WO2021241726A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2021241726A1
WO2021241726A1 PCT/JP2021/020376 JP2021020376W WO2021241726A1 WO 2021241726 A1 WO2021241726 A1 WO 2021241726A1 JP 2021020376 W JP2021020376 W JP 2021020376W WO 2021241726 A1 WO2021241726 A1 WO 2021241726A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
driving force
vehicle
drive unit
gear
Prior art date
Application number
PCT/JP2021/020376
Other languages
English (en)
French (fr)
Inventor
津田耕平
草部圭一朗
中矢文平
松村康弘
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to EP21812653.0A priority Critical patent/EP4159525A4/en
Priority to CN202180026098.6A priority patent/CN115427272A/zh
Priority to US17/798,327 priority patent/US11807104B2/en
Publication of WO2021241726A1 publication Critical patent/WO2021241726A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K2006/542Transmission for changing ratio with overdrive ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device for driving wheels.
  • Patent Document 1 An example of such a vehicle drive device is disclosed in Patent Document 1 below.
  • background technology and “problems to be solved by the invention”
  • the reference numerals in Patent Document 1 are quoted in parentheses.
  • the vehicle drive device of Patent Document 1 is configured to be able to switch the operation mode according to the state of the vehicle. Specifically, in the vehicle drive device of Patent Document 1, when the charge amount of the power storage device (7) is relatively small, the rotary electric machine (5) transfers the reaction torque of the output torque of the internal combustion engine (1). The output is switched to the power split mode in which the vehicle is propelled by the combined torque of the internal combustion engine (1) and the rotary electric machine (5). On the other hand, when the power storage device (7) is in a fully charged state, the rotary electric machine (5) applies torque to the output torque of the internal combustion engine (1), and both the internal combustion engine (1) and the rotary electric machine (5) It can be switched to the parallel hybrid mode in which the vehicle is propelled by the output torque.
  • the power split mode can be switched. In the power split mode, the rotary electric machine (5) can generate electricity and the power storage device (7) can be charged. However, depending on the state of the vehicle, for example, when the vehicle speed is high, the rotary electric machine (5) may not be able to generate power in the power split mode. As described above, in the vehicle drive device of Patent Document 1, there is a possibility that the charge amount of the power storage device (7) cannot be sufficiently secured.
  • the characteristic configuration of the vehicle drive device is A vehicle drive device for driving the front and rear wheels of a vehicle. Of the front wheels and the rear wheels, one is the first wheel and the other is the second wheel.
  • An input member that is driven and connected to an internal combustion engine included in the vehicle, and a first drive unit that has a first driving force source and drives the first wheel.
  • a second drive unit having a second drive force source and driving the second wheel, The first drive unit, the second drive unit, and a control device for controlling the internal combustion engine are provided.
  • the first driving force source is a rotary electric machine that transfers electric power to and from a power storage device.
  • the first drive unit includes a first mode and a second mode as operation modes.
  • the power transmission between the internal combustion engine and the first wheel is cut off, and the power transmission between the first driving force source and the first wheel is performed.
  • the second mode power is transmitted between the internal combustion engine and the first driving force source, and between both the internal combustion engine and the first driving force source and the first wheel.
  • the first driving force source is in a state of generating power by the driving force transmitted from the internal combustion engine.
  • the control device is When the charge amount of the power storage device is less than the specified first threshold value and the speed of the vehicle is less than the specified second threshold value.
  • the operation mode of the first drive unit is set as the second mode, and the first mode is used. 2
  • the drive unit controls to output the required driving force
  • the operation mode of the first driving unit is set as the first mode, and the first driving force source is made to generate power by regeneration.
  • the internal combustion engine is put into an operating state, and the required driving force is controlled to be output by both the first driving unit and the second driving unit.
  • the control device is such that when the charge amount of the power storage device is less than the first threshold value and the speed of the vehicle is less than the second threshold value, the vehicle is going to continue to stop.
  • the operation mode of the first drive unit is set to the second mode, and the second drive unit controls to output the required driving force.
  • the first driving force source is in a state of generating electricity by the driving force transmitted from the internal combustion engine. Therefore, it is possible to generate power from the first driving force source by using the driving force of the internal combustion engine while securing the necessary driving force by the second driving unit. Therefore, the power storage device can be appropriately charged while the vehicle is stopped, accelerating, and traveling at a constant speed.
  • control device has an operation mode of the first drive unit when the charge amount of the power storage device is less than the first threshold value and the speed of the vehicle is less than the second threshold value and the vehicle is about to decelerate.
  • the first driving force source is made to generate power by regeneration
  • the internal combustion engine is put into an operating state
  • both the first driving unit and the second driving unit are controlled to output the required driving force. Therefore, power can be generated by the first driving force source by using the inertial force of the vehicle.
  • the operation mode of the first drive unit is changed to the second mode at an early stage after the deceleration of the vehicle is completed, and the charging of the power storage device is continued. You can also.
  • the power storage device can be appropriately charged in a state where the mode transition after the deceleration is completed can be performed quickly.
  • the skeleton diagram of the second drive unit of the vehicle drive device according to the embodiment. A control block diagram of a vehicle drive device according to an embodiment. The figure which shows the state of the engaging device in each operation mode of the vehicle drive device which concerns on embodiment.
  • the vehicle drive device 100 includes a first drive unit 100A for driving a pair of first wheels W1 and a second drive unit 100B for driving a pair of second wheels W2.
  • the first wheel W1 is the front wheel of the vehicle
  • the second wheel W2 is the rear wheel of the vehicle.
  • the first drive unit 100A includes an input member I that is driven and connected to an internal combustion engine EG included in a vehicle, and a first driving force source D1 that functions as a driving force source for the first wheel W1. I have.
  • the first drive unit 100A includes a first output member O1 that is driven and connected to the first wheel W1, a differential gear mechanism SP for distribution, a transmission TM, and a differential gear mechanism for the first output. It further includes a DF1, a first engaging device CL1, and a second engaging device CL2.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and a state in which the two rotating elements are connected so as to rotate integrally, or the said. It includes a state in which two rotating elements are mutably connected so that a driving force can be transmitted through one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as a shaft, a gear mechanism, a belt, and a chain.
  • the transmission member may include an engaging device that selectively transmits rotation and driving force, for example, a friction engaging device, a meshing type engaging device, and the like.
  • drive connection is used for each rotating element of the planetary gear mechanism, it means that a plurality of rotating elements in the planetary gear mechanism are connected to each other without interposing other rotating elements.
  • the input member I, the differential gear mechanism SP for distribution, the first engaging device CL1, and the second engaging device CL2 are arranged on the first axis X1 as their rotation axis. ..
  • the first driving force source D1 is arranged on the second axis X2 as its rotation axis.
  • the transmission TM is arranged on the third axis X3 as its rotation axis center.
  • the first output member O1 and the first output differential gear mechanism DF1 are arranged on the fourth axis X4 as their rotation axis.
  • the second drive unit 100B includes a second drive force source D2 that functions as a drive force source for the second wheel W2.
  • the second drive unit 100B further includes a second output member O2 that is driven and connected to the second wheel W2, a counter gear mechanism CG, and a second output differential gear mechanism DF2. ..
  • the second driving force source D2 is arranged on the fifth axis X5 as its rotation axis.
  • the counter gear mechanism CG is arranged on the sixth axis X6 as its rotation axis center.
  • the second output member O2 and the second output differential gear mechanism DF2 are arranged on the seventh axis X7 as their rotation axis.
  • the axes X1 to X7 are arranged in parallel with each other.
  • the direction parallel to the axes X1 to X7 will be referred to as the "axial direction L" of the vehicle drive device 100.
  • the axial first side L1 the side where the input member I is arranged with respect to the internal combustion engine EG
  • the opposite side is referred to as the "axial second side L2”.
  • the direction orthogonal to each of the above axes X1 to X7 is defined as the "diameter direction R" with respect to each axis.
  • the input member I is an input shaft 1 extending along the axial direction L.
  • the input shaft 1 is driven and connected to the output shaft Eo of the internal combustion engine EG via a damper device DP that attenuates fluctuations in the transmitted torque.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by the combustion of fuel to extract power.
  • the internal combustion engine EG functions as a driving force source for the first wheel W1.
  • the first driving force source D1 is the first rotary electric machine MG1 that transfers electric power to and from the power storage device BT (see FIG. 3).
  • the first rotary electric machine MG1 has a function as a motor (motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. ..
  • the first rotary electric machine MG1 is electrically connected to a power storage device BT such as a battery or a capacitor. Then, the first rotary electric machine MG1 is driven by the electric power stored in the power storage device BT to generate a driving force. Further, the first rotary electric machine MG1 generates electricity by the driving force of the internal combustion engine EG or the driving force transmitted from the side of the first output member O1 to charge the power storage device BT.
  • the first rotary electric machine MG1 includes a first stator St1 and a first rotor Ro1.
  • the first stator St1 is fixed to a non-rotating member (for example, a case accommodating a first rotating electric machine MG1 or the like).
  • the first rotor Ro1 is rotatably supported with respect to the first stator St1.
  • the first rotor Ro1 is arranged inside the radial direction R with respect to the first stator St1.
  • the differential gear mechanism SP for distribution includes a first rotating element E1, a second rotating element E2, and a third rotating element E3.
  • the first rotating element E1 is driven and connected to the input member I.
  • the second rotating element E2 is drive-connected to the first output member O1.
  • the third rotating element E3 is driven and connected to the first driving force source D1.
  • the distribution differential gear mechanism SP is a planetary gear mechanism including a first sun gear S1, a first carrier C1, and a first ring gear R1.
  • the distribution differential gear mechanism SP has a first carrier C1 that supports the first pinion gear P1, a first sun gear S1 that meshes with the first pinion gear P1, and a radial R with respect to the first sun gear S1.
  • It is a single pinion type planetary gear mechanism including a first ring gear R1 arranged on the outside and meshing with the first pinion gear P1.
  • the order of the rotational speeds of the rotating elements of the differential gear mechanism SP for distribution is the order of the first rotating element E1, the second rotating element E2, and the third rotating element E3. Therefore, in the present embodiment, the first rotating element E1 is the first sun gear S1. The second rotating element E2 is the first carrier C1. Further, the third rotating element E3 is the first ring gear R1.
  • the "order of rotation speed” is the order of rotation speed in the rotation state of each rotation element.
  • the rotational speed of each rotating element changes depending on the rotational state of the planetary gear mechanism, but the order of the high and low rotational speeds of each rotating element is constant because it is determined by the structure of the planetary gear mechanism.
  • the order of the rotation speeds of each rotating element is the same as the order of arrangement in the speed diagram (see FIGS. 5, 6 and the like) of each rotating element.
  • the “arrangement order of each rotating element in the speed diagram” is the order in which the axes corresponding to each rotating element in the speed diagram are arranged along the direction orthogonal to the axis.
  • the arrangement direction of the axes corresponding to each rotating element in the speed diagram differs depending on how the velocity diagram is drawn, but the arrangement order is constant because it is determined by the structure of the planetary gear mechanism.
  • the first drive unit 100A is drive-connected to the first gear G1 that rotates integrally with the first rotor Ro1 of the first rotary electric machine MG1 and the first gear G1. It is equipped with a second gear G2.
  • the first gear G1 and the second gear G2 are drive-connected via the idler gear IG.
  • the idler gear IG meshes with each of the first gear G1 and the second gear G2.
  • the first gear G1 is arranged on the second axis X2.
  • the first gear G1 is connected to the first rotor Ro1 so as to rotate integrally with the first rotor shaft RS1 extending along the axial direction L.
  • the second gear G2 is arranged on the first axis X1. Then, the second gear G2 is outside the radial direction R with respect to the first ring gear R1 of the distribution differential gear mechanism SP, and is the distribution differential gear mechanism SP in the radial direction along the radial direction R. They are placed in overlapping positions.
  • "overlapping in a specific direction” means that the virtual straight line is 2 when the virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line. It means that there is at least a part of the area where both of the two elements intersect.
  • the second gear G2 is connected so as to rotate integrally with the first ring gear R1.
  • a cylindrical gear forming member 2 having a first axis X1 as an axis is provided.
  • a second gear G2 is formed on the outer peripheral surface of the gear forming member 2, and a first ring gear R1 is formed on the inner peripheral surface of the gear forming member 2.
  • the transmission TM is provided with a third engagement device CL3.
  • the transmission TM shifts the rotation transmitted from the distribution differential gear mechanism SP at a gear ratio corresponding to the shift stage formed by the third engagement device CL3 and transmits the rotation to the first output member O1.
  • the transmission TM transmits the rotation transmitted from the distribution differential gear mechanism SP to the first output member O1 as it is. do.
  • the third engaging device CL3 has a first gear (low speed) ST1 having a relatively large gear ratio and a second gear (high speed) having a smaller gear ratio than the first gear ST1. Form one with ST2.
  • the transmission TM includes a third gear G3, a fourth gear G4, a fifth gear G5, a sixth gear G6, and a shift output gear 3.
  • the third gear G3 and the fourth gear G4 are arranged on the first axis X1.
  • the fifth gear G5, the sixth gear G6, and the shift output gear 3 are arranged on the third axis X3.
  • the third gear G3 is connected so as to rotate integrally with the first carrier C1 of the distribution differential gear mechanism SP.
  • the third gear G3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP.
  • the first rotary electric machine MG1 is arranged at a position overlapping both the third gear G3 and the distribution differential gear mechanism SP in the radial direction along the radial direction R.
  • the fourth gear G4 is connected so as to rotate integrally with the first ring gear R1 of the distribution differential gear mechanism SP.
  • the fourth gear G4 is arranged at a position outside the radial direction R with respect to the first ring gear R1 and overlapping the distribution differential gear mechanism SP in the radial direction along the radial direction R.
  • the transmission TM and the distribution differential gear mechanism SP are arranged so as to overlap each other in the radial direction along the radial direction R.
  • the fourth gear G4 and the sixth gear G6 among the constituent members of the transmission TM overlap with the distribution differential gear mechanism SP in the radial direction.
  • the third engaging device CL3 also overlaps with the distribution differential gear mechanism SP in the radial direction.
  • the fourth gear G4 also functions as the second gear G2.
  • the second gear G2 and the fourth gear G4 are formed on the outer peripheral surface of the gear forming member 2 as one gear.
  • the fifth gear G5 meshes with the third gear G3.
  • the sixth gear G6 meshes with the fourth gear G4.
  • the sixth gear G6 meshes with the fourth gear G4 at a position different from that of the first gear G1 in the circumferential direction of the fourth gear G4 (second gear G2).
  • the shift output gear 3 is configured to be rotatable relative to the fifth gear G5 and the sixth gear G6.
  • the number of teeth of the 3rd gear G3 and the number of teeth of the 4th gear G4 are different. That is, the outer diameter of the third gear G3 and the outer diameter of the fourth gear G4 are different. Then, as described above, the third gear G3 and the fourth gear G4 are arranged coaxially, and the fifth gear G5 meshing with the third gear G3 and the sixth gear G6 meshing with the fourth gear G4 are arranged. It is arranged coaxially. Therefore, when the outer diameter of the third gear G3 is smaller than the outer diameter of the fourth gear G4, the outer diameter of the fifth gear G5 is larger than the outer diameter of the sixth gear G6.
  • the outer diameter of the third gear G3 is larger than the outer diameter of the fourth gear G4
  • the outer diameter of the fifth gear G5 is smaller than the outer diameter of the sixth gear G6. Therefore, the ratio of the number of teeth of the fifth gear G5 to the third gear G3 is different from the ratio of the number of teeth of the sixth gear G6 to the fourth gear G4.
