WO2024000486A1 - 一种电化学装置及包含该电化学装置的电子装置 - Google Patents

一种电化学装置及包含该电化学装置的电子装置 Download PDF

Info

Publication number
WO2024000486A1
WO2024000486A1 PCT/CN2022/103048 CN2022103048W WO2024000486A1 WO 2024000486 A1 WO2024000486 A1 WO 2024000486A1 CN 2022103048 W CN2022103048 W CN 2022103048W WO 2024000486 A1 WO2024000486 A1 WO 2024000486A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
lithium
manganese
electrochemical device
positive electrode
Prior art date
Application number
PCT/CN2022/103048
Other languages
English (en)
French (fr)
Inventor
周娟
袁国霞
郎野
徐磊敏
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202280055335.6A priority Critical patent/CN117941094A/zh
Priority to PCT/CN2022/103048 priority patent/WO2024000486A1/zh
Publication of WO2024000486A1 publication Critical patent/WO2024000486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, and specifically to an electrochemical device and an electronic device including the electrochemical device.
  • electrochemical devices such as lithium-ion batteries
  • advantages such as light weight and high energy density.
  • cathode active materials such as lithium manganate are required to have higher charge and discharge capacity, and electrochemical devices are also required to have better cycle performance and storage performance.
  • the present application relates to an electrochemical device, which includes a positive electrode piece, a negative electrode piece and an electrolyte, the negative electrode piece includes a negative active layer, the positive electrode piece includes a positive active layer, so The positive active layer includes a positive active material, and the positive active layer includes aluminum element, wherein the content A (mmol) of the aluminum element in the positive active layer is equal to the total area B (m 2 ) of the negative active layer. Satisfies: 3 ⁇ A/B ⁇ 25, and the positive active material includes lithium manganate and manganese-containing compounds.
  • Aluminum element can stabilize the crystal structure, improve the unit cell stability when lithium ions are inserted or extracted, make the cathode active material structure more stable, and improve the cycle performance of electrochemical devices.
  • Manganese-containing compounds have a lower voltage platform and can supplement manganese acid.
  • the CEI film consumes lithium ions, which provides a diffusion channel for lithium ions to facilitate the insertion and rapid deintercalation of lithium ions.
  • it is conducive to the slow back-intercalation of lithium ions and improves the cathode activity.
  • the charge and discharge capacity of the material when the aluminum element content A (mmol) of the positive electrode active layer and the total area B (m 2 ) of the negative electrode active layer satisfy the above relationship, the structure of lithium manganate and manganese-containing compounds can be made more stable. It is stable and exerts the synergistic effect of lithium manganate and manganese-containing compounds to significantly improve the cycle performance and high-temperature storage performance of electrochemical devices.
  • the content A (mmol) of the aluminum element in the positive active layer and the total area B (m 2 ) of the negative active layer satisfy: 8 ⁇ A/B ⁇ 23.
  • the mass percentage of the manganese-containing compound is 3% to 20% based on the mass of the cathode active material.
  • A ranges from 0.005 to 0.04.
  • A ranges from 0.01 to 0.035.
  • the average particle size of the lithium manganate is C ⁇ m, and the average particle size of the manganese-containing compound is D ⁇ m, satisfying: 1 ⁇ D/C ⁇ 15.
  • the manganese-containing compound satisfies at least one of the following conditions: (1) the Dv50 of the manganese-containing compound is 5 ⁇ m to 40 ⁇ m; (2) the surface of the manganese-containing compound has a width of 1 nm to 1000 nm. steps.
  • the positive active material has a tap density of 1.5 to 2.5 g/cm 3 .
  • the positive active layer further contains at least one of the elements Nb, Mg, Ti, Ce, W, Ga, Zr, W, Y, V, Na, Sr, Mo, Cr, Sn or La .
  • the element Nb, Mg, Ti, Ce, W, Ga, Zr, W, Y, V, Na, Sr, Mo, Cr, Sn or La The mass percentage M is 0.01% to 3.5%.
  • the negative active layer includes a negative active material
  • the negative active material includes graphite, wherein d(002) of the graphite is
  • the OI value of the graphite is 4 ⁇ 1; (2) the porosity of the negative active layer is 25 ⁇ 5%; (3) the negative electrode The compacted density of the tablets is 1.3 to 1.8 g/cm 3 .
  • the compacted density of the positive electrode piece is 2.2g/cm 3 to 2.8g/cm 3 .
  • the present application relates to an electronic device comprising an electrochemical device according to any of the preceding embodiments.
  • the positive active layer includes aluminum element.
  • the content A (mmol) of the aluminum element in the positive active layer and the total area B (m 2 ) of the negative active layer satisfy: 3 ⁇ A/B ⁇ 25, and the positive active material Including lithium manganate and manganese-containing compounds.
  • the aluminum element can make the structure of the cathode active material more stable, and the manganese-containing compound can supplement the lithium ions consumed by the CEI film formed by lithium manganate during the first charge. It can also provide diffusion channels for lithium ions and improve the charge and discharge capacity of the cathode active material.
  • the structure of lithium manganate and manganese-containing compounds can be made more stable, and manganese can be exerted
  • the synergistic effect of lithium acid oxide and manganese-containing compounds significantly improves the cycle performance and high-temperature storage performance of electrochemical devices. Therefore, the electrochemical device described in the present application and the electronic device containing the same can have significantly improved cycle performance and high-temperature storage performance at the same time. Significantly improve the cycle performance and high-temperature storage performance of electrochemical devices.
  • 1(a) and 1(b) are SEM images of the cathode active material of Example 1-1.
  • a list of items connected by the term “one of,” “one of,” “one of,” or other similar terms may mean any of the listed items.
  • the phrase “one of A and B” means only A or only B.
  • the phrase “one of A, B, and C” means only A; only B; or only C.
  • Item A may contain a single component or multiple components.
  • Item B may contain a single component or multiple components.
  • Item C may contain a single component or multiple components.
  • a list of items connected by the term "at least one of,” “at least one of,” “at least one of,” or other similar terms may mean that the listed items any combination of.
  • the phrase “at least one of A and B” means only A; only B; or A and B.
  • the phrase “at least one of A, B, and C” means only A; or only B; only C; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B and C.
  • Item A may contain a single component or multiple components.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single component or multiple components.
  • the present application relates to an electrochemical device, which includes a positive electrode piece, a negative electrode piece and an electrolyte, the negative electrode piece includes a negative active layer, the positive electrode piece includes a positive active layer, so The positive active layer includes a positive active material, and the positive active layer includes aluminum element, wherein the content A (mmol) of the aluminum element in the positive active layer is equal to the total area B (m 2 ) of the negative active layer. Satisfies: 3 ⁇ A/B ⁇ 25, and the positive active material includes lithium manganate and manganese-containing compounds.
  • Manganese-containing compounds can replenish lithium manganate and replenish the lithium ions consumed by the cathode active material to form the cathode-electrolyte interface (CEI) during the first charge, which is beneficial to improving the cycle performance and high-temperature storage performance of the electrochemical device, and can provide lithium ions.
  • the diffusion channel facilitates the insertion and rapid de-intercalation of lithium ions; and has a lower voltage platform (such as a 3.9V platform), which is conducive to the slow back-intercalation of lithium ions during the cycle and storage process of the electrochemical device, thereby improving
  • the charge and discharge capacity of the cathode active material significantly improves the cycle performance and high-temperature storage performance of the electrochemical device.
  • the aluminum element can improve the stability of the unit cell when lithium ions are inserted or extracted, making the crystal structure more stable, improving the structural stability of the cathode active material, and improving the cycle performance of the electrochemical device.
  • the aluminum element content is too high, , will reduce the amount of lithium deintercalation and reduce the reversible capacity. Therefore, the content of aluminum element A (mmol) in the positive electrode active layer and the total area B (m 2 ) of the negative electrode active layer are limited to satisfy 3 ⁇ A/B ⁇ 25;
  • the manganese compound can supplement the lithium ions consumed by the CEI film formed by lithium manganate during the first charge.
  • the cathode active material can provide a diffusion channel for lithium ions and improve the charge and discharge capacity of the cathode active material.
  • the content of aluminum element in the cathode active layer is A (mmol)
  • the structures of lithium manganate and manganese-containing compounds can be made more stable, and the synergistic effect of lithium manganate and manganese-containing compounds can be exerted to significantly improve electrochemistry. Cycling performance and high temperature storage performance of the device.
  • the content A (mmol) of the aluminum element in the positive active layer and the total area B (m 2 ) of the negative active layer satisfy: 8 ⁇ A/B ⁇ 23, at this time, Aluminum element can more effectively stabilize the structure of lithium manganate and manganese-containing compounds, further improving the cycle performance and high-temperature storage performance of electrochemical devices.
  • A ranges from 0.005 to 0.04.
  • Aluminum element can improve the stability of the unit cell when lithium ions are inserted or extracted, make the crystal structure more stable, improve the structural stability of the cathode active material, and improve the cycle performance of the electrochemical device.
  • the aluminum element content is too low, the improvement The effect is limited.
  • the aluminum content is too high, it will reduce the amount of lithium deintercalation and reduce the reversible capacity. Therefore, limiting the aluminum content in the positive active layer to 0.005mmol to 0.04mmol can further improve the cycle performance of the electrochemical device.
  • the range of A is 0.01 to 0.035. When the aluminum element content is within this range, the cathode active material can have a more stable crystal structure, allowing the electrochemical device to have better cycle performance.
  • the mass percentage of the manganese-containing compound is 3% to 20% based on the mass of the cathode active material. In some embodiments, based on the mass of the cathode active material, the mass percentage of the manganese-containing compound is 3%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18% , 20% or the range between any two of the aforementioned values.
  • the first charge gram capacity of the electrochemical device prepared therefrom is reduced.
  • the content of the manganese-containing compound is too high, the first Coulombic efficiency of the electrochemical device prepared therefrom is reduced. This is mainly because the The manganese-containing compound has a high first charge gram capacity, which can compensate for the Li+ consumed by lithium manganate to form the CEI film during the first charge. However, only part of the Li can be back embedded in the manganese-containing compound during the first discharge.
