WO2014069273A1 - エポキシ樹脂硬化剤 - Google Patents

エポキシ樹脂硬化剤 Download PDF

Info

Publication number
WO2014069273A1
WO2014069273A1 PCT/JP2013/078464 JP2013078464W WO2014069273A1 WO 2014069273 A1 WO2014069273 A1 WO 2014069273A1 JP 2013078464 W JP2013078464 W JP 2013078464W WO 2014069273 A1 WO2014069273 A1 WO 2014069273A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
resin composition
compound represented
cured product
Prior art date
Application number
PCT/JP2013/078464
Other languages
English (en)
French (fr)
Inventor
上野 修一
小黒 大
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012241521A external-priority patent/JP5994578B2/ja
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to RU2015119967A priority Critical patent/RU2015119967A/ru
Priority to KR1020157011190A priority patent/KR102069010B1/ko
Priority to EP13852096.0A priority patent/EP2915830B1/en
Priority to CN201380057269.7A priority patent/CN104755526B/zh
Priority to US14/439,757 priority patent/US9605110B2/en
Publication of WO2014069273A1 publication Critical patent/WO2014069273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids

Definitions

  • the present invention relates to an epoxy resin curing agent, an epoxy resin composition, a cured product obtained by curing the composition, and a molded body containing the cured product.
  • the epoxy resin has a long history, and both hardeners and epoxy resins are easy to handle in liquid form. Therefore, the epoxy resin is a useful resin having an advantage of easily obtaining a solid molded body, and is used as a single resin or a composite material.
  • the fields of application are wide and varied, such as dental materials, various structural materials, LED sealing materials, adhesives, paints including hard coats, etc. (see, for example, Patent Documents 1 and 2).
  • an epoxy resin of a type called an alicyclic epoxy resin typified by Celoxide CEL2021P manufactured by Daicel Chemical Industries, Ltd. is used, the resulting molded body has improved hardness and heat resistance.
  • the most standard epoxy resin include bisphenol A (BisA) type diglycidyl ether such as jER828 manufactured by Mitsubishi Chemical Corporation.
  • Bisphenol A (BisA) type diglycidyl ether has been widely used for a long time due to its favorable characteristics that are thought to be derived from its bisphenol A bone nucleus and the like.
  • an alicyclic epoxy resin when an alicyclic epoxy resin is used, a molded article having a high surface hardness can be obtained.
  • a cured product molded product
  • Surface hardness is 2H in pencil hardness, which is higher than H in the case of BisA type epoxy resin.
  • the surface hardness of the molded body often becomes a factor that determines the product life.
  • the alicyclic epoxy resin does not have an aromatic ring in its molecular structure, it also has excellent performance in ultraviolet resistance (UV resistance) and color resistance. Therefore, when the alicyclic epoxy resin is used as a product member on the premise of receiving UV light, the product can have a long life.
  • UV resistance ultraviolet resistance
  • color resistance color resistance
  • the resulting molded body is superior in flexibility, impact resistance, crack resistance, etc., compared to the case of using an alicyclic epoxy resin, and also has a high refractive index and UV irradiation. It can be said to have high performance in optically transparent applications that do not assume the above.
  • the glass transition point (Tg) of the obtained molded product is one of important physical property values. If the glass transition point (Tg) can be improved, the cooling time until the mold can be released after pre-curing is shortened, and the number of molds can be reduced. In this case, if the number of molds on hand in the factory is the same, the production speed is improved and the mold-making efficiency is improved. That is, in the case of using BisA type diglycidyl ether, if the glass transition point (Tg) of the obtained molded body can be improved, the production efficiency of the molded body will be increased, but it cannot be said that it is sufficient yet, and further improvement. Is required.
  • An object of the present invention is to further improve the surface hardness and UV color resistance of a cured product (molded product) obtained when an alicyclic epoxy resin is used, and to further expand the application range of the molded product. Further, when BisA type diglycidyl ether is used, Tg, which is one of the physical property values of the obtained cured product (molded product), is to be improved.
  • the present inventors can improve various physical properties and performance of the cured product obtained by using an acid anhydride having a specific structure as an epoxy resin curing agent. As a result, the present invention has been completed. That is, the present invention is as follows.
  • curing agent containing the compound represented by following formula (1) (In the formula (1), R represents a methyl group, an ethyl group or a hydroxyl group, and n is an integer of 1 to 3.) 2.
  • X, Y and Z each independently represent a hydrogen atom, a methyl group, an ethyl group or a hydroxyl group.
  • An epoxy resin composition comprising an epoxy resin and the curing agent according to any one of Items 1 to 4. 6).
  • the resulting cured product when an alicyclic epoxy resin is used, the resulting cured product (molded product) has improved surface hardness and UV resistance, can be improved in performance, and can be further applied. It leads to expansion.
  • the obtained cured product (molded product) has an improved Tg which is one of the physical property values. For this reason, the cooling time until the mold can be released after pre-curing is short, and the number of molds is small. In this case, if the number of molds on hand in the factory is the same, the production speed is improved and the mold-making efficiency is improved. Therefore, according to this invention, since the production efficiency of a molded object goes up, it leads to the expansion of the application range of a molded object.
  • curing agent of this embodiment contains the compound represented by following formula (1).
  • R represents a methyl group, an ethyl group or a hydroxyl group, and n is an integer of 1 to 3.
  • the resulting cured product (molded product) is further improved in surface hardness and UV coloring resistance.
  • mold diglycidyl ether is hardened using the epoxy resin hardening
  • curing agent of this embodiment contains the compound represented by following formula (2).
  • X, Y and Z each independently represent a hydrogen atom, a methyl group, an ethyl group or a hydroxyl group.
  • the resulting cured product (molded product) is further improved in surface hardness and UV coloring resistance.
  • the resulting cured product (molded product) has a further improved glass transition point (Tg). .
  • the epoxy resin curing agent of this embodiment is from the group consisting of a dimethyladamantane maleic anhydride monoadduct represented by the following formula (3) and a monoethyladamantane maleic anhydride monoadduct represented by the following formula (4). More preferably, it is at least one selected.
  • the epoxy resin curing agent of the present embodiment can be used alone or in combination of two or more.
  • the epoxy resin curing agent of the present embodiment includes other acid anhydride epoxy resin curing agent, amine epoxy resin curing agent, phenolic epoxy resin curing agent as a curing agent component unless the effects of the present invention are impaired. You may make it contain. These may be used alone or in combination of two or more.
  • the acid anhydride epoxy resin curing agent is not particularly limited, and examples thereof include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, trialkyltetrahydro Phthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin (anhydro trimelli Tate) monoacetate, dodecenyl succinic anhydride, aliphatic dibasic acid polyanhydride, chlorendic anhydride and the like, and hydrogenated compounds of the above acid anhydrides. These may be contained alone or in combination.
  • the amine-based epoxy resin curing agent is not particularly limited.
  • aliphatic amines such as diethylenetriamine, triethylenetetramine, N-aminoethylpiverazine, mensendiamine, isophoronediamine, m-xylylenediamine, m- And aromatic amines such as phenylenediamine, 4,4′-diaminodiphenylmethane, and 4,4′-diaminodiphenylsulfone.
  • curing agent for example, a phenol novolak resin, a cresol novolak resin, a bisphenol novolak resin, a triazine modified phenol novolak resin etc. are mentioned.
  • the compound represented by the above formula (1) can be obtained by radically adding maleic anhydride to adamantanes.
  • the raw material adamantane used in the present embodiment is not particularly limited, and examples thereof include adamantane, methyladamantane, dimethyladamantane, trimethyladamantane, ethyladamantane, diethyladamantane, triethyladamantane, adamantanol, adamantanediol, and adamantanetriol. It is done. Of these, dimethyladamantane or ethyladamantane is preferred from the viewpoint of pot life before curing and colorability of the cured product.
  • the feed molar ratio of the raw material is preferably in the range of 1 to 20 mol, more preferably in the range of 1.5 to 15 mol, still more preferably in the range of 1.5 to 10 mol with respect to 1 mol of maleic anhydride. .
  • the reaction temperature when maleic anhydride is radically added to adamantane is preferably in the range of 120 to 180 ° C, more preferably in the range of 130 to 170 ° C, and still more preferably in the range of 150 to 170 ° C.
  • the reaction time after dropping the radical generator is preferably in the range of 0.1 to 10 hours, more preferably in the range of 0.5 to 5 hours, and still more preferably in the range of 1 to 3 hours.
  • the radical generator used in the present embodiment is preferably in the range of 0.001 to 0.1 mol, more preferably in the range of 0.005 to 0.05 mol, and still more preferably 0.02 to 0.1 mol with respect to 1 mol of maleic anhydride.
  • the range is 0.07 mol.
  • Preferred radical generators include di-tert-butyl peroxide, benzoyl peroxide, azobisisobutyronitrile and the like. Of these, di-tert-butyl peroxide is more preferable.
  • the reaction of adamantanes and maleic anhydride used in the present embodiment can be carried out without solvent or in a solvent.
  • a solvent for example, a dichlorobenzene, cyclohexanone, dibutyl ether etc. are mentioned. Solvent-free operation is preferred.
  • the reaction product thus obtained can be purified by distillation, crystallization, column separation or the like.
  • preferable conditions and the like are as follows. First, a reaction vessel is charged with 1 mol of maleic anhydride with respect to 1.6 mol of dimethyladamantane or ethyladamantane, and the temperature inside the reaction vessel is maintained at about 160 ° C. Next, a solution prepared by dissolving 5.5 mmol of di-tert-butyl peroxide, for example, in a small amount of dimethyladamantane or ethyladamantane as a radical generator is dropped into the reaction vessel over about 3 hours. The reaction is completed in about 3 hours from the end of dropping to obtain a reaction product. The obtained reaction product is distilled under reduced pressure to obtain the corresponding target product.
  • the charging ratio, reaction temperature, and reaction time shown here can be appropriately changed so as to increase the yield of the target product, and other types of radical generators may be used.
  • the epoxy resin composition of the present embodiment includes an epoxy resin (hereinafter sometimes referred to as “main agent”) and the above-described epoxy resin curing agent. Although it does not specifically limit as a main ingredient used in this embodiment, For example, at least 1 sort (s) selected from the group which consists of alicyclic epoxy resin, nuclear hydrogenated BisA type diglycidyl ether, and BisA type diglycidyl ether is mentioned. . When such an epoxy resin is used as a main agent, the effect of the above-described epoxy resin curing agent is further exhibited, and the properties of the obtained cured product are further improved.
  • the alicyclic epoxy resin is an epoxy resin having an alicyclic ring in the molecule and a part of the carbon-carbon bond forming the ring being shared with the epoxy ring.
  • the alicyclic epoxy resin is not particularly limited, and examples thereof include 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, vinylcyclohexenediexoxide and the like. Specifically, Daicel Chemical Industries, Ltd. Celoxide CEL2021P can be illustrated.
  • the nuclear hydrogenated BisA type diglycidyl ether is not particularly limited, and examples thereof include YX8000 manufactured by Mitsubishi Chemical Corporation.
  • the BisA-type diglycidyl ether is not particularly limited, and examples thereof include jER828 manufactured by Mitsubishi Chemical Corporation.
  • epoxy resins are not particularly limited.
  • bisphenol F type epoxy resin cresol novolac type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, naphthalene skeleton type Of epoxy resin, tetraphenylolethane type epoxy resin, DPP type epoxy resin, trishydroxyphenylmethane type epoxy resin, dicyclopentadienephenol type epoxy resin, diglycidyl ether of bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct
  • examples include glycidyl ether having one epoxy group such as diglycidyl ether, phenyl glycidyl ether, and cresyl glycidyl ether.
  • nuclear hydrogenation epoxy resin which is a nuclear hydrogenation thing of these epoxy resins is mentioned.
  • These epoxy resin components can be used alone or in combination of two or more.
  • an oxetane resin copolymerizable with an epoxy resin or various modified resins may be used.
  • the total content of the epoxy resin and the epoxy resin curing agent is preferably 20 to 100% by mass, more preferably 50 to 100% by mass, and further preferably 80 to 100% by mass.