  • the outer diameter of the third gear G3 is smaller than the outer diameter of the fourth gear G4, and the number of teeth of the third gear G3 is smaller than the number of teeth of the fourth gear G4.
  • the outer diameter of the fifth gear G5 is larger than the outer diameter of the sixth gear G6, and the number of teeth of the fifth gear G5 is larger than the number of teeth of the sixth gear G6. Therefore, the ratio of the number of teeth of the fifth gear G5 to the third gear G3 is larger than the ratio of the number of teeth of the sixth gear G6 to the fourth gear G4.
  • the third engagement device CL3 is configured to connect any of the fifth gear G5 and the sixth gear G6 to the shift output gear 3.
  • the ratio of the number of teeth of the fifth gear G5 to the third gear G3 is larger than the ratio of the number of teeth of the sixth gear G6 to the fourth gear G4. Therefore, when the third engagement device CL3 connects the fifth gear G5 to the shift output gear 3, the first gear (low speed) ST1 having a gear ratio larger than that of the second gear ST2 is formed. ..
  • the third engaging device CL3 connects the sixth gear G6 to the shift output gear 3, the second shift stage (high speed stage) ST2 having a gear ratio smaller than that of the first shift stage ST1 is formed. ..
  • the third engaging device CL3 is configured to be switchable to a neutral state in which neither the first shift stage ST1 nor the second shift stage ST2 is formed.
  • the transmission TM does not transmit the rotation transmitted from the distribution differential gear mechanism SP to the first output member O1, that is, the internal combustion engine EG and the first rotary electric machine MG1. None of the driving forces is transmitted to the first wheel W1.
  • the third engaging device CL3 is a meshing type engaging device (dog clutch) configured to be able to switch between an engaged state and an released state by an actuator such as a solenoid, a motor, and a hydraulic cylinder.
  • the first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1.
  • the first output member O1 is the first differential input gear 4 that meshes with the speed change output gear 3.
  • the first output differential gear mechanism DF1 is a bevel gear type differential gear mechanism.
  • the first output differential gear mechanism DF1 includes a hollow first differential case, a first pinion shaft supported to rotate integrally with the first differential case, and the first pinion shaft. It includes a pair of first pinion gears rotatably supported by one pinion shaft and a pair of first side gears that mesh with the pair of first pinion gears and function as distribution output elements.
  • the first differential case houses a first pinion shaft, a pair of first pinion gears, and a pair of first side gears.
  • the first differential input gear 4 as the first output member O1 is connected to the first differential case so as to project outward in the radial direction R of the first differential case. ..
  • a first drive shaft DS1 driven and connected to the first wheel W1 is integrally rotatably connected to each of the pair of first side gears.
  • the first output differential gear mechanism DF1 distributes the rotation of the first output member O1 (first differential input gear 4) to the pair of first wheels W1 via the pair of first drive shafts DS1. ..
  • the first engaging device CL1 is an engaging device that connects and disconnects the power transmission between the input member I and the first rotating element E1 of the differential gear mechanism SP for distribution.
  • the first engaging device CL1 is configured to connect and disconnect the power transmission between the input member I and the first sun gear S1.
  • the first engaging device CL1 is a friction engaging device including a pair of friction members, and the state of engagement between the pair of friction members is controlled by flood control. As a result, the transmission torque capacity of the first engaging device CL1 can be controlled by putting the first engaging device CL1 in a sliding engaging state.
  • the "slip engagement state” is an engagement state in which there is a difference in rotational speed (slip) between the pair of friction members of the friction engagement device.
  • the second engaging device CL2 is a power between two selected from the three rotating elements of the first rotating element E1, the second rotating element E2, and the third rotating element E3 in the differential gear mechanism SP for distribution. It is an engaging device that connects and disconnects transmissions.
  • the second engaging device CL2 is configured to connect and disconnect the power transmission between the first carrier C1 as the second rotating element E2 and the first ring gear R1 as the third rotating element E3. ing.
  • the second engaging device CL2 is arranged between the first engaging device CL1 in the axial direction L and the distribution differential gear mechanism SP.
  • the second engaging device CL2 is a meshing type engaging device (dog clutch) configured to be able to switch between an engaged state and an released state by an actuator such as a solenoid, a motor, and a hydraulic cylinder.
  • the second driving force source D2 is a second rotary electric machine MG2 that transfers electric power to and from the power storage device BT (see FIG. 3).
  • the second rotary electric machine MG2 has a function as a motor (motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. ..
  • the second rotary electric machine MG2 is electrically connected to the power storage device BT. Then, the second rotary electric machine MG2 is driven by the electric power stored in the power storage device BT to generate a driving force. Further, during regeneration, the second rotary electric machine MG2 generates electricity by the driving force transmitted from the side of the second output member O2 to charge the power storage device BT.
  • the second rotary electric machine MG2 includes a second stator St2 and a second rotor Ro2.
  • the second stator St2 is fixed to a non-rotating member (for example, a case accommodating a second rotating electric machine MG2 or the like).
  • the second rotor Ro2 is rotatably supported with respect to the second stator St2.
  • the second rotor Ro2 is arranged inside the radial direction R with respect to the second stator St2.
  • the second drive unit 100B includes a rotor gear 5 that rotates integrally with the second rotor Ro2.
  • the rotor gear 5 is arranged on the fifth axis X5.
  • the rotor gear 5 is connected to the second rotor Ro2 so as to rotate integrally with the second rotor shaft RS2 extending along the axial direction L.
  • the counter gear mechanism CG includes a counter input gear 61, a counter output gear 62, and a counter shaft 63 connected so that these gears 61 and 62 rotate integrally.
  • the counter input gear 61 is an input element of the counter gear mechanism CG.
  • the counter input gear 61 meshes with the rotor gear 5.
  • the counter output gear 62 is an output element of the counter gear mechanism CG.
  • the counter output gear 62 is arranged on the second side L2 in the axial direction with respect to the counter input gear 61. Further, in the present embodiment, the counter output gear 62 is formed to have a smaller diameter than the counter input gear 61.
  • the second output differential gear mechanism DF2 is configured to distribute the rotation of the second output member O2 to the pair of second wheels W2.
  • the second output member O2 is the second differential input gear 7 that meshes with the counter output gear 62 of the counter gear mechanism CG.
  • the second output differential gear mechanism DF2 is a bevel gear type differential gear mechanism.
  • the second output differential gear mechanism DF2 includes a hollow second differential case, a second pinion shaft supported to rotate integrally with the second differential case, and the second pinion shaft. It includes a pair of second pinion gears rotatably supported by the two pinion shafts and a pair of second side gears that mesh with the pair of second pinion gears and function as distribution output elements.
  • the second differential case houses a second pinion shaft, a pair of second pinion gears, and a pair of second side gears.
  • the second differential input gear 7 as the second output member O2 is connected to the second differential case so as to project outward in the radial direction R of the second differential case. ..
  • a second drive shaft DS2 which is driven and connected to the second wheel W2, is integrally rotatably connected to each of the pair of second side gears.
  • the second output differential gear mechanism DF2 distributes the rotation of the second output member O2 (second differential input gear 7) to the pair of second wheels W2 via the pair of second drive shafts DS2. ..
  • the vehicle drive device 100 includes a first drive unit 100A, a second drive unit 100B, and a control device 10 for controlling an internal combustion engine EG.
  • the control device 10 includes a main control unit 11, an internal combustion engine control unit 12 that controls the internal combustion engine EG, a first rotary electric machine control unit 13 that controls the first rotary electric machine MG1, and a second rotary electric machine.
  • a second rotary electric machine control unit 14 that controls MG2, and an engagement control unit 15 that controls the engagement state of the first engagement device CL1, the second engagement device CL2, and the third engagement device CL3. I have.
  • the main control unit 11 controls the device in charge of each control unit for each of the internal combustion engine control unit 12, the first rotary electric machine control unit 13, the second rotary electric machine control unit 14, and the engagement control unit 15. Output a command.
  • the internal combustion engine control unit 12 controls the internal combustion engine EG so that the internal combustion engine EG outputs the target torque commanded by the main control unit 11 or becomes the target rotation speed commanded by the main control unit 11. do.
  • the first rotary electric machine control unit 13 is such that the first rotary electric machine MG1 outputs the target torque commanded by the main control unit 11 or becomes the target rotation speed commanded by the main control unit 11. 1 Controls the rotary electric machine MG1.
  • the second rotary electric machine control unit 14 is so that the second rotary electric machine MG2 outputs the target torque commanded by the main control unit 11 or becomes the target rotation speed commanded by the main control unit 11. It controls the two-turn electric machine MG2.
  • the engagement control unit 15 is set so that each of the first engagement device CL1, the second engagement device CL2, and the third engagement device CL3 is in the engagement state commanded by the main control unit 11. 1 Controls an actuator (not shown) for operating the engagement device CL1, the second engagement device CL2, and the third engagement device CL3.
  • the main control unit 11 is configured to be able to acquire information from sensors provided in each part of the vehicle in order to acquire information of each part of the vehicle on which the vehicle drive device 100 is mounted.
  • the main control unit 11 is configured to be able to acquire information from the SOC sensor Se1, the vehicle speed sensor Se2, the accelerator operation amount sensor Se3, the brake operation amount sensor Se4, and the shift position sensor Se5.
  • the SOC sensor Se1 is a sensor for detecting the state of the power storage device BT electrically connected to the first rotary electric machine MG1 and the second rotary electric machine MG2.
  • the SOC sensor Se1 is composed of, for example, a voltage sensor, a current sensor, or the like.
  • the main control unit 11 calculates the charge amount (SOC: State of Charge) of the power storage device BT based on the information such as the voltage value and the current value output from the SOC sensor Se1.
  • the vehicle speed sensor Se2 is a sensor for detecting the traveling speed of the vehicle on which the vehicle drive device 100 is mounted.
  • the vehicle speed sensor Se2 is a sensor for detecting the rotational speed of the first output member O1.
  • the main control unit 11 calculates the rotational speed (angular velocity) of the first output member O1 based on the information of the rotational speed output from the vehicle speed sensor Se2. Since the rotation speed of the first output member O1 is proportional to the vehicle speed, the main control unit 11 calculates the vehicle speed based on the detection signal of the vehicle speed sensor Se2.
  • the accelerator operation amount sensor Se3 is a sensor for detecting the operation amount by the driver of the accelerator pedal provided in the vehicle on which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the amount of operation of the accelerator pedal by the driver based on the detection signal of the accelerator operation amount sensor Se3.
  • the brake operation amount sensor Se4 is a sensor for detecting the operation amount by the driver of the brake pedal provided in the vehicle on which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the operation amount of the brake pedal by the driver based on the detection signal of the brake operation amount sensor Se4.
  • the shift position sensor Se5 is a sensor for detecting the selected position (shift position) of the shift lever operated by the driver of the vehicle on which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the shift position based on the detection signal of the shift position sensor Se5.
  • the shift lever is configured to be able to select a parking range (P range), a reverse traveling range (R range), a neutral range (N range), a forward traveling range (D range), and the like.
  • the main control unit 11 selects a plurality of operation modes in the first drive unit 100A, which will be described later, based on the information from the sensors Se1 to Se5.
  • the main control unit 11 engages each of the first engagement device CL1, the second engagement device CL2, and the third engagement device CL3 via the engagement control unit 15 according to the selected operation mode. By controlling the state, the operation mode is switched to the selected operation mode. Further, the main control unit 11 via the internal combustion engine control unit 12, the first rotary electric machine control unit 13, and the second rotary electric machine control unit 14, the internal combustion engine EG, the first rotary electric machine MG1, and the second rotary electric machine MG2. By cooperatively controlling the operating state of the vehicle, it is possible to drive an appropriate vehicle according to the selected operating mode.
  • the first drive unit 100A has an electric torque converter mode (hereinafter referred to as “eTC mode”), a first EV mode, and a second EV mode as operation modes. It has a first HV mode, a second HV mode, and a charging mode.
  • eTC mode electric torque converter mode
  • HV mode first EV mode
  • second HV mode second HV mode
  • charging mode charging mode
  • FIG. 4 shows the states of the first engaging device CL1, the second engaging device CL2, and the third engaging device CL3 in each operation mode of the first drive unit 100A of the present embodiment.
  • “ ⁇ ” indicates that the target engaging device is in the engaged state
  • “x” indicates the target engaging device. Indicates that is in the released state.
  • “Lo” indicates that the third engaging device CL3 forms the first shift stage (low speed stage) ST1
  • “Hi” indicates the third.
  • the engagement device CL3 indicates that the second shift stage (high speed stage) ST2 is formed
  • “N” indicates that the third engagement device CL3 is in the neutral state.
  • the eTC mode is a mode in which the driving force of the first driving force source D1 and the driving force of the internal combustion engine EG are combined and output from the second rotating element E2 to the first output member O1 via the differential gear mechanism SP for distribution. be.
  • This mode is a so-called electric torque converter mode because the torque of the internal combustion engine EG can be amplified and transmitted to the first output member O1.
  • the first engaging device CL1 is in the engaged state
  • the second engaging device CL2 is in the released state
  • the third engaging device CL3 is in the first shift stage (low speed stage).
  • ST1 is formed. That is, in the eTC mode, the first engaging device CL1 is in the engaged state, the second engaging device CL2 is in the released state, and the third engaging device CL3 is in the engaged state.
  • the eTC mode corresponds to the "fourth mode".
  • the distribution differential gear mechanism SP combines the torque of the first rotary electric machine MG1 and the torque of the internal combustion engine EG to generate a torque larger than the torque of the internal combustion engine EG from the first carrier C1. Output. Then, the rotation of the first carrier C1 is changed in the transmission TM at a gear ratio corresponding to the first shift stage ST1 and transmitted to the shift output gear 3 (see FIG. 5).
  • the first engaging device CL1 In the first EV mode, the first engaging device CL1 is in the released state, the second engaging device CL2 is in the engaged state, and the third engaging device CL3 forms the first speed change stage (low speed stage) ST1. Is controlled to be.
  • the second EV mode the first engaging device CL1 is in the released state, the second engaging device CL2 is in the engaged state, and the third engaging device CL3 forms the second shift stage (high speed stage) ST2. It is controlled so that it will be in the above state. That is, in the first EV mode and the second EV mode, the first engaging device CL1 is in the released state, and each of the second engaging device CL2 and the third engaging device CL3 is in the engaged state.
  • the power transmission between the internal combustion engine EG and the first wheel W1 is cut off, and the power transmission between the first driving force source D1 and the first wheel W1 is cut off.
  • the power is transmitted.
  • the first EV mode and the second EV mode correspond to the "first mode".
  • the internal combustion engine EG is separated from the distribution differential gear mechanism SP by releasing the first engaging device CL1, and the second engaging device CL2 is in the engaged state.
  • the three rotating elements Es1 to Es3 of the differential gear mechanism SP for distribution are in a state of being integrally rotated with each other.
  • the rotation of the first rotary electric machine MG1 transmitted from the first gear G1 to the second gear G2 is directly transmitted to the third gear G3 and the fourth gear G4 of the transmission TM.
  • the rotation transmitted to the transmission TM is the gear ratio of the first shift stage ST1 in the first EV mode and the gear ratio of the second shift stage ST2 in the second EV mode according to the state of the third engagement device CL3.
  • the gear is changed and transmitted to the shift output gear 3 (see FIG. 6).
  • the first engaging device CL1 In the first HV mode, the first engaging device CL1 is in the engaged state, the second engaging device CL2 is in the engaged state, and the third engaging device CL3 forms the first shift stage (low speed stage) ST1. It is controlled to be in a state.
