WO2021088168A1 - 补锂材料及包括其的正极 - Google Patents

补锂材料及包括其的正极 Download PDF

Info

Publication number
WO2021088168A1
WO2021088168A1 PCT/CN2019/122058 CN2019122058W WO2021088168A1 WO 2021088168 A1 WO2021088168 A1 WO 2021088168A1 CN 2019122058 W CN2019122058 W CN 2019122058W WO 2021088168 A1 WO2021088168 A1 WO 2021088168A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
oxide
feo
coated
Prior art date
Application number
PCT/CN2019/122058
Other languages
English (en)
French (fr)
Inventor
周墨林
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2021088168A1 publication Critical patent/WO2021088168A1/zh
Priority to US17/700,886 priority Critical patent/US20220216471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electrochemistry, in particular to a lithium-supplementing material and a positive electrode including the same.
  • lithium-ion batteries have gained advantages due to their high energy density, high power density, long life, good safety, low self-discharge and wide temperature adaptation range. Wide range of applications.
  • a solid electrolyte interface (SEI) film layer will be formed on the surface of the negative electrode, which will convert a large amount of active lithium into lithium carbonate, lithium fluoride and alkyl lithium, causing lithium loss in the positive electrode material. Reduce the battery's first coulomb efficiency and battery capacity. In a lithium-ion battery system using a graphite negative electrode, about 10% of the lithium source is consumed for the first charge.
  • anode materials with high specific capacity such as alloys (silicon, tin, etc.), oxides (silicon oxide, tin oxide), and amorphous carbon anodes, the consumption of the cathode lithium source will further increase.
  • the current negative electrode lithium supplement materials have the following defects: the activity is too high and cannot be stored stably for a long time, which increases the difficulty of operation and production risks. Therefore, a relatively safer and easier-to-operate positive electrode lithium supplement process has attracted more and more attention.
  • the common anti-fluorite-type positive lithium supplement material has poor conductivity, which leads to serious polarization during charging, so that the positive lithium supplement material cannot exert its full theoretical specific capacity.
  • the present application provides a lithium-supplementing material containing a semiconductor oxide and a positive electrode including the same in an attempt to at least some extent solve at least one problem existing in the related field.
  • the present application provides a positive electrode lithium supplement material containing a semiconductor oxide and Li 5 MO 4.
  • the semiconductor oxide with good conductivity is the coating layer, which may include at least one of tin oxide, indium oxide, antimony tin oxide, or indium tin oxide, and the semiconductor oxide covers at least a part of the surface of Li 5 MO 4;
  • the Li 5 MO 4 is an inverse fluorite type compound, where M includes at least one of Fe, Ni, Mn, Ru, Cr, Cu, Nb, Al or Mo, preferably Li 5 FeO 4 .
  • the weight of the semiconductor oxide uniform coating layer is about 0.5 wt% to 3 wt% of Li 5 MO 4.
  • the molar ratio of antimony to tin in the semiconductor oxide is about 0.1:1 to 0.5:1; when the semiconductor oxide is indium tin oxide, the semiconductor oxide The molar ratio of tin to indium in the product is about 0.1:1 to 0.5:1.
  • the present application provides a method for preparing a lithium supplement material containing a semiconductor oxide.
  • the specific steps include: first dispersing the semiconductor oxide in an organic solvent, wherein the solvent is preferably ethanol to obtain a semiconductor-containing oxide. Oxide suspension; then Li 5 MO 4 is added to the suspension and mixed uniformly to obtain a uniform mixture; wherein the uniform mixing method can be magnetic stirring, mechanical stirring or ultrasonic treatment, stirring or ultrasonic The treatment time is 0.5h-2h; finally, the mixed solution is dried to obtain the lithium-supplementing material containing the semiconductor oxide, wherein the drying treatment is preferably spray drying.
  • the present application provides a positive electrode, which includes a positive electrode active material, a conductive agent, a binder, and a positive electrode lithium supplement material coated with any of the foregoing semiconductor oxides or the semiconductor oxide obtained by the foregoing preparation method. Material-coated positive electrode lithium supplement material.
  • the positive active material includes lithium cobaltate, lithium iron phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium vanadate, lithium manganate, lithium nickelate, lithium nickel cobalt manganese oxide , At least one of lithium-rich manganese-based materials or lithium nickel cobalt aluminate.
  • the conductive agent includes at least one of conductive carbon black, carbon fiber, acetylene black, Ketjen black, graphene, or carbon nanotubes.
  • the binder includes at least one of polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene, polytetrafluoroethylene, or polyhexafluoropropylene.
  • the present application provides an electrochemical device, which includes any one of the foregoing positive electrodes.
  • the present application provides an electronic device, which includes any one of the electrochemical devices described above.
  • Example 1 is the embodiment in Example 1 Li 5 FeO 4 theoretical simulations Li 5 FeO 4 X-ray diffraction (XRD) spectra.
  • Example 2 is a scanning electron microscope (SEM) image of Li 5 FeO 4 coated with indium oxide in Example 1.
  • FIG. 3 is a curve of charging voltage and specific capacity of Li 5 FeO 4 coated with indium oxide in Example 1.
  • FIG. 4 is a curve of charging voltage and specific capacity of Li 5 FeO 4 coated with indium tin oxide in Example 2.
  • Fig. 5 is a curve of charging voltage and specific capacity of Li 5 FeO 4 in Comparative Example 1.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and illustrate small changes.
  • the term can refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs very closely.
  • the term can refer to a range of variation less than or equal to ⁇ 10% of the stated value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • the difference between two values is less than or equal to ⁇ 10% of the average value of the value (for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than Or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values can be considered "substantially" the same.
  • a list of items connected by the terms “at least one of”, “at least one of”, “at least one of” or other similar terms may mean the listed items Any combination of. For example, if items A and B are listed, then the phrase “at least one of A and B” means only A; only B; or A and B. In another example, if items A, B, and C are listed, then the phrase "at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (exclude B); B and C (exclude A); or all of A, B, and C.
  • Project A can contain a single element or multiple elements.
  • Project B can contain a single element or multiple elements.
  • Project C can contain a single element or multiple elements.
  • the positive electrode lithium supplement material will leave a by-product with poor conductivity on the positive pole piece after the first lap of lithium removal, which will deteriorate the rate performance of the lithium ion battery.
  • the present application uses a good conductive tin oxide, indium oxide, tin, antimony and / or indium tin oxide semiconductor, which is coated on the surface of the material Li 5 MO 4, Li 5 MO 4 to enhance the material delithiation
  • the conductivity of the product is improved, and the rate performance of the lithium-ion battery after replenishing lithium is improved.
  • the semiconductor oxide is not sensitive to external environments such as heat and humidity, can withstand high-pressure oxidation and maintain permanent conductivity, thereby improving the cycle performance of electrochemical devices such as lithium ion batteries.
  • the application provides a lithium supplement material and a preparation method thereof, and also provides a positive electrode, an electrochemical device, and an electronic device including the lithium supplement material.
  • This application provides a lithium supplement material, which includes Li 5 MO 4 and a semiconductor oxide on the surface thereof, the semiconductor oxide covers at least a part of the surface of Li 5 MO 4 ; wherein M includes Fe, Ni, Mn, Ru, At least one of Cr, Cu, Nb, Al, or Mo. It is understandable that for the Li 5 MO 4 material described in this application, M can be selected and matched arbitrarily among the elements (Fe, Ni, Mn, Ru, Cr, Cu, Nb, Al or Mo), for the purpose of description Clear and simple, this application only uses Li 5 FeO 4 and Li 5 AlO 4 as examples for discussion.
  • the Li 5 MO 4 material is Li 5 FeO 4 .
  • the Li 5 MO 4 material is Li 5 AlO 4 .
  • the semiconductor oxide includes at least one of tin oxide, indium oxide, tin antimony oxide, or indium tin oxide.
  • the semiconductor oxide forms a uniform coating layer on the surface of Li 5 MO 4.
  • FIG. 2 shows an SEM image of the semiconductor oxide-coated Li 5 MO 4 (indium oxide-coated Li 5 FeO 4 , the weight percentage of indium oxide is 2 wt%) in Example 1. As shown in Figure 2, indium oxide adheres to the surface of Li 5 FeO 4 particles to form a uniform coating layer.
  • the weight percentage of the semiconductor oxide is about 0.5 wt% to about 3 wt%. In some embodiments, based on the weight of Li 5 MO 4 , the weight percentage of the semiconductor oxide is about 0.5% by weight to about 1% by weight, about 0.5% by weight to about 1.5% by weight, about 0.5% by weight to about 2% by weight, about 0.5 wt% to about 2.5 wt%, about 1 wt% to about 2 wt%, about 1 wt% to about 3 wt%, about 2 wt% to about 3 wt%, and the like.
  • the semiconductor oxide is antimony tin oxide, and the molar ratio of antimony to tin in the semiconductor oxide is about 0.1:1 to about 0.5:1. In some embodiments, the semiconductor oxide is antimony tin oxide, and the molar ratio of antimony to tin in the semiconductor oxide is about 0.1:1 to about 0.2:1, about 0.1:1 to about 0.3:1, and about 0.1:1. -About 0.4:1, about 0.2:1 to about 0.4:1, about 0.2:1 to about 0.5:1, etc.
  • the semiconductor oxide is indium tin oxide, and the molar ratio of tin to indium in the semiconductor oxide is about 0.1:1 to about 0.5:1. In some embodiments, the semiconductor oxide is indium tin oxide, and the molar ratio of tin to indium in the semiconductor oxide is about 0.1:1 to about 0.2:1, about 0.1:1 to about 0.3:1, and about 0.1:1. -About 0.4:1, about 0.2:1 to about 0.4:1, about 0.2:1 to about 0.5:1, etc.
  • This application provides a method for preparing a lithium supplement material, which includes: dispersing the semiconductor oxide in a solvent to obtain a suspension containing the semiconductor oxide; adding the Li 5 MO 4 material to the suspension, and Mix uniformly to obtain a uniform mixed solution; dry the mixed solution to obtain a lithium supplement material.
  • magnetic stirring, mechanical stirring, or ultrasonic treatment is used for mixing, and the time of stirring or ultrasonic treatment is about 0.5 h to about 2 h. In some embodiments, the time of stirring or sonication is about 0.5 h to about 1 h, about 0.5 h to about 1.5 h, about 1 h to about 2 h, and so on.
  • ethanol is selected as the solvent.
  • spray drying is selected for the drying process. After spray drying, the solvent can be completely volatilized without introducing any impurities.
  • the application does not need to undergo high-temperature calcination after spray drying, nor does it need to be crushed, the operation is simple and the cost is low.
  • the semiconductor oxide is coated on the surface of the Li 5 MO 4 material, which can significantly enhance the electronic conductance of the lithium-supplementing material, reduce polarization, and greatly improve the charging specific capacity of the lithium-supplementing material.