  • the content ratio of the epoxy resin and the epoxy resin curing agent is such that the equivalent ratio of the curing agent to the epoxy resin (equivalent of curing agent / equivalent of epoxy resin) is in the following range. It is preferable to adjust so that.
  • the equivalent ratio of the curing agent to the epoxy resin (equivalent of curing agent / equivalent of epoxy resin) is preferably in the range of 0.5 to 1.2, more preferably in the range of 0.7 to 1.1. More preferably, it is in the range of 0.8 to 1.0.
  • the amount ratio (equivalent of curing agent / equivalent of epoxy resin) is within the above range, the obtained cured product tends to have high Tg and excellent heat resistance and UV resistance.
  • the equivalent ratio of the curing agent to the epoxy resin is equivalent to the equivalent of epoxy resin (epoxy equivalent) and the equivalent of curing agent (acid anhydride). Equivalents) can be measured and calculated from the measured values.
  • the epoxy equivalent can be determined by measuring a potential difference with a 0.1 mol / L perchloric acid acetic acid standard solution according to JIS K7236.
  • the acid anhydride equivalent can be determined by performing a component analysis using a nuclear magnetic resonance apparatus (NMR) or gas chromatography (GC) and calculating the result.
  • the epoxy resin composition of the present embodiment includes a curing accelerator, an antioxidant, a UV absorber, an inorganic filler, a resin modifier, a silane coupling, as necessary, as long as the effects of the present invention are not impaired.
  • You may contain various additives, such as an agent. These additives may be used alone or in combination of two or more.
  • the curing accelerator is not particularly limited.
  • tertiary amines such as benzyldimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine; 1-cyanoethyl-2-ethyl-4-methylimidazole, 2- Imidazoles such as ethyl-4-methylimidazole and 1-benzyl-2-methylimidazole; organophosphorus compounds such as triphenylphosphine and triphenyl phosphite; tetraphenylphosphonium bromide, tetra-n-butylphosphonium bromide and the like Quaternary phosphonium salts; diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof; organometallic compounds such as zinc octylate, tin octylate and aluminum acetylacetone complex Class; Tetrae Le am
  • high melting point imidazole compounds, dicyandiamide, high melting point dispersion type latent accelerators such as amine addition type accelerators with amines added to epoxy resins, etc., and imidazole, phosphorus and phosphine accelerators are coated with a polymer.
  • Latent cure represented by high temperature dissociation type thermal cationic polymerization type latent cure accelerator such as microcapsule type latent accelerator, amine salt type latent cure accelerator, Lewis acid salt, Bronsted acid salt, etc. Accelerators can also be used. These curing accelerators can be used alone or in admixture of two or more.
  • the content of the curing accelerator is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 10% by mass. 3% by mass.
  • the antioxidant can further improve the heat stability of the resulting cured product.
  • examples of the antioxidant include, but are not limited to, phenolic antioxidants (such as dibutylhydroxytoluene), sulfur-based antioxidants (such as mercaptopropionic acid derivatives), and phosphorus-based antioxidants (9,10-dihydro-). 9-oxa-10-phosphaphenanthrene-10-oxide and the like.
  • phenolic antioxidants such as dibutylhydroxytoluene
  • sulfur-based antioxidants such as mercaptopropionic acid derivatives
  • a phenolic antioxidant can be preferably used.
  • These additives can be used individually or in mixture of 2 or more types.
  • the content of the antioxidant is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 10% by mass. 3% by mass.
  • the UV absorber is not particularly limited, and examples thereof include benzotriazoles represented by TINUBIN P and TINUVIN 234 manufactured by BASF; triazines such as TINUVIN 1577ED; hindered amines such as CHIMASSOLV 2020FDL, and the like.
  • the content of the UV absorber is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 10% by mass. 3% by mass.
  • the inorganic filler is not particularly limited, and examples thereof include glass fiber, carbon fiber, titanium oxide, alumina, talc, mica, and aluminum hydroxide.
  • the content of the inorganic filler is preferably 0.01 to 80% by mass, more preferably 0.01 to 50% by mass, and further preferably 0.1 to 20% by mass.
  • the resin modifier is not particularly limited.
  • a diluent such as n-butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, vinylcyclohexene dioxide, diglycidyl aniline, glycerin triglycidyl ether; polypropylene glycidyl ether, polymerization
  • flexibility imparting agents such as fatty acid polyglycidyl ether, polypropylene glycol, and urethane prepolymer.
  • the content of the resin modifier is preferably 0.01 to 80% by mass, more preferably 0.01 to 50% by mass, and still more preferably 0.1 ⁇ 20% by weight.
  • the silane coupling agent is not particularly limited, and examples thereof include chloropropyltrimethoxysilane, vinyltrichlorosilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -aminopropyltriethoxysilane.
  • the content of the silane coupling agent is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and further preferably 0.1%. ⁇ 5% by mass.
  • the method for curing the epoxy resin composition is not particularly limited, and for example, a conventionally known curing apparatus such as a closed curing furnace or a tunnel furnace capable of continuous curing can be employed.
  • a conventionally known curing apparatus such as a closed curing furnace or a tunnel furnace capable of continuous curing can be employed.
  • the heating method used for the said hardening is not specifically limited, For example, it can carry out by a conventionally well-known method, such as hot air circulation, infrared heating, high frequency heating.
  • the curing temperature and curing time are preferably in the range of 80 ° C. to 250 ° C. and 30 seconds to 10 hours. If you want to reduce the internal stress of the cured product, pre-cure at 80 ° C to 120 ° C for 0.5 hours to 5 hours, then post-cure at 120 ° C to 180 ° C for 0.1 hours to 5 hours It is preferable to do.
  • curing is preferably performed under conditions of 150 ° C. to 250 ° C. and 30 seconds to 30 minutes.
  • the epoxy resin composition of this embodiment may be stored separately in two or more components, for example, a component containing an acid anhydride and a component containing an epoxy resin, and these may be prepared before curing. Moreover, the epoxy resin composition of this embodiment may be preserve
  • the cured product of the present embodiment is obtained by curing the above-described epoxy resin composition.
  • the curing method is as described above.
  • the cured product according to the present embodiment uses the above-described epoxy resin curing agent to improve the performance of the epoxy resin and improve the surface hardness, UV color resistance, and glass transition point.
  • the cured product of this embodiment preferably has a pencil hardness of 3H or more, and the UV color resistance is preferably 450 hours or more when the light transmittance at 400 nm is reduced to 70%.
  • the transition point is preferably 130 ° C. or higher.
  • the cured product of this embodiment when an alicyclic epoxy resin is used as the main agent, the surface hardness and the UV color resistance are significantly improved. Moreover, the cured
  • the molded body of the present embodiment includes the above-described cured product.
  • the molded body of the present embodiment is excellent in properties such as surface hardness and UV coloring resistance, and thus is suitably used for various applications.
  • the epoxy resin composition, cured product or molded product of the present embodiment is suitably used for transparent member applications (adhesives, paints, LED sealing materials, transparent plates, etc.) by taking advantage of the above-mentioned favorable characteristics.
  • the compound represented by the above formula (4) is extremely useful as an epoxy resin curing agent, for example.
  • an alicyclic epoxy resin is cured using an epoxy resin curing agent containing a compound represented by the above formula (4)
  • the resulting cured product (molded product) is further improved in surface hardness and UV color resistance.
  • the BisA type diglycidyl ether is cured using an epoxy resin curing agent containing a compound represented by the above formula (4)
  • the resulting cured product (molded product) has a further improved glass transition point (Tg). To do.
  • the curing method and physical property measurement method of the epoxy resin composition are as follows.
  • the glass transition point (Tg) was measured using a thermal analysis system EXSTRA6000 TMA (thermomechanical measuring device) manufactured by Seiko Instruments Inc. Specifically, the sample was compressed and expanded from 30 ° C. to 260 ° C. at a first temperature increase rate of 10 ° C./min under a N 2 air flow, and at a second temperature increase rate of 10 ° C./min, 30 ° C. The sample was measured by compressing and expanding from ⁇ 330 ° C. Tg was calculated
  • EXSTRA6000 TMA thermomechanical measuring device
  • UV coloring resistance test In the UV coloring resistance test, a cured product was placed in a test furnace of Dainippon Plastics I Super UV Tester SUV-W11, under the condition of 55 ° C./50 RH%, the wavelength range of 295 to 450 nm (360 (The highest intensity peak at ⁇ 380 nm) was irradiated to the cured product at an irradiation surface light intensity of 68 mW / cm 2 .
  • ⁇ Light transmittance measurement> The cured product before and after the UV coloring resistance test history was measured for light transmittance with a spectrophotometer [Spectrophotometer UV-3100 manufactured by Shimadzu Corporation]. Further, the refractive index of the cured product before and after the UV coloring resistance test history was measured with a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. The light transmittance at 400 nm of the cured product corresponding to a thickness of 1 mm was determined from the measured light transmittance and the surface reflectance calculated from the separately measured refractive index.
  • the measurement was repeated, and the light transmittance at 400 nm of the cured product after the UV color resistance test history was 70% with respect to the light transmittance at 400 nm of the cured product before the UV color resistance test history.
  • the irradiation time in the UV resistance test until the following was obtained.
  • the obtained reaction product was distilled under reduced pressure to obtain the corresponding target product (dimethyladamantane maleic anhydride 1-adduct).
  • the yield (GC yield) of the obtained dimethyladamantane maleic anhydride 1-adduct was 45 mol% (maleic anhydride basis).
  • the obtained dimethyladamantane maleic anhydride 1-adduct was used as an epoxy resin curing agent.
  • the obtained dimethyladamantane maleic anhydride monoadduct was identified by nuclear magnetic resonance spectrum ( 1 H-NMR, manufactured by JEOL, 100 MHz). The identification results are shown below. 1 H-NMR (CCl 4 / TMS) ⁇ 0.85 (s, 6H, CH 3 ); 1.1-1.7 (m, 13H); 2.0-2.7 (m, 3H, CH 2 , CH)
  • Synthesis Example 2 (Preparation of monoethyladamantane maleic anhydride 1 adduct [ETAMA] (epoxy resin curing agent))
  • ETAMA monoethyladamantane maleic anhydride 1 adduct
  • a reaction vessel was charged with 1.6 mol of ethyl adamantane and 1 mol of maleic anhydride, and the temperature in the reaction vessel was maintained at 160 ° C.
  • a reaction in which 5.5 mmol of di-tert-butyl peroxide as a radical generator was dissolved in a small amount of ethyladamantane was dropped into the reaction vessel over 3 hours to carry out the reaction. The reaction was completed in 3 hours from the end of dropping to obtain a reaction product.
  • the obtained reaction product was distilled under reduced pressure to obtain the corresponding target product (monoethyladamantane maleic anhydride 1-adduct).
  • the obtained ethyladamantane maleic anhydride monoadduct had a GC yield of 63 mol% (maleic anhydride basis).
  • the obtained ethyladamantane maleic anhydride monoadduct was used as an epoxy resin curing agent.
  • the obtained monoethyladamantane maleic anhydride monoadduct was identified by nuclear magnetic resonance spectrum ( 1 H-NMR, manufactured by JEOL, 100 MHz). The identification results are shown below. 1 H-NMR (CCl 4 / TMS) ⁇ 0.90 (t, 3H, CH 3 ); 1.1-1.7 (m, 16H); 2.0-2.7 (m, 3H, CH 2 , CH)
  • DMAMA dimethyladamantane maleic anhydride 1-adduct
  • a cured product was obtained by the above-described curing method using the obtained resin composition.
  • the UV color resistance test of the obtained cured product was performed, the irradiation time until the light transmittance at 400 nm of the cured product became 70% or less was 450 hours. Moreover, the pencil hardness of the obtained cured product was 3H.
  • Example 3 (ETAMA / alicyclic epoxy resin) 25.4 parts by mass of monoethyladamantane maleic anhydride 1-adduct (ETAMA) prepared in Synthesis Example 2 and an alicyclic epoxy resin (3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxyl) Rate: 13.6 parts by mass of Daicel Chemical Industries, Ltd.
  • Comparative Example 2 (MH700G / alicyclic epoxy resin) 36.0 parts by mass of a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride (MH700G, manufactured by Shin Nippon Rika Co., Ltd.) and an alicyclic epoxy resin (3,4-epoxycyclohexylmethyl-3 ′, 4 ′ Epoxycyclohexanecarboxylate: Daicel Chemical Industries, Ltd.
  • the epoxy resin composition containing the epoxy resin curing agent of the present invention By using the epoxy resin composition containing the epoxy resin curing agent of the present invention, it is possible to obtain a cured product that exhibits high surface hardness, excellent UV coloring resistance, and high Tg. Moreover, this hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明のエポキシ樹脂硬化剤は、下記式(1)で表される化合物を含む。(式(1)中、Rは、メチル基、エチル基又は水酸基を示し、nは1~3の整数である。)