  • the second HV mode the first engaging device CL1 is in the engaged state, the second engaging device CL2 is in the engaged state, and the third engaging device CL3 sets the second shift stage (high speed stage) ST2. It is controlled to be in the formed state. That is, in the first HV mode and the second HV mode, each of the first engaging device CL1, the second engaging device CL2, and the third engaging device CL3 is in the engaged state. Therefore, in the first HV mode and the second HV mode, power is transmitted between both the internal combustion engine EG and the first driving force source D1 and the first wheel W1.
  • the first HV mode and the second HV mode correspond to the "third mode".
  • the internal combustion engine EG is connected to the distribution differential gear mechanism SP by bringing the first engaging device CL1 into the engaged state, and the second engaging device CL2 is engaged.
  • the three rotating elements Es1 to Es3 of the differential gear mechanism SP for distribution are in a state of being integrally rotated with each other.
  • the rotation of the internal combustion engine EG transmitted via the input member I and the rotation of the first rotary electric machine MG1 transmitted from the first gear G1 to the second gear G2 are directly transferred to the transmission. It is transmitted to the third gear G3 and the fourth gear G4 of the TM.
  • the rotation transmitted to the transmission TM is the gear ratio of the first shift stage ST1 in the first HV mode and the gear ratio of the second shift stage ST2 in the second HV mode according to the state of the third engagement device CL3.
  • the gear is changed and transmitted to the shift output gear 3 (see FIG. 6).
  • the first engaging device CL1 is in the engaged state
  • the second engaging device CL2 is in the engaged state
  • the third engaging device CL3 is controlled to be in the neutral state. That is, in the charging mode, each of the first engaging device CL1 and the second engaging device CL2 is in the engaged state, and the third engaging device CL3 is in the released state. Therefore, in the charging mode, power is transmitted between the internal combustion engine EG and the first driving force source D1, and between both the internal combustion engine EG and the first driving force source D1 and the first wheel W1. The power transmission in the above is cut off, and the first driving force source D1 generates electricity by the driving force transmitted from the internal combustion engine EG.
  • the charging mode corresponds to the "second mode".
  • the vehicle In the charging mode, the vehicle may be stopped, or the second rotary electric machine MG2 is driven by the electric power generated by the first rotary electric machine MG1 or the electric power stored in the power storage device BT to drive the second rotary electric machine MG2.
  • the vehicle may be driven by transmitting the driving force of the above to the second wheel W2.
  • Such a mode in which the vehicle is driven by the driving force of the second rotary electric machine MG2 while being set to the charging mode is called a so-called series hybrid mode.
  • FIG. 5 shows a speed diagram of the differential gear mechanism SP for distribution and the transmission TM in the eTC mode of the present embodiment.
  • the vertical axis corresponds to the rotation speed of each rotating element of the differential gear mechanism SP for distribution and the transmission TM.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the differential gear mechanism SP for distribution and the transmission TM.
  • the reference numerals shown above the plurality of vertical lines are the reference numerals of the corresponding rotating elements.
  • the code shown below the plurality of vertical lines is the code of the element driven and connected to the rotating element corresponding to the code shown above. The method of describing such a speed diagram is the same for other speed diagrams such as FIG.
  • the internal combustion engine EG outputs a positive torque while rotating positively, and the first rotary electric machine MG1 outputs a positive torque while rotating negatively to generate electricity.
  • a torque larger than the torque of the internal combustion engine EG is transmitted to the first carrier C1 of the distribution differential gear mechanism SP.
  • the rotation of the first carrier C1 rotated by this torque is transmitted to the third gear G3 of the transmission TM.
  • the rotation decelerated at the gear ratio corresponding to the first gear ST1 is transmitted to the shift output gear 3.
  • FIG. 6 shows a speed diagram of the differential gear mechanism SP for distribution and the transmission TM in the first EV mode and the second EV mode, and the first HV mode and the second HV mode of the present embodiment.
  • the second engaging device CL2 is brought into the engaged state to disperse the differential gear.
  • the three rotating elements Es1 to Es3 of the mechanism SP are in a state of being integrally rotated with each other.
  • the torque of the first rotary electric machine MG1 is transmitted to the three rotating elements Es1 to Es3 of the differential gear mechanism SP for distribution that rotates integrally in this way, and the torque of the first rotary electric machine MG1 is transmitted to the first HV mode and the second HV.
  • the torques of both the internal combustion engine EG and the first rotary electric machine MG1 are transmitted.
  • the rotation output from the first carrier C1 which is the second distribution rotation element Es2 is the third rotation element of the transmission TM. It is transmitted to the gear G3.
  • the rotation output from the first ring gear R1 which is the third distribution rotation element Es3 is transmitted to the fourth gear G4 of the transmission TM.
  • the rotation decelerated at the gear ratio corresponding to the first shift stage ST1 is transmitted to the shift output gear 3 between the third gear G3 and the fifth gear G5. .
  • the rotation decelerated at the gear ratio corresponding to the second gear ST2 is transmitted to the shift output gear 3 between the fourth gear G4 and the sixth gear G6. ..
  • FIG. 7 is a flowchart showing an example of control processing by the control device 10.
  • the control device 10 determines whether or not the charge amount (SOC) of the power storage device BT is less than the specified first threshold value TH1 (step # 1).
  • the main control unit 11 calculates the charge amount (SOC) of the power storage device BT based on the information such as the voltage value and the current value output from the SOC sensor Se1, and the charge amount is the first threshold value. Determine if it is less than TH1.
  • the charge amount (SOC) is expressed as a ratio (for example, 0 to 100%) of the charge amount of the power storage device BT at that time to the fully charged state (100%). Therefore, the first threshold value TH1 is also defined as the ratio of the charge amount to the fully charged state (100%). For example, the charge amount of 20% can be set to the first threshold value TH1.
  • step # 2 When it is determined that the charge amount (SOC) of the power storage device BT is not less than the first threshold value TH1, that is, the charge amount (SOC) of the power storage device BT is equal to or higher than the first threshold value TH1 (step # 1: No), control is performed.
  • the device 10 performs a normal mode selection process (step # 2).
  • This normal mode selection process is a process performed when the charge amount (SOC) of the power storage device BT is relatively large, and the operation mode of the first drive unit 100A is set to the required drive force Tr, the vehicle speed V, and the vehicle speed V.
  • the required driving force Tr is a driving force required for the vehicle, more specifically, a driving force required to be transmitted to the pair of first wheels W1 and the pair of second wheels W2, and is the accelerator operation amount sensor Se3 and the brake. It is calculated by the main control unit 11 based on the information from the operation amount sensor Se4.
  • the vehicle speed V is the traveling speed of the vehicle on which the vehicle drive device 100 is mounted. Since such a selection process is common, detailed description thereof will be omitted.
  • step # 3 when it is determined that the charge amount (SOC) of the power storage device BT is less than the first threshold value TH1 (step # 1: Yes), the control device 10 puts the internal combustion engine EG into the operating state (step # 3).
  • the internal combustion engine control unit 12 puts the internal combustion engine EG into an operating state. That is, when the internal combustion engine EG is in the stopped state, the internal combustion engine EG is started, and when the internal combustion engine EG is already in the operating state, that state is maintained.
  • the control device 10 determines whether or not the vehicle speed V is zero, that is, whether or not the vehicle is stopped (step # 4).
  • the main control unit 11 calculates the vehicle speed based on the detection signal of the vehicle speed sensor Se2, and determines whether or not the vehicle is stopped.
  • the vehicle speed V is zero, that is, the vehicle is stopped not only when the vehicle speed V is strictly zero, but also in a state where the vehicle speed V is substantially zero (a state close to zero). It is preferable to include it. For example, even when the vehicle speed V is within ⁇ 2 km / hour, it is preferable to include it in the state where the vehicle speed V is zero.
  • step # 4 the control device 10 determines whether or not the vehicle brake is operating (step # 5).
  • the main control unit 11 calculates the operation amount of the brake pedal by the driver based on the detection signal of the brake operation amount sensor Se4, and determines whether or not the brake of the vehicle is operating.
  • step # 4: No the control device 10 determines whether or not the vehicle speed V is less than the specified second threshold value TH2 (step # 6).
  • the second threshold TH2 allows the internal combustion engine EG to rotate autonomously at the rotational speed of the internal combustion engine EG when the first engaging device CL1 is in a directly connected engagement state in order to set the third mode.
  • the vehicle speed is set to correspond to the vehicle speed V, which is the lower limit of the rotation speed (for example, the idle rotation speed).
  • the internal combustion engine EG is set to the first HV mode, which is the mode in which the rotation speed of the internal combustion engine EG is higher even at the same vehicle speed V.
  • the vehicle speed corresponding to the vehicle speed V which is the lower limit of the rotation speed capable of autonomous rotation, is set as the second threshold value TH2.
  • the internal combustion engine is set to the first HV mode or the second HV mode. In the case of a vehicle speed V such that the EG stalls, those modes can be prevented from being selected.
  • step # 5 When it is determined that the brake of the vehicle is operating (step # 5: Yes), it is not necessary to drive the first wheel W1, so that the control device 10 sets the operation mode of the first drive unit 100A to the charging mode. Switch (step # 7).
  • the engagement control unit 15 puts each of the first engagement device CL1 and the second engagement device CL2 in the engagement state, and puts the third engagement device CL3 in the neutral state.
  • control device 10 causes the first rotary electric machine MG1 to generate electric power and controls the second rotary electric machine MG2 to run or stop (step # 8).
  • the first rotary electric machine control unit 13 controls the first rotary electric machine MG1 to generate electric power
  • the second rotary electric machine control unit 14 powers or stops the second rotary electric machine MG2.
  • the control device 10 is controlled by the second drive unit 100B so as to output the required driving force Tr.
  • the second rotary electric machine control unit 14 controls the second rotary electric machine MG2 so that the required drive force Tr is output by the second drive unit 100B.
  • the control device 10 sets the operation mode of the first drive unit 100A. Switch to 1HV mode or 2nd HV mode (step # 9).
  • the engagement control unit 15 puts each of the first engagement device CL1 and the second engagement device CL2 in an engaged state, and sets the third engagement device CL3 to the first shift stage ST1 or the second shift stage. It is assumed that ST2 is formed.
  • the control device 10 controls the first rotary electric machine MG1 to generate electric power (step # 10).
  • the first rotary electric machine control unit 13 controls the first rotary electric machine MG1 to generate electric power.
  • the control device 10 controls the first drive unit 100A and the second drive unit 100B so as to output the required driving force Tr in combination.
  • the second rotary electric machine MG2 may be controlled to generate electric power by regeneration, or may be controlled to run power.
  • step # 4: No If it is determined that the vehicle speed V is not zero (step # 4: No) and is less than the second threshold value TH2 (step # 6: Yes), or if the vehicle speed V is zero (step # 4: Yes), the vehicle When it is determined that the brake is not operating (step # 5: No), the control device 10 determines whether or not the required driving force Tr is less than zero (step # 11).
  • the control device 10 switches the operation mode of the first drive unit 100A to the first EV mode or the second EV mode (step # 12).
  • the engagement control unit 15 puts the first engagement device CL1 in the released state, the second engagement device CL2 in the engagement state, and puts the third engagement device CL3 in the first shift stage ST1 or the second. It is assumed that the shift stage ST2 is formed.
  • the first engaging device CL1 is in the released state, and the power transmission between the internal combustion engine EG and the first wheel W1 is cut off.
  • the internal combustion engine EG is controlled so as to maintain an operating state without being stopped.
  • the control device 10 controls both the first rotary electric machine MG1 and the second rotary electric machine MG2 to generate power by regeneration (step # 13).
  • the first rotary electric machine control unit 13 controls the first rotary electric machine MG1 to generate power by regeneration
  • the second rotary electric machine control unit 14 controls the second rotary electric machine MG2 to generate power by regeneration. Is controlled to be performed.
  • the control device 10 controls so that the required driving force Tr is output by both the first driving unit 100A and the second driving unit 100B.
  • the inertial energy of the vehicle can be recovered from both the first wheel W1 and the second wheel W2 to efficiently generate power.
  • step # 11: No when it is determined that the required driving force Tr is not less than zero, that is, the required driving force Tr is zero or more (step # 11: No), the control device 10 has the required driving force Tr as the second drive unit 100B. It is determined whether or not it is larger than the maximum driving force Tmax that can be output (step # 14). When it is determined that the required driving force Tr is not larger than the maximum driving force Tmax, that is, the required driving force Tr is equal to or less than the maximum driving force Tmax (step # 14: Yes), the control device 10 controls the above step # 7. , # 8 is executed.
  • step # 14 when it is determined that the required driving force Tr is larger than the maximum driving force Tmax (step # 14: No), the control device 10 switches the operation mode of the first driving unit 100A to the eTC mode (step # 15).
  • the engagement control unit 15 puts the first engagement device CL1 in the engaged state, the second engagement device CL2 in the released state, and forms the third engagement device CL3 in the first shift stage ST1. Make it a state. Further, the control device 10 controls so that the required driving force Tr is output by both the first driving unit 100A and the second driving unit 100B.
  • FIG. 8 and 9 show a case where the driver releases the brake and activates the accelerator when the charge amount (SOC) of the power storage device BT is less than the first threshold value TH1 to start the vehicle from a stopped state. It is a time chart in.
  • FIG. 8 is a time chart showing an example of conventional control processing
  • FIG. 9 is a time chart showing an example of control processing by the control device 10 according to the present embodiment.
  • the mode is switched between the eTC mode and the first HV mode or the second HV mode according to the vehicle speed V.
  • Ns are the rotational speeds Neg and the first of the internal combustion engine EG (output shaft Eo) converted into the rotational speeds of the first sun gear S1, respectively. It represents the rotation speed (vehicle speed V) of the first output member O1 converted into the rotation speed of the carrier C1 and the rotation speed Nmg1 of the first rotary electric machine MG1 (first rotor Ro1) converted into the rotation speed of the first ring gear R1. .. Further, “Teg”, “Tmg1”, and “Tmg2” represent the torque of the internal combustion engine EG, the torque of the first rotary electric machine MG1, and the torque of the second rotary electric machine MG2, respectively. Further, “Br” and “Ac” represent the operation amount of the brake pedal and the operation amount of the accelerator pedal, respectively. The same applies to FIGS. 10 and 11 below for these reference numerals.
  • the operation mode of the first drive unit 100A is the eTC mode.
  • the rotation speed Nmg1 of the first rotary electric machine MG1 is negative and the torque Tmg1 of the first rotary electric machine MG1 is positive in the time range t1. Therefore, in the time range t1, the first rotary electric machine MG1 can generate electric power.
  • the vehicle speed V becomes large
  • the rotation speed Nmg1 of the first rotary electric machine MG1 becomes positive. Therefore, in the time range t2, the first rotary electric machine MG1 cannot generate electricity.
  • the time for the first rotary electric machine MG1 to generate electric power is short, and it is difficult to sufficiently secure the charge amount (SOC) of the power storage device BT.
  • the vehicle starts from the stopped state, and when the vehicle speed V is relatively low, the required driving force Tr is the second.
  • the operation mode of the first drive unit 100A is the charging mode, provided that the maximum driving force Tmax or less that can be output by the drive unit 100B or less.
  • the rotation speed Nmg1 of the first rotary electric machine MG1 is positive and the torque Tmg1 of the first rotary electric machine MG1 is negative regardless of the magnitude of the vehicle speed V.
