WO2022004593A1 - ベンゾオキサジン化合物含有混合物の製造方法 - Google Patents

ベンゾオキサジン化合物含有混合物の製造方法 Download PDF

Info

Publication number
WO2022004593A1
WO2022004593A1 PCT/JP2021/024144 JP2021024144W WO2022004593A1 WO 2022004593 A1 WO2022004593 A1 WO 2022004593A1 JP 2021024144 W JP2021024144 W JP 2021024144W WO 2022004593 A1 WO2022004593 A1 WO 2022004593A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mixture
formula
compound
benzoxazine compound
Prior art date
Application number
PCT/JP2021/024144
Other languages
English (en)
French (fr)
Inventor
昌樹 南
秀樹 尾野
亮人 澤田
Original Assignee
Eneos株式会社
株式会社 Preferred Networks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社, 株式会社 Preferred Networks filed Critical Eneos株式会社
Publication of WO2022004593A1 publication Critical patent/WO2022004593A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/161,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen

Definitions

  • the present invention relates to a method for producing a benzoxazine compound-containing mixture.
  • Cured resins are used in various applications such as semiconductor encapsulants and fiber reinforced plastics, and benzoxazine compounds are used as one of the raw materials.
  • the benzoxazine compound refers to a compound containing a benzoxazine ring having a benzene skeleton and an oxazine skeleton, and the cured product (polymer) thereof has excellent physical properties such as heat resistance and is used as a high-performance material in various applications. Has been done.
  • Patent Document 1 discloses a benzoxazine compound having a specific structure as a raw material used for producing a cured benzoxazine resin having a high thermal conductivity, and a method for producing the same.
  • Patent Document 2 discloses a thermosetting resin in which the reactive end of a polybenzoxazine resin having a benzoxazine ring structure having a specific structure in the main chain is sealed.
  • Non-Patent Document 1 discloses a benzoxazine compound synthesized using p-aminophenol.
  • the present invention can have compatibility with other resins (preferably epoxy compounds), and the cured product can have high heat resistance when contained in a curable composition.
  • the object is to provide a method for producing a mixture containing a benzoxazine compound.
  • the present inventors suppressed the formation of high molecular weight and low molecular weight compounds in the benzoxazine compound-containing mixture synthesized by using a specific raw material in a specific ratio. By doing so, it is possible to reduce the viscosity when mixed with another resin (preferably an epoxy compound) while having excellent compatibility with another resin (preferably an epoxy compound), and further, the mixture can be used.
  • another resin preferably an epoxy compound
  • the mixture can be used.
  • the cured product has excellent high heat resistance when it is contained in a curable composition, and have completed the present invention.
  • a benzoxazine compound represented by the following formula (1) which comprises a step of condensing a p-aminophenol, an aromatic primary monoamine, a bisphenol, and a formaldehyde.
  • a method for producing a mixture The ratio (OH / NH 2 ) of the phenolic hydroxyl group derived from the p-aminophenol and the bisphenols to the amino group derived from the p-aminophenol and the aromatic primary monoamines in the condensation reaction step is The method, 1.05 / 1-1.15 / 1.
  • L is an alkylene group having 1 to 10 carbon atoms, an aralkylene group having 7 to 21 carbon atoms, oxygen, sulfur or a sulfonyl group, and Ar may be substituted independently of each other. It is an aryl group, and m and n are independently integers of 0 or more.
  • the aryl group of the formula (1) may be substituted with 1 to 3 substituents R 1 , and the substituent R 1 is independently an alkyl group, an alkoxy group, an ester group and an amide group, respectively.
  • the method according to [1] which is selected from the group consisting of a cyano group and a halogen atom.
  • the content of the amino group of the p-aminophenol is 25 to 75 mol% [3]. 1] or the method according to [2].
  • the content of the phenolic hydroxyl group of the p-aminophenol is 25 to 75 mol% or less [1].
  • the number average molecular weight of the mixture is 600 to 1500, and the mixture has a number average molecular weight of 600 to 1500.
  • the ratio of the benzoxazine compound having a total value of m and n in the formula (1) of 5 or more to the total amount of the mixture is 20 area% or more and 70 area% or less, [1] to [7]. ]
  • the method described in one. [10] The method according to any one of [1] to [9], wherein the mixture has a molecular weight dispersion of 1.05 to 2.50.
  • [11] A mixture obtained by the method according to any one of [1] to [10].
  • [12] A curable composition comprising the mixture according to [11].
  • [13] The curable composition according to [12], further comprising a curing agent and, if desired, a curing accelerator.
  • [15] A cured product obtained by curing the curable composition according to any one of [12] to [14].
  • a benzoxazine compound represented by the formula (1) which is compatible with other resins (preferably epoxy compounds) and can produce a cured product having high heat resistance.
  • resins preferably epoxy compounds
  • a benzoxazine compound-containing mixture of the formula (1) can be provided.
  • the benzoxazine compound-containing mixture of the present invention is advantageous in that it can reduce the viscosity of a preparation (that is, a curable composition) of the mixture and another resin (preferably an epoxy compound). Further, according to the present invention, it is possible to provide a curable composition for obtaining a cured product having high heat resistance.
  • FIG. 1 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Example 1.
  • FIG. 2 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Example 1.
  • FIG. 3 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Example 2.
  • FIG. 4 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Example 2.
  • FIG. 5 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Comparative Example 1.
  • FIG. 6 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Comparative Example 1.
  • FIG. 1 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Example 1.
  • FIG. 2 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Comparative
  • FIG. 7 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Comparative Example 2.
  • FIG. 8 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Comparative Example 2.
  • FIG. 9 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Comparative Example 3.
  • FIG. 10 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Comparative Example 3.
  • FIG. 11 shows a 1 H NMR peak chart of the benzoxazine compound-containing mixture obtained in Comparative Example 4.
  • FIG. 12 shows an infrared absorption spectrum (IR) of the benzoxazine compound-containing mixture obtained in Comparative Example 4.
  • the benzoxazine compound-containing mixture produced by the method for producing the benzoxazine compound-containing mixture of the present invention is a benzoxazine compound represented by the following formula (1). Including.
  • the benzoxazine compound-containing mixture can be contained in the curable composition.
  • L is an alkylene group having 1 to 10 carbon atoms, an aralkylene group having 7 to 21 carbon atoms, oxygen, sulfur or a sulfonyl group, and Ar may be substituted independently of each other. It is an aryl group, and m and n are independently integers of 0 or more.
  • L is, for example, an alkylene group having 1 to 10 carbon atoms, an aralkylene group having 7 to 21 carbon atoms, oxygen, sulfur or a sulfonyl group, and preferably an alkylene group having 1 to 3 carbon atoms. , Oxygen, sulfur or sulfonyl group.
  • the alkylene group having 1 to 10 carbon atoms represented by L in the above formula (1) is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the alkylene group include a methylene group, an ethylene group, a propylene group, an isopropylene group, a tetramethylene group, a hexamethylene group and the like, and a methylene group and an isopropylene group are preferable.
  • the aralkylene group having 7 to 21 carbon atoms represented by L in the above formula (1) is preferably an aralkylene group having 7 to 15 carbon atoms, and more preferably an aralkylene group having 7 to 10 carbon atoms.
  • Specific examples of the aralkylene group include a phenylmethylene group, a diphenylmethylene group, a 1-phenylethylene group, a naphthylmethylene group and the like, and a phenylmethylene group and a diphenylmethylene group are preferable.
  • the number of carbon atoms of the aryl group represented by Ar in the above formula (1) is not particularly limited, but may be 6 to 14, preferably 6 to 10 (except when substituted).
  • Specific examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a phenanthryl group, a biphenyl group and the like, and a phenyl group, a 1-naphthyl group and a 2-naphthyl group are preferable.
  • the aryl group represented by Ar in the above formula (1) may be the same or different. When m and n are 0, Ar is directly bonded to the nitrogen atom of the benzoxazine ring to which L is bonded.
  • the aryl group represented by Ar in the above formula (1) may be substituted.
  • the aryl group may be substituted with 1-3 substituents R 1.
  • substituent R 1 include a group independently selected from the group consisting of an alkyl group, an alkoxy group, an ester group, an amide group, a cyano group, and a halogen atom, and an alkyl group and an alkoxy group are preferable. be.
  • the number of carbon atoms of the above alkyl group is not particularly limited, but may be 1 to 10, preferably 1 to 8, and more preferably 1 to 6.
  • Specific examples of the above alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, octyl group, dodecyl group, i-propyl group, i-butyl group, s-butyl group and t-butyl group. , N-pentyl group, n-hexyl group and the like, preferably a methyl group, an ethyl group, an n-propyl group, an n-hexyl group and the like.
  • the number of carbon atoms in the alkyl chain of the alkoxy group is not particularly limited, but may be 1 to 10, preferably 1 to 6, and more preferably 1 to 3.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group and the like, and a methoxy group and an ethoxy group are preferable.
  • ester group examples include an acyloxy group, an ortho ester group, an alkoxycarbonyl group and the like.
  • preferred asyloxy groups include acetoxy groups, propionyloxy groups and pivaloyloxy groups
  • preferred orthoester groups include trimethoxymethyl groups
  • preferred alkoxycarbonyl groups include methoxycarbonyl groups. ..
  • the ester group is preferably an acetoxy group or a propionyloxy group.
  • the amide group examples include an acetamide group, a propionamide group, a dimethylamide group, a diethylamide group and the like, and an acetamide group and a dimethylamide group are preferable.
  • halogen atom examples include a chlorine atom, a fluorine atom, a bromine atom, an iodine atom and the like, and a chlorine atom, a fluorine atom and a bromine atom are preferable.
  • substituted aryl group examples include o-tolyl group, m-tolyl group, p-tolyl group, ethylphenyl group, xsilyl group (dimethylphenyl group), trimethylphenyl group, o-chlorophenyl group and m-.
  • examples of L in the above formula (1) include an alkylene group having 1 to 10 carbon atoms and oxygen, and methylene is preferable. It is a group, an isopropylene group and oxygen, and Ar in the above formula (1) is a phenyl group.
  • benzoxazine compound represented by the formula (1) include the following benzoxazine compounds.
  • M and n in the above formula (1) are not particularly limited as long as they are independently of each other and are 0 or more, but are preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
  • the benzoxazine compound-containing mixture of the formula (1) contains a benzoxazine compound having a different total value of m and n in the formula (1).
  • the benzoxazine compound-containing mixture of the formula (1) contains a benzoxazine compound in which the total value of m and n in the formula (1) is 1 or more.
  • the benzoxazine compound-containing mixture preferably contains each benzoxazine compound having a total value of m and n in the formula (1) of 0, 1, 2, 3, 4, and 5, respectively.
  • the above benzoxazine compound is also referred to as an x-quantity based on the number of benzoxazine rings present in the compound (where x is an integer of 1 or more).
  • x is an integer of 1 or more.
  • the monomer represents a compound having one benzoxazine ring.
  • the benzoxazine compound-containing mixture of the formula (1) is the ratio of the benzoxazine compound (dimer) in which m and n in the formula (1) are 0 to the total amount of the mixture. Is 20 area% or less, preferably 10 area% or less, and more preferably 3 area% or less.
  • the content of the x-mer (that is, the content of each of the monomer, dimer, trimer, etc.) (area%) with respect to the total amount of the mixture was measured by gel permeation chromatography (GPC) and was measured in Examples. It can be calculated by the GPC calibration curve obtained by using the benzoxazine compound described in 1 as a molecular weight conversion standard substance.
  • GPC gel permeation chromatography
  • Such measurement and conversion can be easily performed by using a commercially available GPC device (for example, manufactured by Tosoh Corporation) and a column (for example, TSKgel SuperHZ3000, TSKgel SuperHZ2000 and TSKgel SuperHZ1000 (each manufactured by Tosoh Corporation)). Can be done.
  • the measurement and conversion can be performed under the following conditions.
  • the benzoxazine compound-containing mixture of the formula (1) is a benzoxazine compound (7-mer or more) in which m and n in the formula (1) are 5 or more with respect to the total amount of the mixture. Is 15 area% or more and 70 area% or less, preferably 20 area% or more and 60 area% or less, more preferably 25 area% or more and 50 area% or less, and further preferably 25 area% or more and 40 area% or less. Is.
  • the proportion of the benzoxazine compound having m and n of 5 or more in the formula (1) to be 15 area% or more and 70 area% or less, the compatibility with the epoxy compound can be further improved.