Description

エポキシ樹脂硬化剤
 本発明は、エポキシ樹脂硬化剤、エポキシ樹脂組成物、該組成物を硬化させて得られる硬化物、及び該硬化物を含む成形体に関する。
 液状で扱うエポキシ樹脂の歴史は古く、硬化剤及びエポキシ樹脂ともに液体で扱いやすい。そのため、エポキシ樹脂は、簡単にしっかりとした成形体を得られる利点を持った有益な樹脂であり、単体樹脂、複合材として使用されている。その適用分野は、その好特性に所以し、歯科材料、各種構造材、LED封止材、接着剤、ハードコート等を含む塗料など広く様々である(例えば、特許文献1及び2参照)。
特開平6-32872号公報 特開2006-206783号公報
 主に酸無水物硬化系において、例えば、ダイセル化学工業株式会社製セロキサイドCEL2021Pに代表される脂環式エポキシ樹脂と呼ばれるタイプのエポキシ樹脂を用いると、得られる成形体は硬さや耐熱性が向上する。また、もっともスタンダードなエポキシ樹脂としては、例えば、三菱化学株式会社製jER828などのビスフェノールA(BisA)型ジグリシジルエーテルが挙げられる。ビスフェノールA(BisA)型ジグリシジルエーテルは、そのビスフェノールA骨核等に由来すると思われる好特性により、広く永く使用されてきている。
 酸無水物硬化エポキシ樹脂の系では、脂環式エポキシ樹脂を用いると、表面硬度の高い成形体を得ることができる。脂環式エポキシ樹脂を、一般的な低粘度液状酸無水物MeHHPA(メチルヘキサヒドロ無水フタル酸、例えば、日立化成工業株式会社製HN-5500)で硬化させた場合、得られる硬化物(成形体)の表面の硬度は鉛筆硬度にて2Hとなり、BisA型エポキシ樹脂の場合のHに比較して高硬度となる。成形体の表面硬度が高いと、成形体を外層部に適用した最終製品を使用する場合、表面の傷つきにくさにつながる。したがって、成形体の表面硬度は、製品寿命を決定する因子となる場合も多々ある。また、脂環式エポキシ樹脂は、その分子構造に芳香環を持たないため、耐紫外線(耐UV)耐着色性に優れる性能も持ち合わせる。そのため、脂環式エポキシ樹脂は、UV光を受ける使用を前提とした製品部材として用いると、該製品の長寿命化を達成することができる。しかしながら、近年、様々な用途における要求性能が高まり、脂環式エポキシ樹脂を用いた成形体は、表面硬度、耐UV耐着色性を更に向上させ、その適用範囲を広げることが求められている。
 一方、BisA型ジグリシジルエーテルを用いる場合、得られる成形体は、脂環式エポキシ樹脂を用いる場合よりも、可撓性、耐衝撃性や耐クラック性等に優れ、更に屈折率も高くUV照射を前提としない光学透明用途において高性能といえる。
 また、BisA型ジグリシジルエーテルを用いる場合、得られる成形体のガラス転移点(Tg)は重要な物性値のひとつである。該ガラス転移点(Tg)を向上させることができれば、前硬化後に離型できるまでの放冷の時間が短くなり、型の数を少なくすることができる。この場合、工場における手持ちの型の数が同数であれば、製造速度が向上し型取り効率が良くなる。すなわち、BisA型ジグリシジルエーテルを用いる場合、得られる成形体のガラス転移点(Tg)を向上させることができれば、成形体の生産効率を上げることにつながるが、未だ十分とは言えず更なる改善が求められている。
 本発明の目的は、脂環式エポキシ樹脂を用いた場合、得られる硬化物(成形体)の表面硬度及び耐UV着色性を更に向上させ、該成形体の適用範囲を更に広げることにある。また、BisA型ジグリシジルエーテルを用いた場合、得られる硬化物(成形体)の物性値のひとつであるTgを向上させることにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定の構造を有する酸無水物をエポキシ樹脂硬化剤として用いることで、得られる硬化物の各種物性、性能を向上させることが出来ることを見出し、本発明を完成した。すなわち、本発明はつぎのとおりである。
1. 下記式(1)で表される化合物を含むエポキシ樹脂硬化剤。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは、メチル基、エチル基又は水酸基を示し、nは1~3の整数である。)
2. 前記式(1)で表される化合物が下記式(2)で表される化合物である第1項記載のエポキシ樹脂硬化剤。
Figure JPOXMLDOC01-appb-C000007
(式(2)中、X、Y及びZは、それぞれ独立に水素原子、メチル基、エチル基又は水酸基を示す。)
3. 前記式(2)で表される化合物が下記式(3)で表される化合物である第2項記載のエポキシ樹脂硬化剤。
Figure JPOXMLDOC01-appb-C000008
4. 前記式(2)で表される化合物が下記式(4)で表される化合物である第2項記載のエポキシ樹脂硬化剤。
Figure JPOXMLDOC01-appb-C000009
5. エポキシ樹脂と、第1項から第4項のいずれか一項に記載の硬化剤とを含むエポキシ樹脂組成物。
6. 前記エポキシ樹脂が、脂環式エポキシ樹脂、核水添BisA型ジグリシジルエーテル及びBisA型ジグリシジルエーテルからなる群より選択される少なくとも1種である第5項記載のエポキシ樹脂組成物。
7. 前記エポキシ樹脂に対する前記硬化剤の当量比(硬化剤の当量/エポキシ樹脂の当量)が0.5~1.2である第5項又は第6項記載のエポキシ樹脂組成物。
8. 硬化促進剤をさらに含む第5項から第7項のいずれか一項に記載のエポキシ樹脂組成物。
9. 酸化防止剤をさらに含む第5項から第8項のいずれか一項に記載のエポキシ樹脂組成物。
10. UV吸収剤をさらに含む第5項から第9項のいずれか一項に記載のエポキシ樹脂組成物。
11. 無機充填材をさらに含む第5項から第10項のいずれか一項に記載のエポキシ樹脂組成物。
12. 第5項から第11項のいずれか一項に記載の樹脂組成物を硬化させて得られる硬化物。
13. 第12項記載の硬化物を含む成形体。
14. 下記式(4)で表される化合物。
Figure JPOXMLDOC01-appb-C000010
 本発明によれば、脂環式エポキシ樹脂を用いた場合、得られる硬化物(成形体)は、表面硬度及び耐UV耐着色性が向上し、高性能化が可能となり、適用範囲の更なる拡大につながる。
 また、本発明によれば、BisA型ジグリシジルエーテルを用いた場合、得られる硬化物(成形体)は、物性値のひとつであるTgが向上する。このため、前硬化後に離型できるまでの放冷の時間が短くて済み、型の数も少なくて済む。この場合、工場における手持ちの型の数が同数であれば、製造速度が向上し型取り効率が良くなる。したがって、本発明によれば、成形体の生産効率が上がるため、成形体の適用範囲の拡大につながる。
 以下、本発明の実施の形態(以下「本実施形態」とも記す。)について詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
 以下、本実施形態のエポキシ樹脂硬化剤、エポキシ樹脂組成物、該組成物を硬化させて得られる硬化物及び成形体等について説明する。
[エポキシ樹脂硬化剤]
 本実施形態のエポキシ樹脂硬化剤は、下記式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Rは、メチル基、エチル基又は水酸基を示し、nは1~3の整数である。)
 上記式(1)で表される化合物を含むエポキシ樹脂硬化剤を用いて脂環式エポキシ樹脂を硬化させると、得られる硬化物(成形体)は表面硬度及び耐UV着色性が更に向上する。また、上記式(1)で表される化合物を含むエポキシ樹脂硬化剤を用いてBisA型ジグリシジルエーテルを硬化させると、得られる硬化物(成形体)はガラス転移点(Tg)が向上する。
 本実施形態のエポキシ樹脂硬化剤は、下記式(2)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(2)中、X、Y及びZは、それぞれ独立に水素原子、メチル基、エチル基又は水酸基を示す。)
 上記式(2)で表される化合物を含むエポキシ樹脂硬化剤を用いて脂環式エポキシ樹脂を硬化させると、得られる硬化物(成形体)は表面硬度及び耐UV着色性が一層向上する。また、上記式(2)で表される化合物を含むエポキシ樹脂硬化剤を用いてBisA型ジグリシジルエーテルを硬化させると、得られる硬化物(成形体)はガラス転移点(Tg)が一層向上する。
 本実施形態のエポキシ樹脂硬化剤は、下記式(3)で表されるジメチルアダマンタン無水マレイン酸1付加物及び下記式(4)で表されるモノエチルアダマンタン無水マレイン酸1付加物からなる群より選ばれる少なくとも1種であることがより好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記式(3)で表される化合物及び/又は上記式(4)で表される化合物を含むエポキシ樹脂硬化剤を用いて脂環式エポキシ樹脂を硬化させると、得られる硬化物(成形体)は表面硬度及び耐UV着色性がより一層向上する。また、上記式(3)で表される化合物及び/又は上記式(4)で表される化合物を含むエポキシ樹脂硬化剤を用いてBisA型ジグリシジルエーテルを硬化させると、得られる硬化物(成形体)はガラス転移点(Tg)がより一層向上する。