  • the first rotary electric machine MG1 can always generate power while the vehicle speed V is relatively low, and a sufficient charge amount (SOC) of the power storage device BT can be secured. can do. Then, after the vehicle speed V rises and the rotation speed Nc matches the rotation speeds Nr and Ns, the mode shifts to the HV mode (here, the first HV mode) to continuously generate power to the first rotary electric machine MG1. Can be done.
  • SOC charge amount
  • FIG. 10 and 11 are time charts in the case where the charge amount (SOC) of the power storage device BT is less than the first threshold value TH1 and the driver activates the brake to stop the vehicle from the running state. Is.
  • FIG. 10 is a time chart showing an example of conventional control processing
  • FIG. 11 is a time chart showing an example of control processing by the control device 10 according to the present embodiment.
  • the vehicle speed V when the vehicle speed V is relatively high during deceleration of the vehicle, the vehicle speed V is relatively high.
  • the operation mode of the first drive unit 100A is the first HV mode or the second HV mode.
  • the rotation speed Nmg1 of the first rotary electric machine MG1 In the first HV mode or the second HV mode, the rotation speed Nmg1 of the first rotary electric machine MG1 is positive and the torque Tmg1 of the first rotary electric machine MG1 is negative regardless of the magnitude of the vehicle speed V. Therefore, the first rotary electric machine MG1 can always generate power while the vehicle speed V is relatively high during deceleration of the vehicle. Therefore, it is possible to sufficiently secure the charge amount (SOC) of the power storage device BT.
  • SOC charge amount
  • the operation mode of the first drive unit 100A changes from the first HV mode or the second HV mode to the eTC mode. Become.
  • the first rotary electric machine MG1 cannot generate power when the rotation speed Nmg1 of the first rotary electric machine MG1 is positive, so that the first rotary electric machine MG1
  • the operation mode of the first drive unit 100A becomes the second. From the 1HV mode or the second HV mode to the first EV mode or the second EV mode.
  • both the first rotary electric machine MG1 and the second rotary electric machine MG2 generate power by regeneration. Therefore, the first rotary electric machine MG1 can always generate power while the vehicle is decelerating. Therefore, it is possible to sufficiently secure the charge amount (SOC) of the power storage device BT.
  • SOC charge amount
  • the first engaging device CL1 is in the released state, and the power transmission between the internal combustion engine EG and the first wheel W1 is cut off.
  • the internal combustion engine EG is controlled to maintain the operating state without being stopped. Therefore, after the deceleration of the vehicle is completed, the operation mode of the first drive unit 100A can be shifted to the charging mode at an early stage to continue charging the power storage device BT. Therefore, while the vehicle is decelerating, the power storage device BT can be appropriately charged in a state where the mode transition after the deceleration is completed can be performed quickly.
  • the operation mode of the first drive unit 100A does not directly shift from the first HV mode or the second HV mode to the charging mode during deceleration of the vehicle, and the first EV mode or the first EV mode or After passing through the second EV mode, the charging mode is entered after the vehicle has stopped.
  • the third engaging device CL3 switches from the engaged state to the released state, both the internal combustion engine EG and the first rotary electric machine MG1 and the first wheel W1 The power transmission between the two is cut off. Therefore, fluctuations in the regenerative torque may affect the behavior of the vehicle.
  • the regenerative torque (negative torque) is transmitted to both the first wheel W1 and the second wheel W2, and then the regenerative torque (negative torque) is driven and connected to the first wheel W1.
  • the 1-drive unit 100A shifts to the charging mode, the regenerative torque is not transmitted to the first wheel W1 and the wheel idles, so that the torque balance between the front and rear wheels of the vehicle changes.
  • the first engaging device CL1 is in the engaged state when shifting from the first HV mode or the second HV mode to the first EV mode or the second EV mode.
  • the "transition mode" in FIG. 11 is a mode for transitioning from the first EV mode or the second EV mode to the charging mode.
  • the transition mode in order to put the first engaging device CL1 which was in the released state in the first EV mode or the second EV mode into the engaged state, the rotation speed Nr of the first ring gear R1 is used by using the torque of the first rotary electric machine MG1. Is raised to approach the rotation speed Ns of the first sun gear S1.
  • the first drive unit 100A has an eTC mode, an EV mode (first EV mode and second EV mode), an HV mode (first HV mode and second HV mode), and a charging mode as operation modes.
  • the configuration with the above is described as an example. However, it is not limited to such a configuration.
  • the first drive unit 100A may have at least an EV mode and a charging mode. Therefore, the configuration may not include the eTC mode, the HV mode, or both the eTC mode and the HV mode. If the eTC mode is not provided, the differential gear mechanism SP for distribution may not be provided.
  • the first drive unit 100A has been described as an example of a configuration in which the first EV mode and the second EV mode having different gear ratios by the transmission TM are provided as the EV mode. There may be one mode with only one gear ratio.
  • the first drive unit 100A has been described as an example of a configuration in which the first HV mode and the second HV mode having different gear ratios by the transmission TM are provided as the HV mode. There may be one mode with only one gear ratio.
  • the transmission TM third engaging device CL3 is configured to realize one shift stage and a neutral state (a state in which power transmission is cut off). NS.
  • the differential gear mechanism SP for distribution is a single pinion type planetary gear mechanism
  • the present invention is not limited to such a configuration.
  • the differential gear mechanism SP for distribution may be configured by a double pinion type planetary gear mechanism.
  • the distribution differential gear mechanism SP may be configured by another differential gear device such as a configuration in which a plurality of bevel gears are combined.
  • the first engaging device CL1 is a friction engaging device
  • each of the second engaging device CL2 and the third engaging device CL3 is a meshing type engaging device.
  • the first engaging device CL1 may be a meshing type engaging device.
  • at least one of the second engaging device CL2 and the third engaging device CL3 may be a friction engaging device.
  • the configuration in which the second driving force source D2 is the second rotary electric machine MG2 has been described as an example, but the present invention is not limited to this.
  • the second driving force source D2 may be a driving force source other than the rotary electric machine such as an internal combustion engine.
  • the vehicle drive device (100) is A vehicle drive device (100) for driving the front and rear wheels of a vehicle. Of the front wheels and the rear wheels, one is designated as the first wheel (W1) and the other is designated as the second wheel (W2). With an input member (I) that is driven and connected to an internal combustion engine (EG) included in the vehicle, and a first drive unit (100A) that has a first driving force source (D1) and drives the first wheel (W1). , A second drive unit (100B) having a second drive force source (D2) and driving the second wheel (W2), and a second drive unit (100B). The first drive unit (100A), the second drive unit (100B), and the control device (10) for controlling the internal combustion engine (EG) are provided.
  • EG internal combustion engine
  • the first driving force source (D1) is a rotary electric machine (MG1) that transfers electric power to and from a power storage device (BT).
  • the first drive unit (100A) includes a first mode and a second mode as operation modes. In the first mode, the power transmission between the internal combustion engine (EG) and the first wheel (W1) is cut off, and the first driving force source (D1) and the first wheel (the first wheel). Power is transmitted to and from W1), In the second mode, power is transmitted between the internal combustion engine (EG) and the first driving force source (D1), and the internal combustion engine (EG) and the first driving force source (D).
  • the control device (10) is When the charge amount of the power storage device (BT) is less than the specified first threshold value (TH1) and the speed (V) of the vehicle is less than the specified second threshold value (TH2). When the speed (V) of the vehicle is zero or more and the required driving force (Tr) which is the driving force required for the vehicle is zero or more, the operation mode of the first driving unit (100A) Is set to the second mode, and the second drive unit (100B) is controlled to output the required driving force (Tr).
  • the operation mode of the first drive unit (100A) is set as the first mode, and the first drive is performed.
  • the power source (D1) is made to generate power by regeneration, the internal combustion engine (EG) is put into an operating state, and the required driving force (100B) by both the first driving unit (100A) and the second driving unit (100B) It is controlled to output Tr).
  • the operation mode of the first drive unit (100A) is set as the second mode.
  • the second drive unit (100B) controls to output the required driving force (Tr).
  • the first driving force source (D1) is in a state of generating electricity by the driving force transmitted from the internal combustion engine (EG).
  • the power storage device (BT) can be appropriately charged while the vehicle is stopped, accelerating, and traveling at a constant speed. Further, in the control device (10), when the charge amount of the power storage device (BT) is less than the first threshold value (TH1) and the speed (V) of the vehicle is less than the second threshold value (TH2), the vehicle When decelerating is going to be performed, the operation mode of the first drive unit (100A) is set to the first mode, the first drive force source (D1) is made to generate power by regeneration, and the internal combustion engine (EG) is set to the operating state.
  • Both the first drive unit (100A) and the second drive unit (100B) control to output the required driving force (Tr). Therefore, power can be generated by the first driving force source (D1) by using the inertial force of the vehicle.
  • the operation mode of the first drive unit (100A) is shifted to the second mode at an early stage after the deceleration of the vehicle is completed, and the power storage device. It is also possible to continue charging (BT). Therefore, while the vehicle is decelerating, the power storage device (BT) can be appropriately charged in a state where the mode transition after the deceleration is completed can be performed quickly.
  • the power storage device (BT) is used when the vehicle is stopped and when the vehicle traveling at a relatively low speed is traveling at a constant speed, accelerating, and decelerating. Charging can be done properly. Therefore, it is possible to sufficiently secure the charge amount of the power storage device (BT).
  • the first drive unit (100A) further includes a third mode as the operation mode.
  • the third mode power is transmitted between both the internal combustion engine (EG) and the first driving force source (D1) and the first wheel (W1).
  • the control device (10) is used when the charge amount of the power storage device (BT) is less than the first threshold value (TH1) and the speed (V) of the vehicle is equal to or higher than the second threshold value (TH2).
  • the operation mode of the first drive unit (100A) is set as the third mode, and the first drive force source (D1) is made to generate power by regeneration, and the first drive unit (100A) and the second drive unit (100A) and the second drive unit (100A) are generated. It is preferable to control the output of the required driving force (Tr) in combination with the driving unit (100B).
  • the charge amount of the power storage device (BT) is less than the first threshold value (TH1) and the speed (V) of the vehicle is equal to or higher than the second threshold value (TH2)
  • the driving force of the internal combustion engine (EG) is used to generate electricity by the first driving force source (D1), and the power storage device.
  • BT can be charged. That is, when the vehicle is traveling at a relatively high speed, the power storage device (BT) can be charged while sufficiently securing the necessary driving force. Therefore, it is possible to more sufficiently secure the charge amount of the power storage device (BT).
  • the first drive unit (100A) further includes the third mode as the operation mode.
  • An output member (O1) that is driven and connected to the first wheel (W1) Further, in the order of rotation speed, a first rotation element (E1), a second rotation element (E2), and a distribution differential gear mechanism (SP) including a third rotation element (E3) are further provided.
  • the first rotating element (E1) is driven and connected to the input member (I).
  • the second rotating element (E2) is driven and connected to the output member (O1).
  • the third rotating element (E3) is driven and connected to the first driving force source (D1).
  • the first drive unit (100A) has, as the operation mode, the driving force of the first driving force source (D1) and the driving force of the internal combustion engine (EG) via the differential gear mechanism (SP) for distribution. Further, a fourth mode for outputting from the second rotating element (E2) to the output member (O1) is further provided.
  • the control device (10) is When the charge amount of the power storage device (BT) is less than the first threshold value (TH1) and the speed (V) of the vehicle is less than the second threshold value (TH2). When the speed (V) of the vehicle is zero or more and the required driving force (Tr) is larger than the maximum driving force that can be output by the second driving unit (100B), the first driving unit (T.
  • the operation mode of 100A) is replaced with the second mode as the fourth mode, and the required driving force (Tr) is output by both the first driving unit (100A) and the second driving unit (100B). It is preferable to control as such.
  • the control device (10) when the charge amount of the power storage device (BT) is less than the first threshold value (TH1) and the speed (V) of the vehicle is less than the second threshold value (TH2).
  • the operation mode of the first driving unit (100A) is changed to the fourth mode instead of the second mode.
  • Both the first drive unit (100A) and the second drive unit (100B) control to output the required driving force (Tr).
  • the fourth mode in a relatively low speed state where the speed (V) of the vehicle is less than the second threshold value (TH2), it is easy to set the state in which the first driving force source (D1) generates power. Therefore, it is possible to secure the charge amount of the power storage device (BT) or keep the power consumption small.
  • the first drive unit (100A) is A first engaging device (CL1) that connects and disconnects power transmission between the input member (I) and the first rotating element (E1), and The second mechanism for connecting and disconnecting the power transmission between two selected from the three rotating elements of the first rotating element (E1), the second rotating element (E2), and the third rotating element (E3).
  • Combined device (CL2) and A third engaging device (CL3) for connecting and disconnecting power transmission between the second rotating element (E2) and the output member (O1) is further provided.
  • the first engaging device (CL1) is in the released state, and each of the second engaging device (CL2) and the third engaging device (CL3) is in the engaged state.
  • each of the first engaging device (CL1) and the second engaging device (CL2) is in an engaged state, and the third engaging device (CL3) is in an released state.
  • each of the first engaging device (CL1), the second engaging device (CL2), and the third engaging device (CL3) is brought into an engaged state.
  • the fourth mode the first engaging device (CL1) is in the engaged state, the second engaging device (CL2) is in the released state, and the third engaging device (CL3) is in the engaged state. Is preferable.
  • the first drive unit (100A) depends on the engagement state of each of the first engagement device (CL1), the second engagement device (CL2), and the third engagement device (CL3). ) Can be appropriately changed to any one of the first mode, the second mode, the third mode, and the fourth mode.
  • the second driving force source (D2) is a second rotary electric machine (MG2) that transfers electric power to and from the power storage device (BT).
  • the vehicle speed (V). ) Is greater than zero and the required driving force (Tr) is less than zero, that is, when the vehicle is about to decelerate, in addition to the first driving force source (D1), the second driving force source (D2) It is also possible to generate electricity by regeneration. Therefore, it is possible to more sufficiently secure the charge amount of the power storage device (BT).