  • the content of manganese-containing compounds is limited to the above range, the first charge capacity and first Coulombic efficiency of the electrochemical device are significantly improved.
  • the manganese-containing compound has a layered structure. In some embodiments, the manganese-containing compound includes one or more of LiMn 2 O 3 , Li 2 MnO 3 or LiNi 0.5 Mn 0.5 O 2 .
  • the average particle size of the lithium manganate is C ⁇ m, and the average particle size of the manganese-containing compound is D ⁇ m, satisfying: 1 ⁇ D/C ⁇ 15. In some embodiments, 5 ⁇ D/C ⁇ 10.
  • the manganese-containing compound satisfies at least one of the following conditions: (1) the Dv50 of the manganese-containing compound is 5 ⁇ m to 40 ⁇ m; (2) the surface of the manganese-containing compound has a width of 1 nm to 1000 nm. steps.
  • the compacted density of the positive electrode piece is 2.2g/cm 3 to 2.8g/cm 3 .
  • the positive active material has a tap density of 1.5 to 2.5 g/cm 3 .
  • the larger particles are particles containing manganese compounds, which have a layered structure and have steps layer by layer on the surface, where the width of the steps ranges from 1 nm to 1000 nm.
  • the capacity, rate performance, high-temperature storage, and cycle performance of the electrochemical device are significantly improved.
  • the manganese-containing compound with a layered structure replenishes the lithium ions consumed to form CEI when the electrochemical device is first charged, which is beneficial to improving the cycle and storage performance of the electrochemical device.
  • it can provide diffusion channels for lithium ions and facilitate lithium ions.
  • the insertion and rapid de-intercalation of ions, and its low voltage platform (3.9V platform) is conducive to the slow re-intercalation of lithium ions during cycling and storage, thereby increasing the charge and discharge capacity of the cathode active material.
  • the manganese compound particles and lithium manganate particles match each other to increase the compaction density, better contact between particles, increase active ion diffusion channels, improve the cycle performance of the electrochemical device, and improve the infiltration of the electrolyte.
  • the smaller the particle size of the manganese-containing compound the more active surfaces are exposed at the same dosage, and the effect of improving the first cycle charging capacity is more significant.
  • the positive active layer further contains at least one of the elements Nb, Mg, Ti, Ce, W, Ga, Zr, W, Y, V, Na, Sr, Mo, Cr, Sn or La .
  • the element Nb, Mg, Ti, Ce, W, Ga, Zr, W, Y, V, Na, Sr, Mo, Cr, Sn or La based on the quality of the cathode active layer, the element Nb, Mg, Ti, Ce, W, Ga, Zr, W, Y, V, Na, Sr, Mo, Cr, Sn or La
  • the mass percentage M is 0.01% to 3.5%.
  • the mass percentage M is 0.01%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6 %, 1.8%, 2.0%, 2.2%, 2.4%, 2.6%, 2.8%, 3.0%, 3.2%, 3.4%, 3.5% or the range between any two of the aforementioned values.
  • the mass percentage M is within the above range, the above elements can stabilize the structure of the cathode active material, facilitate the diffusion of lithium ions, reduce material phase changes, inhibit the dissolution of transition metals, and improve the cycle performance and high-temperature storage performance of the electrochemical device.
  • High contents of the above elements will cause the internal lattice of the cathode active material to expand, destroy the structural stability of the material, and affect the cycle performance of the electrochemical device.
  • the negative active layer includes a negative active material
  • the negative active material includes graphite, wherein d(002) of the graphite is Graphite that meets this condition has a better graphitization degree.
  • the better the graphitization degree the higher the crystallinity of the graphite, the denser the internal structure, and the higher the first Coulomb efficiency of the graphite.
  • the graphite has an OI value of 4 ⁇ 1.
  • OI value the better the isotropy of graphite, which is more conducive to improving Li+ solid phase diffusion, thereby reducing the charge transfer resistance of the electrochemical device, improving graphite kinetics, and thereby improving the cycle performance of the electrochemical device.
  • the OI value of the graphite is 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5 or the aforementioned The range between any two values.
  • the graphite described in this application has higher surface crystallinity and fewer surface defects, which is conducive to the diffusion of lithium ions. At the same time, the graphite has a single particle structure and has better dynamics. Under the combined effect of the two, the negative electrode plate The charge transfer resistance (Rct) is significantly reduced.
  • the negative active layer has a porosity of 25 ⁇ 5%.
  • the porosity of the negative active layer exceeds the above range, more electrolyte will be consumed during the SEI film formation process, thereby reducing the first Coulombic efficiency of the electrochemical device.
  • the cycle of the electrochemical device will be affected. performance.
  • the negative electrode sheet has a compacted density of 1.3g/cm 3 to 1.8g/cm 3 .
  • the particles have a suitable effective active area and there is no damage to the surface of the particles, which is beneficial to improving the first Coulombic efficiency of graphite and increasing the discharge capacity of the battery.
  • appropriate compaction density is conducive to better infiltration of the electrolyte and improves kinetics, thereby improving the cycle performance of the electrochemical device.
  • the present application relates to an electronic device comprising an electrochemical device according to any of the preceding embodiments.
  • the preparation method of the electrochemical device of the present application is described in detail below by taking a lithium-ion battery as an example.
  • Preparation of the negative electrode Disperse the negative active material, conductive agent, binder and thickener in the solvent system according to a certain mass ratio, stir thoroughly and mix evenly, then apply it on the negative electrode current collector, dry and cold press. Obtain the negative electrode piece.
  • the negative active material may be natural graphite, artificial graphite, mesophase microcarbon beads (MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, SiO, Li-Sn alloy, Li-Sn-O alloy , Sn, SnO, SnO 2 , spinel structure lithium titanate Li 4 Ti 5 O 12 , one or more of Li-Al alloy and metallic lithium;
  • the conductive agent can be graphite, superconducting carbon, acetylene black , one or more of carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers;
  • the binder can be styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), One or more of polytetrafluoroethylene (PTFE), polyvinyl butyral (PVB), water-based acrylic resin (water-based acrylic resin) and carboxymethyl cellulose (CMC);
  • the thickener can be carboxylic acid Meth
  • the negative electrode current collector can be made of metal foil or porous metal plate, for example, foil or porous plate made of metal such as copper, nickel, titanium or iron or their alloys, such as copper foil.
  • the positive electrode active material lithium manganate (LiMn 2 O 4 )
  • the above-mentioned manganese-containing compound, conductive agent, and binder according to a certain weight ratio, add it to the solvent, and stir evenly to obtain a slurry.
  • the slurry is evenly coated on the positive electrode current collector aluminum foil and dried at 90°C to obtain the initial positive electrode piece.
  • the initial positive electrode piece is subjected to processes such as cold pressing and cutting to obtain the positive electrode piece.
  • the conductive agent improves the conductivity of the cathode active layer by providing a conductive path to the active material.
  • the conductive agent may include at least one of the following: acetylene black, Ketjen black, natural graphite, carbon black, carbon fiber, metal powder or metal fiber (such as copper, nickel, aluminum or silver), but the conductive agent Examples are not limited to this.
  • the amount of conductive agent can be appropriately adjusted. Based on 100 parts by weight of the total amount of the cathode active material, the conductive agent and the cathode binder, the amount of the conductive agent ranges from 1 to 30 parts by weight.
  • examples of the solvent include, but are not limited to, N-methylpyrrolidone, acetone, or water. In some embodiments, the amount of solvent can be adjusted appropriately.
  • the binder improves the binding properties of the positive active material particles to each other and to the current collector.
  • the positive electrode binder include, but are not limited to, the binder may be polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer One or more of EVA and polyvinyl alcohol (PVA).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVB polyvinyl butyral
  • EVA polyvinyl alcohol
  • the amount of the positive electrode binder ranges from 1 to 30 parts by weight based on 100 parts by weight of the total amount of the active material, the conductive agent and the positive electrode binder.
  • the current collector has a thickness in the range of 3 ⁇ m to 20 ⁇ m, but the disclosure is not limited thereto.
  • the current collector is electrically conductive and does not cause adverse chemical changes in the manufactured battery.
  • Examples of the current collector include copper, stainless steel, aluminum, nickel, titanium, or alloys (eg, copper-nickel alloys), but the disclosure is not limited thereto.
  • fine irregularities eg, surface roughness
  • the current collector can be used in various forms, and examples thereof include films, sheets, foils, meshes, porous structures, foams, or similar materials, but the disclosure is not limited thereto.
  • the embodiments of this application have no special restrictions on the isolation film.
  • the isolation film includes: a polyolefin microporous film, and a coating (coated on the surface of the polyethylene microporous film).
  • the isolation film is selected from Composed of one or more of polyethylene (PE), ethylene-propylene copolymer, polypropylene (PP), ethylene-butylene copolymer, ethylene-hexene copolymer, and ethylene-methyl methacrylate copolymer.
  • PE polyethylene
  • PP polypropylene
  • PP polypropylene
  • PP polypropylene
  • PP polypropylene
  • PP ethylene-butylene copolymer
  • ethylene-hexene copolymer ethylene-methyl methacrylate copolymer.
  • the coating includes inorganic ceramic particles, and the inorganic ceramic particles are selected from one or more of SiO 2 ,
  • the electrolyte solution includes a non-aqueous organic solvent and a lithium salt.
  • Non-aqueous organic solvents may include carbonates, carboxylates, ether compounds, sulfone compounds, or other aprotic solvents.
  • Examples of carbonate solvents include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, dipropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, Bis(2,2,2-trifluoroethyl) carbonate, etc.
  • ether compound solvent examples include glycol dimethyl ether, diglyme, tetraglyme, dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, bis(2,2,2- Trifluoroethyl) ether, 1,3-dioxane, 1,4-dioxane, etc.
  • sulfone compound solvent examples include ethyl vinyl sulfone, methyl isopropyl sulfone, isopropyl sec-butyl sulfone, sulfolane, and the like.
  • the non-aqueous organic solvent in the electrolyte can be a single non-aqueous organic solvent or a mixture of multiple non-aqueous organic solvents.
  • a mixed solvent it can be determined according to the desired electrochemical device performance. Control the mixing ratio.
