WO2023241195A1 - 正极材料及包含该材料的电化学装置和电子装置 - Google Patents

正极材料及包含该材料的电化学装置和电子装置 Download PDF

Info

Publication number
WO2023241195A1
WO2023241195A1 PCT/CN2023/088329 CN2023088329W WO2023241195A1 WO 2023241195 A1 WO2023241195 A1 WO 2023241195A1 CN 2023088329 W CN2023088329 W CN 2023088329W WO 2023241195 A1 WO2023241195 A1 WO 2023241195A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
cathode material
matrix
lithium
molar
Prior art date
Application number
PCT/CN2023/088329
Other languages
English (en)
French (fr)
Inventor
彭刚
郎野
刘文元
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2023241195A1 publication Critical patent/WO2023241195A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, and specifically relates to a cathode material and an electrochemical device and an electronic device containing the cathode material.
  • Effective measures to improve the cycle life of cathode materials under high voltage include increasing the primary grain size of material particles, reducing the specific surface area of the material, bulk and surface doping of the material, and surface metal oxide coating, but these measures will worsen the material dynamics. Chemical properties, reducing the material's first charge and discharge efficiency and reversible discharge capacity. Therefore, it is difficult to balance the improvement of dynamic performance and high-temperature cycle life in the existing technology.
  • This application attempts to solve at least one problem existing in related fields by providing a cathode material.
  • one of the purposes of this application is to improve the high-temperature cycle life of the cathode material under high voltage while taking into account the low-temperature performance of the cathode material.
  • the cathode material provided by this application can increase the low-temperature valley voltage of lithium-ion batteries during low-temperature use, reduce the temperature rise during high-rate discharge, and improve the high-temperature cycle life under high-rate charge and discharge.
  • the present application provides a cathode material, which includes: a base body and a first coating layer located on the surface of the base body; wherein, based on metal elements other than Li in the first coating layer
  • the molar amount of Co element in the first coating layer is W1, based on the metal elements other than Li in the matrix
  • the molar amount of Co element in the matrix is W2, which satisfies: W1>W2; the first coating layer includes a first region with a spinel phase structure.
  • the first coating layer further includes a second region having a rock salt phase structure.
  • the first coating layer on the surface of the substrate is a Co-rich layer.
  • the first coating layer is rich in Co doping, which can increase the lithium ion conductivity, reduce the charge transfer resistance at the material interface, improve the low-temperature performance of the material, and reduce high-rate discharge.
  • the first coating layer on the surface of the cathode material is rich in Co, which can also reduce the residual lithium impurities on the surface of the material and improve its high temperature cycle stability.
  • the first coating layer on the surface of the cathode material matrix is also rich in Co. Containing spinel phase structure and rock salt phase structure can further improve the surface stability of the material, thereby further improving its high temperature cycle stability under high voltage.
  • the first region is located between the base and the second region.
  • the relatively more stable second region with rock salt phase structure is located on the outside, which can further improve the surface stability of the cathode material, thereby further improving its high-temperature cycle stability under high voltage.
  • the thickness of the first cladding layer ranges from 3 nm to 40 nm. In some embodiments, the thickness of the first cladding layer ranges from 8 nm to 20 nm.
  • the thickness of the first region ranges from 1 nm to 5 nm.
  • the thickness of the second region ranges from 1 nm to 5 nm.
  • the substrate and the first cladding layer each independently comprise selected from the group consisting of Al, Ti, Y, V, Nb, W, Zr, La, Mg, Cr, Ge, Mo, Sr, Ca , A element of at least one of Ba, Fe, Cu, Zn, Ga, In, Sn, Sb, Ce, Ta, Hf or Sb; based on the molar amount of metal elements other than Li in the first cladding layer , the molar percentage of element A in the first coating layer is T1; based on the molar amount of metal elements other than Li in the matrix, the molar percentage of element A in the matrix is T2; satisfies: T1>T2.
  • Doping the first cladding layer with A-rich elements can enhance the interface stability.
  • the A element-O bond energy is greater than Ni-O, Co-O, and Mn-O bond energies.
  • Doping the A element in the first cladding layer can Improve the surface structural stability of the cathode material in the high delithiation state, and reduce the activity of two-coordinated oxygen on the surface of the high delithiation state, thereby inhibiting the irreversible phase change and oxygen release on the surface of the cathode material under high voltage, and improving the performance of the cathode material under high voltage. High temperature cycle stability.
  • T1 ⁇ 1.3T2. In some embodiments, T1 ⁇ 10T2. In some embodiments, The range of T1 is 1.5% to 15%.
  • the cathode material further includes a second coating layer located on the surface of the first coating layer, the second coating layer includes X element, and the X element is selected from F, B, P Or at least one of Si.
  • the second coating layer has a porous structure.
  • the porous structure is conducive to the diffusion of lithium ions, thereby improving the dynamic properties of the cathode material.
  • the second coating layer includes at least one of lithium fluoride, lithium phosphate, lithium borate, or lithium silicate.
  • the molar percentage content of the X element in the second cladding layer ranges from 0.1% to 10%.
  • the matrix includes a lithium nickel composite oxide having a layered crystal structure.
  • the matrix includes Ni element, and based on the molar amount of metal elements other than Li in the matrix, the molar percentage of Ni element in the matrix is more than 50%.
  • the matrix includes Co element, and based on the molar amount of metal elements other than Li in the matrix, the molar percentage of Co element in the matrix is more than 2%.
  • Another aspect of the present application provides an electrochemical device including the cathode material according to the present application.
  • the present application also provides an electronic device, which includes the electrochemical device according to the present application.
  • FIG 1 shows the scanning transmission electron microscope (STEM) photos and EDS mapping photos of the cathode material in Example 11 of the present application.
  • Figure 2 shows the second coating layer containing non-metal elements in the cathode material of Embodiment 11 of the present application.
  • Figure 3 shows the crystal phase structure of the first coating layer in the cathode material of Example 11 of the present application.
  • a list of items connected by the term "at least one of” may mean any combination of the listed items. For example, if items A and B are listed, the phrase "at least one of A and B" means only A; only B; or A and B. In another example, if the items A, B, and C are listed, then the phrase "at least one of A, B, and C" means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B and C.
  • Item A may contain a single component or multiple components.
  • Item B can contain a single component or multiple components.
  • Item C may contain a single component or multiple components.
  • the term "at least one of" has the same meaning as the term "at least one of”.
  • the present application provides a cathode material, which includes: a base body and a first coating layer located on the surface of the base body; wherein, based on the molar amount of metal elements other than Li in the first coating layer, the third coating layer
  • the molar percentage of Co element in a coating layer is W1.
  • the molar percentage of Co element in the matrix is W2, which satisfies: W1>W2;
  • the first cladding layer includes a first region having a spinel phase structure.
  • the first coating layer further includes a second region having a rock salt phase structure.
  • the first coating layer on the surface of the substrate is a Co-rich layer.
  • the first coating layer is rich in Co doping, which can increase the lithium ion conductivity, reduce the material interface charge transfer resistance, and improve the low-temperature performance of the material. , reducing the temperature rise under high-rate discharge.
  • the first coating layer on the surface of the substrate is rich in Co, which can also reduce the residual lithium impurities on the surface of the material and improve its high-temperature cycle stability;
  • the third coating layer on the surface of the cathode material substrate is A coating layer containing both spinel phase structure and rock salt phase structure can further improve the surface stability of the material, thereby further improving its high temperature cycle stability under high voltage.
  • the first region (spinel phase structure) of the cathode material is located between the matrix and the second region (rock salt phase structure).
  • the relatively more stable second region with rock salt phase structure is located on the outside, which can further improve the surface stability of the cathode material, thereby further improving its high-temperature cycle stability under high voltage.
  • W1 ⁇ 1.5W2 eg., W1 ⁇ 2W2, W1 ⁇ 3W2, W1 ⁇ 4W2, etc.
  • W1 ranges from 8% to 48%. At this time, the cathode material can have a lower interface charge transfer resistance, thereby improving the low-temperature performance of the material. In some embodiments, W1 is 8%, 9%, 10%, 15%, 30%, 36%, 40%, 42%, 48% or the range between any two of the aforementioned values. In some embodiments, W1 ranges from 15% to 40%.
  • the thickness of the first cladding layer ranges from 3 nm to 40 nm. In some embodiments, the thickness of the first coating layer may be 3 nm, 5 nm, 7 nm, 8 nm, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm or a range between any two of the aforementioned values. In some embodiments, the thickness of the first cladding layer ranges from 8 nm to 20 nm.
  • the thickness of the first region ranges from 1 nm to 5 nm. In some embodiments, the thickness of the first region may be 1 nm, 2 nm, 3 nm, 4 nm, 5 nm or a range between any two of the aforementioned values.
  • the thickness of the second region ranges from 1 nm to 5 nm. In some embodiments, the thickness of the second region may be 1 nm, 2 nm, 3 nm, 4 nm, 5 nm or a range between any two of the aforementioned values.
  • the matrix and the first coating layer of the cathode material each independently include selected from the group consisting of Al, Ti, Y, V, Nb, W, Zr, La, Mg, Cr, Ge, Mo, Sr, Ca, A element of at least one of Ba, Fe, Cu, Zn, Ga, In, Sn, Sb, Ce, Ta, Hf or Sb; based on the molar amount of metal elements other than Li in the first cladding layer, The molar percentage of element A in the first coating layer is T1; based on the molar amount of metal elements other than Li in the matrix, the molar percentage of element A in the matrix is T2; satisfies: T1 >T2.
  • the A-rich element doping of the first cladding layer can enhance the interface stability.
  • the A element-O bond energy is greater than the Ni-O, Co-O, Mn-O bond energy.
  • Doping the A element in the first cladding layer can improve the stability of the interface.
  • the surface structure of the material is stable in the high delithiation state, and the activity of two-coordinated oxygen on the surface of the high delithiation state is reduced, thereby inhibiting the irreversible phase change and oxygen release on the surface of the cathode material under high voltage, and improving the high temperature cycle stability of the cathode material under high voltage. sex.
  • the first coating layer of the cathode material may further include at least one of Ni or Mn elements.
  • T1 ⁇ 1.5T2 eg., T1 ⁇ 3T2, T1 ⁇ 4T2, etc.
  • T1 ranges from 1.5% to 15%. In some embodiments, T1 is 1.5%, 3.0%, 4.5%, 5%, 9%, 12%, 15%, or a range between any two of the foregoing values.
  • the first coating layer of the cathode material is also enriched in A element, and the A element is selected from Al, Ti, Y, V, Nb, W, Zr, La, Mg, Cr, Ge, Mo, At least one of Sr, Ca, Ba, Fe, Cu, Zn, Ga, In, Sn, Sb, Ce, Ta, Hf or Sb.
  • the matrix includes a lithium nickel composite oxide having a layered crystal structure.
  • the matrix includes Ni element, based on metal elements other than Li in the matrix
  • the molar amount, the molar percentage of Ni element in the matrix is more than 50% (for example, 55%, 60%, 65%, 70%, 80%, 90%, etc.).
  • the matrix includes Co element, and based on the molar amount of metal elements other than Li in the matrix, the molar percentage of Co element in the matrix is more than 2% (for example, 3%, 4 %, 5%, 10%, 12%, 20%, etc.).
  • the cathode material further includes a second coating layer located on the surface of the first coating layer, the second coating layer includes X element, and the X element is selected from F, B, P Or at least one of Si.
  • the X element in the second cladding layer is F.
  • the X element in the second cladding layer is Si.
  • the X element in the second cladding layer is B.
  • the X element in the second cladding layer is P.
  • the second coating layer has a porous structure; the porous structure is conducive to the diffusion of lithium ions, thereby improving the dynamic properties of the cathode material.
  • the second coating layer includes at least one of lithium fluoride, lithium phosphate, lithium borate, or lithium silicate.
  • This application also provides a method for preparing the above-mentioned cathode material, which includes the following steps: (1) providing a precursor material; (2) primary mixing: combining the lithium source with the precursor material and the optional doping element A The sources are mixed according to a certain proportion; (3) Primary sintering: The mixture obtained in step (2) is sintered once to obtain primary sintering materials; (4) Crushing and classification: The primary sintering materials are crushed and classified; (5) Secondary sintering Secondary sintering: Mix the material obtained in step (4) with the coating additive, and perform secondary sintering. After sintering, it is cooled to obtain a secondary sintering material with a first coating layer and an optional second coating layer on the surface. ; (6) Crushing and grading.
  • the above step (1) includes: combining a nickel source (for example, nickel sulfate or nickel chloride), a cobalt source (for example, cobalt sulfate or cobalt chloride), manganese source (for example, manganese sulfate or manganese chloride) are prepared into a mixed salt solution with a certain molar concentration according to the molar ratio of Ni/Co/Mn, and an alkali solution with a certain molar concentration is prepared (for example, , sodium hydroxide solution) and a certain concentration of complexing agent (for example, ammonia). The above solution was filtered to remove solid impurities.
  • a nickel source for example, nickel sulfate or nickel chloride
  • a cobalt source for example, cobalt sulfate or cobalt chloride
  • manganese source for example, manganese sulfate or manganese chloride
  • the reaction kettle Add the filtered salt solution, alkali solution, and complexing agent to the reaction kettle at a certain flow rate, control the stirring rate of the reaction kettle, the temperature and pH value of the reaction slurry, and neutralize the salt and alkali to generate a ternary precursor.
  • the bulk crystal nuclei gradually grow up.