  • the benzoxazine compound-containing mixture of the formula (1) is a benzoxazine compound in which the total value of m and n in the formula (1) is 1 to 4 with respect to the total amount of the mixture.
  • the ratio of 3 to 6-mer) is 25 area% or more, preferably 30 area% or more, more preferably 40 area% or more, still more preferably 50 area% or more.
  • the upper limit of the proportion of the benzoxazine compound in which the total value of m and n in the formula (1) is 1 to 4 is, for example, 95 area% or less, preferably 80 area% or less, more preferably 70 area% or less. be.
  • the ratio of the compound (monomer) having one benzoxazine ring to the total amount of the mixture is 5 area% or less. It is preferably 3 area% or less, more preferably 1 area% or less, still more preferably 0.1 area% or less.
  • the lower limit is not particularly limited, but 0 area% or more is preferable.
  • the compound is preferably at least one selected from the compound of the following formula (2) and the compound of the formula (3), and more preferably the compound of the formula (2) in which Ar is a phenyl group or It is a compound of the formula (3).
  • Ar is as defined by the equation (1).
  • the number average molecular weight (Mn) of the benzoxazine compound-containing mixture of the formula (1) is not particularly limited, but may be 600 to 1500, preferably 650 to 1200, more preferably. Is 700 to 1000, more preferably 700 to 800.
  • the number average molecular weight of the benzoxazine compound-containing mixture of the formula (1) can be measured by the above-mentioned gel permeation chromatography (GPC).
  • the molecular weight dispersion of the benzoxazine compound-containing mixture of the formula (1) is not particularly limited, but may be 1.05 to 2.50, preferably 1.08 to 2. It is 0.00, more preferably 1.10 to 1.50, and even more preferably 1.13 to 1.20.
  • the degree of molecular weight dispersion is weight average molecular weight (Mw) / number average molecular weight (Mn).
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the weight average molecular weight (Mw) of the benzoxazine compound-containing mixture of the formula (1) can be measured by the above-mentioned gel permeation chromatography (GPC).
  • the mixture containing the benzoxazine compound represented by the above formula (1) includes p-aminophenol, aromatic primary monoamines, bisphenols, and formaldehydes. It is a mixture of compounds obtained by condensing with. Therefore, the mixture may be a reaction product obtained by a condensation reaction.
  • the mixture containing the benzoxazine compound represented by the above formula (1) is p-aminophenol, aromatic primary monoamines, bisphenols, and formaldehyde.
  • a mixture of compounds obtained by condensing with the like may be obtained by liquid separation washing, recrystallization, column purification, or the like.
  • the benzoxazine compound-containing mixture of the formula (1) exhibits high compatibility with other resins (preferably epoxy compounds). The compatibility can be confirmed by mixing the benzoxazine compound-containing mixture of the formula (1) and another resin under the same mass heating.
  • the benzoxazine compound-containing mixture of the formula (1) is preferably compatible with the epoxy compound at 80 ° C. or lower.
  • the other resin is not particularly limited, and examples thereof include an epoxy compound, a bismaleimide resin, a cyanate ester resin, an isocyanate resin, and the like, preferably an epoxy compound and a bismaleimide resin. be.
  • the mixture containing the benzoxazine compound represented by the formula (1) is a condensation reaction of p-aminophenol, aromatic primary monoamines, bisphenols and formaldehydes. It can be manufactured by a method including a step of making it.
  • the phenolic hydroxyl group derived from the p-aminophenol and the bisphenols, and the amino group derived from the p-aminophenol and the aromatic primary monoamines in the condensation reaction step is not particularly limited, but is, for example, 1.05 / 1 to 1.15 / 1, preferably 1.07 / 1 to 1.13 / 1, and more preferably 1.05 / 1 to 1.15 / 1. It is 1.09 / 1 to 1.11 / 1.
  • the molar ratio of raw materials usually needs to match the stoichiometric ratio from the viewpoint of the generation of side reactants and the difficulty of controlling the molecular weight.
  • the content of the phenolic hydroxyl group of the p-aminophenol among the phenolic hydroxyl groups derived from the p-aminophenol and the bisphenol in the condensation reaction step is not particularly limited. For example, it is 25 to 75 mol%, preferably 30 to 65 mol%, more preferably 35 to 55 mol%, still more preferably 40 to 50 mol%.
  • the content of the amino group of the p-aminophenol is particularly high.
  • it is, for example, 25 to 75 mol%, preferably 30 to 70 mol%, more preferably 35 to 60 mol%, still more preferably 40 to 55 mol%.
  • aromatic primary monoamines are not particularly limited as long as they are aromatic compounds having one primary amino group in one molecule, but Ar-NH 2 (in the formula, Ar is alkyl) is preferable. group, an alkoxy group, an ester group, an amide group, a cyano group, and substituted by a substituent R 1 which is independently selected from the group consisting of halogen atoms is also an aryl group.) it can be mentioned.
  • aromatic primary monoamines include aniline, o, m, p-toluidine, o, m, p-ethylaniline, xylidine, mesidine, o, m, p-chloroaniline, and chlorotoluidine.
  • aromatic primary monoamines may be used alone or in two or more kinds.
  • the aromatic primary monoamines do not contain o-aminophenol, m-aminophenol, and p-aminophenol.
  • the amount of the aromatic primary monoamines used is not particularly limited, but is preferably 0.1 to 2 mol, more preferably 0.2 to 1.5 mol, based on 1 mol of p-aminophenol. be.
  • the bisphenols are not particularly limited as long as they are compounds having two phenolic hydroxyl groups, but for example, bisphenol A, bisphenol F, 4,4'-bisphenol F, bisphenol S, 4,4'-dihydroxydiphenyl ether, bis ( Examples thereof include 4-hydroxyphenyl) sulfide and bis (4-hydroxyphenyl) sulfone, preferably bisphenol F, 4,4'-bisphenol F, bisphenol A, and 4,4'-dihydroxydiphenyl ether. These bisphenols may be used alone or in two or more types.
  • the amount of bisphenol used is not particularly limited, but is preferably 0.05 to 2 mol, more preferably 0.1 to 0.75 mol, relative to 1 mol of p-aminophenol.
  • the formaldehydes are not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, 1,3,5-trioxane, tetraoxymethylene, and formalin, and formaldehyde, paraformaldehyde, and formalin are preferable. When these formaldehydes are used, they may be used alone or in two or more types.
  • the amount of formaldehyde used is not particularly limited, but is preferably 1 to 3 mol, more preferably 1.5 to 2, with respect to 1 mol of the total of p-aminophenol and aromatic primary monoamines. It is 5 mol.
  • the molar amount when paraformaldehyde is used as formaldehyde is the molar amount converted to formaldehyde.
  • the condensation reaction can usually be carried out in the presence of a solvent.
  • the solvent may be refluxed during the reaction.
  • the solvent include alcohol solvents such as methanol, ethanol, isopropyl alcohol, n-butyl alcohol, n-hexyl alcohol and cyclohexyl alcohol; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; aliphatic solvents such as toluene, xylene and benzene.
  • Hydrocarbon solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone and dimethylsulfoxide; nitrile solvents such as acetonitrile and benzonitrile; dichloromethane, chloroform, 1,2- Halogenated hydrocarbon solvents such as dichloroethane, carbon tetrachloride and chlorobenzene; water; and the like, preferably dioxane, chloroform, toluene and the like.
  • aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone and dimethylsulfoxide
  • nitrile solvents such as acetonitrile and benzonitrile
  • dichloromethane, chloroform, 1,2- Halogenated hydrocarbon solvents such as dichloroethane, carbon tetrachloride and chlorobenzene
  • water and the like
  • the reaction may be carried out under normal pressure conditions, pressurized conditions, or reduced pressure conditions. Further, it may be carried out in an atmosphere of an inert gas such as nitrogen gas and argon gas.
  • an inert gas such as nitrogen gas and argon gas.
  • the reaction temperature is usually 30 ° C to 120 ° C, preferably 60 ° C to 110 ° C.
  • the reaction time is not particularly limited, but is, for example, 3 hours to 100 hours.
  • the mixture in the production of a mixture containing the benzoxazine compound represented by the formula (1), if the purity of the mixture obtained by the above-mentioned production method is low, the mixture is concentrated and fractionated. Purification is preferably performed by liquid washing, filtration, distillation, recrystallization, reprecipitation, column purification, or a combination thereof.
  • the structure of the benzoxazine compound represented by the formula (1) can be identified by 1 H-NMR, infrared absorption spectrum and the like.
  • Curable Composition According to one embodiment of the present invention, one feature is that it is a curable composition containing a mixture containing the benzoxazine compound represented by the above formula (1).
  • the curable composition includes a mixture containing the benzoxazine compound represented by the above formula (1), and other components (for example, curing), if desired, from the viewpoint of more effectively imparting heat resistance to the cured product. It can be contained in combination with an agent, an epoxy compound, a curing accelerator, etc.).
  • the content of the benzoxazine compound-containing mixture of the formula (1) in the curable composition is 5 to 99 with respect to 100 parts by mass of the total amount of the curable composition. It is preferably in the range of parts by mass, more preferably in the range of 10 to 80 parts by mass, and even more preferably in the range of 30 to 60 parts by mass.
  • the curing agent that can be contained in the curable composition includes an acid anhydride compound, an anionic compound (for example, an amine compound, a phenol compound and a latent curing agent). Etc., and a phenolic compound is preferable.
  • Examples of the acid anhydride-based compound contained in the curable composition of the present invention include hexahydroanhydride phthalic acid, methylhexahydroanhydride phthalic acid, tetrahydroanhydride phthalic acid, methyltetrahydroanhydride phthalic acid, endomethylenetetrahydroanhydride phthalic acid, and methylnagic.
  • Amine-based compounds include imidazoles (2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 2-methyl-imidazole, 2-phenylimidazole, 1- (2-).
  • the phenolic compound is not particularly limited as long as it is a compound having two phenolic hydroxyl groups as phenol, pyrogallol, resorcinol, and bisphenols, but for example, bisphenol A, bisphenol F, bisphenol C, bisphenol S, bisphenol Z, 4 , 4'-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, as novolaks, xylylene skeleton-containing phenol novolak resin, dicyclopentadiene skeleton-containing phenol novolak resin, biphenyl skeleton-containing phenol novolac Resin, fluorene skeleton-containing phenol novolak resin, terpene skeleton-containing phenol novolak resin, bisphenol A novolak, bisphenol F novolak, bisphenol S novolak, bisphenol AP novolak, bisphenol C novolak, bisphenol E novolak, bisphenol Z
  • latent curing agent examples include a thermal cation initiator, dicyandiamide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, ketimine, imidazole compound, dihydrazide compound, and an amine adduct-based curing agent.
  • the curable composition of the present invention may contain one or more curing agents as described above.
  • the content of the curing agent in the curable composition is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the curable composition. It is preferably in the range of 3 to 30 parts by mass, more preferably.
  • examples of the curing accelerator contained in the curable composition include triphenylphosphine, triphenylbenzylphosphonium tetraphenylborate, tetrabutylphosphonium diethylphosphologithioate, and tetraphenylphosphonium bromide.
  • Phosphins and their quaternary salts 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 2-methyl-imidazole, 2-phenylimidazole, 1- (2) -Cyanoethyl) -2-ethyl-4-methylimidazole, 2,4-diamino-6- [2-methylimidazolyl- (1)] ethyl-s-triazine, 2-phenyl-imidazoline, 2,3-dihydro-1H -Imidazoles such as Pyrrolo [1,2-a] benzimidazole, tertiary amines such as tris (dimethylaminomethyl) phenol, benzyldimethylamine, tetrabutylammonium bromide and quaternary salts thereof, 1,8-diazabicyclo ( 5,4,0) Ultra-strongly basic organic compounds such as undesen-7,
  • Organic carboxylic acid metal salts such as, benzoylacetone zinc chelate, metal-organic chelate compounds such as dibenzoylmethane zinc chelate and acetoacetate ethyl zinc chelate, tetra-n-butylsulfonium-o, o-diethylphosphorodithionate and the like.
  • the curing accelerator may be the same compound as the curing agent or a different compound as long as it has a curing reaction promoting action.
  • the curable composition of the present invention may contain one or more curing accelerators as described above.
  • the content of the curing accelerator in the curable composition of the present invention is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the curable composition.
  • the range is preferably in the range of 0.1 to 6 parts by mass, and more preferably in the range of 0.1 to 6 parts by mass.
  • the curable composition may contain an epoxy compound depending on the application.
  • an epoxy compound include glycidyl ether type epoxides, glycidyl ester type epoxides, glycidyl amine type epoxides, alicyclic epoxides and the like, and alicyclic epoxides are preferable.
  • the glycidyl ether type epoxide includes bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, tetramethylbiphenol diglycidyl ether, hydride bisphenol A diglycidyl ether, brominated bisphenol A diglycidyl ether and the like.
  • Glycidyl ether of polyhydric alcohols such as glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether, sorbitol hexaglycidyl ether, polyglycerin polyglycidyl ether, triglycidyl isocyanurate and the like.
