系复合材料及其制备方法与应用
CN113644271B (zh) * 2021-08-12 2023-03-14 山东玉皇新能源科技有限公司 一种钠离子电池负极补钠添加剂及负极材料
WO2023048550A1 (ko) * 2021-09-27 2023-03-30 주식회사 엘지화학 리튬 이차전지용 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차전지
CN116072991A (zh) * 2021-10-29 2023-05-05 深圳市德方创域新能源科技有限公司 补锂添加剂及其制备方法和应用
CN114560505A (zh) * 2022-03-03 2022-05-31 华鼎国联四川电池材料有限公司 一种锂离子电池正极添加剂的制备方法及补锂方法
CN114709383A (zh) * 2022-03-18 2022-07-05 广东邦普循环科技有限公司 改性锂离子电池正极材料及其制备方法和应用
CN114927656A (zh) * 2022-05-05 2022-08-19 宜昌邦普循环科技有限公司 一种电化学材料的制备方法及其应用
CN114956193B (zh) * 2022-06-30 2024-01-05 广东邦普循环科技有限公司 一种正极活性材料的制备方法及其应用
CN115108589B (zh) * 2022-07-21 2024-05-10 广东邦普循环科技有限公司 一种碳包覆富锂氧化物及其制备方法和应用
WO2024098198A1 (zh) * 2022-11-07 2024-05-16 宁德时代新能源科技股份有限公司 包覆型富锂金属氧化物材料及制备方法、测定包覆型富锂金属氧化物材料中包覆层的方法、正极极片、电池及用电装置
CN115911357B (zh) * 2022-11-18 2024-02-02 湖北万润新能源科技股份有限公司 一种碳包覆铁酸锂材料的制备方法及其应用
CN116632220A (zh) * 2023-07-21 2023-08-22 宁德时代新能源科技股份有限公司 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置
CN116789191B (zh) * 2023-07-25 2024-01-12 宁德时代新能源科技股份有限公司 补钠材料及其制备方法、正极极片、电极组件、电池和用电装置
CN117558922B (zh) * 2024-01-12 2024-03-29 紫金矿业新能源新材料科技(长沙)有限公司 富锂铁酸锂补锂材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601489A (zh) * 2016-12-28 2017-04-26 宁波中车新能源科技有限公司 一种无需预嵌锂型锂离子电容器及其制备方法
CN107658138A (zh) * 2017-09-13 2018-02-02 中南大学 Li6CoO4预锂化剂及锂离子电容器的制备方法及锂离子电容器
CN107731560A (zh) * 2017-09-13 2018-02-23 中南大学 Li5FeO4预锂化剂及锂离子电容器的制备方法及锂离子电容器
CN108878849A (zh) * 2018-07-04 2018-11-23 江西中汽瑞华新能源科技有限公司 富锂氧化物的合成工艺及含该富锂氧化物的锂离子电池
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
JP2019085314A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
CN110197887A (zh) * 2018-02-26 2019-09-03 比亚迪股份有限公司 一种电池隔膜及锂离子电池
WO2019194613A1 (ko) * 2018-04-06 2019-10-10 주식회사 엘지화학 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
CN110498449A (zh) * 2019-09-06 2019-11-26 湖北融通高科先进材料有限公司 一种铁酸锂材料及其制备方法
CN111146412A (zh) * 2018-11-02 2020-05-12 常州烯蓬新材料科技有限公司 一种新型复合相锂电池正极材料的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569794B (zh) * 2011-03-23 2015-05-20 江苏菲思特新能源有限公司 一种正极材料磷酸铁锂的碳包覆方法
JP7097153B2 (ja) * 2016-09-09 2022-07-07 株式会社Gsユアサ 正極活物質、正極、及び非水電解質蓄電素子
JP2019145402A (ja) * 2018-02-22 2019-08-29 株式会社豊田自動織機 リチウムイオン二次電池
CN110299515B (zh) * 2018-03-23 2023-08-08 比亚迪股份有限公司 一种正极活性材料及其制备方法、正极和电池
CN109786746A (zh) * 2018-12-25 2019-05-21 深圳市比克动力电池有限公司 正极片、锂离子电池正极补锂材料及其制备方法
CN110459748A (zh) * 2019-08-20 2019-11-15 湖北融通高科先进材料有限公司 一种碳包覆铁酸锂材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601489A (zh) * 2016-12-28 2017-04-26 宁波中车新能源科技有限公司 一种无需预嵌锂型锂离子电容器及其制备方法
CN107658138A (zh) * 2017-09-13 2018-02-02 中南大学 Li6CoO4预锂化剂及锂离子电容器的制备方法及锂离子电容器
CN107731560A (zh) * 2017-09-13 2018-02-23 中南大学 Li5FeO4预锂化剂及锂离子电容器的制备方法及锂离子电容器
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
JP2019085314A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
CN110197887A (zh) * 2018-02-26 2019-09-03 比亚迪股份有限公司 一种电池隔膜及锂离子电池
WO2019194613A1 (ko) * 2018-04-06 2019-10-10 주식회사 엘지화학 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
CN108878849A (zh) * 2018-07-04 2018-11-23 江西中汽瑞华新能源科技有限公司 富锂氧化物的合成工艺及含该富锂氧化物的锂离子电池
CN111146412A (zh) * 2018-11-02 2020-05-12 常州烯蓬新材料科技有限公司 一种新型复合相锂电池正极材料的制造方法
CN110498449A (zh) * 2019-09-06 2019-11-26 湖北融通高科先进材料有限公司 一种铁酸锂材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERANDI BEMABE-PABLO ET AL.: "High and efficient carbon dioxide chemisorption on a new high lithium-content ceramic; hexalithium cobaltate (Li6CoO4", CHEMICAL ENGINEERING JOURNAL, vol. 384, 28 October 2019 (2019-10-28), XP086038018, ISSN: 1385-8947, DOI: 10.1016/j.cej.2019.123291 *
S. NARUKAWA ET AL.: "Anti-fluorite type Li6CoO4, Li5FeO4, and Li6MnO4 as the cathode for lithium secondary batteries", SOLID STATE IONICS, vol. 122, no. 1-4, 1 July 1999 (1999-07-01), XP004168360, ISSN: 0167-2738, DOI: 10.1016/S0167-2738(99)00018-1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702078A (zh) * 2022-03-21 2022-07-05 湖北亿纬动力有限公司 一种碳包覆铁酸锂材料及其制备方法
CN114702078B (zh) * 2022-03-21 2023-06-20 湖北亿纬动力有限公司 一种碳包覆铁酸锂材料及其制备方法
CN115000536A (zh) * 2022-06-02 2022-09-02 深圳市德方创域新能源科技有限公司 正极补锂材料及其制备方法与应用
CN115000536B (zh) * 2022-06-02 2023-03-24 深圳市德方创域新能源科技有限公司 正极补锂材料及其制备方法与应用
WO2024016446A1 (zh) * 2022-07-20 2024-01-25 广东邦普循环科技有限公司 一种核壳结构富锂氧化物及制备方法和应用
CN115799674A (zh) * 2022-11-29 2023-03-14 楚能新能源股份有限公司 正极补锂材料及其制备方法和锂离子电池