  • the reaction slurry is filtered, washed, and dried to obtain a ternary precursor. If it is necessary to prepare a doped ternary precursor, the doping element solution is added to the reactor during the reaction. After the reaction is completed, the doped ternary precursor can be obtained.
  • the precursor is a doped hydroxide precursor.
  • the doping element A is selected from Al, Ti, Y, V, Nb, W, Zr, La, Mg, Cr, Ge, Mo, Sr, Ca, Ba, Fe, Cu, Zn, Ga, At least one of In, Sn, Sb, Ce, Ta, Hf or Sb, wherein element A is doped in the bulk phase.
  • doping element A is Al or Ti.
  • the sintering atmosphere in the above step (3) adopts oxygen atmosphere.
  • the sintering temperature ranges from 780°C to 1000°C, for example, 790°C, 800°C, 850°C, 900°C, 950°C, etc.
  • the above step (4) includes mechanical crushing and airflow pulverization, and the primary sintering material obtained in step (3) is cooled and then mechanically crushed, airflow pulverized and classified.
  • the coating additive further includes a source of element X (F, B, P, Si).
  • the Co source is selected from Co 3 O 4 or Co(OH) 2 .
  • the doping element A source is selected from at least one of Al 2 O 3 , TiO 2 , ZrO 2 , Y 2 O 3 or WO 3 .
  • the X element source is selected from at least one of LiF, AlF 3 , Li 3 PO 4 , Li 2 SiO 3 , and Li 3 BO 3 .
  • the thickness of the first coating layer and the second coating layer is adjusted by controlling the temperature of the secondary sintering and the content of the coating additive.
  • the temperature of secondary sintering is 500°C to 750°C, for example, 550°C, 600°C, 650°C, 700°C, etc.
  • the surface phase composition can be adjusted so that rock salt phase and spinel phase exist on the surface of the material.
  • the electrochemical device of the present application may include any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries or secondary batteries.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the electrochemical device of the present application includes a positive electrode piece, a negative electrode piece, a separator film disposed between the positive electrode piece and the negative electrode piece, and an electrolyte.
  • the positive electrode sheet includes a current collector and a positive active material layer disposed on the current collector.
  • the positive active material layer includes a positive active material, a binder, and a conductive agent.
  • the cathode active material includes a cathode material described herein.
  • the binder in the positive active material layer includes at least one of fluorine-containing resin, polypropylene resin, fiber-type binder, rubber-type binder, or polyimide-type binder. In some embodiments, the binder in the positive active material layer includes polyvinylidene fluoride.
  • the conductive agent in the cathode active material layer includes at least one of conductive carbon black, carbon fiber, acetylene black, Ketjen black, graphene, or carbon nanotubes. In some embodiments, the conductive agent in the cathode active material layer includes conductive carbon black and carbon nanotubes.
  • the weight percentage of the positive active material is 90 to 98 wt% based on the total weight of the positive active material layer.
  • the weight percentage of the binder is 0.5 wt% to 5 wt% based on the total weight of the cathode active material layer.
  • the weight percentage of the conductive agent is 0.5 wt% to 5 wt% based on the total weight of the cathode active material layer.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer located on the negative electrode current collector.
  • the negative active material includes a material that reversibly intercalates/deintercalates lithium ions.
  • the material that reversibly intercalates/deintercalates lithium ions includes carbon materials.
  • the carbon material may be any carbon-based negative active material commonly used in lithium-ion rechargeable batteries.
  • carbon materials include, but are not limited to: crystalline carbon, amorphous carbon, or mixtures thereof. Crystalline carbon can be amorphous, flake, platelet, spherical or fibrous natural graphite or artificial graphite. Amorphous carbon can be soft carbon, hard carbon, mesophase pitch carbide, calcined coke, etc.
  • the negative active material includes, but is not limited to: graphite, mesophase microcarbon beads (MCMB), hard carbon, soft carbon, silicon, silicon oxide (SiO x ), silicon-carbon composite, or any combination thereof.
  • the negative electrode may further include a binder.
  • the binder improves the binding of the negative active material particles to each other and the negative active material to the negative current collector.
  • binders include, but are not limited to: polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, ethylene-containing Oxygen-based polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyacrylic acid (PAA), styrene-butadiene rubber, acrylic (ester) butyl Styrene rubber, epoxy resin, nylon, etc.
  • PAA polyacrylic acid
  • styrene-butadiene rubber acrylic (ester) butyl Styrene rubber, epoxy resin, nylon, etc.
  • the negative electrode may further include a conductive agent.
  • Conductive agents include, but are not limited to, carbon-based materials, metal-based materials, conductive polymers, or mixtures thereof.
  • the carbon-based material is selected from conductive carbon black, acetylene black, Ketjen black, carbon fiber, or any combination thereof.
  • the negative electrode current collector includes, but is not limited to, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymer substrate coated with conductive metal, and any combination thereof.
  • the isolation film includes, but is not limited to, at least one selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, polyimide, and aramid.
  • polyethylene includes at least one component selected from high density polyethylene, low density polyethylene and ultra-high molecular weight polyethylene.
  • Polyethylene and polypropylene in particular, have a good effect on preventing short circuits and can improve the safety of lithium-ion batteries through the shutdown effect.
  • the electrolyte solution includes a lithium salt and a non-aqueous solvent.
  • the lithium salt may be selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiSiF 6 , LiBOB or one or more of lithium difluoroborate.
  • LiPF 6 was chosen for the lithium salt because it gives high ionic conductivity and improves cycle characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • examples of chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl ethyl carbonate (MEC) and their combinations.
  • examples of the cyclic carbonate compound are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC) or combinations thereof.
  • examples of the fluorocarbonate compound are fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate.
  • examples of carboxylate compounds are methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, gamma-butyrolide ester, decanolide, valerolactone, mevalonolactone, caprolactone, methyl formate or combinations thereof.
  • examples of ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane , ethoxymethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran or combinations thereof.
  • examples of other organic solvents are dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl -2-pyrrolidone, formamide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, phosphate ester or combinations thereof.
  • electrochemical device of the present application is not particularly limited, and it can be used for any purpose known in the art.
  • electronic devices including the electrochemical device of the present application include, but are not limited to: notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, Stereo headphones, video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles , power-assisted bicycles, power tools, drones, handheld vacuum cleaners, bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the doped hydroxide precursor component is Ni/Co/Mn/Al/
  • the Ti molar ratio is 0.5:0.02:0.465:0.01:0.005.
  • the negative active material artificial graphite Mix the negative active material artificial graphite, the binder styrene-butadiene rubber, and the thickener sodium carboxymethylcellulose at a mass ratio of 97.4:1.2:1.4, add deionized water, and stir evenly under the action of a vacuum mixer to obtain the negative electrode.
  • Slurry in which the solid content of the negative electrode slurry is 75%.
  • the negative electrode slurry is evenly coated on one surface of the negative electrode current collector copper foil, and the copper foil is dried at 120°C to obtain a negative electrode sheet coated with a negative electrode material layer on one side. Repeat the above steps on the other surface of the copper foil to obtain a negative electrode piece coated with a negative electrode material layer on both sides. Then after cold pressing, cutting and slitting, the negative electrode piece is obtained.
  • a porous polyethylene film with a thickness of 7 ⁇ m was used.
  • the positive electrode piece, isolation film and negative electrode piece prepared above are stacked in order, so that the isolation film is between the positive electrode piece and the negative electrode piece to play an isolation role, and the electrode assembly is obtained by winding.
  • the electrode assembly is placed in an aluminum-plastic film packaging bag, dried and then injected with electrolyte. After vacuum packaging, standing, formation, degassing, trimming and other processes, a lithium-ion battery is obtained.
  • Example 1 The difference compared with Example 1 is only in the following aspects of the preparation steps of the cathode material:
  • step (1) the molar ratio of Ni/Co/Mn/Al/Ti in the doped hydroxide precursor component is 0.5:0.1:0.385:0.01:0.005;
  • the primary sintering temperature in step (2) is 945°C;
  • the cathode material matrix in step (3) is LiNi 0.5 Co 0.1 Mn 0.385 Al 0.01 Ti 0.005 O 2 , and the mass ratio of the primary sintering material to the coating additive nanometer Co(OH) 2 and Al 2 O 3 is 100:29.1:2.1 , the molar percentage W1 of Co element in the first coating layer is 40.0%, and the molar percentage W2 of Co element in the matrix is 10%.
  • Example 1 The difference compared with Example 1 is only in the following aspects of the preparation steps of the cathode material:
  • step (1) the molar ratio of Ni/Co/Mn/Al/Ti in the doped hydroxide precursor component is 0.6:0.1:0.285:0.01:0.005;
  • the primary sintering temperature in step (2) is 935°C;
  • the cathode material matrix in step (3) is LiNi 0.6 Co 0.1 Mn 0.285 Al 0.01 Ti 0.005 O 2 , and the mass ratio of the primary sintering material to the coating additive nanometer Co(OH) 2 and Al 2 O 3 is 100:29.0:2.1 ;
  • the molar percentage W1 of the Co element in the first coating layer is 40.0%, and the molar percentage W2 of the Co element in the matrix is 10.0%.
  • Example 1 The difference compared with Example 1 is only in the following aspects of the preparation steps of the cathode material:
  • step (1) the molar ratio of Ni/Co/Mn/Al/Ti in the doped hydroxide precursor component is 0.82:0.12:0.045:0.01:0.005;
  • the primary sintering temperature in step (2) is 840°C;
  • the cathode material matrix in step (3) is LiNi 0.82 Co 0.12 Mn 0.045 Al 0.01 Ti 0.005 O 2 , and the mass ratio of the primary sintering material to the coating additive nanometer Co(OH) 2 and Al 2 O 3 is 100:34.4:2.1 ;
  • the molar percentage W1 of the Co element in the first coating layer is 48.0%, and the molar percentage W2 of the Co element in the matrix is 12.0%.
  • Example 1 The difference compared with Example 1 is only in the following aspects of the preparation steps of the cathode material:
  • the coating additive further includes porous nano-LiF particles, in which the mass percentage of F element added to the total weight of the mixed material is 0.1 wt%.
  • Example 2 The difference compared with Example 2 is only in the following aspects of the preparation steps of the cathode material:
  • the coating additive further includes porous nano-LiF particles, in which the mass percentage of F element added to the total weight of the mixed material is 0.1 wt%.
  • Example 3 The difference compared with Example 3 is only in the following aspects of the preparation steps of the cathode material:
  • the coating additive further includes porous nano-LiF particles, in which the mass percentage of F element added to the total weight of the mixed material is 0.1 wt%.
  • Example 4 The difference compared with Example 4 is only in the following aspects of the preparation steps of the cathode material:
  • the coating additive further includes porous nano-LiF particles, in which the mass percentage of F element added to the total weight of the mixed material is 0.1 wt%.
  • Example 7 The difference compared with Example 7 is only in the following aspects of the preparation steps of the cathode material:
  • step (1) the molar ratio of Ni/Co/Mn/Al/Ti in the doped hydroxide precursor component is 0.88:0.10:0.005:0.01:0.005;
  • the primary sintering temperature in step (2) is 820°C;
  • the cathode material matrix in step (3) is LiNi 0.88 Co 0.1 Mn 0.005 Al 0.01 Ti 0.005 O 2 .
  • the mass ratio of the primary sintering material to the coating additive nanometer Co(OH) 2 and Al 2 O 3 is 100:8.7:2.1.
  • Example 8 The difference compared with Example 8 is only in the following aspects of the preparation steps of the cathode material:
  • step (1) the molar ratio of Ni/Co/Mn/Al/Ti in the doped hydroxide precursor component is 0.90:0.06:0.025:0.01:0.005;
  • the primary sintering temperature in step (2) is 810°C;
  • the cathode material matrix in step (3) is LiNi 0.90 Co 0.06 Mn 0.025 Al 0.01 Ti 0.005 O 2 , and the mass ratio of the primary sintering material to the coating additive nanometer Co(OH) 2 and Al 2 O 3 is 100:17.2:2.1 ;
  • the molar percentage W1 of the Co element in the first coating layer is 24%, and the molar percentage W2 of the Co element in the matrix is 6%.
  • Figure 1 shows the transmission electron microscope and EDS mapping photos of the cathode material prepared in Example 11. From Figure 1, the first coating layer on the surface of the substrate can be observed. In Figure 2, it can be observed that the surface of the first coating layer is coated with a nanoporous second coating layer containing F element.
  • Example 7 The only difference compared with Example 7 is that in the preparation step (3) of the cathode material, the coating additive further included is non-porous nano LiF particles.
  • Example 7 The only difference compared with Example 7 is that in the preparation step (3) of the cathode material, the coating additive further included is porous nanometer lithium silicate.
  • step (1) the molar ratio of Ni/Co/Mn/Y/Ti in the doped hydroxide precursor component is 0.60:0.10:0.285:0.01:0.005;
  • step (1) the molar ratio of Ni/Co/Mn/W/Ti in the doped hydroxide precursor component is 0.60:0.10:0.285:0.01:0.005;
  • Example 3 The only difference compared with Example 3 is that in the preparation step (3) of the positive electrode material, after the secondary sintering is completed, dry air without CO 2 is introduced for rapid cooling, and the cooling rate is 10°C/min. Compared with Example 3, the cooling time is doubled, and the first coating layer of the cathode material only has a spinel phase.
  • Cycle capacity retention rate (discharge capacity at the 800th cycle/discharge capacity at the first cycle) ⁇ 100%.
  • Examples 1-4 do not have the second coating layer containing the X element, while Examples 5-8 contain the second coating layer containing the F element. It can be seen from the data in Table 2 that with the second coating layer, the high-temperature cycle capacity retention rate of the lithium-ion battery is significantly improved.
  • Example 5 and Example 11 show that enrichment of Co in the first coating layer can further improve the material dynamic properties, increase the low-temperature valley voltage and reduce the discharge temperature rise.