  • the technology according to the present disclosure can be used for a vehicle drive device for driving wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両用駆動装置(100)は、第1駆動力源(D1)を有し、第1車輪(W1)を駆動する第1駆動ユニット(100A)と、第2駆動力源(D2)を有し、第2車輪(W2)を駆動する第2駆動ユニット(100B)と、制御装置(10)と、を備え、制御装置(10)は、蓄電装置(BT)の充電量が第1閾値(TH1)未満であって、車速(V)が第2閾値(TH2)未満である場合において、車速(V)が零以上であって、要求駆動力(Tr)が零以上の場合には、第1駆動ユニット(100A)の動作モードを第2モードとして、第2駆動ユニット(100B)により要求駆動力(Tr)を出力するように制御し、車速(V)が零より大きく、要求駆動力(Tr)が零未満の場合には、第1駆動ユニット(100A)の動作モードを第1モードとして、第1駆動力源(D1)に回生による発電を行わせると共に、内燃機関(EG)を動作状態とし、第1駆動ユニット(100A)及び第2駆動ユニット(100B)の双方により要求駆動力(Tr)を出力するように制御する。

Description

車両用駆動装置
 本発明は、車輪を駆動するための車両用駆動装置に関する。
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、この背景技術の説明(「背景技術」及び「発明が解決しようとする課題」の説明)では、特許文献1における符号を括弧内に引用する。
 特許文献1の車両用駆動装置は、車両の状態に応じて動作モードを切り替え可能に構成されている。具体的には、特許文献1の車両用駆動装置では、蓄電装置(7)の充電量が比較的少ない場合には、内燃機関(1)の出力トルクの反力トルクを回転電機(5)が出力し、内燃機関(1)と回転電機(5)との合成トルクによって、車両を推進させるパワースプリットモードに切り替えられる。一方、蓄電装置(7)が満充電状態である場合には、回転電機(5)が内燃機関(1)の出力トルクにトルクを加え、内燃機関(1)及び回転電機(5)の双方の出力トルクによって車両を推進させるパラレルハイブリッドモードに切り替えられる。
特開平9-46820号公報
 上記のように、特許文献1の車両用駆動装置では、蓄電装置(7)の充電量が比較的少ない場合には、パワースプリットモードに切り替えられる。パワースプリットモードでは、回転電機(5)に発電を行わせ、蓄電装置(7)を充電することができる。しかし、例えば車速が高い場合等、車両の状態によっては、パワースプリットモードで回転電機(5)が発電を行うことができない場合がある。このように、特許文献1の車両用駆動装置では、蓄電装置(7)の充電量を十分に確保できない可能性があった。
 そこで、蓄電装置の充電量を十分に確保できる車両用駆動装置の実現が望まれる。
 上記に鑑みた、車両用駆動装置の特徴構成は、
 車両の前輪及び後輪を駆動するための車両用駆動装置であって、
 前記前輪及び前記後輪のうち、一方を第1車輪とし、他方を第2車輪として、
 前記車両が備える内燃機関に駆動連結される入力部材、及び第1駆動力源を備え、前記第1車輪を駆動する第1駆動ユニットと、
 第2駆動力源を備え、前記第2車輪を駆動する第2駆動ユニットと、
 前記第1駆動ユニット、前記第2駆動ユニット、及び前記内燃機関を制御する制御装置と、を備え、
 前記第1駆動力源は、蓄電装置との間で電力の授受を行う回転電機であり、
 前記第1駆動ユニットは、動作モードとして、第1モードと、第2モードと、を備え、
 前記第1モードでは、前記内燃機関と前記第1車輪との間での動力伝達が遮断された状態、かつ、前記第1駆動力源と前記第1車輪との間での動力伝達が行われる状態となり、
 前記第2モードでは、前記内燃機関と前記第1駆動力源との間での動力伝達が行われる状態、かつ、前記内燃機関及び前記第1駆動力源の双方と前記第1車輪との間での動力伝達が遮断された状態であって、前記内燃機関から伝達される駆動力により前記第1駆動力源が発電を行う状態となり、
 前記制御装置は、
 前記蓄電装置の充電量が規定の第1閾値未満であって、前記車両の速度が規定の第2閾値未満である場合において、
 前記車両の速度が零以上であって、前記車両に要求される駆動力である要求駆動力が零以上の場合には、前記第1駆動ユニットの前記動作モードを前記第2モードとして、前記第2駆動ユニットにより前記要求駆動力を出力するように制御し、
 前記車両の速度が零より大きく、前記要求駆動力が零未満の場合には、前記第1駆動ユニットの前記動作モードを前記第1モードとして、前記第1駆動力源に回生による発電を行わせると共に、前記内燃機関を動作状態とし、前記第1駆動ユニット及び前記第2駆動ユニットの双方により前記要求駆動力を出力するように制御する点にある。
 この特徴構成によれば、制御装置は、蓄電装置の充電量が第1閾値未満であって、車両の速度が第2閾値未満である場合において、車両が停車を継続しようとしている場合、車両が加速しようとしている場合、又は車両が一定の速度で走行しようとしている場合には、第1駆動ユニットの動作モードを第2モードとして、第2駆動ユニットにより要求駆動力を出力するように制御する。第2モードでは、内燃機関から伝達される駆動力により第1駆動力源が発電を行う状態となる。そのため、第2駆動ユニットにより必要な駆動力を確保しつつ、内燃機関の駆動力を用いて第1駆動力源により発電を行うことができる。よって、車両が停車中、加速中、及び一定の速度で走行中に、蓄電装置の充電を適切に行うことができる。
 また、制御装置は、蓄電装置の充電量が第1閾値未満であって、車両の速度が第2閾値未満である場合において、車両が減速しようとしている場合には、第1駆動ユニットの動作モードを第1モードとして、第1駆動力源に回生による発電を行わせると共に、内燃機関を動作状態とし、第1駆動ユニット及び第2駆動ユニットの双方により要求駆動力を出力するように制御する。そのため、車両の慣性力を用いて第1駆動力源により発電を行うことができる。またこの際に内燃機関を停止させずに動作状態としているので、車両の減速が終了した後には早期に第1駆動ユニットの動作モードを第2モードに移行して蓄電装置の充電を継続することもできる。よって、車両の減速中に、減速終了後のモード移行を迅速に行うことが可能な状態で、適切に蓄電装置の充電を行うことができる。
 以上のように、本構成によれば、車両の停車中、並びに比較的低速で走行している車両の一定速度での走行中、加速中、及び減速中のそれぞれにおいて、蓄電装置の充電を適切に行うことができる。したがって、蓄電装置の充電量を十分に確保することができる。
実施形態に係る車両用駆動装置の第1駆動ユニットのスケルトン図 実施形態に係る車両用駆動装置の第2駆動ユニットのスケルトン図 実施形態に係る車両用駆動装置の制御ブロック図 実施形態に係る車両用駆動装置の各動作モードにおける係合装置の状態を示す図 実施形態に係る第4モードにおける分配用差動歯車機構及び変速機の速度線図 実施形態に係る第1モード及び第3モードにおける分配用差動歯車機構及び変速機の速度線図 実施形態に係る制御装置による制御処理の一例を示すフローチャート 車両が停車した状態から発進する場合における従来の制御処理の一例を示すタイムチャート 車両が停車した状態から発進する場合における実施形態に係る制御装置による制御処理の一例を示すタイムチャート 車両が走行している状態から停車する場合における従来の制御処理の一例を示すタイムチャート 車両が走行している状態から停車する場合における実施形態に係る制御装置による制御処理の一例を示すタイムチャート
 以下では、実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1及び図2に示すように、車両用駆動装置100は、一対の第1車輪W1を駆動する第1駆動ユニット100Aと、一対の第2車輪W2を駆動する第2駆動ユニット100Bと、を備えている。本実施形態では、第1車輪W1は車両の前輪であり、第2車輪W2は車両の後輪である。
 図1に示すように、第1駆動ユニット100Aは、車両が備える内燃機関EGに駆動連結される入力部材Iと、第1車輪W1の駆動力源として機能する第1駆動力源D1と、を備えている。本実施形態では、第1駆動ユニット100Aは、第1車輪W1に駆動連結される第1出力部材O1と、分配用差動歯車機構SPと、変速機TMと、第1出力用差動歯車機構DF1と、第1係合装置CL1と、第2係合装置CL2と、を更に備えている。
 ここで、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、遊星歯車機構の各回転要素について「駆動連結」という場合には、遊星歯車機構における複数の回転要素が、互いに他の回転要素を介することなく連結されている状態を指すものとする。
 本実施形態では、入力部材I、分配用差動歯車機構SP、第1係合装置CL1、及び第2係合装置CL2は、それらの回転軸心としての第1軸X1上に配置されている。そして、第1駆動力源D1は、その回転軸心としての第2軸X2上に配置されている。更に、変速機TMは、その回転軸心としての第3軸X3上に配置されている。また、第1出力部材O1及び第1出力用差動歯車機構DF1は、それらの回転軸心としての第4軸X4上に配置されている。
 図2に示すように、第2駆動ユニット100Bは、第2車輪W2の駆動力源として機能する第2駆動力源D2を備えている。本実施形態では、第2駆動ユニット100Bは、第2車輪W2に駆動連結される第2出力部材O2と、カウンタギヤ機構CGと、第2出力用差動歯車機構DF2と、を更に備えている。
 本実施形態では、第2駆動力源D2は、その回転軸心としての第5軸X5上に配置されている。そして、カウンタギヤ機構CGは、その回転軸心としての第6軸X6上に配置されている。また、第2出力部材O2及び第2出力用差動歯車機構DF2は、それらの回転軸心としての第7軸X7上に配置されている。
 本例では、上記の軸X1~X7は、互いに平行に配置されている。以下の説明では、上記の軸X1~X7に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、図1に示すように、軸方向Lにおいて、内燃機関EGに対して入力部材Iが配置される側を「軸方向第1側L1」とし、その反対側を「軸方向第2側L2」とする。また、上記の軸X1~X7のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。なお、どの軸を基準とするかを区別する必要がない場合や、どの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。
 本実施形態では、入力部材Iは、軸方向Lに沿って延在する入力軸1である。入力軸1は、伝達されるトルクの変動を減衰するダンパ装置DPを介して、内燃機関EGの出力軸Eoに駆動連結されている。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。本実施形態では、内燃機関EGは、第1車輪W1の駆動力源として機能する。
 本実施形態では、第1駆動力源D1は、蓄電装置BT(図3参照)との間で電力の授受を行う第1回転電機MG1である。第1回転電機MG1は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、第1回転電機MG1は、バッテリやキャパシタ等の蓄電装置BTと電気的に接続されている。そして、第1回転電機MG1は、蓄電装置BTに蓄えられた電力により力行して駆動力を発生する。また、第1回転電機MG1は、内燃機関EGの駆動力、又は第1出力部材O1の側から伝達される駆動力により発電を行って蓄電装置BTを充電する。
 第1回転電機MG1は、第1ステータSt1と、第1ロータRo1と、を備えている。第1ステータSt1は、非回転部材(例えば、第1回転電機MG1等を収容するケース)に固定されている。第1ロータRo1は、第1ステータSt1に対して回転自在に支持されている。本実施形態では、第1ロータRo1は、第1ステータSt1に対して径方向Rの内側に配置されている。
 分配用差動歯車機構SPは、第1回転要素E1と、第2回転要素E2と、第3回転要素E3と、を備えている。第1回転要素E1は、入力部材Iに駆動連結されている。第2回転要素E2は、第1出力部材O1に駆動連結されている。第3回転要素E3は、第1駆動力源D1に駆動連結されている。
 本実施形態では、分配用差動歯車機構SPは、第1サンギヤS1と第1キャリヤC1と第1リングギヤR1とを備えた遊星歯車機構である。本例では、分配用差動歯車機構SPは、第1ピニオンギヤP1を支持する第1キャリヤC1と、第1ピニオンギヤP1に噛み合う第1サンギヤS1と、当該第1サンギヤS1に対して径方向Rの外側に配置されて第1ピニオンギヤP1に噛み合う第1リングギヤR1と、を備えたシングルピニオン型の遊星歯車機構である。
 分配用差動歯車機構SPの回転要素の回転速度の順は、第1回転要素E1、第2回転要素E2、第3回転要素E3の順となっている。したがって、本実施形態では、第1回転要素E1は、第1サンギヤS1である。そして、第2回転要素E2は、第1キャリヤC1である。また、第3回転要素E3は、第1リングギヤR1である。
 ここで、「回転速度の順」とは、各回転要素の回転状態における回転速度の順番のことである。各回転要素の回転速度は、遊星歯車機構の回転状態によって変化するが、各回転要素の回転速度の高低の並び順は、遊星歯車機構の構造によって定まるものであるため一定となる。なお、各回転要素の回転速度の順は、各回転要素の速度線図(図5,6等参照)における配置順に等しい。ここで、「各回転要素の速度線図における配置順」とは、速度線図における各回転要素に対応する軸が、当該軸に直交する方向に沿って配置される順番のことである。速度線図における各回転要素に対応する軸の配置方向は、速度線図の描き方によって異なるが、その配置順は遊星歯車機構の構造によって定まるものであるため一定となる。
 図1に示すように、本実施形態では、第1駆動ユニット100Aは、第1回転電機MG1の第1ロータRo1と一体的に回転する第1ギヤG1と、第1ギヤG1と駆動連結された第2ギヤG2と、を備えている。図示の例では、第1ギヤG1と第2ギヤG2とが、アイドラギヤIGを介して駆動連結されている。アイドラギヤIGは、第1ギヤG1及び第2ギヤG2のそれぞれに噛み合っている。
 本実施形態では、第1ギヤG1は、第2軸X2上に配置されている。そして、第1ギヤG1は、軸方向Lに沿って延在する第1ロータ軸RS1を介して、第1ロータRo1と一体的に回転するように連結されている。
 本実施形態では、第2ギヤG2は、第1軸X1上に配置されている。そして、第2ギヤG2は、分配用差動歯車機構SPの第1リングギヤR1に対して、径方向Rの外側であって、径方向Rに沿う径方向視で分配用差動歯車機構SPと重複する位置に配置されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。
 また、本実施形態では、第2ギヤG2は、第1リングギヤR1と一体的に回転するように連結されている。本例では、第1軸X1を軸心とする筒状のギヤ形成部材2が設けられている。そして、ギヤ形成部材2の外周面に第2ギヤG2が形成され、ギヤ形成部材2の内周面に第1リングギヤR1が形成されている。
 変速機TMは、第3係合装置CL3を備えている。変速機TMは、分配用差動歯車機構SPから伝達された回転を、第3係合装置CL3によって形成された変速段に応じた変速比で変速して第1出力部材O1に伝達する。なお、変速機TMは、第3係合装置CL3によって形成された変速段に応じた変速比が1の場合、分配用差動歯車機構SPから伝達された回転をそのまま第1出力部材O1に伝達する。本実施形態では、第3係合装置CL3は、比較的変速比が大きい第1変速段(低速段)ST1と、当該第1変速段ST1よりも変速比が小さい第2変速段(高速段)ST2とのいずれかを形成する。
 本実施形態では、変速機TMは、第3ギヤG3と、第4ギヤG4と、第5ギヤG5と、第6ギヤG6と、変速出力ギヤ3と、を備えている。本実施形態では、第3ギヤG3及び第4ギヤG4は、第1軸X1上に配置されている。そして、第5ギヤG5、第6ギヤG6、及び変速出力ギヤ3は、第3軸X3上に配置されている。
 第3ギヤG3は、分配用差動歯車機構SPの第1キャリヤC1と一体的に回転するように連結されている。本実施形態では、第3ギヤG3は、分配用差動歯車機構SPに対して軸方向第1側L1に配置されている。また、本実施形態では、径方向Rに沿う径方向視で、第1回転電機MG1が第3ギヤG3と分配用差動歯車機構SPとの双方と重複する位置に配置されている。