  • the lithium salt in the electrolyte includes or is selected from at least one of organic lithium salts or inorganic lithium salts, and the lithium salt includes or is selected from lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bisoxaloborate (LiB(C 2 O 4 ) 2 , LiBOB), lithium difluoroxalate borate (LiBF 2 (C 2 O 4 ), LiDFOB), lithium hexafluoroantimonate (LiSbF 6 ), Lithium hexafluoroarsenate (LiAsF 6 ), lithium perfluorobutane sulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium disulfon
  • the bare battery core obtained by winding is placed in an outer package, electrolyte is injected and packaged, and a lithium-ion battery is obtained through processes such as formation, degassing, and trimming.
  • the present application provides an electronic device comprising the electrochemical device according to the foregoing content.
  • the electronic devices include, but are not limited to: notebook computers, pen-input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, head-mounted Stereo headphones, video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles, power-assisted bicycles , bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries, etc.
  • Particle morphology Use a scanning electron microscope (JEOL company's JSM-6360LV model) to take SEM photos of the positive electrode sheet obtained by disassembling the lithium-ion battery, and observe the particle morphology of the positive active material.
  • a mixed solvent for example, 0.4g of the positive electrode active layer uses 10mL (nitric acid) Mix it with hydrochloric acid at a ratio of 1:1) a mixed solvent of aqua regia and 2mL HF), adjust the volume to 100mL, and then use an
  • Lithium-ion battery capacity test first charge and discharge capacity in grams (mAh g -1 ) at 25°C 0.2C
  • lithium-ion batteries prepared using the cathode materials shown in the examples and comparative examples were taken from each group.
  • the four lithium-ion batteries were repeatedly charged and discharged through the following steps, and the discharge capacity retention rate of the battery was calculated.
  • 25°C cycle capacity retention rate (discharge capacity of the 1500th cycle/discharge capacity of the first cycle) ⁇ 100%.
  • 45°C cycle capacity retention rate (discharge capacity of the 400th cycle/discharge capacity of the first cycle) ⁇ 100%.
  • lithium-ion batteries prepared from the cathode materials shown in the Examples and Comparative Examples were taken from each group.
  • Voltage charging then perform constant current discharge at a current of 1C, discharge to 2.8V, record the discharge capacity, and record it as the capacity before storage; charge to 3.99V with a constant current of 0.5C, charge at a constant voltage until the current is lower than 0.05C
  • after storing the battery in a 60°C oven for 14D perform constant current discharge at a discharge current of 1C to 2.8V; then perform constant current and constant voltage charging at a charging current of 0.5C until the upper limit voltage is 4.2V , then perform constant current discharge at a discharge current of 1C, discharge to 2.8V, record the discharge capacity, and record it as the post-storage capacity.
  • 60°C high temperature storage capacity retention rate capacity after storage / capacity before storage ⁇ 100%.
  • the mixture precursor in a corundum crucible, introduce nitrogen at a rate of 2 m 3 /h, raise the temperature to 940°C at a heating rate of 5°C/min and maintain a constant temperature for 10 hours, then naturally cool to room temperature to obtain a manganese-containing compound.
  • the surface of the manganese-containing compound particles has steps with a width of 600nm to 700nm, and its Dv50 is 19.3 ⁇ m.
  • the manganese-containing compound, lithium manganate, conductive carbon black (Super P), carbon nanotubes (CNT), and polyvinylidene fluoride (PVDF) prepared in step (1) are prepared in a weight ratio of 90:5:1.8:1.2: 2.
  • NMP N-methylpyrrolidone
  • the slurry is evenly coated on both sides of the positive electrode current collector aluminum foil, and dried at 90°C to obtain the initial positive electrode piece.
  • the initial positive electrode piece is subjected to processes such as cold pressing and cutting to obtain the positive electrode piece.
  • Negative electrode Mix graphite negative active material, conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) in a weight ratio of 97:1.0:2.0, add N-methylpyrrolidone (NMP) as a solvent, and prepare a solid A slurry with a content of 0.8 and stir evenly. The slurry is evenly coated on the negative electrode current collector copper foil and dried at 80°C to obtain the initial negative electrode piece. The initial negative electrode piece is subjected to processes such as cold pressing and cutting to obtain the negative electrode piece.
  • NMP N-methylpyrrolidone
  • Electrolyte In an argon atmosphere glove box with a water content of ⁇ 10ppm, add ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), ethyl propionate (EP), and propyl propionate. ester (PP), mix evenly according to the mass ratio of 1:1:1:1:1, and then dissolve the fully dried lithium salt LiPF6 in the above-mentioned non-aqueous solvent to obtain a basic electrolyte, in which the mass percentage of LiPF6 is 12.5wt% .
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • EP ethyl propionate
  • ester ester
  • Isolation film PE porous polymer film is used as the isolation film.
  • Example 1-6 The difference between Examples 1-2 to 1-5 and Example 1-1 only lies in the content of the manganese-containing compound (wherein, the adjustment of the content of the manganese-containing compound is based on the total weight fraction of the manganese-containing compound and lithium manganate being 95 %); the difference between Example 1-6 and Example 1-1 lies in the difference in the content of the manganese-containing compound and the difference in the graphite used in the negative electrode, in which the graphite in Example 1-6 is non-high first-efficiency graphite.
  • Comparative Example 1-1 The difference between Comparative Example 1 and Example 1-1 is that the positive active material of Comparative Example 1 only has lithium manganate without manganese-containing compounds, and Comparative Example 1
  • the aluminum element content in the positive active layer in 1 is 0.008mmol.
  • the average particle size of the manganese-containing compound is 18.9 ⁇ m
  • the average particle size of lithium manganate is 2.7 ⁇ m
  • the aluminum element content is different. As the content of manganese-containing compounds increases, the aluminum element content in the active layer per unit area increases.
  • Table 1 shows the differences in composition and performance of the lithium-ion batteries of Examples 1-1 to 1-5 and Comparative Examples 1 and 2.
  • A is the value of the aluminum element content in the positive active layer, and its unit is mmol.
  • B is the value of the total area of the negative active layer, and its unit is m 2 .
  • the lithium ion batteries of Examples 1-1 to 1-6 in which the positive electrode active material contains lithium manganate and a manganese-containing compound have better performance at 25°C. , the first discharge gram capacity at 0.2C and the capacity retention rate when cycled 1500 times at 25°C have been significantly improved, and it still has a high first cycle Coulombic efficiency.
  • Manganese-containing compounds can supplement the lithium ions consumed by lithium manganate to form the cathode-electrolyte interface (CEI) when charging for the first time, which is beneficial to improving the cycle performance and high-temperature storage performance of lithium-ion batteries.
  • CEI cathode-electrolyte interface
  • the insertion and rapid de-intercalation of ions; and its lower voltage platform (3.9V platform) is conducive to the slow re-intercalation of lithium ions during the cycle and storage process of lithium-ion batteries, thereby improving the performance of the cathode active material.
  • the charge and discharge capacity significantly improves the cycle performance and high-temperature storage performance of lithium-ion batteries; however, when the manganese-containing compound is first discharged, only part of the Li can be reintercalated, affecting the Coulombic efficiency of the lithium-ion battery.
  • the aluminum element can stabilize the crystal structure and improve The stability of the unit cell when lithium ions are inserted or extracted makes the structure of the positive active material more stable and improves the cycle performance of the electrochemical device.
  • the content A (mmol) of the aluminum element in the positive active layer is equal to the total area B of the negative active layer
  • (m 2 ) satisfies 3 ⁇ A/B ⁇ 25, lithium-ion batteries can obtain better cycle performance and high-temperature storage performance.
  • Example 2-1 to 2-8 The only difference between Examples 2-1 to 2-8 and Example 1-1 lies in the graphite used in the negative electrodes of Examples 2-1 to 2-8.
  • Table 2 shows the differences in composition and performance of the lithium ion batteries of Example 1-1 and Examples 2-1 to 2-8.
  • Table 3 below shows the differences in composition and performance of the lithium-ion batteries of Example 1-1 and Examples 3-1 to 3-4.
  • Example 4-1 to 4-3 and Example 1-1 lies in the ratio (D/C) of the average particle size C ( ⁇ m) of lithium manganate to the average particle size D ( ⁇ m) of the manganese-containing compound.
  • D/C the ratio of the average particle size C ( ⁇ m) of lithium manganate to the average particle size D ( ⁇ m) of the manganese-containing compound.
  • Table 4 shows the differences in composition and performance of the lithium ion batteries of Example 1-1 and Examples 4-1 to 4-3.
  • the average particle size C ⁇ m of lithium manganate and the average particle size D ⁇ m of the manganese-containing compound satisfy: 1 ⁇ D/C ⁇ 15.
  • the manganese-containing compound particles and lithium manganate particles match each other, and the contact between particles is better, which can shorten the diffusion channel of lithium ions, facilitate the insertion and deintercalation of lithium ions, increase the capacity of the material, and also improve the compaction of the positive electrode sheet. density, improving the cycle performance and high-temperature storage performance of lithium-ion batteries. By limiting D/C within the above range, ideal device performance can be obtained.
  • Example 5-1 and Example 5-5 and Example 1-1 lies in the compaction density of the negative electrode piece.
  • Table 5 below shows the differences in composition and performance of the lithium ion batteries of Example 1-1 and Examples 5-1 to 5-5.
  • the negative electrode active particles have a suitable effective active area and there is no damage to the particle surface, making the lithium-ion battery more efficient.
  • the first Coulombic efficiency improves the discharge capacity of lithium-ion batteries.
  • appropriate compaction density is conducive to better infiltration of the electrolyte, improves the internal dynamics of the battery, and improves the cycle performance of lithium-ion batteries.
  • references throughout this specification to “some embodiments,” “partial embodiments,” “one embodiment,” “another example,” “example,” “specific example,” or “partial example” mean the following: At least one embodiment or example in this application includes a specific feature, structure, material or characteristic described in the embodiment or example. Accordingly, phrases such as “in some embodiments,” “in an embodiment,” “in one embodiment,” “in another example,” “in one example,” etc. may appear in various places throughout this specification. "in”, “in a particular example” or “for example” do not necessarily refer to the same embodiment or example in this application. Furthermore, the specific features, structures, materials, or characteristics herein may be combined in any suitable manner in one or more embodiments or examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种电化学装置,其包括正极极片、负极极片和电解液,所述负极极片包括负极活性层,所述正极极片包括正极活性层,所述正极活性层包括正极活性材料,所述正极活性层包括铝元素,其中所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:3≤A/B≤25,所述正极活性材料包括锰酸锂和含锰化合物。