  • glycidyl ester type epoxide examples include glycidyl esters and glycidyl esters of carboxylic acids such as glycidyl methacrylate, phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, and trimet acid triglycidyl ester.
  • carboxylic acids such as glycidyl methacrylate, phthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, and trimet acid triglycidyl ester.
  • examples include mold polyepers.
  • Examples of the glycidylamine type epoxide include N, N-diglycidylaniline, N, N-diglycidyltoluidine, N, N, N', N'-tetraglycidyldiaminodiphenylmethane, N, N, N', N'-tetraglycidyl.
  • alicyclic epoxide examples include vinylcyclohexanedioxide, limonendioxide, dicyclopentadiendioxide, tricyclopentadiendioxide, bis (2,3-epoxycyclopentyl) ether, ethylene glycol bisepoxydicyclopentyl ether, 3,4.
  • the curable composition of the present invention may contain one or more epoxy compounds as described above.
  • the content of the epoxy compound is preferably in the range of 10 to 90 parts by mass and in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the total amount of the curable composition. Is more preferable.
  • the curable composition may further contain a solvent.
  • the solvent include acetone, methyl ethyl ketone, ethyl acetate, toluene, and halogen-based solvents such as ethanol, chloroform, and methylene chloride, and amide-based solvents.
  • the curable composition may contain various additives as long as the characteristics are not impaired.
  • Additives include, for example, fillers, silane coupling agents, mold release agents, colorants, flame retardants, antioxidants, light stabilizers and plasticizers, defoamers, light stabilizers, pigments and dyes. Examples thereof include colorants such as, plasticizers, pH adjusters, color inhibitors, matting agents, deodorants, weather resistant agents, antistatic agents, thread friction reducing agents, slip agents, ion exchangers and the like.
  • the viscosity of the curable composition of the present invention can be evaluated by the viscosity of the curable composition before curing.
  • the viscosity of the curable composition at 30 ° C. is not particularly limited, but may be 100 Pa ⁇ s or less, preferably 50 Pa ⁇ s or less, and more preferably 30 Pa ⁇ s or less.
  • the lower limit is not particularly limited, but 0.1 Pa ⁇ s or more is preferable.
  • Viscosity can be measured with a rheometer. Such a measurement can be performed by a parallel plate method using a commercially available rheometer (for example, manufactured by TA Instrument).
  • the curable composition containing the benzoxazine compound-containing mixture of the formula (1) and another resin exhibits extremely low viscosity as described above. Therefore, it is advantageous in that it is excellent in moldability and fluidity.
  • the viscosity of the benzoxazine compound-containing mixture of the formula (1) and another resin (preferably an epoxy compound) at the time of mixing is low, a large amount of filler or the like can be contained in the curable composition. It is advantageous in that the curable composition to be obtained and the cured product thereof can be easily modified and enhanced in functionality.
  • Curable Composition in the production of a curable composition, components to be further contained in the curable composition and curability according to common technical knowledge widely known to those skilled in the art.
  • the method for preparing the composition can be appropriately selected.
  • a method for producing a curable composition for example, the above-mentioned benzoxazine compound-containing mixture of the formula (1) of the present invention, and optionally the above-mentioned components, and other components are used.
  • a curable composition can be produced by appropriately adding and kneading or mixing the components.
  • the kneading or mixing method is not particularly limited, and for example, mixing may be performed using a mixing device such as a planetary mixer, a speedy mixer, a butterfly mixer, a twin-screw extruder, a heat roll, a kneader, a plast mill, a dissolver, or the like. Can be done.
  • a mixing device such as a planetary mixer, a speedy mixer, a butterfly mixer, a twin-screw extruder, a heat roll, a kneader, a plast mill, a dissolver, or the like. Can be done.
  • the cured product obtained by curing the above-mentioned curable composition has a feature that the glass transition temperature is high and the heat resistance is excellent.
  • the heat resistance of the cured product can be evaluated by measuring the glass transition temperature.
  • the glass transition temperature is preferably high from the viewpoint of imparting heat resistance.
  • the glass transition temperature can be measured by dynamic viscoelasticity measurement (DMA).
  • DMA dynamic viscoelasticity measurement
  • the glass transition temperature can be easily measured by DMA by using a commercially available viscoelasticity measuring device (for example, manufactured by Hitachi High-Tech Science Co., Ltd., product name: DMA-7100).
  • the glass transition temperature of the cured product of the present invention due to DMA is 240 ° C. or higher, preferably 245 ° C. or higher, and preferably 250 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 300 ° C. or lower.
  • the cured product can be obtained by curing the above-mentioned curable composition of the present invention.
  • the curing method of the curable composition is not particularly limited, but it can be appropriately performed by heating or the like.
  • the curing reaction can be sufficiently advanced.
  • the curing reaction can be carried out by primary heating at 160 to 200 ° C. for 60 to 240 minutes and secondary heating at 220 to 270 ° C. for 60 to 300 minutes.
  • the heating rate to the primary heating temperature and the heating rate from the primary heating temperature to the 2 o'clock heating temperature are not particularly limited, but are preferably 1 to 4 ° C./min.
  • the conditions of the curing reaction are not limited to the above, and may be appropriately changed in consideration of the content of the benzoxazine compound-containing mixture of the formula (1), the characteristics of other compounds contained in the curable composition, and the like. It is preferable to do this.
  • the cured product is specifically applied onto a substrate such as an adhesive, an adhesive, a metal, a resin film, glass, paper, or wood.
  • Coating agents such as paints, surface protective films for semiconductor devices and organic thin film devices (for example, organic electroluminescence devices and organic thin film solar cell devices), hard coating agents, antifouling films and antireflection films, lenses, prisms, filters, images.
  • the evaluation of the benzoxazine compound-containing mixture in the following Examples and Comparative Examples was carried out by the following method. (Measurement of number average molecular weight and weight average molecular weight of benzoxazine compound-containing mixture, and measurement of x-quantity content in benzoxazine compound-containing mixture)
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the mixtures obtained in the following Examples and Comparative Examples were measured by GPC (gel permeation chromatography).
  • the content (area%) of the x-mer with respect to the total amount of the mixture was also calculated from the GPC calibration curve obtained by using the following molecular weight conversion standard substance based on the measurement result of GPC.
  • the content rate (area%) of the x-mer is, specifically, the ratio of the peak area of the x-mer to the total peak area derived from the mixture.
  • the peak area is the area value obtained by connecting the peak start point and the peak end point when the peaks are separated, and when the peaks overlap, it is vertically divided from the minimum value between the peaks. It is the obtained area value.
  • GPC was performed under the following conditions.
  • Measuring device HLC-8420GPC (Tosoh Corporation) Column: TSKgel SuperHZ3000 + TSKgel SuperHZ2000 + TSKgel SuperHZ1000 x 2 (Tosoh Corporation, respectively) (Columns are TSKgel SuperHZ3000, TSKgel SuperHZ2000, TSKgel SuperHZ2000, not TSKgel SuperHZ1000 in order.
  • Eluent THF Flow rate: 0.35 ml / min Measurement temperature: 40 ° C
  • Injection volume 3 ⁇ L (Sample was diluted or dissolved in THF to make a solution of about 0.5 wt%).
  • Detector UV detector
  • Detection wavelength 254nm
  • Molecular weight conversion standard substance Four kinds of benzoxazines having the following structures were used.
  • the peak area of the x-mer was obtained as follows.
  • the peak area of the compound having a peak top molecular weight in the range of 210 to 250 was defined as the peak area of the monomer.
  • the peak area of the compound having a peak top molecular weight in the range of 320 to 420 was defined as the peak area of the dimer.
  • the peak area of the compound having a peak top molecular weight in the range of 430 to 550 was defined as the peak area of the trimer.
  • the peak area of the compound having a peak top molecular weight in the range of 570 to 650 was defined as the peak area of the tetramer.
  • the peak area of the compound having a peak top molecular weight in the range of 670 to 760 was defined as the peak area of the pentamer.
  • the peak area of the compound having a peak top molecular weight in the range of 780 to 850 was defined as the peak area of the hexamer.
  • the peak area of a compound having a peak top molecular weight in the range of 880 to 1100 was defined as the peak area of a compound having a heptameric or higher.
  • Glass transition temperature of cured product 50 parts by mass of the mixture obtained in the following Examples and Comparative Examples and 50 parts by mass of the epoxy compound were placed in a cup, heated to 100 ° C. (however, only Comparative Example 3 was 120 ° C.), and then Mazelstar (KK-V350W). , Vacuum planetary stirring defoaming device, manufactured by Kurabo Industries Ltd.), and prepared by mixing and degassing. Then, the obtained preparation is poured into a mold, heated in an oven from 100 ° C. to 180 ° C. at a heating rate of 2 ° C./min, then heated at 180 ° C. for 2 hours, and then heated at a heating rate of 2 ° C.
  • Table 1 shows the average molecular weight of the mixture obtained in Example 1. Further, Table 1 shows the content of x-mer in the mixture obtained in Example 1 based on GPC measurement. In Table 1, "ND" indicates below the detection limit. Here, the detection limit is 0.1 area%.
  • 1 1 H-NMR spectrum was measured for the mixture obtained in Example 1, and the measurement results are shown in FIG. 1
  • peaks around 4.2 to 4.7 ppm and 5.0 to 5.4 ppm are peaks attributed to CH 2 of the oxazine ring and are contained in two places in the oxazine ring. It was confirmed that the ratio of the integrated values of the protons was about 1: 1.
  • Example 1 The infrared absorption spectrum of the mixture obtained in Example 1 was measured, and the measurement results are shown in FIG. Characteristic peaks of benzoxazine were observed at 926 cm -1 , 1221 cm -1 , and 1492 cm -1.
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the mixture obtained in Example 1.
  • Example 2 Examples except that the composition, blending ratio, and reaction time of the raw materials were changed as shown in Table 1 above, and paraformaldehyde (formaldehyde equivalent) was 2.2 times the total mole of p-aminophenol and aniline. The mixture was synthesized in the same manner as in 1.
  • Table 1 shows the average molecular weight of the mixture obtained in Example 2. Further, Table 1 shows the content of x-mer in the mixture obtained in Example 2 based on GPC measurement.
  • 1 1 H-NMR spectrum was measured for the mixture obtained in Example 2, and the measurement results are shown in FIG. 1
  • peaks around 4.2 to 4.8 ppm and 5.0 to 5.6 ppm are peaks attributed to CH 2 of the oxazine ring and are contained in two places in the oxazine ring. It was confirmed that the ratio of the integrated values of the protons was about 1: 1.
  • Example 2 The infrared absorption spectrum of the mixture obtained in Example 2 was measured, and the measurement results are shown in FIG. Characteristic peaks of benzoxazine were observed at 931 cm -1 , 1222 cm -1 , and 1494 cm -1.
  • Table 1 shows the yield, average molecular weight, and content of x-dimer of the mixture obtained in Comparative Example 1.
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the mixture obtained in Comparative Example 1.
  • Table 1 shows the yield, average molecular weight, and content of x-dimer of the mixture obtained in Comparative Example 2.
  • Comparative Example 2 since the peaks of each mer are not separated, the total of the compounds of the trimer or more is calculated.
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the mixture obtained in Comparative Example 2. Since the mixture obtained in Comparative Example 2 had poor compatibility with the epoxy compound and a uniform composition could not be obtained, the viscosity and glass transition temperature of the mixture could not be measured.
  • Table 1 shows the yield, average molecular weight, and content of x-dimer of the mixture obtained in Comparative Example 3. In Comparative Example 3, since the peaks of each mer are not separated, the total of the compounds of the trimer or more is calculated.
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the mixture obtained in Comparative Example 3.
  • the viscosity of the mixture obtained in Comparative Example 3 was shown at 40 ° C.
  • Table 1 shows the yield, average molecular weight, and content of x-dimer of the mixture obtained in Comparative Example 4.
  • Comparative Example 4 since the peaks of the compounds having a trimer or more are not separated, the total of the compounds having a trimer or more is calculated.
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the mixture obtained in Comparative Example 4.
  • Comparative Example 5 As Comparative Example 5, a commercially available phenol-diaminodiphenylmethane (Pd) type benzoxazine (manufactured by Shikoku Chemicals Corporation) shown below was used.
  • Pd phenol-diaminodiphenylmethane
  • Table 1 shows the measurement results of the compatibility with the epoxy compound, the viscosity, and the glass transition temperature of the (Pd) type benzoxazine of Comparative Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