  • Adding the lithium supplement material of the present application to the positive electrode of an electrochemical device can reduce the amount of the positive electrode lithium supplement material and increase the energy density of the electrochemical device.
  • the lithium supplement material of the present application is stable in nature, resistant to high-pressure oxidation, insensitive to the environment, and can permanently maintain its excellent electrical conductivity, so it can effectively improve the rate performance and cycle performance of electrochemical devices such as lithium ion batteries.
  • the application provides a positive electrode, which includes a positive electrode active material, a conductive agent, a binder, and any one of the above-mentioned lithium-supplementing materials or the lithium-supplementing material obtained by the above-mentioned preparation method.
  • the positive active material includes lithium cobaltate, lithium iron phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium vanadate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, At least one of lithium-rich manganese-based materials or lithium nickel cobalt aluminate. In some embodiments, the positive active material includes at least one of lithium cobalt oxide or lithium nickel cobalt manganese oxide.
  • the conductive agent includes at least one of conductive carbon black, carbon fiber, acetylene black, Ketjen black, graphene, or carbon nanotubes. In some embodiments, the conductive agent includes conductive carbon black.
  • the binder includes at least one of polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene, polytetrafluoroethylene, or polyhexafluoropropylene. In some embodiments, the binder includes polyvinylidene fluoride.
  • the lithium supplement material, the positive electrode active material, the conductive agent, and the binder are mixed in a certain ratio and uniformly coated on the positive electrode current collector (for example, the aluminum current collector) to prepare the positive electrode.
  • the lithium supplement material may be pre-coated on the positive electrode current collector to form a lithium supplement material layer, and then the positive electrode active material is coated on the lithium supplement material layer to form a positive electrode.
  • the positive electrode active material is coated on the positive electrode current collector to form the positive electrode active material layer, and then the lithium supplement material is coated on the positive electrode active material layer to form the positive electrode.
  • the electrochemical device of the present application includes any one of the above-mentioned positive electrodes of the present application.
  • the electrochemical device of the present application may include any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the electrochemical device of the present application includes the positive electrode of the present application, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the negative electrode includes a negative active material capable of absorbing and releasing lithium (hereinafter, sometimes referred to as "a negative active material capable of absorbing/releasing lithium").
  • a negative active material capable of absorbing/releasing lithium may include carbon materials, metal compounds, oxides, sulfides, lithium nitrides such as LiN3, lithium metal, metals forming alloys with lithium, and polymer materials.
  • examples of carbon materials may include low graphitization carbon, easy graphitization carbon, artificial graphite, natural graphite, mesocarbon microspheres, soft carbon, hard carbon, pyrolytic carbon, coke, glassy carbon , Organic polymer compound sintered body, carbon fiber and activated carbon.
  • coke may include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound sintered body refers to a material obtained by carbonizing a polymer material such as phenol plastic or furan resin at an appropriate temperature, and some of these materials are divided into low graphitized carbon or easily graphitized carbon .
  • Examples of polymer materials may include polyacetylene and polypyrrole.
  • these negative electrode active materials capable of absorbing/releasing lithium a material whose charge and discharge voltage is close to that of lithium metal is selected. This is because the lower the charge and discharge voltage of the negative active material, the easier it is for the lithium ion battery to have a higher energy density.
  • carbon materials can be selected as the negative electrode active material because their crystal structure has only a small change during charging and discharging, and therefore, good cycle characteristics and large charging and discharging capacities can be obtained.
  • graphite is selected because it can give a large electrochemical equivalent and high energy density.
  • the negative active material capable of absorbing/releasing lithium may include elemental lithium metal, metal elements and semi-metal elements capable of forming alloys with lithium, including alloys and compounds of such elements, and the like. For example, using them together with carbon materials, in this case, good cycle characteristics and high energy density can be obtained.
  • the alloys used herein also include alloys containing one or more metal elements and one or more semi-metal elements. The alloy can be in the following states: solid solution, eutectic crystal, intermetallic compound and mixtures thereof.
  • examples of metal elements and semi-metal elements may include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb) , Bismuth (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) Or hafnium (Hf).
  • Examples of the alloy and may include compounds having the formula: material Ma s Mb t Li u and having the chemical formula: Ma p Mc q Md r material.
  • Ma represents at least one element of metal elements and semimetal elements that can form alloys with lithium
  • Mb represents at least one element of metal elements and semimetal elements other than lithium and Ma
  • Mc Represents at least one element among non-metal elements
  • Md represents at least one element among metal elements and semi-metal elements other than Ma
  • s, t, u, p, q, and r satisfy s>0, t ⁇ 0, u ⁇ 0, p>0, q>0, and r ⁇ 0.
  • an inorganic compound that does not include lithium may be used in the negative electrode, such as MnO 2 , SiO 2 , V 2 O 5 , V 6 O 13 , NiS, or MoS.
  • the negative electrode may further include a binder.
  • the binder can improve the bonding of the negative active material particles with each other and the bonding of the negative active material with the current collector.
  • the binder includes, but is not limited to: polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyfluoro Ethylene, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyacrylic acid, styrene butadiene rubber, acrylic acid (ester) Styrene-butadiene rubber, epoxy resin, nylon, etc.
  • the negative electrode may further include a conductive agent.
  • the conductive agent includes, but is not limited to: carbon-based materials, metal-based materials, conductive polymers, or mixtures thereof.
  • the carbon-based material is selected from natural graphite, artificial graphite, conductive carbon black, acetylene black, Ketjen black, carbon fiber, or any combination thereof.
  • the metal-based material is selected from metal powder, metal fiber, copper, nickel, aluminum, silver.
  • the conductive polymer is a polyphenylene derivative.
  • the negative electrode current collector includes, but is not limited to: copper foil, nickel foil, stainless steel foil, titanium foil, foamed nickel, foamed copper, conductive metal-coated polymer substrate, and any combination thereof.
  • the isolation film includes, but is not limited to, at least one selected from polyethylene, polypropylene, polyethylene terephthalate, polyimide, and aramid.
  • polyethylene includes at least one component selected from high-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene.
  • polyethylene and polypropylene they have a good effect on preventing short circuits, and can improve the stability of lithium-ion batteries through the shutdown effect.
  • the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte, and the electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt may be selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiSiF 6 , LiBOB or one or more of lithium difluoroborate.
  • LiPF 6 is selected for the lithium salt because it can give high ionic conductivity and improve cycle characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • examples of chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), ethyl methyl carbonate (MEC) and combinations thereof.
  • examples of the cyclic carbonate compound are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), or a combination thereof.
  • fluorocarbonate compound examples include fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-tricarbonate Fluoroethylene, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2 carbonate -Difluoro-1-methylethylene, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, or a combination thereof.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1,1,2-tricarbonate Fluoroethylene, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2 carbonate -Difluoro-1-methylethylene, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate,
  • examples of carboxylate compounds are methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone Ester, caprolactone, valerolactone, mevalonolactone, caprolactone, methyl formate, or combinations thereof.
  • examples of ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane , Ethoxymethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran or a combination thereof.
  • examples of other organic solvents are dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl -2-pyrrolidone, formamide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, phosphate ester, or a combination thereof.
  • the electrochemical device manufactured from the lithium supplement material described in this application is suitable for electronic devices in various fields.
  • the electrochemical device of the present application is not particularly limited, and it can be used for any purpose known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, and headsets.
  • the present application will be further specifically described with examples and comparative examples, but as long as it does not deviate from the gist, the present application is not limited to these examples.
  • the positive electrode current collectors are all aluminum foil
  • the negative electrode current collectors are all copper foil.
  • the weight ratio of Li 5 FeO 4 coated with indium oxide: conductive carbon black: polyvinylidene fluoride 90:5:5 is uniformly mixed and coated on the positive electrode current collector to prepare a positive electrode sheet.
  • FIG. 3 is a curve of charging voltage and specific capacity of Li 5 FeO 4 coated with indium oxide in Example 1.
  • Li 5 FeO 4 was synthesized by the method of Example 1.
  • Disperse indium tin oxide (the molar ratio of tin to indium is 0.5:1) in ethanol, then add Li 5 FeO 4 , magnetically stir for 0.5 h, mix uniformly, and spray dry to form indium tin oxide coated Li 5 FeO 4 .
  • the weight percentage of indium tin oxide is 2 wt%.
  • the weight ratio of Li 5 FeO 4 coated with indium tin oxide: conductive carbon black: polyvinylidene fluoride 90:5:5 is uniformly mixed and coated on the positive electrode current collector to prepare a positive electrode sheet.
  • the button half-cell is assembled with the prepared positive pole piece as the working electrode and metal lithium as the counter electrode, and the charge capacity of the button half-cell is tested.
  • 4 is a curve of charging voltage and specific capacity of Li 5 FeO 4 coated with indium tin oxide in Example 2.
  • Li 5 FeO 4 coated with indium oxide was prepared.
  • Li 5 FeO 4 LiCoO 2 : Conductive carbon black: Polyvinylidene fluoride coated with indium oxide in a weight ratio of 3:87:5:5 is mixed uniformly and coated on the positive electrode current collector to prepare the positive electrode. sheet.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid (PAA) 90:5:5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative electrode piece.