Description

一种电化学装置及包含该电化学装置的电子装置 技术领域
本申请涉及储能领域,具体涉及一种电化学装置及包含该电化学装置的电子装置。
背景技术
电化学装置如锂离子电池由于其重量轻,能量密度高等优势,市场占有率逐年递增。随着新能源汽车和储能领域的快速发展,要求正极活性材料如锰酸锂等具有更高的充放电容量,同时也要求电化学装置具有更优的循环性能和存储性能。
发明内容
根据本申请的一方面,本申请涉及一种电化学装置,其包括正极极片、负极极片和电解液,所述负极极片包括负极活性层,所述正极极片包括正极活性层,所述正极活性层包括正极活性材料,所述正极活性层包括铝元素,其中所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:3≤A/B≤25,所述正极活性材料包括锰酸锂和含锰化合物。铝元素可以稳定晶体结构,改善锂离子嵌入或脱出时的晶胞稳定性,使正极活性材料结构更加稳定,改善电化学装置的循环性能,含锰化合物具有较低的电压平台,可补充锰酸锂在首次充电时形成CEI膜消耗的锂离子,为锂离子提供扩散通道,便于锂离子的嵌入和快速脱嵌,且在循环和存储过程中,有利于锂离子的缓慢回嵌,提高正极活性材料的充放电容量,当正极活性层的铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足上述关系式时,可以使锰酸锂和含锰化合物结构更加稳定,且发挥锰酸锂和含锰化合物的协同作用,显著改善电化学装置的循环性能和高温存储性能。
在一些实施例中,所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:8≤A/B≤23。
在一些实施例中,基于所述正极活性材料的质量,所述含锰化合物的质量百分比为3%至20%。
在一些实施例中,所述A的范围为0.005至0.04。
在一些实施例中,所述A的范围为0.01至0.035。
在一些实施例中,所述锰酸锂的平均粒径为Cμm,所述含锰化合物的平均粒径为Dμm,满足:1≤D/C≤15。
在一些实施例中,所述含锰化合物满足以下条件至少一者:(1)所述含锰化合物的Dv50为5μm至40μm;(2)所述含锰化合物的表面具有宽度为1nm至1000nm的台阶。
在一些实施例中,所述正极活性材料的振实密度为1.5g/cm 3至2.5g/cm 3
在一些实施例中,所述正极活性层还含有元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La中的至少一种。
在一些实施例中,基于所述正极活性层的质量,所述元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La的质量百分比M为0.01%至3.5%。
在一些实施例中,其中所述负极活性层包括负极活性材料,所述负极活性材料包括石墨,其中所述石墨的d(002)为
Figure PCTCN2022103048-appb-000001
在一些实施例中,其满足以下条件至少一者:(1)所述石墨的OI值为4±1;(2)负极活性层的孔隙率为25±5%;(3)所述负极极片的压实密度为1.3g/cm 3至1.8g/cm 3
在一些实施例中,所述正极极片的压实密度为2.2g/cm 3至2.8g/cm 3
根据本申请的另一方面,本申请涉及包含根据前述任一实施例所述的电化学装置的电子装置。
本申请中,正极活性层包括铝元素,正极活性层中的铝元素的含量A(mmol)与负极活性层的总面积B(m 2)满足:3≤A/B≤25,且正极活性材料包括锰酸锂和含锰化合物。其中,铝元素可以使正极活性材料结构更加稳定,含锰化合物可 补充锰酸锂在首次充电时形成CEI膜消耗的锂离子,同时可为锂离子提供扩散通道,提高正极活性材料的充放电容量,当正极活性层的铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足上述关系式时,可以使锰酸锂和含锰化合物结构更加稳定,且发挥锰酸锂和含锰化合物的协同作用,显著改善电化学装置的循环性能和高温存储性能。故本申请所述电化学装置以及包含其的电子装置能够同时具有明显提升的循环性能和高温存储性能。显著改善电化学装置的循环性能和高温存储性能。
附图说明
图1(a)和图1(b)是实施例1-1的正极活性材料的SEM图。
具体实施方式
下文中,对本申请进行详细说明。应当理解,在说明书和所附权利要求中使用的术语不应被解释为限于一般和词典的含义,而是在发明人被允许适当定义术语以进行最佳解释的原则的基础上基于与本申请的技术方面相对应的含义和概念来解释。因此,说明书中所述的实施方案中所示的描述仅仅是用于说明的目的的具体实例,而不旨在显示本申请的所有技术方面,并且应当理解,在提交本申请时可以对其完成多种可选等价体和变体。
在具体实施方式及权利要求书中,由术语“中的一者”、“中的一个”、“中的一种”或其他相似术语所连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项 目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
一、电化学装置
根据本申请的一方面,本申请涉及一种电化学装置,其包括正极极片、负极极片和电解液,所述负极极片包括负极活性层,所述正极极片包括正极活性层,所述正极活性层包括正极活性材料,所述正极活性层包括铝元素,其中所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:3≤A/B≤25,所述正极活性材料包括锰酸锂和含锰化合物。含锰化合物可补充锰酸锂可以补充正极活性材料在首次充电时形成正极-电解质界面(CEI)所消耗的锂离子,有利于改善电化学装置的循环性能和高温存储性能,可为锂离子提供扩散通道,便于锂离子的嵌入和快速脱嵌;且具有较低的电压平台(如3.9V的平台),在电化学装置的循环和存储过程中,有利于锂离子的缓慢回嵌,从而提升正极活性材料的充放电容量,显著改善电化学装置的循环性能和高温存储性能。同时,铝元素可改善锂离子嵌入或脱出时的晶胞稳定性更高,使晶体结构更加稳定,提高正极活性材料的结构稳定性,改善电化学装置的循环性能,但铝元素含量过高时,会减少脱嵌锂的量,降低可逆容量,故限定正极活性层中的铝元素的含量A(mmol)与负极活性层的总面积B(m 2)满足3≤A/B≤25;含锰化合物可补充锰酸锂在首次充电时形成CEI膜消耗的锂离子,同时可为锂离子提供扩散通道,提高正极活性材料的充放电容量,当正极活性层的铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足上述关系式时,可以使锰酸锂和含锰化合物结构更加稳定,且发挥锰酸锂和含锰化合物的协同作用,显著改善电化学装置的循环性能和高温存储性能。在一些实施例中,所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:8≤A/B≤23,此时,铝元素可以更有效稳定锰酸锂和含锰化合物的结构,进一步改善电化学装置的循环性能和高温存储性能。
在一些实施例中,所述A的范围为0.005至0.04。铝元素可改善锂离子嵌入或脱出时的晶胞稳定性更高,使晶体结构更加稳定,提高正极活性材料的结构稳定性,改善电化学装置的循环性能,但铝元素含量过低时,改善效果有限,铝元素含量过高时,会减少脱嵌锂的量,降低可逆容量,故限定正极活性层中铝元素含量的范围为0.005mmol至0.04mmol,可进一步提升电化学装置的循环性能。在一些实施例中,所述A的范围为0.01至0.035,铝元素含量在此范围内时,正极活性材料可具有更稳定的晶体结构,使电化学装置具有更优的循环性能。
在一些实施例中,基于所述正极活性材料的质量,所述含锰化合物的质量百分比为3%至20%。在一些实施例中,基于所述正极活性材料的质量,所述含锰化合物的质量百分比为3%、4%、6%、8%、10%、12%、14%、16%、18%、20%或前述任意两数值之间的范围。
当含锰化合物的含量过少时,由其制备的电化学装置的首次充电克容量降低,当含锰化合物含量过高时,由其制备的电化学装置的首次库伦效率降低,这主要是因为所述含锰化合物具有较高的首次充电克容量,可补偿锰酸锂在首次充电时用于形成CEI膜消耗的Li+,但含锰化合物在首次放电时,仅有部分Li可以回嵌。通过研究,将含锰化合物的含量限定在上述范围内,电化学装置的首次充电克容量和首次库伦效率均明显提升。
在一些实施例中,所述含锰化合物是层状结构。在一些实施例中,所述含锰化合物包括LiMn 2O 3、Li 2MnO 3或LiNi 0.5Mn 0.5O 2中的一或多种。
在一些实施例中,所述锰酸锂的平均粒径为Cμm,所述含锰化合物的平均粒径为Dμm,满足:1≤D/C≤15。在一些实施例中,5≤D/C≤10。
在一些实施例中,所述含锰化合物满足以下条件至少一者:(1)所述含锰化合物的Dv50为5μm至40μm;(2)所述含锰化合物的表面具有宽度为1nm至1000nm的台阶。在一些实施例中,所述正极极片的压实密度为2.2g/cm 3至2.8g/cm 3。在一些实施例中,所述正极活性材料的振实密度为1.5g/cm 3至2.5g/cm 3
参见附图1(a)和1(b),较大的颗粒是含锰化合物的颗粒,其是层状结构,表面具有一层一层的台阶,其中台阶的宽度为1nm至1000nm。通过将层状结构的含锰化合物加入到正极活性材料中,电化学装置的容量、倍率性能、高温存储 以及循环性能都得到显著提升。这主要是因为层状结构的含锰化合物在电化学装置首次充电时补充形成CEI所消耗的锂离子,有利于改善电化学装置的循环和存储性能,同时可为锂离子提供扩散通道,便于锂离子的嵌入和快速脱嵌,且其具有较低的电压平台(3.9V的平台),在循环和存储过程中,有利于锂离子的缓慢回嵌,从而提升正极活性材料的充放电容量。
另一方面,含锰化合物颗粒和锰酸锂颗粒之间相互匹配,提高压实密度,颗粒间接触更好,活性离子扩散通道增多,提升电化学装置的循环性能,提高电解液的浸润。锰酸锂颗粒平均粒径越小,材料比表面积越大,锰溶出越严重,从而破坏正极结构,恶化电化学装置的循环性能。含锰化合物粒径越小,相同用量时暴露的活性表面越多,改善首圈充电容量的效果越显著,且含锰化合物粒径越小,锂离子扩散通道越短,越有利于锂离子的嵌入和脱嵌,有利于改善材料的容量和循环。通过将D/C限制在上述范围内,可以获得理想的装置性能。