[課題]他の樹脂(好ましくは、エポキシ化合物)に対して相溶性を有しながら、さらに、硬化性組成物に含有させたときにその硬化物が高耐熱性を有することができる、ベンゾオキサジン化合物を含んでなる混合物の製造方法を提供する。 [解決手段]p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合反応させる工程を含んでなる、下記式(1)で示されるベンゾオキサジン化合物を含んでなる混合物の製造方法であって、前記縮合反応工程における、前記p-アミノフェノールおよび前記ビスフェノール類由来のフェノール性水酸基と、前記p-アミノフェノールおよび前記芳香族第1級モノアミン類由来のアミノ基との比(OH/NH)が1.05/1~1.15/1である方法を用いる.

Description

ベンゾオキサジン化合物含有混合物の製造方法 関連出願の参照
 本特許出願は、2020年7月3日に出願された日本国特許出願2020-115952号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。
 本発明は、ベンゾオキサジン化合物含有混合物の製造方法に関する。
 硬化樹脂は半導体封止材、繊維強化プラスチック等各種用途に使用され、その一原料としてベンゾオキサジン化合物が使用されている。
 ベンゾオキサジン化合物とは、ベンゼン骨格とオキサジン骨格とを有するベンゾオキサジン環を含む化合物を指し、その硬化物(重合物)は、耐熱性等の物性に優れ、多方面の用途において高性能材料として使用されている。
 ベンゾオキサジン化合物としては、例えば、特許文献1に、高い熱伝導率を有するベンゾオキサジン樹脂硬化物を製造するために用いられる原料となる特定構造のベンゾオキサジン化合物およびその製造方法が開示されている。
 また、特許文献2には、特定構造のベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂の反応性末端を封止した熱硬化性樹脂が開示されている。
 さらに、ベンゾオキサジン化合物を得る方法としては、p-アミノフェノールを原料とする方法が知られている。例えば、非特許文献1には、p-アミノフェノールを用いて合成したベンゾオキサジン化合物が開示されている。
特開2013‐060407号公報 特開2012‐036318号公報
TAREK AGAG, TSUTOMU TAKEICHI, Journal of Polymer Science:PartA: Polymer Chemistry, 2007, vol.45, p.1878-1888
 p-アミノフェノールを原料としてベンゾオキサジン化合物を得る場合、その分子量分布の制御が困難であり、高分子量体は他樹脂との相溶性を低下させ、低分子量体は耐熱性を低下させることが本発明者らの検討により明らかとなった。さらに、高分子量体の生成は芳香族第1級モノアミン類またはモノフェノール類をキャッピング剤として添加することにより抑制することができるが、芳香族第1級モノアミン類とモノフェノール類から生成するベンゾオキサジン単量体により、硬化後の耐熱性が低下するという問題点もあることが本発明者らの検討により明らかとなった。
 したがって、本発明は、他の樹脂(好ましくは、エポキシ化合物)に対して相溶性を有しながら、さらに、硬化性組成物に含有させたときにその硬化物が高耐熱性を有することができる、ベンゾオキサジン化合物を含んでなる混合物の製造方法の提供をその目的とするものである。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の原料を特定の比率で用いて合成したベンゾオキサジン化合物含有混合物が、高分子量体および低分子量体の生成が抑制されることにより、他の樹脂(好ましくは、エポキシ化合物)に対する相溶性が優れながら、他の樹脂(好ましくは、エポキシ化合物)と混合した際の粘度を低くすることができ、さらに、該混合物を硬化性組成物に含有させたときに、その硬化物が高耐熱性に優れることを見出して本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1] p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合反応させる工程を含んでなる、下記式(1)で示されるベンゾオキサジン化合物を含んでなる混合物の製造方法であって、
 前記縮合反応工程における、前記p-アミノフェノールおよび前記ビスフェノール類由来のフェノール性水酸基と、前記p-アミノフェノールおよび前記芳香族第1級モノアミン類由来のアミノ基との比(OH/NH)が1.05/1~1.15/1である、方法。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Lは、炭素数1~10のアルキレン基、炭素数7~21のアラルキレン基、酸素、硫黄またはスルホニル基であり、Arはそれぞれ独立して、置換されていてもよいアリール基であり、m、nは、それぞれ独立して0以上の整数である。]
[2] 式(1)のアリール基が1~3個の置換基Rで置換されていてもよく、該置換基Rは、それぞれ独立してアルキル基、アルコキシ基、エステル基、アミド基、シアノ基、およびハロゲン原子からなる群から選択される、[1]に記載の方法。
[3] 前記縮合反応工程における、前記p-アミノフェノールおよび前記芳香族第1級モノアミン類のアミノ基のうち、前記p-アミノフェノールのアミノ基の含有率が25~75モル%である、[1]または[2]に記載の方法。
[4] 前記縮合反応工程における、前記p-アミノフェノールおよび前記ビスフェノール類由来のフェノール性水酸基のうち、前記p-アミノフェノールのフェノール性水酸基の含有率が25~75モル%以下である、[1]~[3]のいずれか一つに記載の方法。
[5] 前記混合物の数平均分子量が600~1500であり、
 前記混合物全量に対する、式(1)中のmおよびnが0であるベンゾオキサジン化合物の割合が20面積%以下である、[1]~[4]のいずれか一つに記載の方法。
[6] 前記混合物が、式(1)中のmとnとの合計の値が異なるベンゾオキサジン化合物を含んでなる、[1]~[5]のいずれか一つに記載の方法。
[7] 前記混合物が、式(1)中のmとnとの合計の値が1以上であるベンゾオキサジン化合物を含んでなる、[1]~[6]のいずれか一つに記載の方法。
[8] 前記混合物全量に対する、式(1)中のmとnとの合計の値が5以上であるベンゾオキサジン化合物の割合が20面積%以上70面積%以下である、[1]~[7]のいずれか一つに記載の方法。
[9] 前記混合物全量に対する、式(1)中のmとnとの合計の値が1~4であるベンゾオキサジン化合物の割合が25面積%以上である、[1]~[8]のいずれか一つに記載の方法。
[10] 前記混合物の分子量分散度が1.05~2.50である、[1]~[9]のいずれか一つに記載の方法。
[11] [1]~[10]のいずれか一つに記載の方法により得られる混合物。
[12] [11]に記載の混合物を含んでなる、硬化性組成物。
[13] 硬化剤および所望により硬化促進剤をさらに含んでなる、[12]に記載の硬化性組成物。
[14] エポキシ化合物をさらに含んでなる、[12]または[13]に記載の硬化性組成物。
[15] [12]~[14]のいずれか一つに記載の硬化性組成物を硬化させてなる硬化物。
 本発明によれば、他の樹脂(好ましくは、エポキシ化合物)に対して相溶性を有し、かつ、高耐熱性を有する硬化物の作製が可能な、式(1)で示されるベンゾオキサジン化合物を含んでなる混合物(以下、式(1)のベンゾオキサジン化合物含有混合物ともいう)を提供することができる。本発明のベンゾオキサジン化合物含有混合物は、該混合物と他の樹脂(好ましくは、エポキシ化合物)との調製物(すなわち、硬化性組成物)の粘度を低くすることができる上で有利である。また、本発明によれば、高耐熱性を有する硬化物を得るための硬化性組成物を提供することができる。
図1は、実施例1で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図2は、実施例1で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。 図3は、実施例2で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図4は、実施例2で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。 図5は、比較例1で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図6は、比較例1で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。 図7は、比較例2で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図8は、比較例2で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。 図9は、比較例3で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図10は、比較例3で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。 図11は、比較例4で得られたベンゾオキサジン化合物含有混合物のH NMRピークチャートを表す。 図12は、比較例4で得られたベンゾオキサジン化合物含有混合物の赤外吸収スペクトル(IR)を示す。
ベンゾオキサジン化合物含有混合物
 本発明の一実施態様によれば、本発明のベンゾオキサジン化合物含有混合物を製造する方法により製造されるベンゾオキサジン化合物含有混合物は、下記式(1)で示されるベンゾオキサジン化合物を含んでなる。また、上記ベンゾオキサジン化合物含有混合物は硬化性組成物に含有させることができる。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Lは、炭素数1~10のアルキレン基、炭素数7~21のアラルキレン基、酸素、硫黄またはスルホニル基であり、Arはそれぞれ独立して、置換されていてもよいアリール基であり、m、nは、それぞれ独立して0以上の整数である。]
 上記式(1)において、Lは、例えば、炭素数1~10のアルキレン基、炭素数7~21のアラルキレン基、酸素、硫黄またはスルホニル基であり、好ましくは、炭素数1~3のアルキレン基、酸素、硫黄またはスルホニル基である。
 上記式(1)中のLで示される炭素数1~10のアルキレン基は、好ましくは炭素数1~6のアルキレン基であり、より好ましくは炭素数1~3のアルキレン基である。上記アルキレン基の具体例としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、好ましくは、メチレン基、イソプロピレン基である。
 上記式(1)中のLで示される炭素数7~21のアラルキレン基は、好ましくは炭素数7~15のアラルキレン基であり、より好ましくは炭素数7~10のアラルキレン基である。上記アラルキレン基の具体例としては、フェニルメチレン基、ジフェニルメチレン基、1-フェニルエチレン基、ナフチルメチレン基等が挙げられ、好ましくは、フェニルメチレン基、ジフェニルメチレン基である。
 上記式(1)中のArで示されるアリール基の炭素数は、特に限定されないが、6~14が挙げられ、好ましくは6~10である(ただし、置換されている場合を除く)。上記アリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、フェナントリル基、ビフェニル基等が挙げられ、好ましくは、フェニル基、1-ナフチル基、2-ナフチル基である。なお、上記式(1)中のArで示されるアリール基は同一であっても異なっていてもよい。また、m、nが0の場合、Arは、Lが結合するベンゾオキサジン環の窒素原子に直接結合する。
 上記式(1)中のArで示されるアリール基は置換されていてもよい。具体的には、上記アリール基は1~3個の置換基Rで置換されていてもよい。かかる置換基Rとしては、アルキル基、アルコキシ基、エステル基、アミド基、シアノ基、およびハロゲン原子からなる群から独立して選択される基が挙げられ、好ましくは、アルキル基、アルコキシ基である。
 上記アルキル基の炭素数は、特に限定されるものではないが、1~10が挙げられ、好ましくは1~8であり、より好ましくは1~6である。上記アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、オクチル基、ドデシル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられ、好ましくは、メチル基、エチル基、n-プロピル基、n-ヘキシル基である。
 上記アルコキシ基のアルキル鎖の炭素数は、特に限定されるものではないが、1~10が挙げられ、好ましくは1~6であり、より好ましくは1~3である。上記アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられ、好ましくは、メトキシ基、エトキシ基である。
 上記エステル基の具体例としては、アシロキシ基、オルトエステル基、アルコキシカルボニル基等が挙げられる。ここで、好ましいアシロキシ基としては、アセトキシ基、プロピオニルオキシ基、ピバロイルオキシ基が挙げられ、好ましいオルトエステル基としては、トリメトキシメチル基が挙げられ、好ましいアルコキシカルボニル基としては、メトキシカルボニル基が挙げられる。エステル基としては、好ましくは、アセトキシ基、プロピオニルオキシ基である。
 上記アミド基の具体例としては、アセトアミド基、プロピオンアミド基、ジメチルアミド基、ジエチルアミド基等が挙げられ、好ましくは、アセトアミド基、ジメチルアミド基である。
 上記ハロゲン原子の具体例としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくは、塩素原子、フッ素原子、臭素原子である。
 置換されているアリール基の具体例としては、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、キシリル基(ジメチルフェニル基)、トリメチルフェニル基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、クロロトリル基、ジクロロフェニル基、トリクロロフェニル基、o-フルオロフェニル基、m-フルオロフェニル基、p-フルオロフェニル基、o-ブロモフェニル基、m-ブロモフェニル基、p-ブロモフェニル基、フルオロクロロフェニル基、メトキシフェニル基、エトキシフェニル基、シアノフェニル基、メトキシトリル基、トリフルオロメチルフェニル基、アセトアミドフェニル基、アセトキシフェニル基、メチルナフチル基、エチルナフチル基、ジメチルナフチル基等が挙げられ、好ましくは、o-トリル基、m-トリル基、p-トリル基、メトキシフェニル基、キシリル基である。
 本発明の好ましい実施態様によれば、式(1)で示されるベンゾオキサジン化合物における、上記式(1)中のLとしては炭素数1~10のアルキレン基、酸素が挙げられ、好ましくは、メチレン基、イソプロピレン基、酸素であり、上記式(1)中のArはフェニル基である。
 本発明の好ましい実施態様によれば、式(1)で示されるベンゾオキサジン化合物の具体例としては、以下のベンゾオキサジン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中のm、nは互いに独立して0以上であれば特に限定されないが、好ましくは1~10の整数であり、より好ましくは1~8の整数である。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、式(1)中のmとnとの合計の値が異なるベンゾオキサジン化合物を含んでなる。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、式(1)中のmとnとの合計の値が1以上であるベンゾオキサジン化合物を含んでなる。上記ベンゾオキサジン化合物含有混合物としては、式(1)中のmとnとの合計の値がそれぞれ0、1、2、3、4、5である各ベンゾオキサジン化合物を含むことが好ましい。
 なお、上記ベンゾオキサジン化合物を、化合物中に存在するベンゾオキサジン環の数に基づき、x量体ともいう(ここで、xは1以上の整数である)。例えば、式(1)においてm+n=0である化合物は2量体、m+n=1である化合物は3量体ともいう。なお、単量体は、ベンゾオキサジン環を一つ有する化合物を示す。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、前記混合物全量に対する、式(1)中のmおよびnが0であるベンゾオキサジン化合物(2量体)の割合が20面積%以下であり、好ましくは10面積%以下、より好ましくは3面積%以下である。式(1)中のmおよびnが0であるベンゾオキサジン化合物の割合を20面積%以下とすることにより、硬化物の耐熱性をより向上することができる。