 本実施形態のエポキシ樹脂硬化剤は、単独で、又は2種以上を組み合わせて用いることができる。
 また、本実施形態のエポキシ樹脂硬化剤は、本発明の効果を阻害しない限り、硬化剤成分として他の酸無水物系エポキシ樹脂硬化剤、アミン系エポキシ樹脂硬化剤、フェノール系エポキシ樹脂硬化剤を含有させてもよい。これらは単独で、又は2種以上を組み合わせて用いてもよい。
 酸無水物系エポキシ樹脂硬化剤としては、特に限定されないが、例えば、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリン(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸、脂肪族二塩基酸ポリ無水物、クロレンド酸無水物等が挙げられ、また上記酸無水物の水添化合物が挙げられる。これらは、単独又は複数含んでもよい。
 アミン系エポキシ樹脂硬化剤としては、特に限定されないが、例えば、ジエチレントリアミン、トリエチレンテトラミン、N-アミノエチルピベラジン、メンセンジアミン、イソホロンジアミン、m-キシリレンジアミン等の脂肪族アミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン等の芳香族アミン等が挙げられる。
 フェノール系エポキシ樹脂硬化剤としては、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノーノボラック樹脂、トリアジン変性フェノールノボラック樹脂等が挙げられる。
[式(1)で表される化合物の製造方法]
 上記式(1)で表される化合物は、アダマンタン類に無水マレイン酸をラジカル付加させることにより得ることができる。
 本実施形態に用いる原料のアダマンタン類としては、特に限定されないが、例えば、アダマンタン、メチルアダマンタン、ジメチルアダマンタン、トリメチルアダマンタン、エチルアダマンタン、ジエチルアダマンタン、トリエチルアダマンタン、アダマンタノール、アダマンタンジオール、アダマンタントリオール等が挙げられる。中でも硬化前のポットライフや硬化物の着色性の観点からジメチルアダマンタン又はエチルアダマンタンが好ましい。
 原料の仕込みモル比としては、無水マレイン酸1molに対して、アダマンタン類を好ましくは1~20molの範囲、より好ましくは1.5~15molの範囲、さらに好ましくは1.5~10molの範囲である。
 アダマンタン類に無水マレイン酸をラジカル付加させる際の反応温度としては、好ましくは120~180℃の範囲、より好ましくは130~170℃の範囲、さらに好ましくは150~170℃の範囲である。
 ラジカル発生剤滴下後の反応時間としては、好ましくは0.1~10時間の範囲、より好ましくは0.5~5時間の範囲、さらに好ましくは1~3時間の範囲である。
 本実施形態に用いるラジカル発生剤は、無水マレイン酸1molに対して、好ましくは0.001~0.1molの範囲、より好ましくは0.005~0.05molの範囲、さらに好ましくは0.02~0.07molの範囲である。好ましいラジカル発生剤としては、ジ-tert-ブチルパーオキサイド、過酸化ベンゾイル、アゾビスイソブチロニトリル等が挙げられる。中でもジ-tert-ブチルパーオキサイドがより好ましい。
 本実施形態に用いるアダマンタン類と無水マレイン酸との反応は、無溶媒又は溶媒中で行うことができる。用いる溶媒としては、特に限定されないが、例えば、ジクロロベンゼン、シクロヘキサノン、ジブチルエーテル等が挙げられる。操作上無溶媒が好ましい。
 このようにして得られた反応生成物は、蒸留、晶析、カラム分離等により精製可能である。
 さらに好ましい条件等を具体的に示すと、以下のとおりである。まず、反応容器に、ジメチルアダマンタン又はエチルアダマンタン1.6molに対して無水マレイン酸1molの割合で仕込み、反応容器の内部の温度を160℃程度に保持する。次に、該反応容器に、ラジカル発生剤として、例えばジ-tert-ブチルパーオキサイド5.5mmolを少量のジメチルアダマンタン又はエチルアダマンタンに溶解させた溶液を3時間程度かけて滴下する。滴下終了から約3時間で反応を終了して反応生成物を得る。得られた反応生成物を減圧蒸留することにより対応する目的物を得る。但し、ここに示した仕込み比、反応温度、反応時間は目的物収率が高くなるよう適宜変更可能であり、他の種類のラジカル発生剤を使用してもかまわない。
[エポキシ樹脂組成物]
 本実施形態のエポキシ樹脂組成物は、エポキシ樹脂(以下「主剤」ということがある)と上述のエポキシ樹脂硬化剤とを含む。本実施形態において用いられる主剤としては、特に限定されないが、例えば、脂環式エポキシ樹脂、核水添BisA型ジグリシジルエーテル及びBisA型ジグリシジルエーテルからなる群より選択される少なくとも1種が挙げられる。このようなエポキシ樹脂を主剤として用いると、上述のエポキシ樹脂硬化剤の効果がより一層発揮され、得られる硬化物の特性がより一層向上する。
 本実施形態において、脂環式エポキシ樹脂とは、その分子内に脂環を有し、且つその環を形成する炭素-炭素結合の一部がエポキシ環と共有されているエポキシ樹脂である。脂環式エポキシ樹脂としては、特に限定されないが、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビニルシクロヘキセンジエボキサイド等が挙げられる。具体的には、ダイセル化学工業株式会社製セロキサイドCEL2021Pが例示できる。
 核水添BisA型ジグリシジルエーテルとしては、特に限定されないが、例えば、三菱化学株式会社製YX8000等が挙げられる。また、BisA型ジグリシジルエーテルとしては、特に限定されないが、例えば、三菱化学株式会社製jER828が挙げられる。
 その他のエポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、DPP型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、ビスフェノールAエチレンオキサイド付加物のジグリシジルエーテル、ビスフェノールAプロピレンオキサイド付加物のジグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル等のエポキシ基を1個もったグリシジルエーテル等が挙げられる。また、これらのエポキシ樹脂の核水添化物である核水添化エポキシ樹脂が挙げられる。これらのエポキシ樹脂成分はそれぞれ単独で使用することができ、また2種以上混合して用いてもよい。さらには、エポキシ樹脂と共重合可能なオキセタン樹脂や各種変性樹脂などを使用してもよい。
 本実施形態のエポキシ樹脂組成物において、エポキシ樹脂とエポキシ樹脂硬化剤との合計含有量は、好ましくは20~100質量%であり、より好ましくは50~100質量%であり、さらに好ましくは80~100質量%である。
 また、本実施形態のエポキシ樹脂組成物において、エポキシ樹脂とエポキシ樹脂硬化剤との含有割合は、エポキシ樹脂に対する硬化剤の当量比(硬化剤の当量/エポキシ樹脂の当量)が以下の範囲となるように調整することが好ましい。該エポキシ樹脂に対する硬化剤の当量比(硬化剤の当量/エポキシ樹脂の当量)は、0.5~1.2の範囲であることが好ましく、より好ましくは0.7~1.1の範囲、さらに好ましくは0.8~1.0の範囲である。該当量比(硬化剤の当量/エポキシ樹脂の当量)が前記範囲内であると、得られる硬化物は、Tgが高くなり、耐熱性や耐UV性に優れる傾向にある。なお、本明細書において当量とは、酸無水物基 -CH-CO-O-CO-CH-と、グリシジル環(エポキシ環)とが1対1で反応することを前提とした当量であり、酸無水物基1mol/グリシジル環1mol=当量比1とするものである。
 なお、本実施形態のエポキシ樹脂組成物において、エポキシ樹脂に対する硬化剤の当量比(硬化剤の当量/エポキシ樹脂の当量)は、エポキシ樹脂の当量(エポキシ当量)と硬化剤の当量(酸無水物当量)とをそれぞれ測定し、該測定値から計算することができる。また、エポキシ当量は、JIS K7236に準じて、0.1mol/Lの過塩素酸酢酸標準液によって電位差測定することにより求めることができる。さらに、酸無水物当量は、核磁気共鳴装置(NMR)、ガスクロマトグラフィー(GC)で成分分析を行い、該分析結果から計算で求めることができる。