Abstract

本申请涉及一种正极材料及包含该正极材料的电化学装置和电子装置。本申请的正极材料包括:基体以及位于所述基体表面的第一包覆层;其中,基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中Co元素的摩尔百分含量为W1,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为W2,满足:W1>W2;所述第一包覆层包括具有尖晶石相结构的第一区域。

Description

正极材料及包含该材料的电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种正极材料以及包含该正极材料的电化学装置和电子装置。
背景技术
近年来电动工具、无人机装备市场的快速发展对功率型锂离子电池的功率密度、低温性能、大倍率放电温升、高温循环寿命等性能不断提出更高的要求,同时兼顾上述性能是目前行业亟需解决的关键问题。
研究表明,提升锂离子电池的功率密度、改善锂离子电池的低温性能和大倍率放电温升的关键在于降低电池内阻(包括欧姆阻抗、电化学极化阻抗和浓差极化阻抗),提升化学体系动力学性能。从正极材料角度而言,提升动力学性能最有效的措施是降低材料颗粒一次晶粒或二次晶粒大小,增大材料比表面积,降低固相扩散以及电荷转移阻抗。但是,上述措施在提升动力学性能的同时会严重恶化材料高电压下的高温循环寿命,导致使用上限电压降低,能量密度也降低。而改善正极材料高电压下循环寿命的有效措施包括增大材料颗粒一次晶粒粒径、降低材料比表面积、材料体相及表面掺杂以及表面金属氧化物包覆,但这些措施会恶化材料动力学性能,降低材料首次充放电效率及可逆放电容量。因此,现有技术中动力学性能与高温循环寿命的提升难以兼顾。
发明内容
本申请通过提供一种正极材料以试图解决至少一种存在于相关领域中的问题。例如,本申请的目的之一是在提升正极材料高电压下高温循环寿命的同时,兼顾正极材料的低温性能。本申请提供的正极材料可以提高锂离子电池低温使用过程中的低温波谷电压,降低大倍率放电时的温升,并改善大倍率充放电下的高温循环寿命。
根据本申请的一个方面,本申请提供了一种正极材料,其包括:基体以及位于所述基体表面的第一包覆层;其中,基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中Co元素的摩尔百分含量为W1,基于所述基体中除Li以外的金属元 素的摩尔量,所述基体中Co元素的摩尔百分含量为W2,满足:W1>W2;所述第一包覆层包括具有尖晶石相结构的第一区域。
在一些实施例中,所述第一包覆层还包括具有岩盐相结构的第二区域。
一方面,基体表面的第一包覆层是Co富集层,第一包覆层富Co掺杂,能够提高锂离子电导率,降低材料界面电荷转移阻抗,改善材料低温性能,降低大倍率放电下的温升,同时,基体表面的第一包覆层富Co,还可以降低材料表面残余锂杂质,改善其高温循环稳定性;另一方面,正极材料基体表面上的第一包覆层同时含有尖晶石相结构和岩盐相结构能够进一步提高材料表面稳定性,从而进一步改善其在高电压下的高温循环稳定性。
在一些实施例中,所述第一区域位于所述基体与所述第二区域之间。此时,相对更稳定的具有岩盐相结构的第二区域位于外侧,能够进一步提高正极材料的表面稳定性,从而进一步改善其在高电压下的高温循环稳定性。
在一些实施例中,W1≥1.5W2。在一些实施例中,W1的范围为8%~48%。此时,正极材料能够具有较低的界面电荷转移阻抗,从而改善材料的低温性能。在一些实施例中,W1≥4W2。在一些实施例中,W1的范围为15%~40%。
在一些实施例中,W1≤10W2。
在一些实施例中,所述第一包覆层的厚度范围为3nm至40nm。在一些实施例中,所述第一包覆层的厚度范围为8nm至20nm。
在一些实施例中,所述第一区域的厚度范围为1nm至5nm。
在一些实施例中,所述第二区域的厚度范围为1nm至5nm。
在一些实施例中,所述基体和所述第一包覆层各自独立地包含选自Al、Ti、Y、V、Nb、W、Zr、La、Mg、Cr、Ge、Mo、Sr、Ca、Ba、Fe、Cu、Zn、Ga、In、Sn、Sb、Ce、Ta、Hf或Sb中至少一种的A元素;基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中A元素的摩尔百分含量为T1;基于所述基体中除Li以外的金属元素的摩尔量,所述基体中A元素的摩尔百分含量为T2;满足:T1>T2。第一包覆层富A元素掺杂能够增强界面稳定性,A元素-O键能大于Ni-O、Co-O、Mn-O键能,在第一包覆层中掺杂A元素,可提高正极材料于高脱锂态下的表面结构稳定性,并且降低高脱锂态表面二配位氧活性,从而抑制高电压下正极材料表面不可逆相变及释氧,改善正极材料高电压下的高温循环稳定性。
在一些实施例中,T1≥1.3T2。在一些实施例中,T1≤10T2。在一些实施例中, T1的范围为1.5%~15%。
在一些实施例中,所述正极材料还包括位于所述第一包覆层表面的第二包覆层,所述第二包覆层包括X元素,所述X元素选自F、B、P或Si中的至少一种。
在一些实施例中,所述第二包覆层具有多孔结构。多孔结构有利于锂离子的扩散,从而改善正极材料的动力学性能。
在一些实施例中,所述第二包覆层包括氟化锂、磷酸锂、硼酸锂或硅酸锂中的至少一种。
在一些实施例中,基于所述第二包覆层中除Li以外的元素的摩尔量,所述第二包覆层中X元素的摩尔百分含量范围为0.1%至10%。
在一些实施例中,所述基体包括具有层状晶体结构的锂镍复合氧化物。
在一些实施例中,所述基体包括Ni元素,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Ni元素的摩尔百分含量为50%以上。
在一些实施例中,所述基体包括Co元素,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为2%以上。
本申请另一方面提供了一种电化学装置,其包括根据本申请所述的正极材料。
本申请还提供一种电子装置,其包括根据本申请所述的电化学装置。
本申请的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例所使用的附图。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,还可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1示出本申请实施例11的正极材料的扫描透射电子显微镜(STEM)照片和EDS mapping照片。
图2示出本申请实施例11的正极材料中包含非金属元素的第二包覆层。
图3示出本申请实施例11的正极材料中第一包覆层的晶相结构。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本 申请的限制。
在具体实施方式及权利要求书中,由术语“……中的至少一种”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一种”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一种”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。术语“……中的至少一者”与术语“……中的至少一种”具有相同的含义。
1、正极材料
基体和第一包覆层
本申请提供了一种正极材料,其包括:基体以及位于所述基体表面的第一包覆层;其中,基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中Co元素的摩尔百分含量为W1,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为W2,满足:W1>W2;所述第一包覆层包括具有尖晶石相结构的第一区域。
在一些实施例中,所述第一包覆层还包括具有岩盐相结构的第二区域。
在本申请中,一方面,基体表面的第一包覆层是Co富集层,第一包覆层富Co掺杂,能够提高锂离子电导率,降低材料界面电荷转移阻抗,改善材料低温性能,降低大倍率放电下的温升,同时,基体表面的第一包覆层富Co,还可以降低材料表面残余锂杂质,改善其高温循环稳定性;另一方面,正极材料基体表面上的第一包覆层同时含有尖晶石相结构和岩盐相结构能够进一步提高材料表面稳定性,从而进一步改善其在高电压下的高温循环稳定性。
在一些实施例中,正极材料的所述第一区域(尖晶石相结构)位于所述基体与所述第二区域(岩盐相结构)之间。此时,相对更稳定的具有岩盐相结构的第二区域位于外侧,能够进一步提高正极材料的表面稳定性,从而进一步改善其在高电压下的高温循环稳定性。
在一些实施例中,W1≥1.5W2(例如,W1≥2W2、W1≥3W2、W1≥4W2等)。在一些实施例中,W1≤10W2。
在一些实施例中,W1的范围为8%~48%。此时,正极材料能够具有较低的界面电荷转移阻抗,从而改善材料的低温性能。在一些实施例中,W1为8%、9%、10%、15%、 30%、36%、40%、42%、48%或前述任意两数值之间的范围。在一些实施例中,W1的范围为15%~40%。
在一些实施例中,所述第一包覆层的厚度范围为3nm至40nm。在一些实施例中,所述第一包覆层的厚度可以为3nm、5nm、7nm、8nm、10nm、15nm、20nm、30nm、40nm或前述任意两数值之间的范围。在一些实施例中,所述第一包覆层的厚度范围为8nm至20nm。
在一些实施例中,所述第一区域的厚度范围为1nm至5nm。在一些实施例中,所述第一区域的厚度可以为1nm、2nm、3nm、4nm、5nm或前述任意两数值之间的范围。
在一些实施例中,所述第二区域的厚度范围为1nm至5nm。在一些实施例中,所述第二区域的厚度可以为1nm、2nm、3nm、4nm、5nm或前述任意两数值之间的范围。
在一些实施例中,正极材料的基体和第一包覆层各自独立地包含选自Al、Ti、Y、V、Nb、W、Zr、La、Mg、Cr、Ge、Mo、Sr、Ca、Ba、Fe、Cu、Zn、Ga、In、Sn、Sb、Ce、Ta、Hf或Sb中至少一种的A元素;基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中A元素的摩尔百分含量为T1;基于所述基体中除Li以外的金属元素的摩尔量,所述基体中A元素的摩尔百分含量为T2;满足:T1>T2。第一包覆层富A元素掺杂能够增强界面稳定性,A元素-O键能大于Ni-O、Co-O、Mn-O键能,在第一包覆层中掺杂A元素可提材料高脱锂态下的表面结构稳定性,并且降低高脱锂态表面二配位氧活性,从而抑制高电压下正极材料表面不可逆相变及释氧,改善正极材料高电压下的高温循环稳定性。
在一些实施例中,正极材料的第一包覆层还可以进一步包含Ni或Mn元素中的至少一种。
在一些实施例中,T1≥1.5T2(例如,T1≥3T2、T1≥4T2等)。在一些实施例中,T1≤10T2。
在一些实施例中,T1的范围为1.5%~15%。在一些实施例中,T1为1.5%、3.0%、4.5%、5%、9%、12%、15%或前述任意两数值之间的范围。
在一些实施例中,正极材料的第一包覆层也富集A元素,所述A元素选自Al、Ti、Y、V、Nb、W、Zr、La、Mg、Cr、Ge、Mo、Sr、Ca、Ba、Fe、Cu、Zn、Ga、In、Sn、Sb、Ce、Ta、Hf或Sb中的至少一种。
在一些实施例中,所述基体包括具有层状晶体结构的锂镍复合氧化物。
在一些实施例中,所述基体包括Ni元素,基于所述基体中除Li以外的金属元素的 摩尔量,所述基体中Ni元素的摩尔百分含量为50%以上(例如,55%、60%、65%、70%、80%、90%等)。
在一些实施例中,所述基体包括Co元素,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为2%以上(例如,3%、4%、5%、10%、12%、20%等)。
第二包覆层
在一些实施例中,所述正极材料还包括位于所述第一包覆层表面的第二包覆层,所述第二包覆层包括X元素,所述X元素选自F、B、P或Si中的至少一种。在一些实施例中,第二包覆层中的X元素为F。在一些实施例中,第二包覆层中的X元素为Si。在一些实施例中,第二包覆层中的X元素为B。在一些实施例中,第二包覆层中的X元素为P。
在本申请中,第二包覆层的作用主要在于进一步增强正极材料与电解液之间的界面稳定性,降低界面副反应,提高高温循环稳定性。
在一些实施例中,所述第二包覆层具有多孔结构;多孔结构有利于锂离子的扩散,从而改善正极材料的动力学性能。
在一些实施例中,所述第二包覆层包括氟化锂、磷酸锂、硼酸锂或硅酸锂中的至少一种。