 混合物全量に対する、x量体の含有率(すなわち、単量体、2量体、3量体等のそれぞれの含有率)(面積%)は、ゲル浸透クロマトグラフィー(GPC)により測定し、実施例に記載のベンゾオキサジン化合物を分子量換算標準物質として用いて得られたGPC較正曲線により算出することができる。このような測定および換算は、市販のGPC装置(例えば東ソー株式会社製)およびカラム(例えば、TSKgel SuperHZ3000、TSKgel SuperHZ2000およびTSKgel SuperHZ1000(それぞれ、東ソー株式会社製))を用いることにより、簡便に行うことができる。上記測定および換算としては、以下の条件により行うことができる。装置:HLC-8420GPC(東ソー株式会社)、カラム:TSKgel SuperHZ3000+TSKgel SuperHZ2000+TSKgel SuperHZ1000×2(それぞれ、東ソー株式会社)、溶離液:テトラヒドロフラン(THF)、流量:0.35ml/分、測定温度:40℃、注入量:3μL、検出器:UV検出器、検出波長:254nm、分子量換算標準物質:後述の実施例に記載の構造のベンゾオキサジン4種。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、前記混合物全量に対する、式(1)中のmおよびnが5以上であるベンゾオキサジン化合物(7量体以上)の割合が15面積%以上70面積%以下であり、好ましくは20面積%以上60面積%以下、より好ましくは25面積%以上50面積%以下であり、さらに好ましくは25面積%以上40面積%以下である。式(1)中のmおよびnが5以上であるベンゾオキサジン化合物の割合を15面積%以上70面積%以下とすることにより、エポキシ化合物への相溶性をより向上することができる。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、前記混合物全量に対する、式(1)中のmおよびnの合計の値が1~4であるベンゾオキサジン化合物(3~6量体)の割合が25面積%以上であり、好ましくは30面積%以上、より好ましくは40面積%以上、さらに好ましくは50面積%以上である。式(1)中のmおよびnの合計の値が1~4であるベンゾオキサジン化合物の割合の上限値は、例えば95面積%以下、好ましくは80面積%以下、より好ましくは70面積%以下である。式(1)中のmおよびnが1~4であるベンゾオキサジン化合物の割合を25面積%以上とすることにより、硬化物の耐熱性をより向上することができる。
 本発明の好ましい実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は、前記混合物全量に対する、ベンゾオキサジン環を一つ有する化合物(単量体)の割合が5面積%以下であり、好ましくは3面積%以下であり、より好ましくは1面積%以下、さらに好ましくは0.1面積%以下である。下限値は特に限定されないが、0面積%以上が好ましい。混合物全量に対するベンゾオキサジン環を一つ有する化合物の割合を5面積%以下とすることにより、硬化物の耐熱性をより向上することができる。上記ベンゾオキサジン環を一つ有する化合物の分子量としては210~250が挙げられる。かかる化合物としては、好ましくは、下記の式(2)の化合物および式(3)の化合物から選択される少なくとも一つであり、より好ましくは、Arがフェニル基である式(2)の化合物または式(3)の化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(2)中、Arは、式(1)で定義される通りである。]
Figure JPOXMLDOC01-appb-C000006
 本発明の一つの実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物の数平均分子量(Mn)は、特に限定されないが、600~1500が挙げられ、好ましくは650~1200、より好ましくは700~1000であり、さらに好ましくは700~800である。式(1)のベンゾオキサジン化合物含有混合物の数平均分子量は、上述のゲル浸透クロマトグラフィー(GPC)により測定することができる。
 本発明の一つの実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物の分子量分散度は、特に限定されないが、1.05~2.50が挙げられ、好ましくは1.08~2.00、より好ましくは1.10~1.50であり、さらに好ましくは1.13~1.20である。分子量分散度は、重量平均分子量(Mw)/数平均分子量(Mn)である。ここで、式(1)のベンゾオキサジン化合物含有混合物の重量平均分子量(Mw)は上述のゲル浸透クロマトグラフィー(GPC)により測定することができる。
 本発明の一実施態様によれば、上述の式(1)で示されるベンゾオキサジン化合物を含んでなる混合物は、p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合して得られる化合物の混合物である。したがって、上記混合物は、縮合反応によって得られる反応産物であってよい。
 本発明の別の実施態様によれば、上述の式(1)で示されるベンゾオキサジン化合物を含んでなる混合物は、p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合して得られる化合物の混合物(例えば、反応産物)を、分液洗浄、再結晶、カラム精製等により得られたものであってもよい。
(式(1)のベンゾオキサジン化合物含有混合物の特性)
 本発明の一つの実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物は他の樹脂(好ましくは、エポキシ化合物)と高い相溶性を示す。相溶性は、式(1)のベンゾオキサジン化合物含有混合物と他の樹脂とをそれぞれ同質量加熱下で混合することにより確認することができる。式(1)のベンゾオキサジン化合物含有混合物は、好ましくは80℃以下でエポキシ化合物と相溶できる。
 本発明の一つの実施態様によれば、他の樹脂としては、特に限定されないが、エポキシ化合物、ビスマレイミド樹脂、シアネートエステル樹脂、イソシアネート樹脂等が挙げられ、好ましくは、エポキシ化合物、ビスマレイミド樹脂である。
ベンゾオキサジン化合物含有混合物の製造方法
 式(1)で示されるベンゾオキサジン化合物を含んでなる混合物は、p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合反応させる工程を含んでなる方法により製造することができる。
 本発明の一実施態様によれば、縮合反応工程における、上記p-アミノフェノールおよび上記ビスフェノール類由来のフェノール性水酸基と、上記p-アミノフェノールおよび上記芳香族第1級モノアミン類由来のアミノ基との比(OH/NH)は、特に限定されないが、例えば、1.05/1~1.15/1であり、好ましくは1.07/1~1.13/1であり、より好ましくは1.09/1~1.11/1である。原料のモル比は、通常、副反応物の発生や分子量制御の困難性の観点から化学的量論比に合致させる必要がある。具体的には、ベンゾオキサジン化合物の合成において、フェノール類、アミン類、およびホルムアルデヒド類が、モル比1:1:2で反応してベンゾオキサジン環を形成するため、フェノール類とアミン類の配合比は水酸基とアミノ基のモル比1:1で行われる。したがって、原料のモル比を上記のように変更することにより、他の樹脂に対する相溶性が優れながら、他の樹脂と混合した際の粘度を低くすることができるベンゾオキサジン化合物含有混合物が得られること、さらに、該混合物を硬化性組成物に含有させたときに、その硬化物が高耐熱性に優れることは意外な事実である。また、上記ベンゾオキサジン化合物含有混合物において、低分子量体や高分子量体の生成が抑制されることも意外な事実である。
 本発明の一実施態様によれば、縮合反応工程における、上記p-アミノフェノールおよび上記ビスフェノール由来のフェノール性水酸基のうち、上記p-アミノフェノールのフェノール性水酸基の含有率は、特に限定されないが、例えば、25~75モル%であり、好ましくは30~65モル%であり、より好ましくは35~55モル%であり、さらに好ましくは40~50モル%である。
 本発明の一実施態様によれば、縮合反応工程における、上記p-アミノフェノールおよび上記芳香族第1級モノアミン類由来のアミノ基のうち、上記p-アミノフェノールのアミノ基の含有率は、特に限定されないが、例えば、25~75モル%であり、好ましくは30~70モル%であり、より好ましくは35~60モル%であり、さらに好ましくは40~55モル%である。
(芳香族第1級モノアミン類)
 芳香族第1級モノアミン類としては、1分子中に1個の第1級アミノ基を有する芳香族化合物であれば特に限定されないが、好ましくは、Ar-NH(式中、Arは、アルキル基、アルコキシ基、エステル基、アミド基、シアノ基、およびハロゲン原子からなる群から独立して選択される置換基Rにより置換されていてもよいアリール基である。)が挙げられる。上記芳香族第1級モノアミン類は、具体的には、アニリン、o,m,p-トルイジン、o,m,p-エチルアニリン、キシリジン、メシジン、o,m,p-クロロアニリン、クロロトルイジン、ジクロロアニリン、トリクロロアニリン、o,m,p-フルオロアニリン、o,m,p-ブロモアニリン、フルオロクロロアニリン、アニシジン、フェネチジン、アミノベンゾニトリル、クレシジン、アミノベンゾトリフルオライド、p-アミノアセトアニリド、ナフチルアミン等が挙げられ、好ましくは、アニリン、o,m,p-トルイジン、アニシジンである。これら芳香族第1級モノアミン類は単独で用いても、2種類以上で用いても良い。なお、かかる芳香族第1級モノアミン類には、o-アミノフェノール、m-アミノフェノール、およびp-アミノフェノールは含まれない。
 芳香族第1級モノアミン類の使用量は、特に限定されないが、p-アミノフェノール1モルに対して、好ましくは0.1~2モルであり、より好ましくは0.2~1.5モルである。
(ビスフェノール類)
 ビスフェノール類としては、フェノール性水酸基を2つ有する化合物であれば特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、4,4’-ビスフェノールF、ビスフェノールS、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン等が挙げられ、好ましくは、ビスフェノールF、4,4’-ビスフェノールF、ビスフェノールA、4,4’-ジヒドロキシジフェニルエーテルである。これらビスフェノール類は単独で用いても、2種類以上で用いても良い。
 ビスフェノール類の使用量は、特に限定されないが、p-アミノフェノール1モルに対して、好ましくは0.05~2モルであり、より好ましくは0.1~0.75モルである。
(ホルムアルデヒド類)
 ホルムアルデヒド類としては、特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、1,3,5-トリオキサン、テトラオキシメチレン、ホルマリン等が挙げられ、好ましくは、ホルムアルデヒド、パラホルムアルデヒド、ホルマリンである。これらホルムアルデヒド類を用いる場合は単独で用いても、2種類以上で用いても良い。
 ホルムアルデヒド類の使用量は、特に限定されないが、p-アミノフェノールおよび芳香族第1級モノアミン類の合計1モルに対して、好ましくは1~3モルであり、より好ましくは1.5~2.5モルである。ここで、ホルムアルデヒド類としてパラホルムアルデヒドを用いる場合のモル量はホルムアルデヒド換算したモル量とする。
(反応条件)
 縮合反応は、通常、溶媒の存在下で実施できる。溶媒は、反応中、還流させておいてもよい。
 溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、n-ヘキシルアルコールおよびシクロヘキシルアルコール等のアルコール系溶媒;テトラヒドロフラン、ジオキサンおよびジメトキシエタン等のエーテル系溶媒;トルエン、キシレンおよびベンゼン等の脂肪族炭化水素溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリジノンおよびジメチルスルホキシド等の非プロトン性極性溶媒;アセトニトリルおよびベンゾニトリル等のニトリル溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、四塩化炭素およびクロロベンゼン等のハロゲン化炭化水素溶媒;水;等が挙げられ、好ましくは、ジオキサン、クロロホルム、トルエンである。溶媒は、複数種類の溶媒を混合して用いてもよい。
 反応は、常圧条件下で行ってもよいし、加圧条件下で行ってもよいし、減圧条件下で行ってもよい。また、窒素ガス及びアルゴンガス等の不活性ガス雰囲気下で行ってもよい。
 反応温度は、通常30℃~120℃であり、好ましくは60℃~110℃である。
 反応時間は、特に限定されないが、例えば、3時間~100時間である。
 本発明の一実施態様によれば、式(1)で示されるベンゾオキサジン化合物を含んでなる混合物の製造にあたっては、上述の製造方法で得られた該混合物の純度が低い場合は、濃縮、分液洗浄、ろ過、蒸留、再結晶、再沈殿、カラム精製、またはそれらの組み合わせにより精製を行うことが好ましい。
 式(1)で示されるベンゾオキサジン化合物の構造は、H-NMR、赤外吸収スペクトル等によって同定できる。
 本発明の好ましい実施態様によれば、芳香族第1級モノアミン類としてアニリン、ビスフェノール類としてビスフェノールFまたは4,4’-ビスフェノールF、アルデヒド類として、ホルムアルデヒド、パラホルムアルデヒド、またはホルマリンを使用した場合、式(1)で示されるベンゾオキサジン化合物として、式(1)中、Lがメチレン基、Arがフェニル基である化合物を得ることができる。
硬化性組成物
 本発明の一実施態様によれば、上記式(1)で示されるベンゾオキサジン化合物を含んでなる混合物を含んでなる硬化性組成物であることを一つの特徴とする。
 上記硬化性組成物には、上記式(1)で示されるベンゾオキサジン化合物を含んでなる混合物とともに、硬化物により効果的に耐熱性を付与する観点から、所望により、その他の成分(例えば、硬化剤、エポキシ化合物、硬化促進剤等)とを組み合わせて含有させることができる。
 以下、硬化性組成物に含有できる各成分について詳細に説明する。
(式(1)で示されるベンゾオキサジン化合物を含んでなる混合物)
 式(1)で示されるベンゾオキサジン化合物を含んでなる混合物については上述の通りである。
 本発明の一実施態様によれば、硬化性組成物における式(1)のベンゾオキサジン化合物含有混合物の含有量としては、硬化性組成物の総量100質量部に対して、上記混合物が5~99質量部の範囲であることが好ましく、10~80質量部の範囲であることがより好ましく、30~60質量部の範囲であることがさらに好ましい。式(1)のベンゾオキサジン化合物含有混合物をこの範囲で含有することにより、より耐熱性に優れた硬化物を得ることができる。
(硬化剤)
 本発明の一実施態様によれば、硬化性組成物に含有させることのできる硬化剤としては、酸無水物系化合物、アニオン系化合物(例えば、アミン系化合物、フェノール系化合物および潜在性硬化剤)等が挙げられ、好ましくは、フェノール系化合物である。
 本発明の硬化性組成物に含まれる酸無水物系化合物としては、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルナジック酸無水物、メチルブテニルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、シクロヘキサントリカルボン酸無水物、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキサンテトラカルボン酸二無水物、無水マレイン酸、無水フタル酸、無水コハク酸、ドデセニル無水コハク酸、オクテニルコハク酸無水物、無水ピロメリット酸、無水トリメリット酸、アルキルスチレン-無水マレイン酸共重合体、クロレンド酸無水物、ポリアゼライン酸無水物、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリストリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ベンゾフェノンテトラカルボン酸、ポリアジピン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、ヘット酸無水物、ノルボルナン-2,3-ジカルボン酸無水物等が挙げられる。
 アミン系化合物としては、イミダゾール類(2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-メチル-イミダゾール、2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]エチル-s-トリアジン、2-フェニル-イミダゾリン、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等のイミダゾール類)、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン、ポリオキシペンチレンジアミン、ポリオキシエチレントリアミン、ポリオキシプロピレントリアミン、ポリオキシブチレントリアミン、ポリオキシペンチレントリアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルナンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン、N-アミノエチルピペラジン等が挙げられる。