 本実施形態のエポキシ樹脂組成物には、本発明の効果を損ねない範囲で、必要に応じて、硬化促進剤、酸化防止剤、UV吸収剤、無機充填材、樹脂改質剤、シランカップリング剤等の各種添加剤を含有させてもよい。これらの添加剤は、1種単独でもよく、2種以上併用してもよい。
 硬化促進剤としては、特に限定されないが、例えば、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、ジメチルシクロヘキシルアミン等の3級アミン類;1-シアノエチル-2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール等のイミダゾール類;トリフェニルホスフィン、亜リン酸トリフェニル等の有機リン系化合物;テトラフェニルホスホニウムブロマイド、テトラ-n-ブチルホスホニウムブロマイド等の4級ホスホニウム塩類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7等やその有機酸塩等のジアザビシクロアルケン類;オクチル酸亜鉛、オクチル酸錫やアルミニウムアセチルアセトン錯体等の有機金属化合物類;テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩類;三ふっ化ホウ素、トリフェニルボレート等のホウ素化合物;塩化亜鉛、塩化第二錫等の金属ハロゲン化物が挙げられる。更には、高融点イミダゾール化合物、ジシアンジアミド、アミンをエポキシ樹脂等に付加したアミン付加型促進剤等の高融点分散型潜在性促進剤、イミダゾール系、リン系、ホスフィン系促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性促進剤、アミン塩型潜在性硬化促進剤、ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型の潜在性硬化促進剤等に代表される潜在性硬化促進剤も使用することができる。これらの硬化促進剤は単独又は2種以上を混合して使用することができる。
 本実施形態のエポキシ樹脂組成物において、硬化促進剤の含有量は、好ましくは0.01~10質量%であり、より好ましくは0.05~5質量%であり、さらに好ましくは0.1~3質量%である。
 酸化防止剤は、得られる硬化物の耐熱安定性をさらに向上させることができる。酸化防止剤としては、特に限定されないが、例えば、フェノール系酸化防止剤(ジブチルヒドロキシトルエン等)、イオウ系酸化防止剤(メルカプトプロピオン酸誘導体等)、リン系酸化防止剤(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド等)などが挙げられる。これらの中で、フェノール系酸化防止剤を好適に用いることができる。これらの添加剤は、単独又は2種以上を混合して使用することができる。
 本実施形態のエポキシ樹脂組成物において、酸化防止剤の含有量は、好ましくは0.01~10質量%であり、より好ましくは0.05~5質量%であり、さらに好ましくは0.1~3質量%である。
 UV吸収剤としては、特に限定されないが、例えば、BASF社製TINUBIN PやTINUVIN 234に代表されるベンゾトリアゾール系;TINUVIN 1577EDのようなトリアジン系;CHIMASSOLV 2020FDLのようなヒンダードアミン系等が挙げられる。
 本実施形態のエポキシ樹脂組成物において、UV吸収剤の含有量は、好ましくは0.01~10質量%であり、より好ましくは0.05~5質量%であり、さらに好ましくは0.1~3質量%である。
 無機充填材としては、特に限定されないが、例えば、ガラス繊維、炭素繊維、酸化チタン、アルミナ、タルク、マイカ、水酸化アルミニウム等が挙げられる。
 本実施形態のエポキシ樹脂組成物において、無機充填材の含有量は、好ましくは0.01~80質量%であり、より好ましくは0.01~50質量%であり、さらに好ましくは0.1~20質量%である。
 樹脂改質剤としては、特に限定されないが、例えば、n-ブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレート、ビニルシクロヘキセンジオキサイド、ジグリシジルアニリン、グリセリントリグリシジルエーテル等の希釈剤;ポリプロピレングリシジルエーテル、重合脂肪酸ポリグリシジルエーテル、ポリプロピレングリコール、ウレタンプレポリマー等の可撓性付与剤等が挙げられる。
 本実施形態のエポキシ樹脂組成物において、樹脂改質剤の含有量は、好ましくは0.01~80質量%であり、より好ましくは0.01~50質量%であり、さらに好ましくは0.1~20質量%である。
 シランカップリング剤としては、特に限定されないが、例えば、クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等が挙げられる。
 本実施形態のエポキシ樹脂組成物において、シランカップリング剤の含有量は、好ましくは0.01~20質量%であり、より好ましくは0.05~10質量%であり、さらに好ましくは0.1~5質量%である。
 上記エポキシ樹脂組成物の硬化方法は、特に限定されず、例えば、密閉式硬化炉や連続硬化が可能なトンネル炉等の従来公知の硬化装置を採用することができる。当該硬化に用いる加熱方法は、特に限定されないが、例えば、熱風循環、赤外線加熱、高周波加熱等、従来公知の方法で行うことができる。
 硬化温度及び硬化時間は、80℃~250℃で30秒~10時間の範囲が好ましい。硬化物の内部応力を低減したい場合は、80℃~120℃、0.5時間~5時間の条件で前硬化した後、120℃~180℃、0.1時間~5時間の条件で後硬化することが好ましい。短時間硬化を目的とする場合は150℃~250℃、30秒~30分の条件で硬化することが好ましい。
 本実施形態のエポキシ樹脂組成物は、2つ以上の成分、例えば、酸無水物を含む成分とエポキシ樹脂を含む成分とに分けて保存しておき、硬化前にこれらを調合してもよい。また、本実施形態のエポキシ樹脂組成物は、各成分を配合した熱硬化性組成物として保存し、そのまま硬化に供してもよい。熱硬化性組成物として保存する場合には、低温(通常-40℃~15℃)で保存することが好ましい。
[硬化物、成形体]
 本実施形態の硬化物は、上述のエポキシ樹脂組成物を硬化して得られる。当該硬化方法は、上述したとおりである。本実施形態の硬化物は、上述したエポキシ樹脂硬化剤を用いることにより、エポキシ樹脂の高性能化を可能にし、表面硬度、耐UV着色性、ガラス転移点を改善させている。例えば、本実施形態の硬化物は、鉛筆硬度が3H以上であることが好ましく、耐UV着色性については400nmにおける光線透過率が70%まで低下する時間が450時間以上であることが好ましく、ガラス転移点が130℃以上であることが好ましい。
 特に、本実施形態の硬化物は、主剤として脂環式エポキシ樹脂を用いる場合、表面硬度、耐UV着色性の向上が顕著である。また、本実施形態の硬化物は、主剤としてBisA型エポキシ樹脂を用いる場合、ガラス転移点の向上が顕著である。
 本実施形態の成形体は、上述の硬化物を含む。本実施形態の成形体は、表面硬度、耐UV着色性等の特性に優れることから、様々な用途に好適に用いられる。
 本実施形態のエポキシ樹脂組成物、硬化物又は成形体は、上記の好特性を生かして透明部材用途等(接着剤、塗料、LED封止材料、透明板等)に好適に用いられる。
[化合物]
 本実施形態の化合物は、下記式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000015
 上記式(4)で表される化合物は、例えば、エポキシ樹脂硬化剤として極めて有用である。上記式(4)で表される化合物を含むエポキシ樹脂硬化剤を用いて脂環式エポキシ樹脂を硬化させると、得られる硬化物(成形体)は表面硬度及び耐UV着色性がより一層向上する。また、上記式(4)で表される化合物を含むエポキシ樹脂硬化剤を用いてBisA型ジグリシジルエーテルを硬化させると、得られる硬化物(成形体)はガラス転移点(Tg)がより一層向上する。
 次に実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 エポキシ樹脂組成物の硬化方法、物性測定の方法は以下の通りである。
<硬化方法>
 後述の実施例及び比較例で得られたエポキシ樹脂組成物をビーカー内で攪拌機にて混合し、エポキシ樹脂組成物中の溶存不活性ガスを真空にて脱気した。その後、エポキシ樹脂組成物を、50mm角深さ3mmのシリコーン型に注型し、熱風乾燥機内にて、120℃、3時間、前硬化を行い、さらに、150℃、2時間、後硬化を行ない、硬化物を得た。
<ガラス転移点(Tg)測定>