在一些实施例中,基于所述第二包覆层中除Li以外的元素的摩尔量,所述第二包覆层中X元素的摩尔百分含量范围为0.1%至10%。X元素的含量在上述范围内能够兼顾良好的低温性能和高温循环稳定性。在一些实施例中,所述第二包覆层中X元素的摩尔百分含量为0.1%、0.15%、0.2%、0.5%、1%、5%、7%、9%、10%或前述任意两数值之间的范围。
2、正极材料制备方法
本申请还提供一种用于制备上述正极材料的方法,其包括以下步骤:(1)提供前驱体物质;(2)一次混料:将锂源与前驱体物质以及可选的掺杂元素A源按照一定的比例混合;(3)一次烧结:对步骤(2)中得到的混合物进行一次烧结,得到一次烧结物料;(4)粉碎、分级:将一次烧结物料粉碎并分级;(5)二次烧结:将步骤(4)中得到的物料与包覆添加剂混合,并进行二次烧结,烧结后冷却,得到表面具有第一包覆层以及可选的第二包覆层的二次烧结物料;(6)粉碎、分级。
在一些实施例中,上述步骤(1)包括:将镍源(例如,硫酸镍或氯化镍)、钴源(例 如,硫酸钴或氯化钴)、锰源(例如,硫酸锰或氯化锰)按照Ni/Co/Mn的摩尔比配制成一定摩尔浓度的混合盐溶液,配制一定摩尔浓度的碱溶液(例如,氢氧化钠溶液)和一定浓度的络合剂(例如,氨水)。将上述溶液过滤以去除固体杂质。将过滤后的盐溶液、碱溶液、络合剂以一定的流量加入到反应釜,控制反应釜的搅拌速率,反应浆料的温度和PH值,使盐、碱发生中和反应生成三元前驱体晶核并逐渐长大,当粒度达到预定值后,将反应浆料过滤、洗涤、干燥得到三元前驱体。如果需要制备掺杂型三元前驱体的时,则将掺杂元素溶液在反应过程中加入反应釜,反应完成后即可得到掺杂型三元前驱体。
在一些实施例中,前驱体为掺杂型氢氧化物前驱体。
在一些实施例中,上述步骤(2)包括:将锂源与前驱体以及可选的掺杂元素A源按照一定的Li/M(M=Ni、Co、Mn、A元素)摩尔比配料后置于高混机中,高速混合均匀后,将混合好的物料加入到匣钵中进行下一步一次烧结工序。
在一些实施中,Li/M摩尔比范围为1.03~1.08。
在一些实施例中,掺杂元素A选自Al、Ti、Y、V、Nb、W、Zr、La、Mg、Cr、Ge、Mo、Sr、Ca、Ba、Fe、Cu、Zn、Ga、In、Sn、Sb、Ce、Ta、Hf或Sb中的至少一种,其中,元素A掺杂在体相。在一些实施例中,掺杂元素A为Al或Ti。
在一些实施例中,上述步骤(3)包括:将步骤(2)中混合均匀的装入匣钵中的物料置于窑炉中先在氧气气氛或空气气氛中以一定升温速率缓慢升温至一次烧结温度进行预烧,再在该一次烧结温度下的氧气气氛或空气气氛中煅烧12~18h得到一次烧结物料。
在一些实施例中,上述步骤(3)中的烧结气氛均采用氧气气氛。在一些实施例中,烧结温度范围为780℃~1000℃,例如,790℃、800℃、850℃、900℃、950℃等。
在一些实施例中,上述步骤(4)包括机械破碎及气流粉碎,将步骤(3)中得到的一次烧结物料冷却后进行机械破碎、气流粉碎并进行分级处理。
在一些实施例中,上述步骤(5)包括:将步骤(4)中经粉碎及分级处理后的一次烧结物料与包覆添加剂按一定的质量比混合后在高混机中混合均匀,按一定质量装入匣钵后置于窑炉中,在氧气气氛或空气气氛中煅烧6~10h后,通入除CO2的空气使材料快速冷却降温,降温速率为20~40℃/min,将获得物料经过机械制粉分级,除磁,筛粉,包装后获得正极材料。
在一些实施例中,包覆添加剂同时包含Co源以及掺杂元素A源。
在一些实施例中,包覆添加剂还包含X元素(F、B、P、Si)源。
在一些实施例中,Co源选自Co3O4或Co(OH)2。在一些实施例中,掺杂元素A源选自Al2O3、TiO2、ZrO2、Y2O3或WO3中的至少一种。
在一些实施例中,X元素源选自LiF、AlF3、Li3PO4、Li2SiO3、Li3BO3中的至少一种。
通过控制二次烧结的温度以及包覆添加剂的含量来调节第一包覆层以及第二包覆层的厚度。在一些实施例中二次烧结的温度为500℃~750℃,例如,550℃、600℃、650℃、700℃等。
通过控制二次烧结完成后的冷却气氛条件和降温速率可调控表层相组成,使材料表层存在岩盐相和尖晶石相。
3、电化学装置和电子装置
本申请还提供了一种电化学装置,其包括根据本申请所述的正极材料。
本申请的电化学装置可以包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池或二次电池。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。在一些实施例中,本申请的电化学装置包括正极极片、负极极片、置于正极极片和负极极片之间的隔离膜以及电解液。
在一些实施例中,正极极片包括集流体以及设置在集流体上的正极活性物质层,所述的正极活性物质层包含正极活性材料、粘接剂和导电剂。
在一些实施例中,正极活性材料包括本申请所述的正极材料。
在一些实施例中,正极活性材料层中的粘结剂包括含氟树脂、聚丙烯树脂、纤维型粘结剂、橡胶型粘结剂或聚酰亚胺型粘结剂中的至少一种。在一些实施例中,正极活性材料层中的粘结剂包括聚偏氟乙烯。
在一些实施例中,正极活性材料层中的导电剂包括导电碳黑、碳纤维、乙炔黑、科琴黑、石墨烯或碳纳米管中的至少一种。在一些实施例中,正极活性材料层中的导电剂包括导电碳黑及碳纳米管两种。
在一些实施例中,以正极活性材料层的总重量计,正极活性材料的重量百分比为90wt%至98wt%。在一些实施例中,以正极活性材料层的总重量计,粘结剂的重量百分比为0.5wt%至5wt%。在一些实施例中,以正极活性材料层的总重量计,导电剂的重量百分比为0.5wt%至5wt%。
在一些实施例中,负极包括负极集流体和位于负极集流体上的负极活性材料层。
负极活性材料包括可逆地嵌入/脱嵌锂离子的材料。在一些实施例中,可逆地嵌入/脱嵌锂离子的材料包括碳材料。在一些实施例中,碳材料可以是在锂离子可充电电池中通常使用的任何基于碳的负极活性材料。在一些实施例中,碳材料包括但不限于:结晶碳、非晶碳或它们的混合物。结晶碳可以是无定形的、片形的、小片形的、球形的或纤维状的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳化物、煅烧焦等。在一些实施例中,负极活性材料包括但不限于:石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、氧化硅(SiOx)、硅-碳复合物或其任意组合。
在一些实施例中,负极还可以包括粘合剂。粘合剂提高负极活性材料颗粒彼此间的结合和负极活性材料与负极集流体的结合。在一些实施例中,粘合剂包括但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、聚丙烯酸(PAA)、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在一些实施例中,负极还可以包括导电剂。导电剂包括但不限于:基于碳的材料、基于金属的材料、导电聚合物或它们的混合物。在一些实施例中,基于碳的材料选自导电碳黑、乙炔黑、科琴黑、碳纤维或其任意组合。
在一些实施例中,负极集流体包括但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底和它们的任意组合。
在一些实施例中,隔离膜包括但不限于:选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺和芳纶中的至少一种。举例来说,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯和超高分子量聚乙烯中的至少一种组分。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善锂离子电池的安全性。
在一些实施例中,电解液包括锂盐和非水溶剂。
在一些实施例中,锂盐可以选自LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6H5)4、LiCH3SO3、LiCF3SO3、LiN(SO2CF3)2、LiC(SO2CF3)3、LiSiF6、LiBOB或者二氟硼酸锂中的一种或多种。例如,锂盐选用LiPF6,因为它可以给出高的离子导电率并改善循环特性。
在一些实施例中,非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
在一些实施例中,碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
在一些实施例中,链状碳酸酯化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。所述氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。
在一些实施例中,羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。在一些实施例中,醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。
在一些实施例中,其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、磷酸酯或者其组合。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何用途。在一个实施例中,包含本申请的电化学装置的电子装置包括但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、动力工具、无人机、手持吸尘器、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明本申请,本领域的技术人员将理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
I、锂离子电池的制备
实施例1
1、正极材料的制备
(1)将硫酸镍、硫酸钴和硫酸锰混合加入去离子水中配制成混合盐溶液,将氢氧化钠加入去离子水中配制成碱溶液,选择氨水作为络合剂,然后将盐溶液、碱溶液和络合剂加入反应釜中,并加入硫酸铝和硫酸钛溶液进行反应。控制反应温度为25℃,pH为11,当粒度Dv50达到预定值4.5μm后,将反应浆料过滤、洗涤、干燥得到前驱体。前驱体共沉淀反应中加入硫酸铝溶液和硫酸钛溶液,将掺杂元素均匀分散在前驱体基体中,本实施例中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.5:0.02:0.465:0.01:0.005。
(2)将锂源Li2CO3与掺杂型氢氧化物前驱体按照Li/M(M=Ni+Co+Mn+Al+Ti)摩尔比1.05:1配料后置于高混机中,过量锂会在高温烧结过程中部分发生挥发,高速混合均匀后,将混合好的物料加入到匣钵中,置于窑炉中先在氧气气氛缓慢升温至一次烧结温度960℃进行预烧,再在该一次烧结温度960℃下的氧气气氛下煅烧12h得到一次烧结物料;将得到的一次烧结物料冷却后进行机械破碎、气流粉碎以及分级,冷却过程中依然通入氧气气氛,并缓慢冷却,冷却速率为10℃/min。
(3)处理后的一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3,按100:5.8:2.1的质量比混合后在高混机中混合均匀,装入匣钵后置于窑炉中,在氧气气氛下煅烧6h完成后,向窑炉中通入不含CO2的空气使材料快速冷却降温,降温速率为20℃/min,快速冷却方式与包覆添加剂共同作用,使得材料表层发生相变,形成具有尖晶石相结构的第一区域和具有岩盐相结构的第二区域,第一区域厚度为2nm,第二区域厚度为2nm,将获得物料经过机械制粉分级,除磁,筛粉,包装后获得正极材料,其中正极材料基体为LiNi0.5Co0.02Mn0.465Al0.01Ti0.005O2,基于第一包覆层中除Li以外的金属元素的摩尔量,第一包覆层中Co元素的摩尔百分含量为8.0%,第一包覆层中A元素(Al和Ti)的摩尔百分含量为5.0%,第一包覆层厚度8nm,W1=4W2,T1=3.3T2。
2、正极极片的制备
将上述制备得到的正极材料、导电剂乙炔黑和碳纳米管、粘结剂聚偏二氟乙烯按照质量比为96:1.2:0.8:2进行混合,加入N-甲基吡咯烷酮,在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为70%。将正极浆料均匀涂覆于正极集流体铝箔的一个表面上,将铝箔在120℃下烘干处理1h,得到单面涂覆有正极材料层的正极极片。在铝箔的另一个表面上重复以上步骤,即得到双面涂覆有正极材料层的正极极片。然后经过冷压、裁片、分切后,得到正极极片。
3、负极极片的制备