在一些实施例中,所述正极活性层还含有元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La中的至少一种。在一些实施例中,基于所述正极活性层的质量,所述元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La的质量百分比M为0.01%至3.5%。在一些实施例中,基于所述正极活性材料的质量,质量百分比M为0.01%、0.05%、0.1%、0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.2%、2.4%、2.6%、2.8%、3.0%、3.2%、3.4%、3.5%或前述任意两数值之间的范围。质量百分比M在上述范围内时,上述元素可稳定正极活性材料结构,有助于锂离子的扩散,减少材料相变,抑制过渡金属溶出,提升电化学装置的循环性能及高温存储性能,但过高含量的上述元素会使正极活性材料内部晶格膨胀,破坏材料结构稳定性,影响电化学装置的循环性能。
在一些实施例中,其中所述负极活性层包括负极活性材料,所述负极活性材料包括石墨,其中所述石墨的d(002)为
Figure PCTCN2022103048-appb-000002
满足该条件的石墨的石墨化度较好,石墨化度越好,石墨的结晶度越高,内部结构越致密,石墨的首次库伦效率越高,搭配具有较高充电容量的前述正极活性材料,使得电化学装置具有更高的放电容量。
在一些实施例中,所述石墨的OI值为4±1。OI值越小,石墨的各向同性越好,越有利于改善Li+固相扩散,从而减小电化学装置的电荷转移电阻,改善石墨动力学,从而提高电化学装置的循环性能。在一些实施例中,所述石墨的OI值为3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5或前述任意两数值之间的范围。
本申请所述的石墨具有更高的表面结晶度,表面缺陷少,有利于锂离子扩散,同时,该石墨为单颗粒结构,具有较好的动力学,两者共同作用下,负极极片的电荷转移电阻(Rct)显著减小。
在一些实施例中,所述负极活性层的孔隙率为25±5%。当负极活性层的孔隙率超出上述范围时,在SEI成膜过程中会消耗较多的电解液,从而降低电化学装置的首次库伦效率,同时由于电解液的消耗,会影响电化学装置的循环性能。
在一些实施例中,所述负极极片的压实密度为1.3g/cm 3至1.8g/cm 3。处于这个范围的压实密度,颗粒具有合适的有效活性面积,且颗粒表面无破坏,有利于改善石墨首次库伦效率,提高电池的放电容量。同时,合适的压实密度有利于电解液更好的浸润,改善动力学,从而提升电化学装置的循环性能。
根据本申请的另一方面,本申请涉及包含根据前述任一实施例所述的电化学装置的电子装置。
二、一种制备前述电化学装置的方法
如下以锂离子电池为例详细描述了本申请的电化学装置的制备方法。
负极的制备:将负极活性材料、导电剂、粘结剂和增稠剂按一定的质量比分散于溶剂体系中充分搅拌混合均匀后,涂覆于负极集流体上,经过烘干、冷压,得到负极极片。
作为示例,负极活性物质可以是天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、硅-碳复合物、SiO、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的钛酸锂Li 4Ti 5O 12、Li-Al合金及金属锂中的一种或多种;导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种;粘结剂可以是丁苯橡胶 (SBR)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、水性丙烯酸树脂(water-basedacrylic resin)及羧甲基纤维素(CMC)中的一种或多种;增稠剂可以是羧甲基纤维素(CMC)。
负极集流体可以使用金属箔材或多孔金属板等材料,例如使用铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。
正极的制备:
正极活性材料中的含锰化合物的制备:
a)将Mn 3O 4放置在刚玉坩埚中,在空气气氛下,以5℃/min的升温速率升温至500℃并保持恒温1h,得到无水Mn 3O 4
b)将无水Mn 3O 4与LiOH按照Li:Mn为1.05:1的摩尔比例进行称取,使用混合设备混合8h,同时按照Al:Mn为0.08:1的摩尔比例加入纳米Al 2O 3,得到混合物前驱体。
c)将混合物前驱体放置在刚玉坩埚中,以2m 3/h的速度通入氮气,以5℃/min的升温速率升温至940℃并保持恒温10h,自然冷却至室温,即得到所述含锰化合物。
将正极活性材料(锰酸锂(LiMn 2O 4))、上述含锰化合物、导电剂、粘结剂按照一定的重量比进行混合,加入溶剂中并搅拌均匀得到浆料。将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到初始正极极片。将初始正极极片经冷压、裁切等工序,得到正极极片。
在一些实施例中,导电剂以通过向活性物质提供导电路径来改善所述正极活性层的导电性。所述导电剂可以包括如下中的至少一种:乙炔黑、科琴黑、天然石墨、炭黑、碳纤维、金属粉末或金属纤维(例如铜、镍、铝或银),但所述导电剂的示例并不限于此。在一些实施例中,可适宜的调节导电剂的量。基于100重量份的正极活性物质、导电剂和正极粘结剂的总量,所述导电剂的量的范围为1重量份至30重量份。
在一些实施例中,所述溶剂的示例包括但不限于N-甲基吡咯烷酮、丙酮或水。在一些实施例中,可适当的调节溶剂的量。
在一些实施例中,粘结剂改善正极活性物质颗粒彼此间以及正极活性物质颗粒与集流体的粘结性能。所述正极粘结剂的示例包括但不限于粘结剂可以是聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、乙烯-醋酸乙烯酯共聚物(EVA)及聚乙烯醇(PVA)中的一种或多种。基于100重量份的活性物质、导电剂和正极粘结剂的总量,所述正极粘结剂的量的范围为1重量份至30重量份。
在一些实施例中,所述集流体具有3μm至20μm范围内的厚度,但本公开内容不限于此。所述集流体是导电的,且不在所制造的电池中引起不利的化学变化。所述集流体的实施例包括铜、不锈钢、铝、镍、钛或合金(例如铜-镍合金),但不公开内容不限于此。在一些实施例中,所述集流体的表面上可包括细小的不规则物(例如,表面粗糙度)以增强所述集流体的表面对活性物质的粘合。在一些实施例中,集流体可以多种形式使用,其实施例包括膜、片、箔、网、多孔结构体、泡沫体或无妨物,但本公开内容不限于此。
隔离膜:本申请的实施例对隔离膜无特别限制,所述的隔离膜包含:聚烯烃微多孔膜,以及涂层(涂覆于聚乙烯微多孔膜的表面上),所述的隔膜选自聚乙烯(PE)、乙烯-丙烯共聚物、聚丙烯(PP)、乙烯-丁烯共聚物、乙烯-己烯共聚、乙烯-甲基丙烯酸甲酯共聚物中的一种或多种组成的单层或多层的聚烯烃微多孔膜。所述涂层包括无机陶瓷颗粒,所述无机陶瓷颗粒选自SiO 2、Al 2O 3、CaO、TiO 2、ZnO 2、MgO、ZrO 2以及SnO 2中的一种或几种。
电解液:根据本申请的实施例,所述电解液包含非水有机溶剂和锂盐。非水有机溶剂可以包含碳酸酯、羧酸酯、醚化合物、砜化合物或其他非质子溶剂。碳酸酯溶剂的示例包含有碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸二丙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、二(2,2,2-三氟乙基)碳酸酯等。醚化合物溶剂的示例包含有乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、二丁醚、四氢呋喃、2-甲基四氢呋喃、双(2,2,2-三氟乙基)醚、1,3-二氧六环、1,4-二氧六环等。砜化合物溶剂的示例包含有乙基乙烯基砜、甲基异丙基砜、异丙基仲丁基砜、环丁砜等。
根据本申请的实施例,所述电解液中非水有机溶剂,可以使用单非水有机溶 剂,也可以使用多种非水有机溶剂混合,当使用混合溶剂时,可以根据期望的电化学装置性能进行控制混合比。
根据本申请的实施例,所述电解液中的锂盐包括或选自有机锂盐或无机锂盐中的至少一种,所述锂盐包括或选自六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、双草酸硼酸锂(LiB(C 2O 4) 2,LiBOB)、二氟草酸硼酸锂(LiBF 2(C 2O 4),LiDFOB)、六氟锑酸锂(LiSbF 6)、六氟砷酸锂(LiAsF 6)、全氟丁基磺酸锂(LiC 4F 9SO 3)、高氯酸锂(LiClO 4)、铝酸锂(LiAlO 2)、四氯铝酸锂(LiAlCl 4)、双磺酰亚胺锂(LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2),其中x和y是自然数)、氯化锂(LiCl)、氟化锂(LiF)中的至少一种。
电解液的制备:在含水量<10ppm的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、丙酸乙酯(EP)、丙酸丙酯(PP),按照1:1:1:1:1的质量比混合均匀,再将充分干燥的锂盐LiPF6溶解于上述非水溶剂,得到基础电解液,其中LiPF6的质量百分比为12.5%
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将经卷绕所得裸电芯置于外包装中,注入电解液并封装,经过化成、脱气、切边等工艺流程获得锂离子电池。
三、电子装置
本申请提供了一种电子装置,其包含根据前述内容所述的电化学装置。
根据本申请的一些实施例,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池等。
四、具体的实施例
下面以锂离子电池为例,对本申请做进一步详细的描述。然而,应理解,以下实施例仅是示例,本申请的实施例方式不限于此。
性能测试方法
颗粒形貌和粒径的测试方法
颗粒形貌:利用扫描电子显微镜(JEOL公司的JSM-6360LV型)拍摄拆解锂离子电池得到的正极极片的SEM照片,观察正极活性材料颗粒形貌。
颗粒平均粒径的测量:利用扫描电子显微镜拍摄拆解锂离子电池得到的正极极片的SEM照片,观察正极活性材料颗粒,然后,使用图像解析软件,从SEM照片中随机地选出30个颗粒,求出这些颗粒各自的面积,接着,假设颗粒是球形,通过以下公式求出各自的粒径D(直径):D=2×(S1/π)1/2;其中,S1为颗粒的面积;并将所得30个颗粒的粒径进行算数平均,从而求得所述颗粒的平均粒径。
压实密度的测试方法
拆解锂离子电池得到正极极片(双面涂布),在正极极片涂有正极活性层的区域裁取面积为1540.25mm 2的小圆片,称量其重量m 1及厚度d 1,同时在正极极片空白集流体区域也裁取面积为1540.25mm 2的小圆片,称量其重量m 0及厚度d 0,压实密度=(m 1-m 0)/2/1540.25/((d 1-d 0)/2)