 ガラス転移点(Tg)は、セイコーインスツルメンツ社製 熱分析システム EXSTRA6000 TMA(熱機械的測定装置)を使用して測定した。具体的には、N気流下、1回目 昇温速度10℃/分にて、30℃から260℃まで、試料を圧縮および膨張させ、2回目 昇温速度10℃/分にて、30℃から330℃まで、試料を圧縮および膨張させることにより測定した。2回目の測定結果からTgを求めた。
<鉛筆硬度測定>
 JIS K 5400に従い、鉛筆引っかきを用いて、鉛筆硬度を測定した。
<耐UV着色性試験>
 耐UV着色性試験は、大日本プラスチックス株式会社製 アイ・スーパー・UVテスターSUV-W11の試験炉内に硬化物を設置し、55℃/50RH%の条件下、波長範囲295~450nm(360~380nmに最高強度ピークを有する)の光を照射面光強度68mW/cmにて前記硬化物に照射して実施した。
<光線透過率測定>
 前記耐UV着色性試験履歴前及び試験履歴後の硬化物について、分光光度計〔島津製作所(株)製分光光度計UV-3100〕にて光線透過率を測定した。また、前記耐UV着色性試験履歴前及び試験履歴後の硬化物について、株式会社アタゴ製、多波長アッべ屈折率計DR-M2にて屈折率を測定した。前記測定した光線透過率と、別途測定した屈折率より計算される表面反射率とから1mm厚み相当の前記硬化物の400nmにおける光線透過率を求めた。また、該測定を繰り返し行い、前記耐UV着色性試験履歴後の硬化物の400nmにおける光線透過率が、前記耐UV着色性試験履歴前の硬化物の400nmにおける光線透過率に対して、70%以下となるまでの前記耐UV着色性試験における照射時間を求めた。
合成実施例1
(ジメチルアダマンタン無水マレイン酸1付加物〔DMAMA〕(エポキシ樹脂硬化剤)の調製)
 反応容器に、ジメチルアダマンタン1.6mol及び無水マレイン酸1molを仕込み、反応容器内の温度を160℃に保持した。該反応容器に、ラジカル発生剤として、ジ-tert-ブチルパーオキサイド5.5mmolを少量のジメチルアダマンタンに溶解させた溶液を3時間かけて滴下して反応を行った。滴下終了から3時間で反応を終了して反応生成物を得た。得られた反応生成物を減圧蒸留することにより対応する目的物(ジメチルアダマンタン無水マレイン酸1付加物)を得た。反応終了後、得られたジメチルアダマンタン無水マレイン酸1付加物のガスクロマトグラフィにより求めた収率(GC収率)は、45mol%(無水マレイン酸基準)であった。後述の実施例及び比較例において、得られたジメチルアダマンタン無水マレイン酸1付加物をエポキシ樹脂硬化剤として用いた。
 なお、得られたジメチルアダマンタン無水マレイン酸1付加物は、核磁気共鳴スペクトル(H-NMR、JEOL社製、100MHz)により同定した。該同定結果を以下に示す。
 H-NMR(CCl/TMS)δ 0.85(s、6H,CH);1.1-1.7(m,13H);2.0-2.7(m,3H,CH,CH)
合成実施例2
(モノエチルアダマンタン無水マレイン酸1付加物〔ETAMA〕(エポキシ樹脂硬化剤)の調製)
 反応容器に、エチルアダマンタン1.6mol及び無水マレイン酸1molを仕込み、反応容器内の温度を160℃に保持した。該反応容器に、ラジカル発生剤として、ジ-tert-ブチルパーオキサイド5.5mmolを少量のエチルアダマンタンに溶解させた溶液を3時間かけて滴下して反応を行った。滴下終了から3時間で反応を終了して反応生成物を得た。得られた反応生成物を減圧蒸留することにより対応する目的物(モノエチルアダマンタン無水マレイン酸1付加物)を得た。反応終了後、得られたエチルアダマンタン無水マレイン酸1付加物のGC収率は63mol%(無水マレイン酸基準)であった。後述の実施例及び比較例において、得られたエチルアダマンタン無水マレイン酸1付加物をエポキシ樹脂硬化剤として用いた。
 なお、得られたモノエチルアダマンタン無水マレイン酸1付加物は、核磁気共鳴スペクトル(H-NMR、JEOL社製、100MHz)により同定した。該同定結果を以下に示す。
 H-NMR(CCl/TMS)δ 0.90(t、3H,CH);1.1-1.7(m,16H);2.0-2.7(m,3H,CH,CH)
実施例1
(DMAMA/BisA型エポキシ樹脂)
 上記合成実施例1で調製したジメチルアダマンタン無水マレイン酸1付加物(DMAMA)35.1質量部と、BisA型エポキシ樹脂(三菱化学(株)社製、jER828)27.7質量部と、第4級ホスホニウムブロマイド(サンアプロ(株)社製、U-CAT5003)0.146質量部と、フェノール系酸化防止剤AO-50((株)ADEKA社製)0.509質量部とを混合して樹脂組成物(硬化剤の当量/エポキシ樹脂の当量=0.90)を得た。得られた樹脂組成物を用いて、上述の硬化方法により硬化物を得た。
 得られた硬化物のTgは138℃であった。
比較例1
(MH700G/BisA型エポキシ樹脂)
 ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸の混合物(新日本理化(株)社製、MH700G)30.0質量部と、BisA型エポキシ樹脂(三菱化学(株)社製、jER828)37.2質量部と、第4級ホスホニウムブロマイド(サンアプロ(株)社製、U-CAT5003)0.197質量部と、フェノール系酸化防止剤AO-50((株)ADEKA社製)0.544質量部とを混合して樹脂組成物(硬化剤の当量/エポキシ樹脂の当量=0.90)を得た。得られた樹脂組成物を用いて、上述の硬化方法により硬化物を得た。
 得られた硬化物のTgは122℃であった。
実施例2
(DMAMA/脂環式エポキシ樹脂)
 上記合成実施例1で調製したジメチルアダマンタン無水マレイン酸1付加物(DMAMA)42.0質量部と、脂環式エポキシ樹脂(3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート:ダイセル化学工業株式会社製、CEL2021P)22.5質量部と、第4級ホスホニウムブロマイド(サンアプロ(株)社製、U-CAT5003)0.175質量部、と、フェノール系酸化防止剤AO-50((株)ADEKA社製)0.526重量部とを混合して樹脂組成物(硬化剤の当量/エポキシ樹脂の当量=0.90)を得た。得られた樹脂組成物を用いて、上述の硬化方法により硬化物を得た。
 得られた硬化物の耐UV着色性試験を実施したところ、硬化物の400nmにおける光線透過率が70%以下となるまでの照射時間は、450時間であった。
 また、得られた硬化物の鉛筆硬度については、3Hであった。
実施例3
(ETAMA/脂環式エポキシ樹脂)
 上記合成実施例2で調製したモノエチルアダマンタン無水マレイン酸1付加物(ETAMA)25.4質量部と、脂環式エポキシ樹脂(3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート:ダイセル化学工業株式会社製、CEL2021P)13.6質量部と、第4級ホスホニウムブロマイド(サンアプロ(株)社製、U-CAT5003)0.110質量部と、フェノール系酸化防止剤AO-50((株)ADEKA社製)0.313質量部とを混合して樹脂組成物(硬化剤の当量/エポキシ樹脂の当量=0.90)を得た。得られた樹脂組成物を用いて、上述の硬化方法にて硬化物を得た。
 得られた硬化物の耐UV着色性試験を実施したところ、硬化物の400nmにおける光線透過率が70%となるまでの照射時間は、460時間であった。
 また、得られた硬化物の鉛筆硬度については、3Hであった。
比較例2
(MH700G/脂環式エポキシ樹脂)
 ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸の混合物(新日本理化(株)社製 MH700G)36.0質量部と、脂環式エポキシ樹脂(3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート:ダイセル化学工業株式会社製、CEL2021P)30.0質量部と、第4級ホスホニウムブロマイド(サンアプロ(株)社製、U-CAT5003)0.229重量部と、フェノール系酸化防止剤AO-50((株)ADEKA社製)0.534質量部とを混合して樹脂組成物(硬化剤の当量/エポキシ樹脂の当量=0.90)を得た。得られた樹脂組成物を用いて、上述の硬化操作方法により硬化物を得た。
 得られた硬化物の耐UV耐着色性試験を実施したところ、硬化物の400nmにおける光線透過率が70%となるまでの照射時間は、220時間であった。当該照射時間は実施例2の場合の約半分であった。
 また、得られた硬化物の鉛筆硬度については、2Hであった。
 本発明のエポキシ樹脂硬化剤を含むエポキシ樹脂組成物を用いることにより、高い表面硬度、優れた耐UV着色性、高Tgを発現する硬化物を得ることが可能である。また、該硬化物は、LED封止材用途、接着剤用途、塗料用途等の分野において好適に適用され得る。