将负极活性材料人造石墨、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照质量比为97.4:1.2:1.4进行混合,加入去离子水,在真空搅拌机作用下搅拌均匀,获得负极浆料,其中负极浆料的固含量为75%。将负极浆料均匀涂覆于负极集流体铜箔的一个表面上,将铜箔在120℃下烘干,得到单面涂覆有负极材料层的负极极片。在铜箔的另一个表面上重复以上步骤,即得到双面涂覆有负极材料层的负极极片。然后经过冷压、裁片、分切后得到负极极片。
4、电解液的制备
在干燥的氩气气氛手套箱中,将碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯按照质量比为1:1:1混合得到有机溶剂,然后向有机溶剂中加入锂盐LiPF6溶解并混合均匀,得到电解液。其中,LiPF6在电解液中的质量浓度为12.5%。
5、隔离膜的制备
采用厚度为7μm的多孔聚乙烯薄膜。
6、锂离子电池的制备
将上述制备得到的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间以起到隔离的作用,卷绕得到电极组件。将电极组件置于铝塑膜包装袋中,干燥后注入电解液,经过真空封装、静置、化成、脱气、切边等工序得到锂离子电池。
实施例2
与实施例1相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.5:0.1:0.385:0.01:0.005;
步骤(2)中一次烧结温度为945℃;
步骤(3)中的正极材料基体为LiNi0.5Co0.1Mn0.385Al0.01Ti0.005O2,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:29.1:2.1,第一包覆层中Co元素的摩尔百分含量W1为40.0%,基体中Co元素的摩尔百分含量W2为10%。
实施例3
与实施例1相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.6:0.1:0.285:0.01:0.005;
步骤(2)中一次烧结温度为935℃;
步骤(3)中的正极材料基体为LiNi0.6Co0.1Mn0.285Al0.01Ti0.005O2,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:29.0:2.1;第一包覆层中Co元素的摩尔百分含量W1为40.0%,基体中Co元素的摩尔百分含量W2为10.0%。
实施例4
与实施例1相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.82:0.12:0.045:0.01:0.005;
步骤(2)中一次烧结温度为840℃;
步骤(3)中的正极材料基体为LiNi0.82Co0.12Mn0.045Al0.01Ti0.005O2,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:34.4:2.1;第一包覆层中Co元素的摩尔百分含量W1为48.0%,基体中Co元素的摩尔百分含量W2为12.0%。
实施例5
与实施例1相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)中包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.1wt%。
实施例6
与实施例2相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)中包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.1wt%。
实施例7
与实施例3相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)中包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.1wt%。
实施例8
与实施例4相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)中包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.1wt%。
实施例9
与实施例7相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.88:0.10:0.005:0.01:0.005;
步骤(2)中一次烧结温度为820℃;
步骤(3)中的正极材料基体为LiNi0.88Co0.1Mn0.005Al0.01Ti0.005O2。一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:8.7:2.1。
实施例10
与实施例8相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.90:0.06:0.025:0.01:0.005;
步骤(2)中一次烧结温度为810℃;
步骤(3)中的正极材料基体为LiNi0.90Co0.06Mn0.025Al0.01Ti0.005O2,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:17.2:2.1;第一包覆层中Co元素的摩尔百分含量W1为24%,基体中Co元素的摩尔百分含量W2为6%。
实施例11
与实施例5相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:17.5:2.1;第一包覆层中Co元素的摩尔百分含量W1为20%,W1=10W2,表面第一包覆层厚度为20nm。
图1示出实施例11所制备的正极材料透射电镜及EDS mapping照片,从图1中可以观察到基体表面第一包覆层。图2中可以观察到第一包覆层表面上包覆有含F元素的纳米多孔第二包覆层。
实施例12
与实施例7相比的区别仅在于正极材料的制备步骤的以下方面:步骤(3)中,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:29:0.3;第一包覆层中A元素(Al和Ti)的摩尔百分含量T1为2.0%,T1=1.3T2。
实施例13
与实施例7相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Al/Ti摩尔比为0.60:0.10:0.265:0.03:0.005;
步骤(3)中正极材料基体为LiNi0.6Co0.1Mn0.265Al0.03Ti0.005O2,一次烧结物料与包 覆添加剂纳米Co(OH)2和Al2O3的质量比为100:29.1:2.4;第一包覆层中A元素(Al和Ti)的摩尔百分含量T1为5%,基体中A元素(Al和Ti)的摩尔百分含量T2为3.5%,T1=1.4T2。
实施例14
与实施例13相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(3)中,一次烧结物料与包覆添加剂纳米Co(OH)2和Al2O3的质量比为100:29.1:6.4;第一包覆层中A元素(Al和Ti)的摩尔百分含量T1为15%,基体中A元素(Al和Ti)的摩尔百分含量T2为3.5%,T1=4.3T2。
实施例15
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,进一步包含的包覆添加剂为无孔隙纳米LiF颗粒。
实施例16
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,进一步包含的包覆添加剂为多孔纳米硼酸锂。
实施例17
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,进一步包含的包覆添加剂为多孔纳米硅酸锂。
实施例18
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,进一步包含的包覆添加剂为多孔纳米磷酸锂。
实施例19
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.15%。
实施例20
与实施例7相比的区别仅在于:正极材料的制备步骤(3)中,包覆添加剂进一步包含多孔隙纳米LiF颗粒,其中F元素添加量占混合材料总重量的质量百分比为0.2%。
实施例21
与实施例7相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Zr/Ti摩尔比为0.60:0.10:0.285:0.01:0.005;以及
步骤(3)中的正极材料基体为LiNi0.6Co0.1Mn0.285Zr0.01Ti0.005O2,包覆添加剂为纳米Co(OH)2和ZrO2。一次烧结物料与包覆添加剂纳米Co(OH)2和ZrO2的质量比为100:28.8:4.4;第一包覆层中A元素为Zr和Ti。
实施例22
与实施例7相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/Y/Ti摩尔比为0.60:0.10:0.285:0.01:0.005;以及
步骤(3)中正极材料基体为LiNi0.6Co0.1Mn0.285Y0.01Ti0.005O2,包覆添加剂为纳米Co(OH)2和Y2O3。一次烧结物料与包覆添加剂纳米Co(OH)2和Y2O3的质量比为100:28.8:4.7;第一包覆层中A元素为Y和Ti。
实施例23
制备方法与实施例8相比的区别仅在于正极材料的制备步骤的以下方面:
步骤(1)中掺杂型氢氧化物前驱体组分中Ni/Co/Mn/W/Ti摩尔比为0.60:0.10:0.285:0.01:0.005;以及
步骤(3)中正极材料基体为LiNi0.6Co0.1Mn0.285W0.01Ti0.005O2,包覆添加剂为纳米Co(OH)2和WO3。一次烧结物料与包覆添加剂纳米Co(OH)2和WO3的质量比为100:28.5:9.5;第一包覆层中A元素为W和Ti。
对比例1
与实施例3相比的区别仅在于正极材料的制备步骤中无步骤(3),材料表面无尖晶石相结构的第一区域和具有岩盐相结构的第二区域。
对比例2
与实施例3相比的区别仅在于:正极材料的制备步骤(3)中,在二次烧结完成后,通入不含CO2的干燥空气进行快速冷却,冷却速率为10℃/min,与实施例3相比冷却时间延长一倍,正极材料的第一包覆层中仅具有尖晶石相。
对比例3
与实施例3相比的区别仅在于:正极材料的制备步骤(3)中,在二次烧结完成后,通入含有CO2的干燥空气进行快速冷却,冷却速率为40℃/min,材料表面会与CO2反应产生岩盐相,第一包覆层中仅具有岩盐相。
II、测试方法
1、高温循环容量保持率测试
首先,在45℃的环境中,将锂离子电池进行第一次充电和放电,在1.5C的充电电流下进行恒流充电,直到上限电压为4.35V,然后在4C的放电电流下进行恒流放电,直到最终电压为2.8V,记录首次循环的放电容量;而后进行800次的充电和放电循环,记录第800次循环的放电容量。
循环容量保持率=(第800次循环的放电容量/首次循环的放电容量)×100%。
2、低温波谷电压测试
25℃环境下的测试步骤:1)静置30分钟;2)1.5C恒流充电至4.25V,恒压充电至0.05C;3)静置5分钟;4)0.5C恒流放电至2.8V;5)调节炉温至25℃;6)静置120分钟;7)1.5C恒流充电至4.25V,恒压充电至0.05C;8)调节炉温至-10℃;9)静置120分钟;10)6C恒流放电至至2.8V;11)静置5分钟;
以25℃0.5C的放电容量为基准;不同温度倍率放电测试时使用保温棉包住。
测试-10℃6C放电过程中由于电化学极化和浓差极化影响,放电初期电压迅速降低,然后由于温升增加放电电压会重新反弹,放电初期放电电压降低到最低点的电压数值即为低温波谷电压。
3、放电温升测试
25℃环境下的测试步骤:1)静置120分钟;2)0.5C恒流放电至2.8V;3)静置120分钟;4)1.5C恒流充电至4.25V,恒压充电至0.05C;5)静置120分钟;6)4C恒流放电至2.8V;7)静置30分钟。
4C放电测试时使用保温棉包住,采用多路测温仪测试锂离子电池对角线交点处温升,测试5s取点,至测试结束。
4、其他测量方法
厚度测量
正极材料采用聚焦离子束(FIB)制样后,采用EDS mapping测量基体表面元素富集情况,通过Digital Micrograph测量第一包覆层的厚度。
元素摩尔百分含量测量
采用EDS测试第一包覆层和基体中A元素以及Co元素的摩尔百分含量。
形貌及元素种类测量
采用STEM、EDS确认材料表面第二包覆层是否有孔隙以及含有的非金属元素种类。
尖晶石相和岩盐相测试
将正极材料采用聚焦离子束(FIB)制样后,采用STEM测试材料基体和第一包覆层中的相组成。
III、测试结果
表1列出了根据本申请的实施例以及对比例制备的正极材料的参数特征。