 第4ギヤG4は、分配用差動歯車機構SPの第1リングギヤR1と一体的に回転するように連結されている。本実施形態では、第4ギヤG4は、第1リングギヤR1に対して、径方向Rの外側であって、径方向Rに沿う径方向視で分配用差動歯車機構SPと重複する位置に配置されている。つまり、本実施形態では、変速機TMと分配用差動歯車機構SPとが、径方向Rに沿う径方向視で互いに重複するように配置されている。図示の例では、変速機TMの構成部材のうちの第4ギヤG4及び第6ギヤG6が、径方向視で分配用差動歯車機構SPと重複している。また、第3係合装置CL3も、径方向視で分配用差動歯車機構SPと重複している。また、本例では、第4ギヤG4は、第2ギヤG2としても機能する。換言すれば、第2ギヤG2と第4ギヤG4とが、1つのギヤとしてギヤ形成部材2の外周面に形成されている。これにより、第2ギヤG2と第4ギヤG4とが独立して設けられた構成と比較して、車両用駆動装置100(第1駆動ユニット100A)の製造コストを低減することができる。
 第5ギヤG5は、第3ギヤG3に噛み合っている。第6ギヤG6は、第4ギヤG4に噛み合っている。本実施形態では、第6ギヤG6は、第4ギヤG4(第2ギヤG2)の周方向における第1ギヤG1とは異なる位置で、第4ギヤG4に噛み合っている。変速出力ギヤ3は、第5ギヤG5及び第6ギヤG6に対して相対的に回転可能に構成されている。
 第3ギヤG3の歯数と第4ギヤG4の歯数とが異なっている。つまり、第3ギヤG3の外径と第4ギヤG4の外径とが異なっている。そして、上述したように、第3ギヤG3と第4ギヤG4とが同軸上に配置されていると共に、第3ギヤG3に噛み合う第5ギヤG5と第4ギヤG4に噛み合う第6ギヤG6とが同軸上に配置されている。そのため、第3ギヤG3の外径が第4ギヤG4の外径よりも小さい場合には、第5ギヤG5の外径が第6ギヤG6の外径よりも大きい。一方、第3ギヤG3の外径が第4ギヤG4の外径よりも大きい場合には、第5ギヤG5の外径が第6ギヤG6の外径よりも小さい。したがって、第3ギヤG3に対する第5ギヤG5の歯数比と、第4ギヤG4に対する第6ギヤG6の歯数比とが異なっている。本実施形態では、第3ギヤG3の外径が第4ギヤG4の外径よりも小さく、第3ギヤG3の歯数は第4ギヤG4の歯数よりも少ない。そのため、本実施形態では、第5ギヤG5の外径が第6ギヤG6の外径よりも大きく、第5ギヤG5の歯数は第6ギヤG6の歯数よりも多い。したがって、第3ギヤG3に対する第5ギヤG5の歯数比は、第4ギヤG4に対する第6ギヤG6の歯数比よりも大きい。
 本実施形態では、第3係合装置CL3は、第5ギヤG5及び第6ギヤG6のいずれかを、変速出力ギヤ3に連結するように構成されている。上述したように、本実施形態では、第3ギヤG3に対する第5ギヤG5の歯数比は、第4ギヤG4に対する第6ギヤG6の歯数比よりも大きい。そのため、第3係合装置CL3が第5ギヤG5を変速出力ギヤ3に連結させた場合には、第2変速段ST2よりも変速比が大きい第1変速段(低速段)ST1が形成される。一方、第3係合装置CL3が第6ギヤG6を変速出力ギヤ3に連結させた場合には、第1変速段ST1よりも変速比が小さい第2変速段(高速段)ST2が形成される。
 更に、本実施形態では、第3係合装置CL3は、第1変速段ST1及び第2変速段ST2のいずれも形成しないニュートラル状態に切り替え可能に構成されている。第3係合装置CL3がニュートラル状態の場合、変速機TMが分配用差動歯車機構SPから伝達された回転を第1出力部材O1に伝達しない状態、つまり、内燃機関EG及び第1回転電機MG1のいずれの駆動力も第1車輪W1に伝達されない状態となる。
 第3係合装置CL3が第1変速段ST1及び第2変速段ST2のいずれかを形成した状態が、第3係合装置CL3の係合状態に相当する。一方、第3係合装置CL3のニュートラル状態が、第3係合装置CL3の解放状態に相当する。本例では、第3係合装置CL3は、ソレノイド、電動機、油圧シリンダ等のアクチュエータによって係合状態と解放状態とを切り替え可能に構成された噛み合い式係合装置(ドグクラッチ)である。
 第1出力用差動歯車機構DF1は、第1出力部材O1の回転を一対の第1車輪W1に分配するように構成されている。本実施形態では、第1出力部材O1は、変速出力ギヤ3に噛み合う第1差動入力ギヤ4である。
 本実施形態では、第1出力用差動歯車機構DF1は、傘歯車型の差動歯車機構である。具体的には、第1出力用差動歯車機構DF1は、中空の第1差動ケースと、当該第1差動ケースと一体的に回転するように支持された第1ピニオンシャフトと、当該第1ピニオンシャフトに対して回転可能に支持された一対の第1ピニオンギヤと、当該一対の第1ピニオンギヤに噛み合って分配出力要素として機能する一対の第1サイドギヤと、を備えている。第1差動ケースには、第1ピニオンシャフト、一対の第1ピニオンギヤ、及び一対の第1サイドギヤが収容されている。本実施形態では、第1差動ケースには、第1出力部材O1としての第1差動入力ギヤ4が、当該第1差動ケースの径方向Rの外側に突出するように連結されている。そして、一対の第1サイドギヤのそれぞれには、第1車輪W1に駆動連結された第1ドライブシャフトDS1が一体的に回転可能に連結されている。こうして、第1出力用差動歯車機構DF1は、一対の第1ドライブシャフトDS1を介して、第1出力部材O1(第1差動入力ギヤ4)の回転を一対の第1車輪W1に分配する。
 第1係合装置CL1は、入力部材Iと分配用差動歯車機構SPの第1回転要素E1との間の動力伝達を断接する係合装置である。本実施形態では、第1係合装置CL1は、入力部材Iと第1サンギヤS1との間の動力伝達を断接するように構成されている。本例では、第1係合装置CL1は、一対の摩擦部材を備え、当該一対の摩擦部材同士の係合の状態が油圧によって制御される摩擦係合装置である。これにより、第1係合装置CL1を滑り係合状態として、第1係合装置CL1の伝達トルク容量を制御することができる。したがって、第1回転電機MG1の駆動力を利用して内燃機関EGを始動する場合に、第1回転電機MG1から内燃機関EGに伝達されるトルクを制御することができるため、第1回転電機MG1を一旦停止する必要がない。ここで、「滑り係合状態」とは、摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がある係合状態である。
 第2係合装置CL2は、分配用差動歯車機構SPにおける第1回転要素E1、第2回転要素E2、及び第3回転要素E3の3つの回転要素のうちから選択される2つの間の動力伝達を断接する係合装置である。本実施形態では、第2係合装置CL2は、第2回転要素E2としての第1キャリヤC1と、第3回転要素E3としての第1リングギヤR1との間の動力伝達を断接するように構成されている。そして、第2係合装置CL2は、軸方向Lにおける第1係合装置CL1と分配用差動歯車機構SPとの間に配置されている。本例では、第2係合装置CL2は、ソレノイド、電動機、油圧シリンダ等のアクチュエータによって係合状態と解放状態とを切り替え可能に構成された噛み合い式係合装置(ドグクラッチ)である。
 図2に示すように、本実施形態では、第2駆動力源D2は、蓄電装置BT(図3参照)との間で電力の授受を行う第2回転電機MG2である。第2回転電機MG2は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、第2回転電機MG2は、蓄電装置BTと電気的に接続されている。そして、第2回転電機MG2は、蓄電装置BTに蓄えられた電力により力行して駆動力を発生する。また、第2回転電機MG2は、回生中には、第2出力部材O2の側から伝達される駆動力により発電を行って蓄電装置BTを充電する。
 第2回転電機MG2は、第2ステータSt2と、第2ロータRo2と、を備えている。第2ステータSt2は、非回転部材(例えば、第2回転電機MG2等を収容するケース)に固定されている。第2ロータRo2は、第2ステータSt2に対して回転自在に支持されている。本実施形態では、第2ロータRo2は、第2ステータSt2に対して径方向Rの内側に配置されている。
 本実施形態では、第2駆動ユニット100Bは、第2ロータRo2と一体的に回転するロータギヤ5を備えている。ロータギヤ5は、第5軸X5上に配置されている。そして、ロータギヤ5は、軸方向Lに沿って延在する第2ロータ軸RS2を介して、第2ロータRo2と一体的に回転するように連結されている。
 カウンタギヤ機構CGは、カウンタ入力ギヤ61と、カウンタ出力ギヤ62と、これらのギヤ61,62が一体的に回転するように連結するカウンタ軸63と、を備えている。
 カウンタ入力ギヤ61は、カウンタギヤ機構CGの入力要素である。カウンタ入力ギヤ61は、ロータギヤ5に噛み合っている。
 カウンタ出力ギヤ62は、カウンタギヤ機構CGの出力要素である。本実施形態では、カウンタ出力ギヤ62は、カウンタ入力ギヤ61よりも軸方向第2側L2に配置されている。また、本実施形態では、カウンタ出力ギヤ62は、カウンタ入力ギヤ61よりも小径に形成されている。
 第2出力用差動歯車機構DF2は、第2出力部材O2の回転を一対の第2車輪W2に分配するように構成されている。本実施形態では、第2出力部材O2は、カウンタギヤ機構CGのカウンタ出力ギヤ62に噛み合う第2差動入力ギヤ7である。
 本実施形態では、第2出力用差動歯車機構DF2は、傘歯車型の差動歯車機構である。具体的には、第2出力用差動歯車機構DF2は、中空の第2差動ケースと、当該第2差動ケースと一体的に回転するように支持された第2ピニオンシャフトと、当該第2ピニオンシャフトに対して回転可能に支持された一対の第2ピニオンギヤと、当該一対の第2ピニオンギヤに噛み合って分配出力要素として機能する一対の第2サイドギヤと、を備えている。第2差動ケースには、第2ピニオンシャフト、一対の第2ピニオンギヤ、及び一対の第2サイドギヤが収容されている。本実施形態では、第2差動ケースには、第2出力部材O2としての第2差動入力ギヤ7が、当該第2差動ケースの径方向Rの外側に突出するように連結されている。そして、一対の第2サイドギヤのそれぞれには、第2車輪W2に駆動連結された第2ドライブシャフトDS2が一体的に回転可能に連結されている。こうして、第2出力用差動歯車機構DF2は、一対の第2ドライブシャフトDS2を介して、第2出力部材O2(第2差動入力ギヤ7)の回転を一対の第2車輪W2に分配する。
 図3に示すように、車両用駆動装置100は、第1駆動ユニット100A、第2駆動ユニット100B、及び内燃機関EGを制御する制御装置10を備えている。本実施形態では、制御装置10は、主制御部11と、内燃機関EGを制御する内燃機関制御部12と、第1回転電機MG1を制御する第1回転電機制御部13と、第2回転電機MG2を制御する第2回転電機制御部14と、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3の係合の状態を制御する係合制御部15と、を備えている。
 主制御部11は、内燃機関制御部12、第1回転電機制御部13、第2回転電機制御部14、及び係合制御部15のそれぞれに対して、各制御部が担当する装置を制御する指令を出力する。内燃機関制御部12は、内燃機関EGが、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように内燃機関EGを制御する。第1回転電機制御部13は、第1回転電機MG1が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第1回転電機MG1を制御する。第2回転電機制御部14は、第2回転電機MG2が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第2回転電機MG2を制御する。係合制御部15は、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3のそれぞれが、主制御部11から指令された係合の状態となるように、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3を動作させるためのアクチュエータ(図示を省略)を制御する。
 また、主制御部11は、車両用駆動装置100が搭載される車両の各部の情報を取得するために、当該車両の各部に設けられたセンサからの情報を取得可能に構成されている。本実施形態では、主制御部11は、SOCセンサSe1、車速センサSe2、アクセル操作量センサSe3、ブレーキ操作量センサSe4、及びシフト位置センサSe5からの情報を取得可能に構成されている。
 SOCセンサSe1は、第1回転電機MG1及び第2回転電機MG2と電気的に接続された、蓄電装置BTの状態を検出するためのセンサである。SOCセンサSe1は、例えば、電圧センサや電流センサ等により構成されている。主制御部11は、SOCセンサSe1から出力される電圧値や電流値等の情報に基づいて、蓄電装置BTの充電量(SOC:State of Charge)を算出する。
 車速センサSe2は、車両用駆動装置100が搭載される車両の走行速度を検出するためのセンサである。本実施形態では、車速センサSe2は、第1出力部材O1の回転速度を検出するためのセンサである。主制御部11は、車速センサSe2から出力される上記回転速度の情報に基づいて、第1出力部材O1の回転速度(角速度)を算出する。第1出力部材O1の回転速度は車速に比例するため、主制御部11は、車速センサSe2の検出信号に基づいて車速を算出する。
 アクセル操作量センサSe3は、車両用駆動装置100が搭載される車両に設けられたアクセルペダルの運転者による操作量を検出するためのセンサである。主制御部11は、アクセル操作量センサSe3の検出信号に基づいて、運転者によるアクセルペダルの操作量を算出する。
 ブレーキ操作量センサSe4は、車両用駆動装置100が搭載される車両に設けられたブレーキペダルの運転者による操作量を検出するためのセンサである。主制御部11は、ブレーキ操作量センサSe4の検出信号に基づいて、運転者によるブレーキペダルの操作量を算出する。
 シフト位置センサSe5は、車両用駆動装置100が搭載される車両の運転者により操作されるシフトレバーの選択位置(シフト位置)を検出するためのセンサである。主制御部11は、シフト位置センサSe5の検出信号に基づいてシフト位置を算出する。シフトレバーは、パーキングレンジ(Pレンジ)、後進走行レンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)、前進走行レンジ(Dレンジ)等を選択可能に構成されている。
 主制御部11は、上記のセンサSe1~Se5からの情報に基づいて、後述する第1駆動ユニット100Aにおける複数の動作モードの選択を行う。主制御部11は、係合制御部15を介して、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3のそれぞれを、選択した動作モードに応じた係合の状態に制御することにより、当該選択した動作モードへの切り替えを行う。更に、主制御部11は、内燃機関制御部12、第1回転電機制御部13、及び第2回転電機制御部14を介して、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2の動作状態を協調制御することにより、選択した動作モードに応じた適切な車両の走行を可能とする。
 図4に示すように、本実施形態では、第1駆動ユニット100Aは、動作モードとして、電気式トルクコンバータモード(以下、「eTCモード」と記す)と、第1EVモードと、第2EVモードと、第1HVモードと、第2HVモードと、充電モードと、を備えている。
 図4に、本実施形態の第1駆動ユニット100Aの各動作モードにおける、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3の状態を示す。なお、図4の第1係合装置CL1及び第2係合装置CL2の欄において、「〇」は対象の係合装置が係合状態であることを示し、「×」は対象の係合装置が解放状態であることを示している。また、図4の第3係合装置CL3の欄において、「Lo」は第3係合装置CL3が第1変速段(低速段)ST1を形成していることを示し、「Hi」は第3係合装置CL3が第2変速段(高速段)ST2を形成していることを示し、「N」は第3係合装置CL3がニュートラル状態となっていることを示している。
 eTCモードは、分配用差動歯車機構SPを介して第1駆動力源D1の駆動力と内燃機関EGの駆動力とを合わせて第2回転要素E2から第1出力部材O1に出力するモードである。このモードは、内燃機関EGのトルクを増幅して第1出力部材O1に伝達することができるため、所謂、電気式トルクコンバータモードと称される。