元素含量测试方法
拆解锂离子电池得到正极极片,用DMC清洗上述正极极片,将清洗后的正极极片的正极活性层用刮刀刮下,用混合溶剂溶解(例如,0.4g正极活性层使用10mL(硝酸与盐酸按照1:1混合)王水与2mL HF的混合溶剂),定容至100mL,然后使用ICP(Inductively coupled plasma,电感耦合等离子)分析仪测试溶液中元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La的质量百分比。
晶面间距和OI值测试方法
对石墨粉末进行X射线衍射分析。
仪器型号:Bruker D8 ADVANCE,靶材:Cu Kα,扫描角度:5-80°。
锂离子电池的容量测试–25℃ 0.2C条件下的首次充放电克容量(mAh g -1)
将使用实施例和对比例中所示的正极材料制备的锂离子电池每组分别取4块,在25℃恒温条件下,先利用0.5C(即2h内完全放掉理论容量的电流值)的电流进行恒流充电,充电至4.2V后进行恒压充电,然后在0.2C的电流下进行恒流放电,放电至2.8V,计算0.2C首次放电容量作为电池的容量。
首圈库伦效率=首圈放电容量/首圈充电容量
锂离子电池的循环性能测试
将使用实施例和对比例中所示的正极材料制备的锂离子电池每组分别取4块,通过以下步骤分别对4块锂离子电池进行重复充电和放电,并计算电池的放电容量保持率。
首先,分别在25/45℃的环境中,进行首次充电和放电,先利用0.5C的电流进行恒流充电,充电至4.2V后进行恒压充电,然后在1C的电流下进行恒流放电,放电至2.8V,记录首次循环的放电容量;然后进行1500/400次的充电和放电循环,记录第1000/500次循环的放电容量。
25℃循环容量保持率=(第1500次循环的放电容量/首次循环的放电容量)×100%。
45℃循环容量保持率=(第400次循环的放电容量/首次循环的放电容量)×100%。
锂离子电池的高温存储测试
将使用实施例和对比例中所示的正极材料制备的锂离子电池每组分别取4块,在60℃的环境中,先利用0.5C的电流进行恒流充电,充电至4.2V后进行恒压充电,然后在1C的电流下进行恒流放电,放电至2.8V,记录放电容量,记为存储前容量;以0.5C恒定电流充电至3.99V,在恒定电压下充电至电流低于0.05C,将电池置于60℃烘箱存储14D后,在1C的放电电流下进行恒流放电,放电至2.8V;然后在0.5C的充电电流下进行恒流和恒压充电,直到上限电压为4.2V,然后在1C的放电电流下进行恒流放电,放电至2.8V,记录放电容量,记为存储后容量。
60℃高温存储容量保持率=存储后容量/存储前容量×100%。
A.实施例1-1至1-5和对比例1至2
实施例1-1的制备方法:
正极:
步骤(1)-含锰化合物的制备:
a)将MnOOH放置在刚玉坩埚中,在空气气氛下,以5℃/min的升温速率升温至500℃并保持恒温1h,得到无水Mn 3O 4
b)将无水Mn 3O 4与LiOH按照Li:Mn摩尔比为1.05:1的比例进行称取,同时按照铝元素摩尔含量为0.014mmol的比例加入纳米Al 2O 3,按照Cr:Mn元素质量比为0.213:1的比例加入纳米Cr 2O 3,使用砂磨设备混合均匀上述各物质,使用混合设备混合8h,得到混合物前驱体。
c)将混合物前驱体放置在刚玉坩埚中,以2m 3/h的速度通入氮气,以5℃/min的升温速率升温至940℃并保持恒温10h,自然冷却至室温,得到含锰化合物。其中,含锰化合物颗粒表面具有宽度为600nm至700nm的台阶,其Dv50为19.3μm。
步骤(2):
将步骤(1)制备得到的含锰化合物、锰酸锂、导电炭黑(Super P)、碳纳米管(CNT)、聚偏二氟乙烯(PVDF)按照重量比90:5:1.8:1.2:2进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀得到浆料。将浆料均匀涂覆在正极集流体铝箔的双面上,90℃条件下烘干,得到初始正极极片。将初始正极极片经冷压、裁切等工序,得到正极极片。
负极:将石墨负极活性材料、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97:1.0:2.0进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.8的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔上,80℃条件下烘干,得到初始负极极片。将初始负极极片经冷压、裁切等工序,得 到负极极片。
电解液:在含水量<10ppm的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、丙酸乙酯(EP)、丙酸丙酯(PP),按照1:1:1:1:1的质量比混合均匀,再将充分干燥的锂盐LiPF6溶解于上述非水溶剂,得到基础电解液,其中LiPF6的质量百分比为12.5wt%。
隔离膜:以PE多孔聚合薄膜作为隔离膜。
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕、置于外包装中,注入配好的电解液并封装,经过化成,脱气,切边等工艺得到锂离子电池。
实施例1-2至1-5与实施例1-1的区别仅在于含锰化合物的含量的不同(其中,含锰化合物含量的调节是以含锰化合物和锰酸锂的总重量分数为95%为基准进行的);实施例1-6与实施例1-1的区别在于含锰化合物的含量的不同,以及负极所用石墨的不同,其中实施例1-6的石墨为非高首效石墨(其d(0002)=3.3710、OI值=12.3分别为);对比例1与实施例1-1的不同在于对比例1的正极活性材料只有锰酸锂而不具有含锰化合物,且对比例1中正极活性层中铝元素含量为0.008mmol。其中,表1中,含锰化合物的平均粒径为18.9μm,锰酸锂的平均粒径为2.7μm,实施例1-1至1-6与对比例1和2中的正极活性层中的铝元素含量不同,随着含锰化合物含量的增加,单位面积的活性层中的铝元素含量增加。具体请参见如下表1,其给出了实施例1-1至1-5与对比例1和2的锂离子电池组成的差异以及性能。
表1:
Figure PCTCN2022103048-appb-000003
注:A是正极活性层中的铝元素的含量的数值,其单位为mmol,B是负极 活性层的总面积的数值,其单位是m 2
参考表1可知,与正极活性材料只包含锰酸锂的对比例1相比,正极活性材料含有锰酸锂和含锰化合物的实施例1-1至1-6的锂离子电池的在25℃、0.2C条件下的首次放电克容量和25℃下循环1500次时的容量保持率均得到显著改善,仍具有较高的首圈库伦效率。含锰化合物可补充锰酸锂在首次充电时形成正极-电解质界面(CEI)所消耗的锂离子,有利于改善锂离子电池的循环性能和高温存储性能,可为锂离子提供扩散通道,便于锂离子的嵌入和快速脱嵌;且其具有的较低的电压平台(3.9V的平台),在锂离子电池的循环和存储过程中,有利于锂离子的缓慢回嵌,从而提升正极活性材料的充放电容量,显著改善锂离子电池的循环性能和高温存储性能;但含锰化合物在首次放电时,仅有部分Li可以回嵌,影响锂离子电池的库伦效率,铝元素可以稳定晶体结构,改善锂离子嵌入或脱出时的晶胞稳定性,使正极活性材料结构更加稳定,改善电化学装置的循环性能,当正极活性层中的铝元素的含量A(mmol)与负极活性层的总面积B(m 2)满足3≤A/B≤25时,锂离子电池可以获得更优的循环性能和高温存储性能。
B.实施例1-1与实施例2-1至实施例2-8
实施例2-1至2-8与实施例1-1的区别仅在于实施例2-1至实施例2-8的负极所用石墨的不同。如下表2示出了实施例1-1与实施例2-1至实施例2-8的锂离子电池组成的差异以及性能。
表2:
Figure PCTCN2022103048-appb-000004
参考表2可以看出,随着石墨化温度的提高,d(002)变小,石墨化度越高, 由其制备的锂离子电池的首圈库伦效率和首圈放电容量越高。然而,温度太高,则会增加成本,而性能增量有限。通过研究,当石墨的d(002)为
Figure PCTCN2022103048-appb-000005
时,石墨的石墨化度较好,石墨的结晶度较高,内部结构较致密,石墨的首次库伦效率高。当其搭配具有较高充电容量的前述正极活性材料时,使得锂离子电池具有更高的放电容量。
C.实施例1-1与实施例3-1至实施例3-4
实施例3-1至3-4与实施例1-1的区别仅在于石墨的OI值的不同。
如下表3给出了实施例1-1与实施例3-1至实施例3-4的锂离子电池组成的差异以及性能。
表3:
Figure PCTCN2022103048-appb-000006
通过表3的实施例可以看出,其石墨的OI值在3-12之间时,由其制备的锂离子电池具有较优的循环性能,此时石墨的各向同性较好,有利于改善Li+固相扩散,从而减小锂离子电池的电荷转移电阻,改善石墨动力学,从而提高锂离子电池的循环性能。
D.实施例1-1与实施例4-1至实施例4-3
实施例4-1至实施例4-3与实施例1-1的区别仅在于锰酸锂的平均粒径C(μm)与含锰化合物平均粒径D(μm)的比值(D/C)的不同,以及由其导致的极片压实密度的不同。其中,D/C的不同主要是通过改变原材料的粒径实现。
如下表4给出了实施例1-1与实施例4-1至4-3的锂离子电池组成的差异以及性能。
表4:
Figure PCTCN2022103048-appb-000007
参见表4可知,锰酸锂的平均粒径Cμm与含锰化合物的平均粒径Dμm满足:1≤D/C≤15。
含锰化合物颗粒和锰酸锂颗粒之间相互匹配,颗粒间接触更好,可缩短锂离子的扩散通道,有利于锂离子的嵌入和脱嵌,提高材料的容量,也可提高正极片压实密度,提升锂离子电池的循环性能以及高温存储性能。通过将D/C限制在上述范围内,可以获得理想的装置性能。
E.实施例1-1与实施例5-1至实施例5-5
实施例5-1至实施例5-5与实施例1-1的区别仅在于负极极片的压实密度。如下表5给出了实施例1-1与实施例5-1至5-5的锂离子电池组成的差异以及性能。
表5:
Figure PCTCN2022103048-appb-000008
参见表5可知,当负极极片的压实密度为1.3g/cm 3至1.8g/cm 3时,负极活性颗粒具有合适的有效活性面积,且颗粒表面无破坏,使锂离子电池具有更高的首次库伦效率,提高锂离子电池的放电容量,同时,合适的压实密度有利于电解液更好的浸润,改善电池内部动力学,改善锂离子电池的循环性能。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少 一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (10)