  • PAA polyacrylic acid
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • Example 2 The method of Example 2 was used to obtain Li 5 FeO 4 coated with indium tin oxide.
  • Li 5 FeO 4 LiCoO 2 : Conductive carbon black: Polyvinylidene fluoride coated with indium tin oxide in a weight ratio of 3:87:5:5, mixed uniformly, and coated on the positive electrode current collector to prepare the positive electrode Pole piece.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid 90: 5: 5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative electrode piece.
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • Example 5 It is basically the same as Example 5, except that the molar ratio of tin to indium in the indium tin oxide used is 0.1:1.
  • Example 5 It is basically the same as Example 5, except that the semiconductor oxide used is antimony tin oxide, in which the molar ratio of tin to antimony is 0.5:1.
  • Example 9 It is basically the same as Example 9, except that the molar ratio of tin to antimony in the antimony tin oxide used is 0.1:1.
  • Li 5 AlO 4 was coated with indium oxide.
  • Li 5 AlO 4 LiCoO 2 : Conductive carbon black: Polyvinylidene fluoride coated with indium oxide in a weight ratio of 3:87:5:5 is mixed uniformly and coated on the positive electrode current collector to prepare the positive electrode. sheet.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid (PAA) 90:5:5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative electrode piece.
  • PAA polyacrylic acid
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • Li 5 FeO 4 was synthesized by the method of Example 1.
  • the weight ratio of Li 5 FeO 4 : conductive carbon black: polyvinylidene fluoride 90:5:5 is mixed uniformly and then coated on the positive electrode current collector to prepare a positive electrode pole piece.
  • Fig. 5 is a curve of charging voltage and specific capacity of Li 5 FeO 4 , a positive electrode lithium supplement material in Comparative Example 1.
  • Li 5 FeO 4 was synthesized by the method of Example 1.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid 90: 5: 5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative pole piece.
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • Li 5 FeO 4 was synthesized.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid 90: 5: 5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative electrode piece.
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • Li 5 FeO 4 was synthesized.
  • the grinding balls are zirconia ceramics, the rotation speed is 500 rpm, and the balls are milled. The time is 10h.
  • the ground raw materials are sintered under an inert atmosphere (argon or nitrogen) for 10 hours to form Li 5 FeO 4 coated LiCoO 2 , where the sintering temperature is 800°C.
  • the weight ratio of LiCoO 2 coated with Li 5 FeO 4 : conductive carbon black: polyvinylidene fluoride 90:5:5 is uniformly mixed and coated on the positive electrode current collector to prepare a positive electrode pole piece.
  • the weight ratio of silicon oxide: conductive carbon black: polyacrylic acid 90: 5: 5 is uniformly mixed and then coated on the negative electrode current collector to prepare a negative electrode piece.
  • the positive pole piece and the negative pole piece prepared above are assembled into a lithium ion battery, and the rate performance and cycle performance of the lithium ion battery are tested.
  • X-ray diffraction tester (XPertPro MPD, PANalytical, Netherlands), and set test conditions: Cu K ⁇ radiation
  • the working current is 250mA
  • the working voltage is 40kV
  • the scanning range 2 ⁇ is 10° ⁇ 70°
  • the step length is 0.1°
  • the scanning speed is 0.2 seconds/step.
  • the sample powder is subjected to diffraction test to confirm the phase of the sample.
  • This application uses the Wuhan Landian CT2001A system to carry out the charging capacity test.
  • the button half-cell to be tested is placed in an environment of 25 ⁇ 3°C for 30 minutes, and the theoretical gram capacity of the active material Li 5 FeO 4 is 0.05C (in the example). Calculated by 690mAh/g, the theoretical gram capacity of Li 5 AlO 4 is 850mAh/g.
  • Charged gram capacity charged capacity/weight of positive electrode active material (Li 5 FeO 4 or Li 5 AlO 4 ).
  • This application uses the Wuhan Landian CT2001A system to test the cycle performance of the electrochemical device.
  • the button cell to be tested is allowed to stand for 30 minutes in an environment of 25 ⁇ 3°C, with a rate of 0.1C (the positive electrode active material LiCoO 2
  • the theoretical gram capacity is 170mAh/g).
  • Charge with constant current to a voltage of 4.4V (rated voltage) then charge with a constant voltage to a current of 0.025C, and then discharge at a rate of 0.1C, 0.2C, 0.5C, 1C and 2C respectively
  • To 3V (cut-off voltage) record the discharge gram capacity under different discharge rates.
  • Discharge gram capacity discharge capacity/weight of positive electrode active material (lithium cobaltate).
  • This application uses the Wuhan Landian CT2001A system to test the rate performance of the electrochemical device.
  • the lithium ion battery to be tested is placed in an environment of 25 ⁇ 3°C for 30 minutes, and a rate of 0.1C (the theoretical gram capacity of LiCoO 2 is less than 170mAh/g, the theoretical gram capacity of LiNi 0.5 Co 0.2 Mn 0.3 O 2 is 180mAh/g)
  • a rate of 0.1C the theoretical gram capacity of LiCoO 2 is less than 170mAh/g, the theoretical gram capacity of LiNi 0.5 Co 0.2 Mn 0.3 O 2 is 180mAh/g
  • Charge with constant current to a voltage of 4.4V (rated voltage) then charge with constant voltage to a current of 0.025C, and then charge at 0.1C Discharge to (cut-off voltage) at a rate of, and repeat the above charge/discharge steps for 2 cycles to complete the formation of the electrochemical device under test.
  • 100 cycles were performed in the range of 3V-4.4V at a
  • Discharge gram capacity discharge capacity/weight of positive electrode active material (LiCoO 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 ).
  • Table 1 and Table 2 show the rate performance test results and cycle performance test results of Comparative Example 2-Comparative Example 9 and Example 3-Example 19, respectively.
  • Comparative Example 3 Example 5, Example 7, Example 9, Example 11, and Comparative Example 2 (or Comparative Example 4, Example 6, Example 8, Example 10, Example 12, and Comparative Example 3 , Or compare Example 13, Example 15, Example 17 and Comparative Example 4, or compare Example 14, Example 16, Example 18 and Comparative Example 5) It can be known that in the lithium ion battery, if you do not add The coated Li 5 FeO 4 , no matter whether the positive electrode active material is LiCoO 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 , its rate performance and cycle performance are very poor.
  • Comparative Example 4 and Comparative Example 5 where the positive electrode active material is LiNi 0.5 Co 0.2 Mn 0.3 O 2 , and Comparative Example 4 with 2wt% Li 5 FeO 4 added , based on the 0.1C discharge capacity, its 0.2C, 0.5C The discharge capacity retention rates of, 1C and 2C were 89%, 82%, 78% and 70% respectively; after 100 cycles at 0.5C, the capacity retention rate was only 60.1%. Comparative Example 5 adds 4wt% Li 5 FeO 4 , and its rate performance and cycle performance will also be further deteriorated. Based on the 0.1C discharge capacity, its 0.2C, 0.5C, 1C and 2C discharge capacity retention rates are 87% and 80% respectively. %, 72% and 66%. After 100 cycles at 0.5C, the capacity retention rate is only 53.4%.
  • Li 5 FeO 4 when Li 5 FeO 4 is added as a positive electrode lithium supplement material, Li 5 FeO 4 can only exert a gram capacity of about 300-350mAh/g (as shown in Figure 5), and the rate performance and cycle performance of lithium-ion batteries are relatively high. Poor, this is due to the extremely poor conductivity of Li 5 FeO 4 and its delithiation products.
  • the rate performance of the lithium ion battery will deteriorate more significantly. As the cycle progresses, there are more and more by-products, and the Li 5 FeO 4 delithiation products will also partially dissolve, which severely limits the cycle stability of the lithium ion battery.
  • Li 5 FeO 4 can exert a gram capacity of about 600mAh/g or more (as shown in Figures 3 and 4), and LiCoO 2
  • the gram capacity of LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 will not be affected.
  • the coating material is indium oxide, indium tin oxide, or tin antimony oxide, the rate performance and cycle performance of the lithium ion battery are significantly improved.
  • Example 3 adds 3wt% indium oxide-coated Li 5 FeO 4 , and based on the 0.1C discharge capacity, its 0.2C, 0.5C, 1C and The 2C discharge capacity retention rate was 99%, 97.5%, 95%, and 88.5%; after 100 cycles at 0.5C, the capacity retention rate could be increased to 88%.
  • Table 1 and Table 2 the same conclusion can be obtained from Example 13 to Example 18 in which the positive electrode active material is LiNi 0.5 Co 0.2 Mn 0.3 O 2.
  • the fundamental reason is that Li 5 is coated with a semiconductor oxide.
  • MO 4 significantly improves the electronic conductance of the delithiation product of the lithium supplement material.
  • the semiconductor oxide still forms a relatively uniform coating layer around its particles, that is, adding this application
  • the positive electrode lithium supplement material coated with the semiconductor oxide can significantly improve the rate performance and cycle performance of the lithium ion battery.
  • Example 3 Comparing Example 3, Example 5, Example 7, Example 9, Example 11 and Comparative Example 6 (or Comparative Example 13, Example 15, Example 17 and Comparative Example 7), the rate performance in Table 1
  • the test results show that coating Li 5 FeO 4 with semiconductor oxide and conductive carbon can improve the rate performance of the battery. This is mainly because both semiconductor oxide and conductive carbon can reduce the gap between the positive electrode lithium supplement material particles. Polarization is conducive to the utilization of lithium-ion battery capacity during high-current discharge.
  • Example 3 Comparing Example 3 with Example 19, it can be seen that the Li 5 MO 4 material is coated with indium oxide, regardless of whether the Li 5 MO 4 material is Li 5 FeO 4 or Li 5 AlO 4 , the cycle performance and rate performance of the lithium ion battery are generally The same indicates that the semiconductor oxide coated with different kinds of antifluorite-type lithium supplement materials can achieve better results.
  • the lithium supplement material of the present application can effectively increase the energy density of electrochemical devices such as lithium-ion batteries, while simultaneously achieving improvements in rate performance and cycle stability, and has broad application prospects.
  • references to “some embodiments”, “partial embodiments”, “one embodiment”, “another example”, “examples”, “specific examples” or “partial examples” throughout the specification mean At least one embodiment or example in this application includes the specific feature, structure, material, or characteristic described in the embodiment or example. Therefore, descriptions appearing in various places throughout the specification, such as: “in some embodiments”, “in embodiments”, “in one embodiment”, “in another example”, “in an example “In”, “in a specific example” or “exemplary”, which are not necessarily quoting the same embodiment or example in this application.
  • the specific features, structures, materials, or characteristics herein can be combined in one or more embodiments or examples in any suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种补锂材料及包括其的正极。所述补锂材料包括Li 5MO4和其表面的半导体氧化物,其中M包括Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo中的至少一种。通过使用包含半导体氧化物的补锂材料,能够显著增强补锂材料的电子电导,减小极化,极大地提升了补锂材料的充电比容量。将上述补锂材料应用于电化学装置的正极,可以有效地提升电化学装置的能量密度,并且同时实现倍率性能和循环稳定性的提升。