Claims (14)

  1.  下記式(1)で表される化合物を含むエポキシ樹脂硬化剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、メチル基、エチル基又は水酸基を示し、nは1~3の整数である。)
  2.  前記式(1)で表される化合物が下記式(2)で表される化合物である請求項1記載のエポキシ樹脂硬化剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、X、Y及びZは、それぞれ独立に水素原子、メチル基、エチル基又は水酸基を示す。)
  3.  前記式(2)で表される化合物が下記式(3)で表される化合物である請求項2記載のエポキシ樹脂硬化剤。
    Figure JPOXMLDOC01-appb-C000003
  4.  前記式(2)で表される化合物が下記式(4)で表される化合物である請求項2記載のエポキシ樹脂硬化剤。
    Figure JPOXMLDOC01-appb-C000004
  5.  エポキシ樹脂と、請求項1~4のいずれか一項に記載の硬化剤とを含むエポキシ樹脂組成物。
  6.  前記エポキシ樹脂が、脂環式エポキシ樹脂、核水添BisA型ジグリシジルエーテル及びBisA型ジグリシジルエーテルからなる群より選択される少なくとも1種である請求項5記載のエポキシ樹脂組成物。
  7.  前記エポキシ樹脂に対する前記硬化剤の当量比(硬化剤の当量/エポキシ樹脂の当量)が0.5~1.2である請求項5又は6記載のエポキシ樹脂組成物。
  8.  硬化促進剤をさらに含む請求項5~7のいずれか一項に記載のエポキシ樹脂組成物。
  9.  酸化防止剤をさらに含む請求項5~8のいずれか一項に記載のエポキシ樹脂組成物。
  10.  UV吸収剤をさらに含む請求項5~9のいずれか一項に記載のエポキシ樹脂組成物。
  11.  無機充填材をさらに含む請求項5~10のいずれか一項に記載のエポキシ樹脂組成物。
  12.  請求項5~11のいずれか一項に記載の樹脂組成物を硬化させて得られる硬化物。
  13.  請求項12記載の硬化物を含む成形体。
  14.  下記式(4)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
PCT/JP2013/078464 2012-11-01 2013-10-21 エポキシ樹脂硬化剤 WO2014069273A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2015119967A RU2015119967A (ru) 2012-11-01 2013-10-21 Отверждающий агент эпоксидной смолы
KR1020157011190A KR102069010B1 (ko) 2012-11-01 2013-10-21 에폭시 수지 경화제
EP13852096.0A EP2915830B1 (en) 2012-11-01 2013-10-21 Epoxy resin curing agent
CN201380057269.7A CN104755526B (zh) 2012-11-01 2013-10-21 环氧树脂固化剂
US14/439,757 US9605110B2 (en) 2012-11-01 2013-10-21 Epoxy resin curing agent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012241520 2012-11-01
JP2012-241520 2012-11-01
JP2012241521A JP5994578B2 (ja) 2012-11-01 2012-11-01 アダマンタン構造を有する酸無水物の製造方法
JP2012-241521 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014069273A1 true WO2014069273A1 (ja) 2014-05-08