表2
IV、本申请实现的技术效果
正极材料基体表面是否具有第一包覆层对性能的影响
与对比例1-3相比,本申请实施例3的区别仅在于基体表面上设置同时具有尖晶石相和岩盐相的第一包覆层。从表2的测试结果可以看出,与对比例1相比,由于实施例3中的正极材料具有富Co的第一包覆层,因而,具有显著提升的动力学性能,其低温放电波谷电压较高,大倍率放电时的温升较小。与对比例2-3相比,当第一包覆层中同时存在尖晶石相和岩盐相时(实施例3)能够显著改善电池的高温循环容量保持率;这是由于,仅存在岩盐相时初始界面阻抗会较大,而且循环过程中极化逐渐增大,从而导致循环性能不断恶化;而仅存在尖晶石相,界面稳定性较差,导致在循环过程中,界面阻抗快速增加,循环性能也会迅速恶化;而同时存在尖晶石相和岩盐相则会在表面形成惰性包覆层,抑制界面副反应的同时界面阻抗也不会过大,循环过程中极化相对较小和稳定,进而改善锂离子电池的高温循环性能。
正极材料基体表面是否具有包含X元素的第二包覆层对性能的影响
实施例1-4中不具有包含X元素的第二包覆层,而实施例5-8中包含F元素的第二包覆层。由表2的数据可以看出,在具有第二包覆层的情况下,锂离子电池的高温循环容量保持率得到明显提升。
正极材料中W1/W2的比值对性能的影响
实施例5和实施例11的测试结果表明,第一包覆层中Co富集可以进一步改善材料动力学性能,提高低温波谷电压和降低放电温升。
第一包覆层中A元素对性能的影响
实施例7、12、13和14的测试结果表明,正极材料第一包覆层中A元素的含量对材料动力学性能以及循环保持率有影响,第一包覆层中A元素含量增加(实施例12、13、7和14中的T1逐渐增加)会改善循环容量保持率,这主要是因为第一包覆层中A元素含量增加,表面氧稳定性会增强。
第二包覆层是否具有孔隙结构对性能的影响
实施例7与实施例15的测试结果表明,当第二包覆层具有孔隙结构对材料性能是有利的,第二包覆层层呈现孔隙结构有利于电解液浸润以及锂离子脱嵌,从而降低极化,改善材料的动力学性能和循环性能。
第二包覆层中X元素的类型和含量对性能的影响
实施例7、16-20举例说明不同X元素及含量对材料性能的影响。当采用高电负性 F作为第二包覆层的X元素时,由于F电负性高,吸电子能力强,可稳定性材料表面结构和降低界面副反应。实施例7、16-18包含不同的X元素,从测试结果可以看出,使用F元素进行包覆时对循环稳定性的改善效果最好。从实施例7、19和20可以看出,随着F元素含量的提高,循环性能得到进一步改善。
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例”,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (12)