Description

补锂材料及包括其的正极 技术领域
本申请涉及电化学领域,具体地涉及一种补锂材料及包括其的正极。
背景技术
随着电子技术的飞速发展,手机、笔记本电脑、摄像机和电动工具等用电设备日益增多,人们对储能电源的需求也越来越高,发展高容量、长寿命和安全性能良好的二次电池正成为一个迫在眉睫的任务。相比于铅酸电池、镍镉电池和镍氢电池等,锂离子电池因其具有能量密度高、功率密度大、寿命长、安全性好、自放电低和温度适应范围宽等优点而得到了广泛的应用。
在锂离子电池的首次充放电过程中,负极表面会形成固态电解质界面(SEI)膜层,会将大量的活性锂转化成碳酸锂、氟化锂和烷基锂,造成正极材料的锂损失,降低电池的首次库伦效率和电池容量。在使用石墨负极的锂离子电池体系中,首次充电会消耗约10%的锂源。当采用高比容量的负极材料,例如合金类(硅、锡等)、氧化物类(氧化硅、氧化锡)和无定形碳负极时,正极锂源的消耗将进一步加剧。
为了进一步提升锂离子电池的能量密度,对正极或负极进行预补锂是一种行之有效的方法。然而,当前的负极补锂材料存在以下缺陷:活性过高,无法长时间稳定保存,从而增加了操作难度和生产风险。因此,相对更加安全和便于操作的正极补锂工艺得到了越来越多的关注。然而常见的反萤石型正极补锂材料的导电性差,导致充电时极化严重,使得正极补锂材料无法发挥出其全部的理论比容量。
因此,开发一种稳定性好、便于操作且导电性好的正极补锂材料成为当前电化学领域的当务之急。
发明内容
本申请提供一种包含半导体氧化物的补锂材料及包括其的正极以试图在至少某种程度上解决至少一个存在于相关领域中的问题。
根据本申请的实施例,本申请提供了一种包含半导体氧化物和Li 5MO 4的正极补锂材料。其中导电性能良好的半导体氧化物为包覆层,其可包括氧化锡、氧化铟、氧化锡锑或氧化铟锡中的至少一种,所述半导体氧化物覆盖Li 5MO 4的至少一部分表面;所述Li 5MO 4为反萤石型的化合物,其中M包括Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo中的至少一种,优选Li 5FeO 4
根据本申请的实施例,半导体氧化物均匀包覆层的重量约为Li 5MO 4的0.5wt%-3wt%。根据本申请的实施例,当半导体氧化物为氧化锡锑时,半导体氧化物中的锑与锡的摩尔比为约0.1∶1-0.5∶1;当半导体氧化物为氧化铟锡时,半导体氧化物中的锡与铟的摩尔比为约0.1∶1-0.5∶1。
根据本申请的实施例,本申请提供了一种包含半导体氧化物的补锂材料的制备方法,具体步骤包括:先将半导体氧化物分散于有机溶剂中,其中溶剂优选为乙醇,以得到含半导体氧化物的悬浮液;随后将Li 5MO 4添加到悬浮液中,并均匀混合,以得到均匀的混合液;其中所述均匀混合的方式可为磁力搅拌、机械搅拌或超声处理,搅拌或超声处理的时间为0.5h-2h;最后对混合液进行干燥处理,以得到包含半导体氧化物的补锂材料,其中干燥处理的方式优选为喷雾干燥。
根据本申请的实施例,本申请提供了一种正极,其包括正极活性材料、导电剂、粘结剂以及上述任意一种半导体氧化物包覆的正极补锂材料或上述制备方法得到的半导体氧化物包覆的正极补锂材料。
根据本申请的实施例,正极活性材料包括钴酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钒酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料或镍钴铝酸锂中的至少一种。
根据本申请的实施例,导电剂包括导电碳黑、碳纤维、乙炔黑、科琴黑、石墨烯或碳纳米管中的至少一种。
根据本申请的实施例,粘结剂包括聚丙烯、聚乙烯、聚偏氟乙烯、偏氟乙烯-六氟丙烯、聚四氟乙烯或聚六氟丙烯中的至少一种。
根据本申请的实施例,本申请提供了一种电化学装置,其包括上述任意一种正极。
根据本申请的实施例,本申请提供了一种电子装置,其包括上述任意一种电化学装置。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,在不需要创造性劳动的前提下,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1为实施例1中的Li 5FeO 4与理论模拟的Li 5FeO 4的X射线衍射(XRD)谱图。
图2为实施例1中的氧化铟包覆的Li 5FeO 4的扫描电子显微镜(SEM)图。
图3为实施例1中的氧化铟包覆的Li 5FeO 4的充电电压与比容量曲线。
图4为实施例2中的氧化铟锡包覆的Li 5FeO 4的充电电压与比容量曲线。
图5为对比例1中的Li 5FeO 4的充电电压与比容量曲线。
图6为实施例1中的氧化铟包覆的Li 5FeO 4首圈脱锂后的SEM图。
具体实施方式
本申请的实施例将会被详细的描示在下文中。在本申请说明书全文中,将相同或相似的组件以及具有相同或相似的功能的组件通过类似附图标记来表示。在此所描述的有关附图的实施例为说明性质的、图解性质的且用于提供对本申请的基本理解。本申请的实施例不应该被解释为对本申请的限制。
如本文中所使用,术语“大致”、“大体上”、“实质”及“约”用以描述及说明小的变化。当与事件或情形结合使用时,所述术语可指代其中事件或情形精确发生的例子以及其中事件或情形极近似地发生的例子。举例来说,当结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。举例来说,如果两个数值之间的差值小于或等于所述值的平均值的±10%(例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于 或等于±0.05%),那么可认为所述两个数值“大体上”相同。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
通常,正极补锂材料在首圈脱锂后,会在正极极片上留下导电性很差的副产物,恶化锂离子电池的倍率性能。然而,本申请采用导电性良好的氧化锡、氧化铟、氧化锡锑和/或氧化铟锡等半导体氧化物,将其包覆在Li 5MO 4材料表面,提升了Li 5MO 4材料脱锂产物的导电性,并且改善了补锂后锂离子电池的倍率性能。另一方面,所述半导体氧化物对热、湿度等外部环境不敏感,能耐高压氧化并保持永久性导电性质,从而可以提升例如锂离子电池等电化学装置的循环性能。
本申请提供一种补锂材料及其制备方法,并且还提供了包括所述补锂材料的正极、电化学装置和电子装置。
一、补锂材料
本申请提供了一种补锂材料,其包括Li 5MO 4和其表面的半导体氧化物,所述半导体氧化物覆盖Li 5MO 4的至少一部分表面;其中M包括Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo中的至少一种。可以理解的是,本申请所述的Li 5MO 4材料,M可在所述元素(Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo)中任意选择与搭配,为了描述的清楚和简单,本申请仅以Li 5FeO 4和Li 5AlO 4作为示范例来进行论述。
在一些实施例中,Li 5MO 4材料为Li 5FeO 4
在一些实施例中,Li 5MO 4材料为Li 5AlO 4
在一些实施例中,半导体氧化物包括氧化锡、氧化铟、氧化锡锑或氧化铟锡中的至少一种。
在一些实施例中,半导体氧化物在Li 5MO 4的表面形成均匀的包覆层。图2示出了实施例1中的半导体氧化物包覆的Li 5MO 4(氧化铟包覆的Li 5FeO 4,氧化铟的重量百分比为2wt%)的SEM图。如图2所示,氧化铟附着在Li 5FeO 4颗粒表面,形成均匀的包覆层。
在一些实施例中,基于Li 5MO 4的重量,半导体氧化物的重量百分比为约0.5wt%-约3wt%。在一些实施例中,基于Li 5MO 4的重量,半导体氧化物的重量百分比为约0.5wt%-约1wt%、约0.5wt%-约1.5wt%、约0.5wt%-约2wt%、约0.5wt%-约2.5wt%、约1wt%-约2wt%、约1wt%-约3wt%、约2wt%-约3wt%等。
在一些实施例中,半导体氧化物为氧化锡锑,半导体氧化物中的锑与锡的摩尔比为约0.1∶1-约0.5∶1。在一些实施例中,半导体氧化物为氧化锡锑,半导体氧化物中的锑与锡的摩尔比为约0.1∶1-约0.2∶1、约0.1∶1-约0.3∶1、约0.1∶1-约0.4∶1、约0.2∶1-约0.4∶1、约0.2∶1-约0.5∶1等。
在一些实施例中,半导体氧化物为氧化铟锡,半导体氧化物中的锡与铟的摩尔比为约0.1∶1-约0.5∶1。在一些实施例中,半导体氧化物为氧化铟锡,半导体氧化物中的锡与铟的摩尔比为约0.1∶1-约0.2∶1、约0.1∶1-约0.3∶1、约0.1∶1-约0.4∶1、约0.2∶1-约0.4∶1、约0.2∶1-约0.5∶1等。
二、补锂材料的制备方法
本申请提供了一种补锂材料的制备方法,其包括:将上述半导体氧化物分散于溶剂中,以得到含半导体氧化物的悬浮液;将上述Li 5MO 4材料添加到悬浮液中,并均匀混合,以得到均匀的混合液;对混合液进行干燥处理,以得到补锂材料。
在一些实施例中,采用磁力搅拌、机械搅拌或超声处理进行混合,搅拌或超声处理的时间为约0.5h-约2h。在一些实施例中,搅拌或超声处理的时间为约0.5h-约1h、约0.5h-约1.5h、约1h-约2h等。
在一些实施例中,选用乙醇作为溶剂。在一些实施例中,选择喷雾干燥来进行干燥处理。在喷雾干燥后,溶剂可完全挥发,而不引进任何杂质。此外,本申请在喷雾干燥后不需经过高温煅烧,也无需破碎,操作简单,成本较低。
本申请将半导体氧化物包覆在Li 5MO 4材料的表面,能够显著增强补锂材料的电子电导,减小极化,极大地提升了补锂材料的充电比容量。将本申请的补锂材料添加到电化学装置的正极,可以降低正极补锂材料的用量,并且提升电化学装置的能量密度。
本申请的补锂材料的性质稳定、耐高压氧化、对环境不敏感并且能永久性保持其优良的导电性,因而可以有效地提升例如锂离子电池等电化学装置的倍率性能和循环性能。
三、包括补锂材料的正极
本申请提供了一种正极,其包括正极活性材料、导电剂、粘结剂以及上述任意一种补锂材料或由上述制备方法得到的补锂材料。
在一些实施例中,正极活性材料包括钴酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钒酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料或镍钴铝酸锂中的至少一种。在一些实施例中,正极活性材料包括钴酸锂或镍钴锰酸锂中的至少一种。
在一些实施例中,导电剂包括导电碳黑、碳纤维、乙炔黑、科琴黑、石墨烯或碳纳米管中的至少一种。在一些实施例中,导电剂包括导电碳黑。
在一些实施例中,粘结剂包括聚丙烯、聚乙烯、聚偏氟乙烯、偏氟乙烯-六氟丙烯、聚四氟乙烯或聚六氟丙烯中的至少一种。在一些实施例中,粘结剂包括聚偏氟乙烯。
在一些实施例中,补锂材料、正极活性材料、导电剂和粘结剂按照一定的比例混合,均匀涂覆在正极集流体(例如,铝集流体)上以制备正极。
在一些实施例中,补锂材料还可以预先涂覆在正极集流体上以形成补锂材料层,然后在补锂材料层上涂覆正极活性材料以形成正极。在一些实施例中,正极活性材料涂覆在正极集流体上以形成正极活性材料层,然后在正极活性材料层上涂覆补锂材料以形成正极。
四、电化学装置
本申请的电化学装置包括本申请的上述任意一种正极。本申请的电化学装置可以包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。在一些实施例中,本申请的电化学装置包括本申请的正极、负极、置于正极和负极之间的隔离膜以及电解液。
在一些实施例中,负极包括负极活性材料,负极活性材料能够吸收和释放锂(下文中,有时称为“能够吸收/释放锂的负极活性材料”)。能够吸收/释放锂的负极活性材料的例子可以包括碳材料、金属化合物、氧化物、硫化物、锂的氮化物例如LiN3、锂金属、与锂一起形成合金的金属和聚合物材料。
在一些实施例中,碳材料的例子可以包括低石墨化的碳、易石墨化的碳、人造石墨、天然石墨、中间相碳微球、软碳、硬碳、热解碳、焦炭、玻璃碳、有机聚合物化合物烧结体、碳纤维和活性碳。其中,焦炭可以包括沥青焦炭、针状焦炭和石油焦炭。有机聚合物化合物烧结体指的是通过在适当的温度下煅烧聚合物材料例如苯酚塑料或者呋喃树脂以使之碳化获得的材料,将这些材料中的一些分成低石墨化碳或者易石墨化的碳。聚合物材料的例子可以包括聚乙炔和聚吡咯。