  1. 一种电化学装置,其包括正极极片、负极极片和电解液,所述负极极片包括负极活性层,所述正极极片包括正极活性层,所述正极活性层包括正极活性材料,所述正极活性层包括铝元素,其中所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:3≤A/B≤25,所述正极活性材料包括锰酸锂和含锰化合物。
  2. 根据权利要求1所述的电化学装置,其中,所述电化学装置满足以下至少一者:
    (1)所述正极活性层中的所述铝元素的含量A(mmol)与所述负极活性层的总面积B(m 2)满足:8≤A/B≤23;
    (2)所述A的范围为0.005至0.04;
    (3)所述A的范围为0.01至0.035。
  3. 根据权利要求1所述的电化学装置,其中,所述锰酸锂的平均粒径为C um,所述含锰化合物的平均粒径为D um,D/C满足1≤D/C≤15。
  4. 根据权利要求3所述的电化学装置,其中,所述D/C满足5≤D/C≤10。
  5. 根据权利要求1所述的电化学装置,所述含锰化合物满足以下条件至少一者:
    (1)所述含锰化合物的Dv50为5μm至40μm。
    (2)所述含锰化合物的表面具有宽度为1nm至1000nm的台阶。
  6. 根据权利要求1所述的电化学装置,其中所述正极活性层还含有元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La中中的至少一种,其中基于所述正极活性层的质量,所述元素Nb、Mg、Ti、Ce、W、Ga、Zr、W、Y、V、Na、Sr、Mo、Cr、Sn或La中的质量百分比M为0.01%至3.5%。
  7. 根据权利要求1所述的电化学装置,其中所述负极活性层包括负极活性材料,所述负极活性材料包括石墨,其中所述石墨的d(002)为
    Figure PCTCN2022103048-appb-100001
  8. 根据权利要求7所述的电化学装置,其满足以下条件至少一者:
    (1)所述石墨的OI值为4±1;
    (2)负极活性层的孔隙率为25±5%;
    (3)所述负极极片的压实密度为1.3g/cm 3至1.8g/cm 3
  9. 根据权利要求1所述的电化学装置,所述正极极片的压实密度为2.2g/cm 3至2.8g/cm 3
  10. 一种电子装置,其包括根据权利要求1-9中任一项所述的电化学装置。
PCT/CN2022/103048 2022-06-30 2022-06-30 一种电化学装置及包含该电化学装置的电子装置 WO2024000486A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280055335.6A CN117941094A (zh) 2022-06-30 2022-06-30 一种电化学装置及包含该电化学装置的电子装置
PCT/CN2022/103048 WO2024000486A1 (zh) 2022-06-30 2022-06-30 一种电化学装置及包含该电化学装置的电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103048 WO2024000486A1 (zh) 2022-06-30 2022-06-30 一种电化学装置及包含该电化学装置的电子装置