  1. 一种正极材料,其包括:基体以及位于所述基体表面的第一包覆层;其中,基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中Co元素的摩尔百分含量为W1,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为W2,满足:W1>W2;所述第一包覆层包括具有尖晶石相结构的第一区域。
  2. 根据权利要求1所述的正极材料,其中,所述第一包覆层还包括具有岩盐相结构的第二区域。
  3. 根据权利要求1所述的正极材料,其中,满足下列条件中的至少一者:
    (i)W1≥1.5W2;
    (ii)W1≤10W2;
    (iii)W1的范围为8%~48%;
    (iv)所述第一包覆层的厚度范围为3nm至40nm;
    (v)所述第一区域的厚度范围为1nm至5nm。
  4. 根据权利要求3所述的正极材料,其中,满足下列条件中的至少一者:
    (1)W1≥4W2;
    (2)W1的范围为15%~40%;
    (3)所述第一包覆层的厚度范围为8nm至20nm。
  5. 根据权利要求2所述的正极材料,其中,满足下列条件中的至少一者:
    (1)所述第一区域位于所述基体与所述第二区域之间;
    (2)所述第二区域的厚度范围为1nm至5nm。
  6. 根据权利要求1所述的正极材料,其中,所述基体和所述第一包覆层各自独立地包含选自Al、Ti、Y、V、Nb、W、Zr、La、Mg、Cr、Ge、Mo、Sr、Ca、Ba、Fe、Cu、Zn、Ga、In、Sn、Ce、Ta、Hf或Sb中至少一种的A元素;基于所述第一包覆层中除Li以外的金属元素的摩尔量,所述第一包覆层中A元素的摩尔百分含量为T1;基于所述基体中除Li以外的金属元素的摩尔量,所述基体中A元素的摩尔百分含量为T2;满足:T1>T2。
  7. 根据权利要求6所述的正极材料,其中,满足下列条件中的至少一者:
    (a1)T1≥1.3T2;
    (a2)T1≤10T2;
    (a3)T1的范围为1.5%~15%。
  8. 根据权利要求1所述的正极材料,其中,所述正极材料还包括位于所述第一包覆层表面的第二包覆层,所述第二包覆层包括X元素,所述X元素选自F、B、P或Si中的至少一种。
  9. 根据权利要求8所述的正极材料,其中,满足下列条件中的至少一者:
    (b1)所述第二包覆层具有多孔结构;
    (b2)所述第二包覆层包括氟化锂、磷酸锂、硼酸锂或硅酸锂中的至少一种;
    (b3)基于所述第二包覆层中除Li以外的元素的摩尔量,所述第二包覆层中X元素的摩尔百分含量范围为0.1%至10%。
  10. 根据权利要求1所述的正极材料,其中,满足下列条件中的至少一者:
    (c1)所述基体包括具有层状晶体结构的锂镍复合氧化物;
    (c2)所述基体包括Ni元素,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Ni元素的摩尔百分含量为50%以上;
    (c3)所述基体包括Co元素,基于所述基体中除Li以外的金属元素的摩尔量,所述基体中Co元素的摩尔百分含量为2%以上。
  11. 一种电化学装置,其包括根据权利要求1至10中任一项所述的正极材料。
  12. 一种电子装置,其包括根据权利要求11所述的电化学装置。
PCT/CN2023/088329 2022-06-17 2023-04-14 正极材料及包含该材料的电化学装置和电子装置 WO2023241195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210683498.0A CN114784285B (zh) 2022-06-17 2022-06-17 正极材料及包含该材料的电化学装置和电子装置
CN202210683498.0 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023241195A1 true WO2023241195A1 (zh) 2023-12-21