 図4に示すように、eTCモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が解放状態であり、第3係合装置CL3が第1変速段(低速段)ST1を形成した状態となるように制御される。つまり、eTCモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が解放状態であり、第3係合装置CL3が係合状態とされる。eTCモードは、「第4モード」に相当する。
 本実施形態のeTCモードでは、分配用差動歯車機構SPが、第1回転電機MG1のトルクと内燃機関EGのトルクとを合わせて、内燃機関EGのトルクよりも大きいトルクを第1キャリヤC1から出力する。そして、第1キャリヤC1の回転が、変速機TMにおいて第1変速段ST1に応じた変速比で変速されて変速出力ギヤ3に伝達される(図5参照)。
 第1EVモードでは、第1係合装置CL1が解放状態であり、第2係合装置CL2が係合状態であり、第3係合装置CL3が第1変速段(低速段)ST1を形成した状態となるように制御される。一方、第2EVモードでは、第1係合装置CL1が解放状態であり、第2係合装置CL2が係合状態であり、第3係合装置CL3が第2変速段(高速段)ST2を形成した状態となるように制御される。つまり、第1EVモード及び第2EVモードでは、第1係合装置CL1が解放状態であり、第2係合装置CL2及び第3係合装置CL3のそれぞれが係合状態とされる。そのため、第1EVモード及び第2EVモードでは、内燃機関EGと第1車輪W1との間での動力伝達が遮断された状態、かつ、第1駆動力源D1と第1車輪W1との間での動力伝達が行われる状態となる。第1EVモード及び第2EVモードは、「第1モード」に相当する。
 第1EVモード及び第2EVモードでは、第1係合装置CL1が解放状態とされることによって内燃機関EGが分配用差動歯車機構SPから分離されると共に、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素Es1~Es3が互いに一体的に回転する状態となる。その結果、本実施形態では、第1ギヤG1から第2ギヤG2に伝達された第1回転電機MG1の回転は、そのまま変速機TMの第3ギヤG3及び第4ギヤG4に伝達される。そして、変速機TMに伝達された回転は、第3係合装置CL3の状態に応じて、第1EVモードでは第1変速段ST1の変速比、第2EVモードでは第2変速段ST2の変速比で変速されて変速出力ギヤ3に伝達される(図6参照)。
 第1HVモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、第3係合装置CL3が第1変速段(低速段)ST1を形成した状態となるように制御される。一方、第2HVモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、第3係合装置CL3が第2変速段(高速段)ST2を形成した状態となるように制御される。つまり、第1HVモード及び第2HVモードでは、第1係合装置CL1、第2係合装置CL2、及び第3係合装置CL3のそれぞれが係合状態とされる。そのため、第1HVモード及び第2HVモードでは、内燃機関EG及び第1駆動力源D1の双方と第1車輪W1との間での動力伝達が行われる状態となる。第1HVモード及び第2HVモードは、「第3モード」に相当する。
 第1HVモード及び第2HVモードでは、第1係合装置CL1が係合状態とされることによって内燃機関EGが分配用差動歯車機構SPに連結されると共に、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素Es1~Es3が互いに一体的に回転する状態となる。その結果、本実施形態では、入力部材Iを介して伝達される内燃機関EGの回転、及び、第1ギヤG1から第2ギヤG2に伝達された第1回転電機MG1の回転は、そのまま変速機TMの第3ギヤG3及び第4ギヤG4に伝達される。そして、変速機TMに伝達された回転は、第3係合装置CL3の状態に応じて、第1HVモードでは第1変速段ST1の変速比、第2HVモードでは第2変速段ST2の変速比で変速されて変速出力ギヤ3に伝達される(図6参照)。
 充電モードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、第3係合装置CL3がニュートラル状態となるように制御される。つまり、充電モードでは、第1係合装置CL1及び第2係合装置CL2のそれぞれが係合状態であり、第3係合装置CL3が解放状態とされる。そのため、充電モードでは、内燃機関EGと第1駆動力源D1との間での動力伝達が行われる状態、かつ、内燃機関EG及び第1駆動力源D1の双方と第1車輪W1との間での動力伝達が遮断された状態であって、内燃機関EGから伝達される駆動力により第1駆動力源D1が発電を行う状態となる。充電モードは、「第2モード」に相当する。
 なお、充電モードでは、車両を停車させていても良いし、第1回転電機MG1が発電した電力や蓄電装置BTに蓄えられた電力により第2回転電機MG2を力行させ、当該第2回転電機MG2の駆動力を第2車輪W2に伝達することで車両を走行させても良い。このように充電モードとしつつ第2回転電機MG2の駆動力によって車両を走行させるモードは、所謂、シリーズハイブリッドモードと称される。
 図5に、本実施形態のeTCモードにおける分配用差動歯車機構SP及び変速機TMの速度線図を示す。図5の速度線図において、縦軸は、分配用差動歯車機構SP及び変速機TMの各回転要素の回転速度に対応している。そして、並列配置された複数本の縦線のそれぞれは、分配用差動歯車機構SP及び変速機TMの各回転要素に対応している。また、図5の速度線図において、複数本の縦線の上方に示された符号は、対応する回転要素の符号である。そして、複数本の縦線の下方に示された符号は、上方に示された符号に対応する回転要素に駆動連結された要素の符号である。このような速度線図の記載方法は、図6等の他の速度線図においても同様である。
 図5に示すように、本実施形態のeTCモードでは、内燃機関EGが正回転しつつ正トルクを出力し、第1回転電機MG1が負回転しつつ正トルクを出力して発電する。これにより、内燃機関EGのトルクよりも大きいトルクが分配用差動歯車機構SPの第1キャリヤC1に伝達される。このトルクによって回転する第1キャリヤC1の回転が、変速機TMの第3ギヤG3に伝達される。そして、第3ギヤG3と第5ギヤG5との間で、第1変速段ST1に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。
 図6に、本実施形態の第1EVモード及び第2EVモード、並びに、第1HVモード及び第2HVモードにおける、分配用差動歯車機構SP及び変速機TMの速度線図を示す。
 図6に示すように、本実施形態の第1EVモード及び第2EVモード、並びに、第1HVモード及び第2HVモードでは、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素Es1~Es3が互いに一体的に回転する状態となる。このように一体回転する分配用差動歯車機構SPの3つの回転要素Es1~Es3に対して、第1EVモード及び第2EVモードでは第1回転電機MG1のトルクが伝達され、第1HVモード及び第2HVモードでは内燃機関EG及び第1回転電機MG1の双方のトルクが伝達される。これらのトルクによって回転する分配用差動歯車機構SPの3つの回転要素Es1~Es3のうち、第2分配用回転要素Es2である第1キャリヤC1から出力された回転が、変速機TMの第3ギヤG3に伝達される。一方、第3分配用回転要素Es3である第1リングギヤR1から出力された回転が、変速機TMの第4ギヤG4に伝達される。そして、第1EVモード及び第1HVモードでは、第3ギヤG3と第5ギヤG5との間で、第1変速段ST1に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。一方、第2EVモード及び第2HVモードでは、第4ギヤG4と第6ギヤG6との間で、第2変速段ST2に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。
 以下では、制御装置10による制御処理について説明する。図7は、制御装置10による制御処理の一例を示すフローチャートである。
 図7に示すように、制御装置10は、蓄電装置BTの充電量(SOC)が規定の第1閾値TH1未満であるか否かを判断する(ステップ#1)。本実施形態では、主制御部11が、SOCセンサSe1から出力される電圧値や電流値等の情報に基づいて、蓄電装置BTの充電量(SOC)を算出し、当該充電量が第1閾値TH1未満であるか否かを判断する。本実施形態では、充電量(SOC)は、蓄電装置BTのその時点の充電量の、満充電状態(100%)に対する割合(例えば0~100%)として表される。よって、第1閾値TH1も、満充電状態(100%)に対する充電量の割合として規定されている。例えば、充電量20%を第1閾値TH1とすることができる。
 蓄電装置BTの充電量(SOC)が第1閾値TH1未満ではない、つまり、蓄電装置BTの充電量(SOC)が第1閾値TH1以上であると判断した場合(ステップ#1:No)、制御装置10は、通常のモード選択処理を行う(ステップ#2)。この通常のモード選択処理とは、蓄電装置BTの充電量(SOC)が比較的多い場合に行われる処理であって、第1駆動ユニット100Aの動作モードを、要求駆動力Tr、車速V、及び運転者によるモード選択操作等に基づいて、eTCモード、第1EVモード、第2EVモード、第1HVモード、第2HVモード、及び充電モードのいずれかに切り替える処理である。要求駆動力Trは、車両に要求される駆動力、より詳しくは一対の第1車輪W1及び一対の第2車輪W2に伝達することが要求される駆動力であり、アクセル操作量センサSe3及びブレーキ操作量センサSe4からの情報に基づいて、主制御部11により算出される。車速Vは、車両用駆動装置100が搭載される車両の走行速度である。なお、このような選択処理は一般的であるため、詳細な説明は省略する。
 一方、蓄電装置BTの充電量(SOC)が第1閾値TH1未満であると判断した場合(ステップ#1:Yes)、制御装置10は、内燃機関EGを動作状態とする(ステップ#3)。本実施形態では、内燃機関制御部12が、内燃機関EGを動作状態とする。つまり、内燃機関EGが停止状態であった場合には内燃機関EGを始動し、内燃機関EGが既に動作状態であった場合にはその状態を維持する。
 そして、制御装置10は、車速Vが零であるか否か、つまり、車両が停車中であるか否かを判断する(ステップ#4)。本実施形態では、主制御部11が、車速センサSe2の検出信号に基づいて車速を算出し、車両が停車中であるか否かを判断する。なお、ここで、車速Vが零である、つまり、車両が停車中であるとは、車速Vが厳密に零である場合に限らず、実質的に零である状態(零に近い状態)も含むものとすると好適である。例えば、車速Vが±2km/時以内である場合も、車速Vが零である状態に含めると好適である。
 車速Vが零であると判断した場合(ステップ#4:Yes)、制御装置10は、車両のブレーキが作動しているか否かを判断する(ステップ#5)。本実施形態では、主制御部11が、ブレーキ操作量センサSe4の検出信号に基づいて、運転者によるブレーキペダルの操作量を算出し、車両のブレーキが作動しているか否かを判断する。一方、車速Vが零ではないと判断した場合(ステップ#4:No)、制御装置10は、車速Vが規定の第2閾値TH2未満であるか否かを判断する(ステップ#6)。
 本実施形態では、第2閾値TH2は、第3モードとするために第1係合装置CL1を直結係合状態とした場合に、内燃機関EGの回転速度が、当該内燃機関EGが自律回転可能な回転速度の下限値(例えばアイドル回転速度)となる車速Vに対応した車速に設定されている。本例では、第3モードとして第1HVモードと第2HVモードとがあるため、同じ車速Vでも内燃機関EGの回転速度が高くなる方のモードである第1HVモードとした場合に、内燃機関EGが自律回転可能な回転速度の下限値となる車速Vに対応した車速を、第2閾値TH2としている。第2閾値TH2をこのように設定し、車速Vが第2閾値TH2未満である場合に第1HVモード及び第2HVモードを選択しないようにすることで、第1HVモード又は第2HVモードにすると内燃機関EGがストールするような車速Vの場合に、それらのモードを選択しないようにすることができる。
 車両のブレーキが作動していると判断した場合(ステップ#5:Yes)、第1車輪W1を駆動する必要性は低いため、制御装置10は、第1駆動ユニット100Aの動作モードを充電モードに切り替える(ステップ#7)。本実施形態では、係合制御部15が、第1係合装置CL1及び第2係合装置CL2のそれぞれを係合状態とし、第3係合装置CL3をニュートラル状態とする。
 更に、制御装置10は、第1回転電機MG1に発電を行わせると共に、第2回転電機MG2を力行又は停止させるように制御する(ステップ#8)。本実施形態では、第1回転電機制御部13が、第1回転電機MG1に発電を行わせるように制御すると共に、第2回転電機制御部14が、第2回転電機MG2を力行又は停止させるように制御する。そして、制御装置10は、第2駆動ユニット100Bにより要求駆動力Trを出力するように制御する。本実施形態では、第2駆動ユニット100Bにより要求駆動力Trを出力するように、第2回転電機制御部14が第2回転電機MG2を制御する。
 車速Vが第2閾値TH2未満ではない、つまり、車速Vが第2閾値TH2以上であると判断した場合(ステップ#6:No)、制御装置10は、第1駆動ユニット100Aの動作モードを第1HVモード又は第2HVモードに切り替える(ステップ#9)。本実施形態では、係合制御部15が、第1係合装置CL1及び第2係合装置CL2のそれぞれを係合状態とし、第3係合装置CL3を第1変速段ST1又は第2変速段ST2を形成した状態とする。
 更に、第1HVモード又は第2HVモードにおいて、制御装置10は、第1回転電機MG1に発電を行わせるように制御する(ステップ#10)。本実施形態では、第1回転電機制御部13が、第1回転電機MG1に発電を行わせるように制御する。そして、制御装置10は、第1駆動ユニット100Aと第2駆動ユニット100Bとを合わせて要求駆動力Trを出力するように制御する。なお、第2回転電機MG2は、回生により発電するように制御されても良いし、力行するように制御されても良い。
 車速Vが零ではなく(ステップ#4:No)、第2閾値TH2未満であると判断した場合(ステップ#6:Yes)、又は、車速Vが零であり(ステップ#4:Yes)、車両のブレーキが作動していないと判断した場合(ステップ#5:No)、制御装置10は、要求駆動力Trが零未満であるか否かを判断する(ステップ#11)。
 要求駆動力Trが零未満であると判断した場合(ステップ#11:Yes)、制御装置10は、第1駆動ユニット100Aの動作モードを第1EVモード又は第2EVモードに切り替える(ステップ#12)。本実施形態では、係合制御部15が、第1係合装置CL1を解放状態とし、第2係合装置CL2を係合状態とし、第3係合装置CL3を第1変速段ST1又は第2変速段ST2を形成した状態とする。なお、このとき、第1係合装置CL1が解放状態となり、内燃機関EGと第1車輪W1との間での動力伝達が遮断された状態となっているが、上記ステップ#3において動作状態とされた内燃機関EGは停止されることなく、動作状態を維持するように制御される。
 またこの場合、車両は減速中であるので、制御装置10は、第1回転電機MG1及び第2回転電機MG2の双方に回生による発電を行わせるように制御する(ステップ#13)。本実施形態では、第1回転電機制御部13が、第1回転電機MG1に回生による発電を行わせるように制御すると共に、第2回転電機制御部14が、第2回転電機MG2に回生による発電を行わせるように制御する。そして、制御装置10は、第1駆動ユニット100A及び第2駆動ユニット100Bの双方により要求駆動力Trを出力するように制御する。これにより、第1車輪W1及び第2車輪W2の双方から車両の慣性エネルギーを回収して効率的に発電を行うことができる。
 一方、要求駆動力Trが零未満ではない、つまり、要求駆動力Trが零以上であると判断した場合(ステップ#11:No)、制御装置10は、要求駆動力Trが第2駆動ユニット100Bにより出力可能な最大駆動力Tmaxよりも大きいか否かを判断する(ステップ#14)。要求駆動力Trが最大駆動力Tmaxよりも大きくない、つまり、要求駆動力Trが最大駆動力Tmax以下であると判断した場合(ステップ#14:Yes)、制御装置10は、上記のステップ#7,#8を実行する。
 一方、要求駆動力Trが最大駆動力Tmaxよりも大きいと判断した場合(ステップ#14:No)、制御装置10は、第1駆動ユニット100Aの動作モードをeTCモードに切り替える(ステップ#15)。本実施形態では、係合制御部15が、第1係合装置CL1を係合状態とし、第2係合装置CL2を解放状態とし、第3係合装置CL3を第1変速段ST1を形成した状態とする。更に、制御装置10は、第1駆動ユニット100A及び第2駆動ユニット100Bの双方により要求駆動力Trを出力するように制御する。