在一些实施例中,在能够吸收/释放锂的这些负极活性材料中,选择充电和放电电压接近于锂金属的充电和放电电压的材料。这是因为负极活性材料的充电和放电电压越低,锂离子电池越容易具有更高的能量密度。其中,负极活性材料可以选择碳材料,因为在充电和放电时它们的晶体结构只有小的变化,因此,可以获得良好的循环特性以及大的充电和放电容量。例如选择石墨,因为它可以给出大的电化学当量和高的能量密度。
在一些实施例中,能够吸收/释放锂的负极活性材料可以包括单质锂金属、能够和锂一起形成合金的金属元素和半金属元素,包括这样的元素的合金和化合物等等。例如,将它们和碳材料一起使用,在这种情况中,可以获得良好的循环特性以及高能量密度。除了包括两种或者多种金属元素的合金之外,这里使用的合金还包括包含一种或者多种金属元素和一种或者多种半金属元素的合金。该合金可以处于以下状态固溶体、共晶晶体、金属间化合物及其混合物。
在一些实施例中,金属元素和半金属元素的例子可以包括锡(Sn)、铅(Pb)、铝(Al)、铟(In)、硅(Si)、锌(Zn)、锑(Sb)、铋(Bi)、镉(Cd)、镁(Mg)、硼(B)、镓(Ga)、锗(Ge)、砷(As)、银(Ag)、锆(Zr)、钇(Y)或者铪(Hf)。上述合金和化合物的例子可以包括具有化学式:Ma sMb tLi u的材料和具有化学式:Ma pMc qMd r的材料。在这些化学式中,Ma表示能够与锂一起形成合金的金属元素和半金属元素中的至少一种元素;Mb表示除锂和Ma之外的金属元素和半金属元素中的至少一种元素;Mc表示非金属元素中的至少一种元素;Md表示除Ma之外的金属元素和半金属元素中的至少一种元素;并且s、t、u、p、q和r满足s>0、t≥0、u≥0、p>0、q>0和r≥0。
在一些实施例中,可以在负极中使用不包括锂的无机化合物,例如MnO 2、SiO 2、V 2O 5、V 6O 13、NiS或者MoS。
在一些实施例中,负极还可以包括粘合剂。粘合剂可以提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、聚丙烯酸、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在一些实施例中,负极还可以包括导电剂。导电剂包括但不限于:基于碳的材料、基于金属的材料、导电聚合物或它们的混合物。在一些实施例中,基于碳的材料选自天然石墨、人造石墨、导电碳黑、乙炔黑、科琴黑、碳纤维或其任意组合。在一些实施例中,基于金属的材料选自金属粉、金属纤维、铜、镍、铝、银。在一些实施例中,导电聚合物为聚亚苯基衍生物。
在一些实施例中,负极集流体包括但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底和它们的任意组合。
在一些实施例中,隔离膜包括,但不限于,选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺和芳纶中的至少一种。举例来说,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯和超高分子量聚乙烯中的至少一种组分。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善锂离子电池的稳定性。
在一些实施例中,电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。
在一些实施例中,锂盐可以选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB或者二氟硼酸锂中的一种或多种。例如,锂盐选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。
在一些实施例中,非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
在一些实施例中,碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
在一些实施例中,链状碳酸酯化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。所述氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。
在一些实施例中,羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。
在一些实施例中,醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。
在一些实施例中,其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、磷酸酯或者其组合。
五、电子装置
由本申请所述的补锂材料制造的电化学装置适用于各种领域的电子装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何用途。在一个实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
六、实施例
以下,举出实施例和对比例对本申请进一步具体地进行说明,但只要不脱离其主旨,则本申请并不限定于这些实施例。实施例和对比例中的正极集流体均为铝箔,负极集流 体均为铜箔。
实施例1
采用文献(Zhang et al.,“Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li 5FeO 4”,2018,Journal of Power Sources,Volume 400,Pages 540-555)所述的方法合成出Li 5FeO 4,并对合成的Li 5FeO 4粉末进行XRD测试。如图1所示,实施例1中合成的Li 5FeO 4的XRD谱图与理论模拟的Li 5FeO 4的XRD谱图吻合得非常好,说明本申请合成的Li 5FeO 4是反萤石结构的Li 5FeO 4纯相。
将氧化铟分散于乙醇中,随后添加合成的Li 5FeO 4,磁力搅拌2h,混合均匀后进行喷雾干燥,以形成氧化铟包覆的Li 5FeO 4。基于Li 5FeO 4的重量,氧化铟的重量百分比为2wt%。图2是氧化铟包覆的Li 5FeO 4的SEM图,显然,氧化铟包覆层较为均匀,包覆效果较好。
以氧化铟包覆的Li 5FeO 4∶导电碳黑∶聚偏氟乙烯=90∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以制备的正极极片为工作电极、金属锂为对电极来组装扣式半电池,并且对扣式半电池进行充电容量测试。图3为实施例1中的氧化铟包覆的Li 5FeO 4的充电电压与比容量曲线。
实施例2
用实施例1的方法合成Li 5FeO 4
将氧化铟锡(锡与铟的摩尔比为0.5∶1)分散于乙醇中,随后添加Li 5FeO 4,磁力搅拌0.5h,混合均匀后进行喷雾干燥,以形成氧化铟锡包覆的Li 5FeO 4。基于Li 5FeO 4的重量,氧化铟锡的重量百分比为2wt%。
以氧化铟锡包覆的Li 5FeO 4∶导电碳黑∶聚偏氟乙烯=90∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以制备的正极极片为工作电极、金属锂为对电极来组装扣式半电池,对扣式半电池进行充电容量测试。图4为实施例2中的氧化铟锡包覆的Li 5FeO 4的充电电压与比容量曲线。
实施例3
按照实施例1的方法制备氧化铟包覆的Li 5FeO 4
以氧化铟包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=3∶87∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸(PAA)=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上,以制备负极极片。
将上述制备的正极极片和负极极片组装为锂离子电池,并对锂离子电池进行倍率性能和循环性能测试。
实施例4
与实施例3基本一致,不同之处在于氧化铟包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5。
实施例5
用实施例2的方法得到氧化铟锡包覆的Li 5FeO 4
以氧化铟锡包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=3∶87∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上,以制备负极极片。
将上述制备的正极极片和负极极片组装成锂离子电池,对锂离子电池进行倍率性能和循环性能测试。
实施例6
与实施例5基本一致,不同之处在于氧化铟锡包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5。
实施例7
与实施例5基本一致,不同之处在于所用氧化铟锡中锡与铟的摩尔比为0.1∶1。
实施例8
与实施例7基本一致,不同之处在于氧化铟锡包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5。
实施例9
与实施例5基本一致,不同之处在于所用半导体氧化物为氧化锡锑,其中锡与锑的摩尔比为0.5∶1。
实施例10
与实施例9基本一致,不同之处在于氧化锡锑包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5。
实施例11
与实施例9基本一致,不同之处在于所用氧化锡锑中锡与锑的摩尔比为0.1∶1。
实施例12
与实施例11基本一致,不同之处在于氧化锡锑包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5。
实施例13
与实施例3基本一致,不同之处在于:以氧化铟包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=2∶88∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例14
与实施例3基本一致,不同之处在于:以氧化铟包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=4∶86∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例15
与实施例5基本一致,不同之处在于:以氧化铟锡包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=2∶88∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例16
与实施例7基本一致,不同之处在于:以氧化铟锡包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=4∶86∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例17
与实施例9基本一致,不同之处在于:以氧化锡锑包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=2∶88∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例18
与实施例11基本一致,不同之处在于:以氧化锡锑包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=4∶86∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
实施例19
先用实施例1的方法合成Li 5AlO 4
随后按实施例1的方法用氧化铟包覆Li 5AlO 4
以氧化铟包覆的Li 5AlO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=3∶87∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸(PAA)=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上,以制备负极极片。