Publications (1)

Publication Number Publication Date
WO2024000486A1 true WO2024000486A1 (zh) 2024-01-04

Family

ID=89383772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103048 WO2024000486A1 (zh) 2022-06-30 2022-06-30 一种电化学装置及包含该电化学装置的电子装置

Country Status (2)

Country Link
CN (1) CN117941094A (zh)
WO (1) WO2024000486A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103826A (zh) * 2013-04-12 2014-10-15 Sk新技术株式会社 层状结构锂镍金属氧化物的制造方法及包含该氧化物的锂二次电池
JP2015046283A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池
CN114094191A (zh) * 2021-11-24 2022-02-25 东莞新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103826A (zh) * 2013-04-12 2014-10-15 Sk新技术株式会社 层状结构锂镍金属氧化物的制造方法及包含该氧化物的锂二次电池
JP2015046283A (ja) * 2013-08-28 2015-03-12 新神戸電機株式会社 リチウムイオン電池
CN114094191A (zh) * 2021-11-24 2022-02-25 东莞新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置

Also Published As

Publication number Publication date
CN117941094A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7157252B2 (ja) リチウム二次電池用正極添加剤、その製造方法、それを含むリチウム二次電池用正極およびそれを含むリチウム二次電池
WO2021012768A1 (en) Cathode and electrochemical device
EP3435454B1 (en) Lithium-ion battery and positive active material therefor
WO2021108945A1 (zh) 一种用于二次电池的正极极片、二次电池、电池模块、电池包和装置
CN113366673B (zh) 电化学装置和电子装置
WO2006082719A1 (ja) 正極および非水電解質二次電池
WO2022052019A1 (zh) 电化学装置和电子装置
WO2022140973A1 (zh) 负极极片、电化学装置和电子装置
CN109860546B (zh) 正极材料和包含所述正极材料的电化学装置
JP2024522673A (ja) 電気化学装置及び電子装置
WO2023039750A1 (zh) 一种负极复合材料及其应用
WO2023070287A1 (zh) 正极极片、电化学装置及电子装置
EP4089762A1 (en) Positive electrode plate, and electrochemical device and electronic device containing positive electrode plate
JP2012079470A (ja) 非水電解質二次電池
WO2023241195A1 (zh) 正极材料及包含该材料的电化学装置和电子装置
CN114097111A (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
WO2024000486A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2021195961A1 (zh) 正极材料、包括其的电化学装置和电子装置及制备该正极材料的方法
WO2021138814A1 (zh) 电化学装置和包含所述电化学装置的电子装置
WO2024000477A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
CN114175303A (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
CN112670444B (zh) 正极极片、电化学装置和电子装置
WO2023225857A1 (zh) 电化学装置及电子设备
WO2023108397A1 (zh) 一种正极活性材料、电化学装置和电子装置
WO2024007187A1 (zh) 电化学装置及电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280055335.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948589

Country of ref document: EP

Kind code of ref document: A1