 フェノール系化合物としては、フェノール、ピロガロール、レゾルシノール、ビスフェノール類として、フェノール性水酸基を2つ有する化合物であれば特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールS、ビスフェノールZ、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ノボラック類として、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂、テルペン骨格含有フェノールノボラック樹脂、ビスフェノールAノボラック、ビスフェノールFノボラック、ビスフェノールSノボラック、ビスフェノールAPノボラック、ビスフェノールCノボラック、ビスフェノールEノボラック、ビスフェノールZノボラック、ビフェノールノボラック、テトラメチルビスフェノールAノボラック、ジメチルビスフェノールAノボラック、テトラメチルビスフェノールFノボラック、ジメチルビスフェノールFノボラック、テトラメチルビスフェノールSノボラック、ジメチルビスフェノールSノボラック、テトラメチル-4,4’-ビフェノールノボラック、トリスヒドロキシフェニルメタンノボラック、レゾルシノールノボラック、ハイドロキノンノボラック、ピロガロールノボラック、ジイソプロピリデンノボラック、1,1-ジ-4-ヒドロキシフェニルフルオレンノボラック、フェノール化ポリブタジエンノボラック、フェノールノボラック、クレゾール類ノボラック、エチルフェノール類ノボラック、ブチルフェノール類ノボラック、オクチルフェノール類ノボラック、ナフトール類ノボラック等が挙げられる。
 潜在性硬化剤としては、熱カチオン開始剤、ジシアンジアミド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタル酸ジヒドラジド、ケチミン、イミダゾール化合物、ジヒドラジド化合物、アミンアダクト系硬化剤等が挙げられる。
 本発明の硬化性組成物は、上記したような硬化剤を1種または2種以上含んでいてもよい。
 硬化物の耐熱性という観点からは、硬化性組成物における硬化剤の含有量としては、硬化性組成物の総量100質量部に対して、硬化剤が1~50質量部の範囲であることが好ましく、3~30質量部の範囲であることがより好ましい。
(硬化促進剤)
 本発明の一実施態様によれば、硬化性組成物に含まれる硬化促進剤としては、例えば、トリフェニルホスフィン、トリフェニルベンジルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムジエチルホスホロジチオエート、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムアセテート、テトラ-n-ブチルホスホニウムブロマイド、テトラ-n-ブチルホスホニウムベンゾトリアゾレート、テトラ-n-ブチルホスホニウムテトラフルオロボレート、テトラ-n-ブチルホスホニウムテトラフェニルボレート、メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムアイオダイド、エチルトリフェニルホスホニウムアセテート、メチルトリ-n-ブチルホスホニウムジメチルホスフェート、n-ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類とその第四級塩、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-メチル-イミダゾール、2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]エチル-s-トリアジン、2-フェニル-イミダゾリン、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等のイミダゾール類、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、テトラブチルアンモニウムブロミド等の3級アミンとその第四級塩、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)ノネン-5等の超強塩基性の有機化合物、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛、オクチル酸錫等の有機カルボン酸金属塩、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレートおよびアセト酢酸エチル亜鉛キレート等の金属-有機キレート化合物、テトラ-n-ブチルスルホニウム-o,o-ジエチルホスホロジチオネート等が挙げられる。ここで、硬化促進剤としては、硬化反応の促進作用を有する限り、硬化剤と同一の化合物であっても異なる化合物であってもよい。
 本発明の硬化性組成物は、上記したような硬化促進剤を1種または2種以上含んでいてもよい。
 硬化物の耐熱性という観点から、本発明の硬化性組成物における硬化促進剤の含有量としては、硬化性組成物の総量100質量部に対して、硬化剤が0.01~10質量部の範囲であることが好ましく、0.1~6質量部の範囲であることがより好ましい。
(エポキシ化合物)
 本発明の一実施態様によれば、硬化性組成物は、用途に応じてエポキシ化合物を含んでいてもよい。かかるエポキシ化合物としては、例えば、グリシジルエーテル型エポキシド、グリシジルエステル型エポキシド、グリシジルアミン型エポキシド、脂環式エポキシド等が挙げられ、好ましくは、脂環式エポキシドである。
 グリシジルエーテル型エポキシドとしては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル等の二価フェノールのグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、テトラキス(ヒドロキシフェニル)エタンテトラグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル、キシリレン骨格含有フェノールノボラックグリシジルエーテル、ジシクロペンタジエン骨格含有フェノールノボラックグリシジルエーテル、ビフェニル骨格含有フェノールノボラックグリシジルエーテル、テルペン骨格含有フェノールノボラックグリシジルエーテル、ビスフェノールAノボラックグリシジルエーテル、ビスフェノールFノボラックグリシジルエーテル、ビスフェノールSノボラックグリシジルエーテル、ビスフェノールAPノボラックグリシジルエーテル、ビスフェノールCノボラックグリシジルエーテル、ビスフェノールEノボラックグリシジルエーテル、ビスフェノールZノボラックグリシジルエーテル、ビフェノールノボラックグリシジルエーテル、テトラメチルビスフェノールAノボラックグリシジルエーテル、ジメチルビスフェノールAノボラックグリシジルエーテル、テトラメチルビスフェノールFノボラックグリシジルエーテル、ジメチルビスフェノールFノボラックグリシジルエーテル、テトラメチルビスフェノールSノボラックグリシジルエーテル、ジメチルビスフェノールSノボラックグリシジルエーテル、テトラメチル-4,4’-ビフェノールノボラックグリシジルエーテル、トリスヒドロキシフェニルメタンノボラックグリシジルエーテル、レゾルシノールノボラックグリシジルエーテル、ハイドロキノンノボラックグリシジルエーテル、ピロガロールノボラックグリシジルエーテル、ジイソプロピリデンノボラックグリシジルエーテル、1,1-ジ-4-ヒドロキシフェニルフルオレンノボラックグリシジルエーテル、フェノール化ポリブタジエンノボラックグリシジルエーテル、エチルフェノールノボラックグリシジルエーテル、ブチルフェノールノボラックグリシジルエーテル、オクチルフェノールノボラックグリシジルエーテル、ナフトールノボラックグリシジルエーテル、水素化フェノールノボラックグリシジルエーテル等の多価フェノールのグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメチロールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の二価アルコールのグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールヘキサグリシジルエーテル、ポリグリセリンポリグリシジルエーテル等の多価アルコールのグリシジルエーテル、トリグリシジルイソシアヌレート等が挙げられる。
 グリシジルエステル型エポキシドとしては、グリシジルメタクリレート、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、トリメット酸トリグリシジルエステル等のカルボン酸のグリシジルエステルやグリシジルエステル型のポリエポキシド等が挙げられる。
 グリシジルアミン型エポキシドとしては、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジルジアミノジフェニルスルホン、N,N,N’,N’-テトラグリシジルジエチルジフェニルメタン等のグリシジル芳香族アミン、ビス(N,N-ジグリシジルアミノシクロヘキシル)メタン(N,N,N’,N’-テトラグリシジルジアミノジフェニルメタンの水素化物)、N,N,N’,N’-テトラグリシジル-1,3-(ビスアミノメチル)シクロヘキサン(N,N,N’,N’-テトラグリシジルキシリレンジアミンの水素化物)、トリスグリシジルメラミン、トリグリシジル-p-アミノフェノール、N-グリシジル-4-グリシジルオキシピロリドン等のグリシジル複素環式アミン等が挙げられる。
 脂環式エポキシドとしては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ジシクロペンタジエンジオキシド、トリシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエーテル、3,4-エポキシ-6-メチルシクロへキシルメチル 3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、3,4-エポキシシクロへキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロへキシル 3,4-エポキシ-1-メチルヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロへキシルメチル 3,4-エポキシ-3-メチルヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロへキシルメチル 3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロへキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、メチレンビス(3,4-エポキシシクロヘキサン)、(3,3’,4,4’-ジエポキシ)ビシクロヘキシル、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-(2-オキシラニル)シクロヘキサン付加物、テトラヒドロインデンジエポキシド等が挙げられ、好ましくは、3’,4’-エポキシシクロへキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートである。
 本発明の硬化性組成物は、上記したようなエポキシ化合物を1または2種以上含んでいてもよい。
 硬化物の耐熱性という観点からは、エポキシ化合物の含有量は、硬化性組成物の総量100質量部に対して、10~90質量部の範囲であることが好ましく、30~70質量部の範囲であることがより好ましい。
(溶剤/その他)
 本発明の一実施態様によれば、硬化性組成物は、溶剤をさらに含んでいてもよい。溶剤としては、例えば、アセトン、メチルエチルケトン、酢酸エチル、トルエン、およびエタノール、クロロホルム、塩化メチレン等のハロゲン系溶剤、アミド系溶剤等が挙げられる。
 本発明の一実施態様によれば、硬化性組成物は、その特性を損なわない範囲において、各種添加剤を含んでいてもよい。添加剤としては、例えば、フィラー(充填剤)、シランカップリング剤、離型剤、着色剤、難燃剤、酸化防止剤、光安定剤および可塑剤、消泡剤、光安定剤、顔料や染料等の着色剤、可塑剤、pH調整剤、着色防止剤、艶消し剤、消臭剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、イオン交換剤等が挙げられる。
(硬化性組成物の特性)
 本発明の硬化性組成物の粘度は、硬化前の硬化性組成物の粘度により評価できる。
 硬化性組成物の30℃での粘度は、特に限定されないが、100Pa・s以下が挙げられ、好ましくは50Pa・s以下、より好ましくは30Pa・s以下とされる。下限値は特に限定されないが、0.1Pa・s以上が好ましい。粘度は、レオメーターにより測定することができる。このような測定は、市販のレオメーター(例えばTAインスツルメント製)を用い、パラレルプレート法により測定することができる。
 本発明の一実施態様によれば、式(1)のベンゾオキサジン化合物含有混合物および他の樹脂(好ましくは、エポキシ化合物)を含んでなる硬化性組成物は、上述の様に極めて低粘度を示すことから、成型性、流動性に優れる点で有利である。特に、式(1)のベンゾオキサジン化合物含有混合物と他の樹脂(好ましくは、エポキシ化合物)との混合時の粘度が低いと、硬化性組成物中にフィラー等を多く含有することができ、得られる硬化性組成物およびその硬化物の改質や高機能化が容易となる点で有利である。
硬化性組成物の製造方法
 本発明の一実施態様によれば、硬化性組成物の製造においては、当業者に広く知られた技術常識に従い、硬化性組成物にさらに含有させる成分、および硬化性組成物の調製方法を適宜選択することができる。
 本発明の好ましい実施態様によれば、硬化性組成物の製造方法としては、例えば、上述の、本発明の式(1)のベンゾオキサジン化合物含有混合物、さらに、所望により上述の成分、およびその他の成分を適宜追加して混練または混合することにより、硬化性組成物を製造することができる。
 混練または混合方法は、特に限定されず、例えば、プラネタリーミキサー、ピーディーミキサー、バタフライミキサー、2軸押出機、熱ロール、ニーダー、プラストミル、ディゾルバー等の混合装置または混練機等を用いて混合することができる。
硬化物
 本発明の一実施態様によれば、上述した硬化性組成物を硬化させてなる硬化物は、ガラス転移温度が高く、耐熱性に優れるという特徴を有している。
(硬化物の特性)
 本発明の一実施態様によれば、硬化物の耐熱性は、ガラス転移温度を測定することにより評価できる。かかるガラス転移温度は、耐熱性付与の観点から高いことが好ましい。
 ガラス転移温度は、動的粘弾性測定(DMA)により測定することができる。DMAによるガラス転移温度の測定は、市販の粘弾性測定装置(例えば、株式会社日立ハイテクサイエンス製、製品名:DMA-7100)を用いることにより、簡便に行うことができる。
 本発明の硬化物のDMAによるガラス転移温度は、240℃以上が挙げられ、好ましくは245℃以上であり、好ましくは250℃以上である。上限は特に限定されないが、300℃以下が好ましい。
硬化物の製造方法
 本発明の一実施態様によれば、硬化物は、上述した本発明の硬化性組成物を硬化させることにより得られる。硬化性組成物の硬化方法は特に限定されるものではないが、加熱等により適宜行うことができる。
 加熱により、硬化性組成物を硬化させる場合、多段階的に硬化性組成物を加熱することが好ましい。これにより、硬化反応を十分に進めることができる。例えば、160~200℃で60~240分の一次加熱と、220~270℃で60~300分の二次加熱とにより硬化反応を行うことができる。一次加熱温度までの昇温速度、および一次加熱温度から二時加熱温度までの昇温速度は、特に限定されないが、1~4℃/分が好ましい。しかしながら、硬化反応の条件は、上記に限定されるものではなく、式(1)のベンゾオキサジン化合物含有混合物の含有量、硬化性組成物に含まれるその他の化合物などの特性を考慮し、適宜変更して行うことが好ましい。
硬化物の用途
 本発明の一実施態様によれば、硬化物の用途としては、具体的には、接着剤、粘着剤、金属、樹脂フィルム、ガラス、紙、木材等の基材上に塗布する塗料、半導体素子や有機薄膜素子(例えば、有機エレクトロルミネッセンス素子や有機薄膜太陽電池素子)の表面保護膜、ハードコート剤、防汚膜および反射防止膜等のコーティング剤、レンズ、プリズム、フィルター、画像表示材料、レンズアレイ、光半導体素子の封止材やリフレクター材料、半導体素子の封止材、光導波路、導光板、光拡散板、回折素子および光学用接着剤等の各種光学部材、注型材料、層間絶縁体、プリント配向基板用保護絶縁膜および繊維強化複合材料等の材料、レジスト材料等が挙げられる。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 以下の実施例、比較例で使用した物質は以下の通りである。
・p-アミノフェノール:東京化成工業株式会社製
・フェノール:富士フィルム和光純薬株式会社製
・ビスフェノールF:東京化成工業株式会社製
・4,4’-ビスフェノールF:東京化成工業株式会社製
・ビスフェノールA:東京化成工業株式会社製
・パラホルムアルデヒド:富士フィルム和光純薬株式会社製
・4,4’-ジアミノジフェニルメタン:アルドリッチ社製
・アニリン:富士フィルム和光純薬株式会社製
・クロロホルム:富士フィルム和光純薬株式会社製
・1,4-ジオキサン:富士フィルム和光純薬株式会社製
・エポキシ化合物:セロキサイド2021P((株)ダイセル製)
 以下の実施例、比較例におけるベンゾオキサジン化合物含有混合物の評価は以下の方法で行った。
(ベンゾオキサジン化合物含有混合物の数平均分子量および重量平均分子量の測定、ならびに、ベンゾオキサジン化合物含有混合物におけるx量体の含有率の測定)