将上述制备的正极极片和负极极片组装为锂离子电池,并对锂离子电池进行倍率性能和循环性能测试。
对比例1
用实施例1的方法合成Li 5FeO 4
以Li 5FeO 4∶导电碳黑∶聚偏氟乙烯=90∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以制备的正极极片为工作电极、金属锂为对电极组装扣式半电池,对扣式半电池进行充电容量测试。图5为对比例1中的正极补锂材料Li 5FeO 4的充电电压与比容量曲线。
对比例2
用实施例1的方法合成Li 5FeO 4
以Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=3∶87∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上, 以制备负极极片。
将上述制备的正极极片和负极极片组装成锂离子电池,对锂离子电池进行倍率性能和循环性能测试。
对比例3
与对比例2基本一致,不同之处在于:以Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=5∶85∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
对比例4
与对比例2基本一致,不同之处在于:以Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=2∶88∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
对比例5
与对比例2基本一致,不同之处在于:以Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=4∶86∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
对比例6
按照实施例1的方法合成Li 5FeO 4
对Li 5FeO 4进行碳包覆。具体步骤:以Li 5FeO 4∶聚乙烯醇=99∶1的重量比将其混合,在惰性气氛(氩气或氮气)下进行烧结12h,以制备碳包覆的Li 5FeO 4,其中烧结温度为800℃。
以碳包覆的Li 5FeO 4∶LiCoO 2∶导电碳黑∶聚偏氟乙烯=3∶87∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上,以制备负极极片。
将上述制备的正极极片和负极极片组装成锂离子电池,对锂离子电池进行倍率性能和循环性能测试。
对比例7
与对比例6基本一致,不同之处在于:以碳包覆的Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=2∶88∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
对比例8
按照实施例1的方法合成Li 5FeO 4
使用Li 5FeO 4对LiCoO 2进行包覆,以Li 5FeO 4∶LiCoO 2=3∶87的重量比混合,并球磨混合均匀,其中磨球为氧化锆陶瓷,转速为500转/分钟,球磨时间为10h。将研磨好的原料在惰性气氛(氩气或氮气)下烧结10h,以形成Li 5FeO 4包覆的LiCoO 2,其中烧结温度为800℃。
以Li 5FeO 4包覆的LiCoO 2∶导电碳黑∶聚偏氟乙烯=90∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
以氧化硅∶导电碳黑∶聚丙烯酸=90∶5∶5的重量比将其混合均匀后涂布在负极集流体上,以制备负极极片。
将上述制备的正极极片和负极极片组装成锂离子电池,对锂离子电池进行倍率性能和循环性能测试。
对比例9
与对比例8基本一致,不同之处在于:使用Li 5FeO 4对LiNi 0.5Co 0.2Mn 0.3O 2进行包覆,其中Li 5FeO 4∶LiNi 0.5Co 0.2Mn 0.3O 2=2∶88,其中以Li 5FeO 4包覆的LiNi 0.5Co 0.2Mn 0.3O 2∶导电碳黑∶聚偏氟乙烯=90∶5∶5的重量比将其混合均匀后涂布在正极集流体上,以制备正极极片。
七、测试方法及测试结果
X射线衍射测试:
采用X射线衍射测试仪(荷兰帕纳科,XPertPro MPD),并设定测试条件:Cu Kα辐射
Figure PCTCN2019122058-appb-000001
工作电流250mA,采用连续扫描,工作电压为40kV,扫描范围2θ为10°~70°,步长0.1°,扫描速度0.2秒/步,对样品粉末进行衍射测试来确认样品物相。
充电容量测试:
本申请采用武汉蓝电CT2001A系统进行充电容量测试,将待测的扣式半电池在25±3℃环境中静置30分钟,以0.05C(实施例中活性物质Li 5FeO 4的理论克容量以690mAh/g计,Li 5AlO 4的理论克容量以850mAh/g计)倍率恒流充电至电压为4.4V(额定电压),随后恒压充电至电流为0.005C,纪录充电电压与克容量的关系曲线。
充电克容量=充电容量/正极活性物质(Li 5FeO 4或Li 5AlO 4)重量。
倍率性能测试:
本申请采用武汉蓝电CT2001A系统对电化学装置的循环性能进行测试,将待测的扣式全电池在25±3℃环境中静置30分钟,以0.1C的倍率(正极活性物质LiCoO 2的理论克容量以170mAh/g计)恒流充电至电压为4.4V(额定电压),随后恒压充电至电流为0.025C,然后分别以0.1C、0.2C、0.5C、1C和2C的倍率放电至3V(截止电压),纪录不同放电倍率下的放电克容量。
放电克容量=放电容量/正极活性物质(钴酸锂)重量。
循环性能测试:
本申请采用武汉蓝电CT2001A系统对电化学装置的倍率性能进行测试,将待测的锂离子电池在25±3℃环境中静置30分钟,以0.1C的倍率(LiCoO 2的理论克容量以170mAh/g计,LiNi 0.5Co 0.2Mn 0.3O 2的理论克容量以180mAh/g计)恒流充电至电压为4.4V(额定电压),随后恒压充电至电流为0.025C,然后以0.1C的倍率放电至(截止电压),重复上述充/放电步骤2个循环以完成待测电化学装置的化成。随后以0.5C的充/放电倍率在3V-4.4V的范围内进行100圈循环,纪录循环前和循环后的放电克容量。
放电克容量=放电容量/正极活性物质(LiCoO 2或LiNi 0.5Co 0.2Mn 0.3O 2)重量。
表1和表2分别示出了对比例2-对比例9与实施例3-实施例19的倍率性能测试结果和循环性能测试结果。
表1对比例2-对比例9与实施例3-实施例19的倍率性能测试结果
Figure PCTCN2019122058-appb-000002
Figure PCTCN2019122058-appb-000003
表2对比例2-对比例9与实施例3-实施例19的循环性能测试结果
Figure PCTCN2019122058-appb-000004
比较实施例3、实施例5、实施例7、实施例9、实施例11与对比例2(或比较实施例4、实施例6、实施例8、实施例10、实施例12与对比例3,或比较实施例13、实施例15、实施例17与对比例4,或比较实施例14、实施例16、实施例18与对比例5)可以得知,在锂离子电池中,如果添加不经包覆的Li 5FeO 4,无论正极活性材料是LiCoO 2还是LiNi 0.5Co 0.2Mn 0.3O 2,其倍率性能和循环性能都非常差。
对于正极活性材料为LiCoO 2的对比例2和对比例3,对比例2添加3wt%Li 5FeO 4,以0.1C放电容量为基准,其0.2C、0.5C、1C和2C放电容量保持率分别为92%、86%、80%和71%;以0.5C循环100圈后,其容量保持率仅为56.2%。对比例3添加5wt%Li 5FeO 4,其倍率性能和循环性能会进一步恶化,以0.1C放电容量为基准,其0.2C、0.5C、1C和2C放电容量保持率分别为90%、83%、75%和64%;以0.5C循环100圈后,容量保持率仅为51.8%。
同理,对于正极活性材料为LiNi 0.5Co 0.2Mn 0.3O 2的对比例4和对比例5,对比例4添加2wt%Li 5FeO 4,以0.1C放电容量为基准,其0.2C、0.5C、1C和2C放电容量保持率分别为89%、82%、78%和70%;以0.5C循环100圈后,容量保持率仅为60.1%。对比例5添加4wt%Li 5FeO 4,其倍率性能和循环性能同样会进一步恶化,以0.1C放电容量为基准,其0.2C,0.5C,1C和2C放电容量保持率分别为87%,80%,72%和66%,以0.5C循环100圈后,容量保持率仅为53.4%。
由此可见,添加Li 5FeO 4作为正极补锂材料,Li 5FeO 4仅能发挥约300~350mAh/g的克容量(如图5所示),并且锂离子电池的倍率性能和循环性能较差,这是由于Li 5FeO 4及其脱锂产物的导电性极差,当Li 5FeO 4加入量增多,锂离子电池的倍率性能会恶化得愈加明显。随着循环的进行,副产物越来越多,Li 5FeO 4脱锂产物亦会部分溶出,严重限制了锂离子电池的循环稳定性。
与之相反,在锂离子电池中添加半导体氧化物包覆的Li 5FeO 4后,Li 5FeO 4能发挥约600mAh/g以上的克容量(如图3和图4所示),且LiCoO 2和LiNi 0.5Co 0.2Mn 0.3O 2的克容量发挥不受影响。根据实施例可以得知,不论包覆材料是氧化铟、氧化铟锡、还是氧化锡锑,锂离子电池的倍率性能和循环性能均得到了明显地改善。
根据正极活性材料为LiCoO 2的实施例3-实施例12,例如实施例3添加3wt%氧化铟包覆的Li 5FeO 4,以0.1C放电容量为基准,其0.2C、0.5C、1C和2C放电容量保持率分别为99%、97.5%、95%和88.5%;以0.5C循环100圈后,容量保持率可提升至88%。如表1和表2所示,根据正极活性材料为LiNi 0.5Co 0.2Mn 0.3O 2的实施例13-实施例18也可以得到相同的结论,其根本原因在于,通过半导体氧化物包覆Li 5MO 4,显著提升了补锂材料脱锂产物的电子电导。如图6所示,补锂材料(氧化铟包覆的Li 5FeO 4)在首圈充电脱锂后,半导体氧化物仍然在其颗粒周围形成了较为均匀的包覆层,即,添加本申请的半导体氧化物包覆的正极补锂材料可以使锂离子电池的倍率性能和循环性能均得到了明显地改善。
比较实施例3、实施例5、实施例7、实施例9、实施例11与对比例6(或比较实施例13、实施例15、实施例17与对比例7),由表1的倍率性能测试结果可知,用半导体氧化物和导电碳对Li 5FeO 4进行包覆,都可以改善电池的倍率性能,这主要是因为半导体氧化物和导电碳均能减小正极补锂材料颗粒之间的极化,有利于大电流放电时锂离子电池容量的发挥。但另一方面,由表2所示的循环性能测试结果可知,采用半导体氧化物包覆的正极补锂材料的实施例的循环性能明显优于采用导电碳包覆的正极补锂材料的对比例的循环性能,这主要是因为半导体氧化物对热、湿度等外部环境不敏感,能耐高压氧化并保持永久性优良的导电性质。而导电碳在循环过程中存在被部分氧化的风险,不利于在高电压下长时间循环。
比较实施例3、实施例5、实施例7、实施例9、实施例11与对比例8(或比较实施例13、实施例15、实施例17与对比例9),结合表1与表2结果可知,直接将Li 5FeO 4包覆在正极活性材料表面,所制备的锂离子电池的倍率性能和循环性能都比较差,这主要是因为表面的Li 5FeO 4脱锂后会在原位形成一层导电性很差的产物层覆盖在正极活性材料表面,阻碍了Li +的穿梭,增加了锂离子电池的极化。
比较实施例3与实施例19可以得知,采用氧化铟包覆Li 5MO 4材料,不论Li 5MO 4材料是Li 5FeO 4还是Li 5AlO 4,锂离子电池的循环性能和倍率性能大体相同,说明半导体氧化物包覆不同种类的反萤石型补锂材料,均可达到较好的效果。
综上,本申请的补锂材料可有效提升例如锂离子电池的电化学装置的能量密度,同时实现倍率性能和循环稳定性的提升,具有广阔的应用前景。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