Family

ID=82421381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088329 WO2023241195A1 (zh) 2022-06-17 2023-04-14 正极材料及包含该材料的电化学装置和电子装置

Country Status (2)

Country Link
CN (3) CN117293287A (zh)
WO (1) WO2023241195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117293287A (zh) * 2022-06-17 2023-12-26 宁德新能源科技有限公司 正极材料及包含该材料的电化学装置和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237518A (zh) * 2010-05-07 2011-11-09 深圳市比克电池有限公司 三元材料处理方法及提升锂电池容量和循环性能的方法
CN106356507A (zh) * 2015-07-13 2017-01-25 三星电子株式会社 用于锂电池的复合正极活性材料、其制备方法、用于锂电池的正极和锂电池
CN107369815A (zh) * 2017-05-26 2017-11-21 北大先行科技产业有限公司 一种锂离子二次电池复合正极材料及其制备方法
CN108550830A (zh) * 2018-05-11 2018-09-18 哈尔滨工业大学深圳研究生院 锂离子电池正极材料及其制作方法
CN109216651A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 复合正极活性材料、包括其的正极和锂电池、以及制备所述复合正极活性材料的方法
CN109428074A (zh) * 2017-08-30 2019-03-05 三星电子株式会社 复合正极活性材料、其制备方法、以及包括复合正极活性材料的正极和锂电池
CN112803022A (zh) * 2020-12-31 2021-05-14 国联汽车动力电池研究院有限责任公司 一种表面结构尖晶石-岩盐相一体化的富锂材料及其制备方法
CN114784285A (zh) * 2022-06-17 2022-07-22 宁德新能源科技有限公司 正极材料及包含该材料的电化学装置和电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049326A1 (de) * 2009-10-14 2011-04-21 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle hierzu
JP2017152119A (ja) * 2016-02-23 2017-08-31 Tdk株式会社 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
KR102142776B1 (ko) * 2018-11-14 2020-08-07 인천대학교 산학협력단 리튬 테트라메틸실릴보레이트 코팅층을 포함하는 리튬 이차전지용 양극 활물질 및 이의 제조방법
CN110010877B (zh) * 2019-04-15 2020-06-23 常熟理工学院 表面包覆型高镍三元材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237518A (zh) * 2010-05-07 2011-11-09 深圳市比克电池有限公司 三元材料处理方法及提升锂电池容量和循环性能的方法
CN106356507A (zh) * 2015-07-13 2017-01-25 三星电子株式会社 用于锂电池的复合正极活性材料、其制备方法、用于锂电池的正极和锂电池
CN107369815A (zh) * 2017-05-26 2017-11-21 北大先行科技产业有限公司 一种锂离子二次电池复合正极材料及其制备方法
CN109216651A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 复合正极活性材料、包括其的正极和锂电池、以及制备所述复合正极活性材料的方法
CN109428074A (zh) * 2017-08-30 2019-03-05 三星电子株式会社 复合正极活性材料、其制备方法、以及包括复合正极活性材料的正极和锂电池
CN108550830A (zh) * 2018-05-11 2018-09-18 哈尔滨工业大学深圳研究生院 锂离子电池正极材料及其制作方法
CN112803022A (zh) * 2020-12-31 2021-05-14 国联汽车动力电池研究院有限责任公司 一种表面结构尖晶石-岩盐相一体化的富锂材料及其制备方法
CN114784285A (zh) * 2022-06-17 2022-07-22 宁德新能源科技有限公司 正极材料及包含该材料的电化学装置和电子装置

Also Published As

Publication number Publication date
CN114784285B (zh) 2022-10-25
CN114784285A (zh) 2022-07-22
CN117293287A (zh) 2023-12-26
CN117293309A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2021022912A1 (en) Anode material and electrochemical device and electronic device including the same
WO2021088168A1 (zh) 补锂材料及包括其的正极
CN111029543B (zh) 负极材料及包含其的电化学装置和电子装置
WO2021088166A1 (zh) 正极补锂材料、包含正极补锂材料的正极及其制备方法
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
WO2021108945A1 (zh) 一种用于二次电池的正极极片、二次电池、电池模块、电池包和装置
WO2021147165A1 (zh) 正极材料和包含所述正极材料的电化学装置及电子装置
WO2022198660A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
US20200227741A1 (en) Cathode material and electrochemical device including cathode material
WO2023082757A1 (zh) 一种锂过渡金属复合氧化物、电化学装置和电子装置
WO2023241195A1 (zh) 正极材料及包含该材料的电化学装置和电子装置
EP4131540A1 (en) Electrochemical device, and electronic device comprising same
WO2021088167A1 (zh) 正极及包含其的电化学装置和电子装置
JP2008159543A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
WO2021195961A1 (zh) 正极材料、包括其的电化学装置和电子装置及制备该正极材料的方法
WO2021102847A1 (zh) 负极材料及包含其的电化学装置和电子装置
WO2023206241A1 (zh) 正极材料及包括正极材料的电化学装置和电子装置
WO2024000477A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
JP7471738B2 (ja) 負極活物質、これを含む負極および二次電池
WO2024036437A1 (zh) 金属氢氧化物、正极材料、电化学装置及用电设备
CN112599742B (zh) 电化学装置和电子装置
WO2024000486A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2023108397A1 (zh) 一种正极活性材料、电化学装置和电子装置
WO2023236226A1 (zh) 正极材料、电化学装置和电子装置
WO2023097458A1 (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822766

Country of ref document: EP

Kind code of ref document: A1