 以下の実施例、比較例で得られた混合物の数平均分子量(Mn)および重量平均分子量(Mw)の測定はGPC(ゲル浸透クロマトグラフィー)により行った。また、混合物全量に対する、x量体の含有率(面積%)も、GPCの測定結果に基づき、下記分子量換算標準物質を用いて得られたGPC較正曲線から算出した。x量体の含有率(面積%)は、具体的には、混合物に由来するピーク面積の総和に対する、x量体のピーク面積の割合である。ここで、ピーク面積としては、ピークが分離している場合はピーク開始点と終了点を結んで得られた面積値であり、ピークが重なっている場合はピーク間の極小値から垂直分割して得られた面積値である。
 GPCは、具体的には、以下の条件で行った。
[GPC条件]
測定装置:HLC-8420GPC(東ソー株式会社)
カラム:TSKgel SuperHZ3000+TSKgel SuperHZ2000+TSKgel SuperHZ1000×2(それぞれ、東ソー株式会社)(カラムは、TSKgel SuperHZ3000、TSKgel SuperHZ2000、TSKgel SuperHZ1000 2本の順に直列でつないだ。)
溶離液:THF
流量:0.35ml/分
測定温度:40℃
注入量:3μL(サンプルは、THFで希釈または溶解して約0.5wt%溶液とした。)
検出器:UV検出器
検出波長:254nm
分子量換算標準物質:下記構造のベンゾオキサジン4種を用いた。
Figure JPOXMLDOC01-appb-C000007
 上記GPC測定において、x量体のピーク面積を以下の通り求めた。ピークトップの分子量が210~250の範囲にある化合物のピーク面積を、単量体のピーク面積とした。ピークトップの分子量が320~420の範囲にある化合物のピーク面積を、2量体のピーク面積とした。ピークトップの分子量が430~550の範囲にある化合物のピーク面積を、3量体のピーク面積とした。ピークトップの分子量が570~650の範囲にある化合物のピーク面積を、4量体のピーク面積とした。ピークトップの分子量が670~760の範囲にある化合物のピーク面積を、5量体のピーク面積とした。ピークトップの分子量が780~850の範囲にある化合物のピーク面積を、6量体のピーク面積とした。ピークトップの分子量が880~1100の範囲にある化合物のピーク面積を、7量体以上の化合物のピーク面積とした。
(ベンゾオキサジン化合物含有混合物の H-NMRスペクトルの測定)
 以下の実施例、比較例で得られた混合物について、H-NMRスペクトルの測定を行った。具体的には、以下の条件で行った。
[H-NMRの測定条件]
測定装置:DD2(Agilent Technologies)
溶媒:CDCl
測定周波数:600MHz
試料濃度:0.3~0.8質量%
積算回数:16回
(ベンゾオキサジン化合物含有混合物の赤外吸収スペクトルの測定)
 以下の実施例、比較例で得られた混合物の赤外吸収スペクトル(IR)を、ATR法により、以下の条件で測定した。
[赤外吸収スペクトルの測定条件]
装置:Nicolet iS10(Thermo Fisher Scientific)
測定範囲:4000~400cm-1
積算回数:10回
(ベンゾオキサジン化合物含有混合物のエポキシ化合物への相溶性の測定)
 以下の実施例、比較例で得られた混合物50質量部と、エポキシ化合物(セロキサイド2021P、(株)ダイセル製)50質量部とを、80℃、100℃、または120℃に加温して混合し、試料を得た。得られた試料の相溶性を以下の基準に基づき評価した。
 得られた試料において、不溶性の残渣が残らない状態を「相溶した」と評価した。「相溶した」とは、具体的には、エポキシ化合物に混合物が全て溶解し、均一溶液の状態であった。
 ◎:80℃以下で相溶可能
 〇:100℃以下で相溶可能
 △:120℃以下で相溶可能
 ×:溶け残りあり
(ベンゾオキサジン化合物含有混合物とエポキシ化合物との調製物(熱硬化性組成物)の粘度の測定)
 以下の実施例、比較例で得られた混合物50質量部と、エポキシ化合物(セロキサイド2021P、(株)ダイセル製)50質量部とを、加温し均一溶液とした後に、室温まで冷却したものを試料として用いた。
 試料の粘度は、レオメーター(DHR-2、TAインスツルメント製)を用いて測定した。具体的には、試料を、ギャップを1mmに調整したパラレルプレートに挟み、温度20℃から140℃まで昇温速度2℃/minで昇温させて測定し、30℃における粘度を求めた。測定は、回転速度 10rad/sで行った。
(硬化物のガラス転移温度;Tg)
 以下の実施例、比較例で得られた混合物50質量部とエポキシ化合物50質量部とをカップに入れ、100℃(ただし、比較例3のみ120℃)に加温した後、マゼルスター(KK-V350W、真空遊星式撹拌脱泡装置、倉敷紡績株式会社製)にて混合・脱気を行い調製した。その後、得られた調製物を金型に注ぎ、オーブン内で100℃から180℃まで昇温速度2℃/分で昇温した後180℃にて2時間加熱し、その後、昇温速度2℃/分で250℃まで昇温し、250℃で4時間加熱することにより硬化し、硬化物を作製した。得られた硬化物を縦約10mm×横約50mm×厚さ約3mmの大きさに切断し試験片を得た。かかる試験片を用いて、下記の粘弾性測定装置によって下記条件によりtanδのピークトップによりTgを測定した。結果を表1に示した。
 装置:DMA-7100(株式会社日立ハイテクサイエンス製)
 測定条件:N流量;20mL/分、測定範囲;30~350℃、昇温速度;5℃/分
実施例1:ベンゾオキサジン化合物含有混合物(p-AP/BisF/アニリン=2/1.2/2)の合成
 p-アミノフェノール(109g、1.00mol)、ビスフェノールF(120g、0.60mol)、アニリン(93g、1.00mol)、パラホルムアルデヒド(132g,4.4mol)をクロロホルム(0.4L)/1,4-ジオキサン(0.6L)に溶解し、加熱還流下(オイルバスの温度:80℃)で60時間撹拌した。
 反応終了後、反応物をろ過し、つづいてろ液を1/3量まで濃縮した後、ヘキサンにて晶析し、濾別、真空乾燥し、目的のベンゾオキサジン化合物を含む混合物を315g(収率90モル%)得た。
 上記原料をモル比等で示したものを表1に示す。
 実施例1で得られた混合物の平均分子量を表1に示す。さらに、GPC測定に基づく、実施例1で得られた混合物におけるx量体の含有率を表1に示す。なお、表1中、「ND」は検出限界未満を示す。ここで、検出限界は0.1面積%である。
 また、実施例1で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図1に示した。
 H-NMRスペクトルにおいては、4.2~4.7ppmおよび5.0~5.4ppm付近のピークがオキサジン環のCHに帰属されるピークで、オキサジン環に2か所含まれるものであり、そのプロトンの積分値の比が約1:1となることが確認された。
(実施例1で得られた混合物のH NMRスペクトル)
 H NMR(600MHz,CDCl) δ(ppm) 7.4-6.6(芳香族H)、5.4-5.0(-O―C -N)、4.7-4.2(N-C -C)、3.9-3.6(C-C -C)。
 実施例1で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図2に示した。926cm-1、1221cm-1、および1492cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
 上記のGPC、H NMRスペクトル、および赤外吸収スペクトルの測定結果から、得られた混合物には下記式の化合物(m+n=2(理論値))が含まれていることが確認された。
Figure JPOXMLDOC01-appb-C000008
 さらに、実施例1で得られた混合物についての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
実施例2
 原料の組成、配合割合、反応時間を上記表1に示されるように変更し、パラホルムアルデヒド(ホルムアルデヒド換算)をp-アミノフェノールとアニリンとの合計の2.2倍モルとした以外は、実施例1と同様にして混合物を合成した。
 実施例2で得られた混合物の平均分子量を表1に示す。さらに、GPC測定に基づく、実施例2で得られた混合物におけるx量体の含有率を表1に示す。
 また、実施例2で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図3に示した。
 H-NMRスペクトルにおいては、4.2~4.8ppmおよび5.0~5.6ppm付近のピークがオキサジン環のCHに帰属されるピークで、オキサジン環に2か所含まれるものであり、そのプロトンの積分値の比が約1:1となることが確認された。
(実施例2で得られた混合物のH NMRスペクトル)
 H NMR(600MHz,CDCl) δ(ppm) 7.4-6.4(芳香族H)、5.6-5.0(-O―CH-N)、4.8-4.2(N-CH-C)、3.9-3.6(C-C -C)。
 実施例2で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図4に示した。931cm-1、1222cm-1、および1494cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
比較例1
 p-アミノフェノール(38.1g、0.35mol)、フェノール(4.7g、50mmol)、アニリン(4.7g、50mmol)、パラホルムアルデヒド(26g、0.87mol)をクロロホルム(150ml)/1,4-ジオキサン(180ml)に溶解し、加熱還流下(オイルバスの温度:80℃)で、42時間撹拌した。
 反応終了後、反応物をろ過し、つづいてろ液を1/3量まで濃縮した後、ヘキサンにて晶析し、濾別、真空乾燥し、目的のベンゾオキサジン化合物を含む混合物を49g得た(収率86モル%)。
 比較例1で得られた混合物についての、収率、平均分子量、x量体の含有率を表1に示す。
 また、比較例1で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図5に示した。
(比較例1で得られた混合物のH NMRスペクトル)
 H NMR(600MHz,CDCl) δ(ppm) 7.5-6.3(芳香族H),5.4-5.0(-O―C -N)、4.7-4.0(N-C -C)。
 比較例1で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図6に示した。933cm-1、1220cm-1、および1494cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
 上記のGPC、H NMRスペクトルおよび赤外吸収スペクトルの測定結果から、得られた混合物には下記式の化合物(n=7(理論値))が含まれていることが確認された。
Figure JPOXMLDOC01-appb-C000010
 さらに、比較例1で得られた混合物についての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。
比較例2
 ビスフェノールA(70g、0.31mol)、4,4’-ジアミノジフェニルメタン(61g、0.31mol)、パラホルムアルデヒド(40g、1.31mol)をクロロホルム(0.8L)に溶解し、加熱還流下(オイルバスの温度:80℃)で、5時間撹拌した。
 反応終了後、反応物をろ過し、ろ液を1N NaHCOaq(1.6L)で分液洗浄し、乾燥(NaSO)後、ろ過、濃縮し、その後、メタノールにて晶析し、濾別、真空乾燥し、目的のベンゾオキサジン化合物を含む混合物を156g得た(収率100モル%)。
 比較例2で得られた混合物についての、収率、平均分子量、x量体の含有率を表1に示す。なお、比較例2では、各量体のピークが分離していないため、3量体以上の化合物の合計を算出している。
 また、比較例2で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図7に示した。
(比較例2で得られた混合物のH NMRスペクトル)
 H NMR(600MHz,CDCl) δ(ppm)7.2-6.4(芳香族H)、5.4-5.2(-O―C -N)、4.6-4.4(N-C -C)、3.9-3.7(C-C -C)、1.7-1.4(C )。
 比較例2で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図8に示した。938cm-1、1228cm-1、および1497,1510cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
 上記のGPC測定結果、H NMRスペクトルの測定値の測定値および赤外吸収スペクトルの測定結果から、得られた混合物には下記式の繰り返し単位を有する化合物が含まれていることが確認された。
Figure JPOXMLDOC01-appb-C000011
 さらに、比較例2で得られた混合物についての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。なお、比較例2で得られた混合物は、エポキシ化合物との相溶性が悪く、均一な組成物が得られないため、該混合物の粘度やガラス転移温度は測定不能であった。
比較例3
 ビスフェノールF(61g、0.31mol)、4,4’-ジアミノジフェニルメタン(61g、0.31mol)、パラホルムアルデヒド(40g,1.32mol)をクロロホルム(0.8L)に溶解し、加熱還流下(オイルバスの温度:80℃)で、5時間撹拌した。
 反応終了後、反応物をろ過し、ろ液を1N NaHCOaq(1.6L)で分液洗浄し、乾燥(NaSO)後、ろ過、濃縮し、その後、メタノールにて晶析し、濾別、真空乾燥し、目的のベンゾオキサジン化合物を含む混合物を112g得た(収率80モル%)。
 比較例3で得られた混合物についての、収率、平均分子量、x量体の含有率を表1に示す。なお、比較例3では、各量体のピークが分離していないため、3量体以上の化合物の合計を算出している。
 また、比較例3で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図9に示した。
(比較例3で得られた混合物のH NMRスペクトル)
H NMR(600MHz,CDCl) δ(ppm)7.2-6.5(芳香族H)、5.4-5.1(-O―C -N)、4.6-4.3(N-C -C)、3.9-3.6(C-C -C)。
 比較例3で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図10に示した。928cm-1、1223cm-1、および1499、1511cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
 上記のGPC、H NMRスペクトルおよび赤外吸収スペクトルの測定結果から、得られた混合物には下記式の繰り返し単位を有する化合物が含まれていることが確認された。
Figure JPOXMLDOC01-appb-C000012
 さらに、比較例3で得られた混合物についての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。なお、比較例3で得られた混合物についての粘度としては、40℃における粘度を示した。
比較例4
 ビスフェノールF(100g、0.50mol)、4,4’-ジアミノジフェニルメタン(198g、1.00mol)、フェノール(94g、1.00mol)、パラホルムアルデヒド(132g、4.4mol)をクロロホルム(1.0L)に溶解し、加熱還流下(オイルバスの温度:80℃)で、48時間撹拌した。
 反応終了後、反応物をろ過し、ろ液を水(1L、3回)洗浄し、乾燥(MgSO4)後、ヘキサンにて晶析し、濾別、真空乾燥し、目的のベンゾオキサジン化合物を含む混合物を352g得た(収率83モル%)。
 比較例4で得られた混合物についての、収率、平均分子量、x量体の含有率を表1に示す。なお、比較例4では、3量体以上の化合物のピークが分離していないため、3量体以上の化合物の合計を算出している。
 また、比較例4で得られた混合物について、H-NMRスペクトルの測定を行い、その測定結果を図11に示した。
(比較例4で得られた混合物のH NMRスペクトル)
 H NMR(600MHz,CDCl) δ(ppm) 7.3-6.5(芳香族H)、5.4-5.0(-O―C -N)、5.0-4.4(N-C -C)、3.9-3.6(C-C -C)。
 比較例4で得られた混合物について、赤外吸収スペクトルの測定を行い、その測定結果を図12に示した。926cm-1、1223cm-1、および1497、1510cm-1に、ベンゾオキサジンの特徴的なピークが観察された。
 上記のGPC、H NMRスペクトルおよび赤外吸収スペクトルの測定結果から、得られた混合物には下記式の化合物(n=1(理論値))が含まれていることが確認された。
Figure JPOXMLDOC01-appb-C000013
 さらに、比較例4で得られた混合物についての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。
比較例5
 比較例5として、下記に示す、市販のフェノール-ジアミノジフェニルメタン(P-d)型ベンゾオキサジン(四国化成株式会社製)を用いた。
Figure JPOXMLDOC01-appb-C000014
 比較例5の(P-d)型ベンゾオキサジンについての、エポキシ化合物との相溶性、粘度、ガラス転移温度の測定結果を表1に示す。
 上記表1に示す結果から、式(1)のベンゾオキサジン化合物含有混合物はエポキシ化合物に対し優れた相溶性を示し、硬化性組成物の粘度を低くすることができることが分かった。さらに、式(1)のベンゾオキサジン化合物含有混合物を含む硬化性組成物の硬化物は優れた耐熱性を示すことが分かった。