  1. 一种补锂材料,其包括Li 5MO 4和其表面的半导体氧化物,其中M包括Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo中的至少一种。
  2. 根据权利要求1所述的补锂材料,其中所述Li 5MO 4包括Li 5FeO 4或Li 5AlO 4中的至少一种。
  3. 根据权利要求1所述的补锂材料,其中所述半导体氧化物包括氧化锡、氧化铟、氧化锡锑或氧化铟锡中的至少一种,基于Li 5MO 4的重量,所述半导体氧化物的重量百分比为0.5wt%-3wt%。
  4. 根据权利要求1所述的补锂材料,其中当所述半导体氧化物为氧化锡锑时,所述半导体氧化物中的锑与锡的摩尔比为0.1∶1-0.5∶1;其中当所述半导体氧化物为氧化铟锡时,所述半导体氧化物中的锡与铟的摩尔比为0.1∶1-0.5∶1。
  5. 一种补锂材料的制备方法,其包括:
    将半导体氧化物分散于溶剂中,以得到含所述半导体氧化物的悬浮液;
    将Li 5MO 4添加到所述悬浮液中,并均匀混合,以得到混合液;
    对所述混合液进行干燥处理,以得到补锂材料,
    其中M包括Fe、Ni、Mn、Ru、Cr、Cu、Nb、Al或Mo中的至少一种。
  6. 根据权利要求5所述的制备方法,其中采用磁力搅拌、机械搅拌或超声处理进行混合,搅拌或超声处理的时间为0.5h-2h;所述溶剂包括有机溶剂;所述干燥处理为喷雾干燥。
  7. 根据权利要求6所述的制备方法,其中所述溶剂是乙醇。
  8. 一种正极,其包括正极活性材料、导电剂、粘结剂以及权利要求1至4任意一项所述的补锂材料或由权利要求5至7任意一项所述制备方法得到的补锂材料。
  9. 根据权利要求8所述的正极,其中所述正极活性材料包括钴酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钒酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料或镍钴 铝酸锂中的至少一种。
  10. 根据权利要求8所述的正极,其中所述导电剂包括导电碳黑、碳纤维、乙炔黑、科琴黑、石墨烯或碳纳米管中的至少一种;其中所述粘结剂包括聚丙烯、聚乙烯、聚偏氟乙烯、偏氟乙烯-六氟丙烯、聚四氟乙烯或聚六氟丙烯中的至少一种。
  11. 一种电化学装置,其包括权利要求8至10中任意一项所述的正极。
  12. 一种电子装置,其包括权利要求11所述的电化学装置。
PCT/CN2019/122058 2019-11-04 2019-11-29 补锂材料及包括其的正极 WO2021088168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/700,886 US20220216471A1 (en) 2019-11-04 2022-03-22 Lithium supplementing material and positive electrode containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911066786.6 2019-11-04
CN201911066786.6A CN110867584B (zh) 2019-11-04 2019-11-04 补锂材料及包括其的正极