Also Published As

Publication number Publication date
CN111725576B (zh) 2024-04-09
KR20220118412A (ko) 2022-08-25
EP4057390A1 (en) 2022-09-14
CN111725576A (zh) 2020-09-29
US20230121840A1 (en) 2023-04-20
JP2023505390A (ja) 2023-02-08
JP7436765B2 (ja) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2022007021A1 (zh) 一种碳包覆富锂氧化物复合材料及其制备方法
WO2021088168A1 (zh) 补锂材料及包括其的正极
CN109390563B (zh) 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池
WO2021083197A1 (zh) 硅氧复合负极材料及其制备方法和锂离子电池
CN108807860B (zh) 阴极添加剂及其制备方法、阴极片及锂电池
WO2021088354A1 (zh) 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN112271279A (zh) 复合正极材料及其制备方法、应用和锂离子电池
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN113562714A (zh) 一种高压实密度磷酸铁锂及其制备方法
CN114094068B (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN111564612A (zh) 一种高导热导电性锂电正极材料及其制备方法
CN114573028B (zh) 有异质结结构的过渡金属化合物及其制法和复合补锂材料
WO2023046137A1 (zh) 制备磷酸铁锂正极材料的方法、正极极片及锂离子电池
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
CN115911610A (zh) 一种正极补锂材料、制备方法及其应用
CN113066988B (zh) 一种负极极片及其制备方法和用途
WO2022121280A1 (zh) 一种类石榴结构硅基复合材料、其制备方法及其应用
WO2021184764A1 (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
WO2023174152A1 (zh) 正极材料的制备方法、正极材料、正极片和钠离子电池
CN111952585A (zh) 一种高压实密度的铷掺杂锂电池正极材料及其制备方法
WO2023173775A1 (zh) 改性锂离子电池正极材料及其制备方法和应用
WO2023174435A1 (zh) 一种三元掺混正极材料及其制备方法与电池
CN108899540A (zh) 磷酸铁锂复合材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560410

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020944429

Country of ref document: EP

Effective date: 20220608

NENP Non-entry into the national phase

Ref country code: DE