Claims (10)

  1.  p-アミノフェノールと、芳香族第1級モノアミン類と、ビスフェノール類と、ホルムアルデヒド類とを縮合反応させる工程を含んでなる、下記式(1)で示されるベンゾオキサジン化合物を含んでなる混合物の製造方法であって、
     前記縮合反応工程における、前記p-アミノフェノールおよび前記ビスフェノール類由来のフェノール性水酸基と、前記p-アミノフェノールおよび前記芳香族第1級モノアミン類由来のアミノ基との比(OH/NH)が1.05/1~1.15/1である、方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Lは、炭素数1~10のアルキレン基、炭素数7~21のアラルキレン基、酸素、硫黄またはスルホニル基であり、Arはそれぞれ独立して、置換されていてもよいアリール基であり、m、nは、それぞれ独立して0以上の整数である。]
  2.  式(1)のアリール基が1~3個の置換基Rで置換されていてもよく、該置換基Rは、それぞれ独立してアルキル基、アルコキシ基、エステル基、アミド基、シアノ基、およびハロゲン原子からなる群から選択される、請求項1に記載の方法。
  3.  前記縮合反応工程における、前記p-アミノフェノールおよび前記芳香族第1級モノアミン類のアミノ基のうち、前記p-アミノフェノールのアミノ基の含有率が25~75モル%である、請求項1または2に記載の方法。
  4.  前記縮合反応工程における、前記p-アミノフェノールおよび前記ビスフェノール類由来のフェノール性水酸基のうち、前記p-アミノフェノールのフェノール性水酸基の含有率が25~75モル%以下である、請求項1~3のいずれか一項に記載の方法。
  5.  前記混合物の数平均分子量が600~1500であり、
     前記混合物全量に対する、式(1)中のmおよびnが0であるベンゾオキサジン化合物の割合が20面積%以下である、請求項1~4のいずれか一項に記載の方法。
  6.  前記混合物が、式(1)中のmとnとの合計の値が異なるベンゾオキサジン化合物を含んでなる、請求項1~5のいずれか一項に記載の方法。
  7.  前記混合物が、式(1)中のmとnとの合計の値が1以上であるベンゾオキサジン化合物を含んでなる、請求項1~6のいずれか一項に記載の方法。
  8.  前記混合物全量に対する、式(1)中のmとnとの合計の値が5以上であるベンゾオキサジン化合物の割合が15面積%以上70面積%以下である、請求項1~7のいずれか一項に記載の方法。
  9.  前記混合物全量に対する、式(1)中のmとnとの合計の値が1~4であるベンゾオキサジン化合物の割合が25面積%以上である、請求項1~8のいずれか一項に記載の方法。
  10.  前記混合物の分子量分散度が1.05~2.50である、請求項1~9のいずれか一項に記載の方法。
PCT/JP2021/024144 2020-07-03 2021-06-25 ベンゾオキサジン化合物含有混合物の製造方法 WO2022004593A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115952A JP2022013415A (ja) 2020-07-03 2020-07-03 ベンゾオキサジン化合物含有混合物の製造方法
JP2020-115952 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004593A1 true WO2022004593A1 (ja) 2022-01-06

Family

ID=79315982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024144 WO2022004593A1 (ja) 2020-07-03 2021-06-25 ベンゾオキサジン化合物含有混合物の製造方法

Country Status (3)

Country Link
JP (1) JP2022013415A (ja)
TW (1) TW202208476A (ja)
WO (1) WO2022004593A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700705A (zh) * 2009-06-08 2010-05-05 电子科技大学 一种热固性树脂玻纤层压复合材料及其制备方法
JP2010235714A (ja) * 2009-03-30 2010-10-21 Sekisui Chem Co Ltd ベンゾオキサジン樹脂
JP2013060407A (ja) * 2011-09-15 2013-04-04 Sumitomo Chemical Co Ltd ベンゾオキサジン化合物およびその製造方法
CN106750289A (zh) * 2016-12-20 2017-05-31 江苏大学 一种马来酰亚胺基团封端型的苯并噁嗪齐聚物及其制备方法
JP2017186265A (ja) * 2016-04-04 2017-10-12 日本化薬株式会社 ベンゾオキサジン化合物
WO2019240099A1 (ja) * 2018-06-11 2019-12-19 学校法人近畿大学 ベンゾオキサジン化合物及びベンゾオキサジン樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235714A (ja) * 2009-03-30 2010-10-21 Sekisui Chem Co Ltd ベンゾオキサジン樹脂
CN101700705A (zh) * 2009-06-08 2010-05-05 电子科技大学 一种热固性树脂玻纤层压复合材料及其制备方法
JP2013060407A (ja) * 2011-09-15 2013-04-04 Sumitomo Chemical Co Ltd ベンゾオキサジン化合物およびその製造方法
JP2017186265A (ja) * 2016-04-04 2017-10-12 日本化薬株式会社 ベンゾオキサジン化合物
CN106750289A (zh) * 2016-12-20 2017-05-31 江苏大学 一种马来酰亚胺基团封端型的苯并噁嗪齐聚物及其制备方法
WO2019240099A1 (ja) * 2018-06-11 2019-12-19 学校法人近畿大学 ベンゾオキサジン化合物及びベンゾオキサジン樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, F. ET AL.: "Synthesis of bis-imide type benzoxazine and thermal properties of its polymer", REGUXING SHUZHI, vol. 30, no. 4, 2015, pages 9 - 13, ISSN: 1002-7432 *

Also Published As

Publication number Publication date
JP2022013415A (ja) 2022-01-18
TW202208476A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP3487083B2 (ja) 熱硬化性樹脂組成物及びその硬化物
WO2016104772A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物
WO2014069273A1 (ja) エポキシ樹脂硬化剤
KR102344209B1 (ko) 에폭시 화합물, 경화성 조성물, 경화물, 에폭시 화합물의 제조 방법 및 반응성 희석제
WO2016039486A1 (ja) 熱硬化性樹脂組成物
KR101607646B1 (ko) 아민과 폴리머 페놀, 및 단일 성분 에폭시 수지 조성물중에서 경화제로서의 이들의 용도
JP2008156553A (ja) 低溶融粘度フェノールノボラック樹脂、その製造方法ならびにその用途
JP2018184533A (ja) 新規なベンゾオキサジン樹脂組成物及びその硬化物
TWI414561B (zh) With benzo A thermosetting resin composition and a method for producing the same, and a molded body and a hardened body thereof
JP2017105891A (ja) フェノールアラルキル樹脂、その製造方法、エポキシ樹脂および熱硬化性成形材料
JP6620981B2 (ja) 熱硬化性成形材料、その製造方法および半導体封止材
WO2022004593A1 (ja) ベンゾオキサジン化合物含有混合物の製造方法
WO2022004596A1 (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
JP7038565B2 (ja) 熱硬化性エポキシ樹脂組成物、接着剤、エポキシ樹脂硬化物、塩、及び硬化剤
JP5448137B2 (ja) 多価フェノール樹脂、エポキシ樹脂組成物、およびその硬化物
JP2022013418A (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
JP6508921B2 (ja) フルオレン骨格含有エポキシ樹脂の製造方法、エポキシ樹脂組成物、及び硬化物
KR102099795B1 (ko) 무수당 알코올 핵을 갖는 화합물 및 이의 제조 방법
JP6772685B2 (ja) エポキシ化合物、エポキシ化合物の製造方法、エポキシ化合物含有組成物及びその硬化物
JP7465926B2 (ja) エポキシ樹脂、その製造方法、それを含むエポキシ組成物及びその用途
KR102289998B1 (ko) 플루오렌 골격 함유 에폭시 수지의 제조 방법, 에폭시 수지 조성물, 및 경화물
WO2022102489A1 (ja) 樹脂組成物、硬化物、半導体封止材、及び、半導体装置
TWI802196B (zh) 環氧樹脂組合物以及樹脂薄膜
WO2015060307A1 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、プリプレグ、およびその硬化物
TW202116846A (zh) 環氧樹脂組成物、硬化物及電氣電子零件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833609

Country of ref document: EP

Kind code of ref document: A1