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/700,886 Continuation US20220216471A1 (en) 2019-11-04 2022-03-22 Lithium supplementing material and positive electrode containing same

Publications (1)

Publication Number Publication Date
WO2021088168A1 true WO2021088168A1 (zh) 2021-05-14

Family

ID=69654660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122058 WO2021088168A1 (zh) 2019-11-04 2019-11-29 补锂材料及包括其的正极

Country Status (3)

Country Link
US (1) US20220216471A1 (zh)
CN (1) CN110867584B (zh)
WO (1) WO2021088168A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471554A (zh) * 2021-07-06 2021-10-01 湖北亿纬动力有限公司 一种复合正极补锂添加剂及其制备方法和应用
WO2023283960A1 (zh) * 2021-07-16 2023-01-19 宁德时代新能源科技股份有限公司 正极极片、二次电池及其制备方法与包含该二次电池的电池模块、电池包和用电装置
WO2023185439A1 (zh) * 2022-03-29 2023-10-05 深圳市德方创域新能源科技有限公司 一种正极补锂添加剂及其制备方法和正极材料、二次电池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471415A (zh) * 2020-03-31 2021-10-01 北京卫蓝新能源科技有限公司 一种复合包覆的锂离子电池正极材料及其制备方法
CN111640932B (zh) * 2020-06-03 2022-05-13 无锡零一未来新材料技术研究院有限公司 高纯度正极补锂添加剂及其制备方法和锂离子电池
CN111834618B (zh) * 2020-06-12 2021-07-23 松山湖材料实验室 碳包覆补锂材料及其制备方法和应用
CN111769288B (zh) * 2020-08-13 2022-05-03 哈尔滨工业大学 一种锂离子电池正极材料原位补锂的方法
CN112467139A (zh) * 2020-10-23 2021-03-09 合肥国轩高科动力能源有限公司 一种锂离子电池正极预锂化剂及其制备方法和应用
WO2022198654A1 (zh) * 2021-03-26 2022-09-29 宁德新能源科技有限公司 一种正极补锂材料、包含该材料的正极极片和电化学装置
WO2022198660A1 (zh) * 2021-03-26 2022-09-29 宁德新能源科技有限公司 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN113328079A (zh) * 2021-06-04 2021-08-31 珠海冠宇电池股份有限公司 一种正极补锂材料和包括该材料的锂离子电池
CN113620344A (zh) * 2021-08-05 2021-11-09 松山湖材料实验室 用于预锂化的化合物及其制备方法、正极预锂化材料及其制备方法、锂电池
CN113745460B (zh) * 2021-08-31 2023-06-16 远景动力技术(江苏)有限公司 高能量密度锂离子电池的正极极片及其制备方法和应用
CN114335428B (zh) * 2021-12-30 2024-01-30 重庆冠宇电池有限公司 一种正极片及制备方法、电池
CN114497514B (zh) * 2022-03-15 2023-07-14 远景动力技术(江苏)有限公司 正极补锂剂及其应用
CN115000362A (zh) * 2022-04-29 2022-09-02 中南大学 Li5FexMyO4@C复合材料及其制备和在锂离子电池中的应用
CN116477661A (zh) * 2023-01-20 2023-07-25 深圳市德方创域新能源科技有限公司 一种补锂材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232343A (zh) * 2018-01-04 2018-06-29 中南大学 用于锂离子电池的补锂添加剂、补锂正极及其制备和应用
JP2018154549A (ja) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 酸化銀、酸化銀ケーキおよび酸化銀の製造方法
CN109244364A (zh) * 2018-10-22 2019-01-18 东莞塔菲尔新能源科技有限公司 一种补锂正极极片及其制备方法
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法
CN110197888A (zh) * 2018-02-26 2019-09-03 比亚迪股份有限公司 一种电池隔膜及锂离子电池
CN110299496A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 一种电池隔膜、动力电池和车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086653B2 (ja) * 2002-12-25 2008-05-14 三洋電機株式会社 リチウム電池およびその製造方法
CN101359733A (zh) * 2007-07-31 2009-02-04 比亚迪股份有限公司 一种包覆锂离子二次电池正极活性物质的方法
CN105702961B (zh) * 2014-11-27 2019-03-29 比亚迪股份有限公司 一种正极材料和一种锂离子电池
CN109713238A (zh) * 2017-10-26 2019-05-03 中信国安盟固利动力科技有限公司 一种锂离子电池正极添加物
JP6922672B2 (ja) * 2017-11-09 2021-08-18 株式会社豊田自動織機 炭素被覆Li5FeO4
CN110212167A (zh) * 2018-02-28 2019-09-06 中信国安盟固利动力科技有限公司 一种由金属氧化物包覆的正极添加物及其制备方法
CN108767225A (zh) * 2018-05-30 2018-11-06 陕西煤业化工技术研究院有限责任公司 一种半导体氧化物包覆镍钴铝酸锂三元材料的制备方法
CN110323421B (zh) * 2019-04-22 2022-04-22 苏州第一元素纳米技术有限公司 电化学活性材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154549A (ja) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 酸化銀、酸化銀ケーキおよび酸化銀の製造方法
CN108232343A (zh) * 2018-01-04 2018-06-29 中南大学 用于锂离子电池的补锂添加剂、补锂正极及其制备和应用
CN110197888A (zh) * 2018-02-26 2019-09-03 比亚迪股份有限公司 一种电池隔膜及锂离子电池
CN110299496A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 一种电池隔膜、动力电池和车辆
CN109244364A (zh) * 2018-10-22 2019-01-18 东莞塔菲尔新能源科技有限公司 一种补锂正极极片及其制备方法
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471554A (zh) * 2021-07-06 2021-10-01 湖北亿纬动力有限公司 一种复合正极补锂添加剂及其制备方法和应用
WO2023283960A1 (zh) * 2021-07-16 2023-01-19 宁德时代新能源科技股份有限公司 正极极片、二次电池及其制备方法与包含该二次电池的电池模块、电池包和用电装置
WO2023185439A1 (zh) * 2022-03-29 2023-10-05 深圳市德方创域新能源科技有限公司 一种正极补锂添加剂及其制备方法和正极材料、二次电池

Also Published As

Publication number Publication date
US20220216471A1 (en) 2022-07-07
CN110867584B (zh) 2021-09-21
CN110867584A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2021088168A1 (zh) 补锂材料及包括其的正极
CN110854382B (zh) 正极补锂材料、包含正极补锂材料的正极及其制备方法
WO2021022912A1 (en) Anode material and electrochemical device and electronic device including the same
WO2021184532A1 (zh) 负极活性材料及使用其的电化学装置和电子装置
CN111029543B (zh) 负极材料及包含其的电化学装置和电子装置
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
CN108807860B (zh) 阴极添加剂及其制备方法、阴极片及锂电池
WO2021184531A1 (zh) 电化学装置和电子装置
CN109478641B (zh) 负极活性材料及包含其的负极
CN109860546B (zh) 正极材料和包含所述正极材料的电化学装置
WO2022198660A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN111771301A (zh) 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
WO2023070992A1 (zh) 电化学装置及包括其的电子装置
JP2012079470A (ja) 非水電解質二次電池
CN110854387B (zh) 正极及包含其的电化学装置和电子装置
WO2023241195A1 (zh) 正极材料及包含该材料的电化学装置和电子装置
WO2023122855A1 (zh) 一种电化学装置和电子装置
WO2023039748A1 (zh) 一种电化学装置和电子装置
WO2023050044A1 (zh) 一种电化学装置和电子装置
WO2022198662A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN113422027A (zh) 正极复合材料及其制备方法和应用
WO2023108397A1 (zh) 一种正极活性材料、电化学装置和电子装置
CN113437299B (zh) 负极活性材料、电化学装置和电子装置
WO2022193122A1 (zh) 补锂添加剂及包含其的电化学装置和电子设备
WO2023206241A1 (zh) 正极材料及包括正极材料的电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951613

Country of ref document: EP

Kind code of ref document: A1