Family

ID=50627184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078464 WO2014069273A1 (ja) 2012-11-01 2013-10-21 エポキシ樹脂硬化剤

Country Status (7)

Country Link
US (1) US9605110B2 (ja)
EP (1) EP2915830B1 (ja)
KR (1) KR102069010B1 (ja)
CN (1) CN104755526B (ja)
RU (1) RU2015119967A (ja)
TW (1) TWI623581B (ja)
WO (1) WO2014069273A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255430A (zh) * 2015-11-14 2016-01-20 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105348491A (zh) * 2015-11-14 2016-02-24 华玉叶 一种固化剂组合物
CN105237740A (zh) * 2015-11-14 2016-01-13 华玉叶 一种固化剂组合物
CN105295801A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105219335A (zh) * 2015-11-14 2016-01-06 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105295803A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105199647A (zh) * 2015-11-14 2015-12-30 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105218785A (zh) * 2015-11-14 2016-01-06 华玉叶 一种固化剂组合物
CN105295797A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105295799A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105602506A (zh) * 2015-11-14 2016-05-25 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105295806A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105237741A (zh) * 2015-11-14 2016-01-13 华玉叶 一种固化剂组合物
CN105295802A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105254849A (zh) * 2015-11-14 2016-01-20 华玉叶 一种固化剂组合物
CN105295805A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105585691A (zh) * 2015-11-14 2016-05-18 华玉叶 一种固化剂组合物
CN105219331A (zh) * 2015-11-14 2016-01-06 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105602507A (zh) * 2015-11-14 2016-05-25 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105295804A (zh) * 2015-11-14 2016-02-03 华玉叶 一种用于粘接窄边框显示设备的密封剂组合物
CN105218788A (zh) * 2015-11-14 2016-01-06 华玉叶 一种固化剂组合物
CN105237739A (zh) * 2015-11-14 2016-01-13 华玉叶 一种固化剂组合物
JPWO2017154709A1 (ja) * 2016-03-09 2019-01-10 日立化成株式会社 エポキシ化合物を含有するポリケトン組成物、ポリケトン硬化物、光学素子及び画像表示装置
KR20180127273A (ko) 2018-11-12 2018-11-28 주식회사 삼양사 친환경 경화제를 함유하는 에폭시 수지 조성물 및 이의 경화물
KR102657551B1 (ko) * 2023-05-24 2024-04-16 (주)비켐코리아 볼링공 지공액 조성물 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069756A (ja) * 1992-06-25 1994-01-18 Tonen Corp エポキシ樹脂硬化剤
JPH0632872A (ja) 1992-07-17 1994-02-08 New Japan Chem Co Ltd エポキシ樹脂組成物
WO2006077862A1 (ja) * 2005-01-24 2006-07-27 Idemitsu Kosan Co., Ltd. エポキシ樹脂組成物及びそれを用いた光学材料
JP2006206783A (ja) 2005-01-28 2006-08-10 Matsushita Electric Works Ltd 光半導体封止用エポキシ樹脂組成物及び光半導体装置
JP2008120697A (ja) * 2006-11-08 2008-05-29 Idemitsu Kosan Co Ltd 無水アダマンチルコハク酸
JP2011219508A (ja) * 2010-04-02 2011-11-04 Idemitsu Kosan Co Ltd 樹脂組成物および光半導体用反射材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795658A (en) * 1971-12-30 1974-03-05 Sun Research Development Epoxy resins from dimethyladamantane bisphenols
US4004894A (en) * 1972-11-18 1977-01-25 Basf Aktiengesellschaft Otto cycle engine fuels containing derivatives of cyclic polycarboxylic acids
DE4319178C2 (de) * 1992-06-10 1997-07-17 Fujitsu Ltd Resist-Zusammensetzung enthaltend ein Polymermaterial und einen Säuregenerator
US5880154A (en) * 1994-02-01 1999-03-09 The Board Of Regents Of The University Of Nebraska Polymeric adamantane analogues
KR100538968B1 (ko) * 1997-02-18 2006-07-11 후지 샤신 필름 가부시기가이샤 포지티브감광성조성물
US6632892B2 (en) * 2001-08-21 2003-10-14 General Electric Company Composition comprising silicone epoxy resin, hydroxyl compound, anhydride and curing catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069756A (ja) * 1992-06-25 1994-01-18 Tonen Corp エポキシ樹脂硬化剤
JPH0632872A (ja) 1992-07-17 1994-02-08 New Japan Chem Co Ltd エポキシ樹脂組成物
WO2006077862A1 (ja) * 2005-01-24 2006-07-27 Idemitsu Kosan Co., Ltd. エポキシ樹脂組成物及びそれを用いた光学材料
JP2006206783A (ja) 2005-01-28 2006-08-10 Matsushita Electric Works Ltd 光半導体封止用エポキシ樹脂組成物及び光半導体装置
JP2008120697A (ja) * 2006-11-08 2008-05-29 Idemitsu Kosan Co Ltd 無水アダマンチルコハク酸
JP2011219508A (ja) * 2010-04-02 2011-11-04 Idemitsu Kosan Co Ltd 樹脂組成物および光半導体用反射材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUNISHI, KOUSHI ET AL.: "Regioselective radical addition of adamantanes to dimethyl maleate", SYNTHESIS, vol. 10, no. 10, 1988, pages 826 - 827, XP055242991 *
See also references of EP2915830A4

Also Published As

Publication number Publication date
TWI623581B (zh) 2018-05-11
CN104755526B (zh) 2017-10-03
KR102069010B1 (ko) 2020-01-22
US9605110B2 (en) 2017-03-28
KR20150082250A (ko) 2015-07-15
TW201430041A (zh) 2014-08-01
RU2015119967A (ru) 2016-12-20
US20150291729A1 (en) 2015-10-15
EP2915830A1 (en) 2015-09-09
CN104755526A (zh) 2015-07-01
EP2915830B1 (en) 2018-01-31
EP2915830A4 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2014069273A1 (ja) エポキシ樹脂硬化剤
JP6952684B2 (ja) 硬化樹脂用組成物及びその硬化物
TWI649372B (zh) 纖維強化複合材料
JP5871326B2 (ja) コーティング組成物
KR102344209B1 (ko) 에폭시 화합물, 경화성 조성물, 경화물, 에폭시 화합물의 제조 방법 및 반응성 희석제
KR20180130111A (ko) 친환경 경화제를 함유하는 에폭시 수지 조성물 및 이의 경화물
US20160122466A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
TWI730065B (zh) 環氧化合物、硬化性組合物、硬化物、環氧化合物之製造方法及反應性稀釋劑
KR20180127273A (ko) 친환경 경화제를 함유하는 에폭시 수지 조성물 및 이의 경화물
KR20190083975A (ko) 무수당 알코올 핵 및 알킬렌 옥사이드 연장부를 갖는 화합물 및 이의 제조 방법
JP6644659B2 (ja) エポキシ化合物、硬化性組成物、硬化物、エポキシ化合物の製造方法および反応性希釈剤
JP6252978B2 (ja) エポキシ樹脂硬化剤
JP7194632B2 (ja) 硬化性組成物およびその硬化物
JP2004231787A (ja) エポキシ樹脂希釈剤、エポキシ樹脂組成物及びエポキシ樹脂硬化物
TWI795486B (zh) 環氧樹脂組成物、硬化物及電氣電子零件
JP2017048387A (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子部品
TWI723175B (zh) 環氧化合物、包含其之硬化性組合物、使硬化性組合物硬化而成之硬化物及硬化物之製造方法
KR20190064418A (ko) 무수당 알코올 핵을 갖는 화합물 및 이의 제조 방법
TWI802196B (zh) 環氧樹脂組合物以及樹脂薄膜
WO2022004596A1 (ja) ベンゾオキサジン化合物含有混合物、これを含む硬化性組成物および該硬化性組成物を硬化させてなる硬化物
JP6921627B2 (ja) エポキシ化合物、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物
AU2017312122A1 (en) Adducts and uses thereof
WO2022004593A1 (ja) ベンゾオキサジン化合物含有混合物の製造方法
JP4857598B2 (ja) エポキシ化合物、その製造方法及びエポキシ樹脂組成物
JP2016194021A (ja) フルオレン骨格を有するエポキシ樹脂及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011190

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439757

Country of ref document: US

Ref document number: 2013852096

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015119967

Country of ref document: RU

Kind code of ref document: A