 図8及び図9は、蓄電装置BTの充電量(SOC)が第1閾値TH1未満の場合において、運転者がブレーキを解除してアクセルを作動させることで、車両が停車した状態から発進する場合におけるタイムチャートである。図8は、従来の制御処理の一例を示すタイムチャートであり、図9は、本実施形態に係る制御装置10による制御処理の一例を示すタイムチャートである。なお、従来の制御処理では、車速Vに応じて、eTCモードと、第1HVモード又は第2HVモードとのいずれかに切り替えられる。
 ここで、図8及び図9において、「Ns」、「Nc」、「Nr」は、それぞれ、第1サンギヤS1の回転速度に換算した内燃機関EG(出力軸Eo)の回転速度Neg、第1キャリヤC1の回転速度に換算した第1出力部材O1の回転速度(車速V)、第1リングギヤR1の回転速度に換算した第1回転電機MG1(第1ロータRo1)の回転速度Nmg1を表している。更に、「Teg」、「Tmg1」、「Tmg2」は、それぞれ、内燃機関EGのトルク、第1回転電機MG1のトルク、第2回転電機MG2のトルクを表している。また、「Br」、「Ac」は、それぞれ、ブレーキペダルの操作量、アクセルペダルの操作量を表している。なお、これらの符号については、下記の図10及び図11についても同様とする。
 図8に示すように、従来の制御処理では、車両が停車した状態から発進し、比較的車速Vが低い状態では、第1駆動ユニット100Aの動作モードがeTCモードとなる。eTCモードでは、時間の範囲t1において、第1回転電機MG1の回転速度Nmg1が負であり、第1回転電機MG1のトルクTmg1が正である。そのため、時間の範囲t1においては、第1回転電機MG1は発電を行うことができる。しかし、車速Vが大きくなると、第1回転電機MG1の回転速度Nmg1が正となる。そのため、時間の範囲t2においては、第1回転電機MG1は発電を行うことができない。このように、車両が停車した状態から発進する場合、eTCモードでは、第1回転電機MG1が発電を行う時間が少なく、蓄電装置BTの充電量(SOC)を十分に確保することは難しい。
 これに対して、図9に示すように、本実施形態に係る制御装置10による制御処理では、車両が停車した状態から発進し、比較的車速Vが低い状態では、要求駆動力Trが第2駆動ユニット100Bにより出力可能な最大駆動力Tmax以下であることを条件として、第1駆動ユニット100Aの動作モードが充電モードとなる。充電モードでは、車速Vの大きさに関わらず、第1回転電機MG1の回転速度Nmg1が正であり、第1回転電機MG1のトルクTmg1が負である。そのため、車両が停車した状態から発進する場合に、比較的車速Vが低い状態で、常に第1回転電機MG1に発電を行わせることができ、蓄電装置BTの充電量(SOC)を十分に確保することができる。そして、車速Vが上昇し、回転速度Ncと回転速度Nr及びNsとが一致した後は、HVモード(ここでは第1HVモード)に移行することで、第1回転電機MG1に継続して発電を行わせることができる。
 図10及び図11は、蓄電装置BTの充電量(SOC)が第1閾値TH1未満の場合において、運転者がブレーキを作動させることで、車両が走行している状態から停車する場合におけるタイムチャートである。図10は、従来の制御処理の一例を示すタイムチャートであり、図11は、本実施形態に係る制御装置10による制御処理の一例を示すタイムチャートである。
 図10及び図11に示すように、従来の制御処理、及び、本実施形態に係る制御装置10による制御処理のいずれの場合においても、車両の減速中に、比較的車速Vが高い状態では、第1駆動ユニット100Aの動作モードが第1HVモード又は第2HVモードとなる。第1HVモード又は第2HVモードでは、車速Vの大きさに関わらず、第1回転電機MG1の回転速度Nmg1が正であり、第1回転電機MG1のトルクTmg1が負である。そのため、車両の減速中に比較的車速Vが高い状態で、常に第1回転電機MG1に発電を行わせることができる。したがって、蓄電装置BTの充電量(SOC)を十分に確保することができる。
 しかし、図10に示すように、従来の制御処理では、車両の減速中に比較的車速Vが低い状態となると、第1駆動ユニット100Aの動作モードが第1HVモード又は第2HVモードからeTCモードとなる。このとき、車両が停車した状態から発進する場合と同様に、eTCモードでは、第1回転電機MG1の回転速度Nmg1が正である状態では第1回転電機MG1は発電できないため、第1回転電機MG1が発電を行う時間が少なく、蓄電装置BTの充電量(SOC)を十分に確保することは難しい。
 これに対して、図11に示すように、本実施形態に係る制御装置10による制御処理では、車両の減速中に比較的車速Vが低い状態となると、第1駆動ユニット100Aの動作モードが第1HVモード又は第2HVモードから第1EVモード又は第2EVモードとなる。第1EVモード又は第2EVモードでは、第1回転電機MG1及び第2回転電機MG2の双方が回生による発電を行う。そのため、車両の減速中、常に第1回転電機MG1に発電を行わせることができる。したがって、蓄電装置BTの充電量(SOC)を十分に確保することができる。
 また、第1EVモード又は第2EVモードでは、第1係合装置CL1が解放状態となって、内燃機関EGと第1車輪W1との間での動力伝達が遮断された状態となっているが、本実施形態に係る制御装置10による制御処理では、内燃機関EGは停止されることなく、動作状態を維持する制御される。そのため、車両の減速が終了した後、早期に第1駆動ユニット100Aの動作モードを充電モードに移行して蓄電装置BTの充電を継続することもできる。よって、車両の減速中に、減速終了後のモード移行を迅速に行うことが可能な状態で適切に蓄電装置BTの充電を行うことができる。
 また、本実施形態に係る制御装置10による制御処理では、車両の減速中、第1駆動ユニット100Aの動作モードが、第1HVモード又は第2HVモードから充電モードに直接移行せず、第1EVモード又は第2EVモードを経て、車両の停車後に充電モードに移行する。第1HVモード又は第2HVモードから充電モードに直接移行した場合、第3係合装置CL3が係合状態から解放状態に切り替えると、内燃機関EG及び第1回転電機MG1の双方と第1車輪W1との間での動力伝達が遮断された状態となる。そのため、回生トルクの変動により車両の挙動に影響を及ぼす可能性がある。具体的には、第1HVモード又は第2HVモードにおいて、第1車輪W1及び第2車輪W2の双方に回生トルク(負トルク)が伝達されている状態から、第1車輪W1に駆動連結された第1駆動ユニット100Aが充電モードに移行すると、第1車輪W1に回生トルクが伝達されなくなり空転する状態となるため、車両の前後輪のトルクのバランスが変化することになる。これに対して、本実施形態に係る制御装置10による制御処理では、第1HVモード又は第2HVモードから第1EVモード又は第2EVモードに移行する際には、第1係合装置CL1が係合状態から解放状態になるが、第1回転電機MG1と第1車輪W1との間での動力伝達は遮断されることはない。そのため、回生トルクの変動が生じることを回避できる。なお、図11における「遷移モード」は、第1EVモード又は第2EVモードから充電モードに遷移するためのモードである。遷移モードでは、第1EVモード又は第2EVモードにおいて解放状態であった第1係合装置CL1を係合状態とするために、第1回転電機MG1のトルクを用いて第1リングギヤR1の回転速度Nrを上昇させ、第1サンギヤS1の回転速度Nsに近づけている。
〔その他の実施形態〕
(1)上記の実施形態では、第1駆動ユニット100Aが、動作モードとして、eTCモード、EVモード(第1EVモード及び第2EVモード)、HVモード(第1HVモード及び第2HVモード)、及び充電モードを備えた構成を例として説明した。しかし、そのような構成に限定されることはない。第1駆動ユニット100Aは、少なくともEVモードと充電モードとを備えていれば良い。したがって、eTCモードを備えず、或いは、HVモードを備えず、或いはeTCモード及びHVモードの双方を備えていない構成としても良い。なお、eTCモードを備えない場合、分配用差動歯車機構SPが設けられていなくても良い。
(2)上記の実施形態では、第1駆動ユニット100Aが、EVモードとして、変速機TMによる変速比が異なる第1EVモードと第2EVモードとを備えた構成を例として説明したが、EVモードが1つの変速比のみの1つのモードであっても良い。同様に、上記の実施形態では、第1駆動ユニット100Aが、HVモードとして、変速機TMによる変速比が異なる第1HVモードと第2HVモードとを備えた構成を例として説明したが、HVモードが1つの変速比のみの1つのモードであっても良い。EVモード及びHVモードの双方が1つのモードのみである場合、変速機TM(第3係合装置CL3)は1つの変速段とニュートラル状態(動力伝達を遮断する状態)とを実現する構成とされる。
(3)上記の実施形態では、分配用差動歯車機構SPがシングルピニオン型の遊星歯車機構である場合を例として説明したが、そのような構成には限定されるない。例えば、分配用差動歯車機構SPがダブルピニオン型の遊星歯車機構により構成されても良い。或いは、分配用差動歯車機構SPが、複数の傘歯車を組み合わせた構成等のような他の差動歯車装置により構成されていても良い。
(4)上記の実施形態では、第1係合装置CL1が摩擦係合装置であり、第2係合装置CL2及び第3係合装置CL3のそれぞれが噛み合い式係合装置である構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第1係合装置CL1が噛み合い式係合装置であっても良い。また、第2係合装置CL2及び第3係合装置CL3の少なくとも一方が摩擦係合装置であっても良い。
(5)上記の実施形態では、第2駆動力源D2が第2回転電機MG2である構成を例として説明したがこれに限定されない。第2駆動力源D2は、内燃機関等、回転電機以外の他の駆動力源であっても良い。
(6)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下では、上記において説明した車両用駆動装置(100)の概要について説明する。
 車両用駆動装置(100)は、
 車両の前輪及び後輪を駆動するための車両用駆動装置(100)であって、
 前記前輪及び前記後輪のうち、一方を第1車輪(W1)とし、他方を第2車輪(W2)として、
 前記車両が備える内燃機関(EG)に駆動連結される入力部材(I)、及び第1駆動力源(D1)を備え、前記第1車輪(W1)を駆動する第1駆動ユニット(100A)と、
 第2駆動力源(D2)を備え、前記第2車輪(W2)を駆動する第2駆動ユニット(100B)と、
 前記第1駆動ユニット(100A)、前記第2駆動ユニット(100B)、及び前記内燃機関(EG)を制御する制御装置(10)と、を備え、
 前記第1駆動力源(D1)は、蓄電装置(BT)との間で電力の授受を行う回転電機(MG1)であり、
 前記第1駆動ユニット(100A)は、動作モードとして、第1モードと、第2モードと、を備え、
 前記第1モードでは、前記内燃機関(EG)と前記第1車輪(W1)との間での動力伝達が遮断された状態、かつ、前記第1駆動力源(D1)と前記第1車輪(W1)との間での動力伝達が行われる状態となり、
 前記第2モードでは、前記内燃機関(EG)と前記第1駆動力源(D1)との間での動力伝達が行われる状態、かつ、前記内燃機関(EG)及び前記第1駆動力源(D1)の双方と前記第1車輪(W1)との間での動力伝達が遮断された状態であって、前記内燃機関(EG)から伝達される駆動力により前記第1駆動力源(D1)が発電を行う状態となり、
 前記制御装置(10)は、
 前記蓄電装置(BT)の充電量が規定の第1閾値(TH1)未満であって、前記車両の速度(V)が規定の第2閾値(TH2)未満である場合において、
 前記車両の速度(V)が零以上であって、前記車両に要求される駆動力である要求駆動力(Tr)が零以上の場合には、前記第1駆動ユニット(100A)の前記動作モードを前記第2モードとして、前記第2駆動ユニット(100B)により前記要求駆動力(Tr)を出力するように制御し、
 前記車両の速度(V)が零より大きく、前記要求駆動力(Tr)が零未満の場合には、前記第1駆動ユニット(100A)の前記動作モードを前記第1モードとして、前記第1駆動力源(D1)に回生による発電を行わせると共に、前記内燃機関(EG)を動作状態とし、前記第1駆動ユニット(100A)及び前記第2駆動ユニット(100B)の双方により前記要求駆動力(Tr)を出力するように制御する。
 この構成によれば、制御装置(10)は、蓄電装置(BT)の充電量が第1閾値(TH1)未満であって、車両の速度(V)が第2閾値(TH2)未満である場合において、車両が停車を継続しようとしている場合、車両が加速しようとしている場合、又は車両が一定の速度で走行しようとしている場合には、第1駆動ユニット(100A)の動作モードを第2モードとして、第2駆動ユニット(100B)により要求駆動力(Tr)を出力するように制御する。第2モードでは、内燃機関(EG)から伝達される駆動力により第1駆動力源(D1)が発電を行う状態となる。そのため、第2駆動ユニット(100B)により必要な駆動力を確保しつつ、内燃機関(EG)の駆動力を用いて第1駆動力源(D1)により発電を行うことができる。よって、車両が停車中、加速中、及び一定の速度で走行中に、蓄電装置(BT)の充電を適切に行うことができる。
 また、制御装置(10)は、蓄電装置(BT)の充電量が第1閾値(TH1)未満であって、車両の速度(V)が第2閾値(TH2)未満である場合において、車両が減速しようとしている場合には、第1駆動ユニット(100A)の動作モードを第1モードとして、第1駆動力源(D1)に回生による発電を行わせると共に、内燃機関(EG)を動作状態とし、第1駆動ユニット(100A)及び第2駆動ユニット(100B)の双方により要求駆動力(Tr)を出力するように制御する。そのため、車両の慣性力を用いて第1駆動力源(D1)により発電を行うことができる。またこの際に内燃機関(EG)を停止させずに動作状態としているので、車両の減速が終了した後には早期に第1駆動ユニット(100A)の動作モードを第2モードに移行して蓄電装置(BT)の充電を継続することもできる。よって、車両の減速中に、減速終了後のモード移行を迅速に行うことが可能な状態で、適切に蓄電装置(BT)の充電を行うことができる。
 以上のように、本構成によれば、車両の停車中、並びに比較的低速で走行している車両の一定速度での走行中、加速中、及び減速中のそれぞれにおいて、蓄電装置(BT)の充電を適切に行うことができる。したがって、蓄電装置(BT)の充電量を十分に確保することができる。
 ここで、前記第1駆動ユニット(100A)は、前記動作モードとして、第3モードを更に備え、
 前記第3モードでは、前記内燃機関(EG)及び前記第1駆動力源(D1)の双方と前記第1車輪(W1)との間での動力伝達が行われる状態となり、
 前記制御装置(10)は、前記蓄電装置(BT)の充電量が前記第1閾値(TH1)未満であって、前記車両の速度(V)が前記第2閾値(TH2)以上である場合に、前記第1駆動ユニット(100A)の前記動作モードを前記第3モードとして、前記第1駆動力源(D1)に回生による発電を行わせると共に、前記第1駆動ユニット(100A)と前記第2駆動ユニット(100B)とを合わせて前記要求駆動力(Tr)を出力するように制御すると好適である。
 この構成によれば、蓄電装置(BT)の充電量が前記第1閾値(TH1)未満であって、前記車両の速度(V)が前記第2閾値(TH2)以上である場合に、第1駆動ユニット(100A)及び第2駆動ユニット(100B)の双方の駆動力により車両を走行させつつ内燃機関(EG)の駆動力を用いて第1駆動力源(D1)により発電を行い、蓄電装置(BT)の充電を行うことができる。つまり、車両が比較的高速で走行している場合に、必要な駆動力を十分に確保しつつ蓄電装置(BT)の充電を行うことができる。したがって、蓄電装置(BT)の充電量をより十分に確保することができる。
 前記第1駆動ユニット(100A)が前記動作モードとして前記第3モードを更に備えた構成において、
 前記第1車輪(W1)に駆動連結される出力部材(O1)と、
 回転速度の順に、第1回転要素(E1)、第2回転要素(E2)、及び第3回転要素(E3)を備えた分配用差動歯車機構(SP)と、を更に備え、
 前記第1回転要素(E1)は、前記入力部材(I)に駆動連結され、
 前記第2回転要素(E2)は、前記出力部材(O1)に駆動連結され、
 前記第3回転要素(E3)は、前記第1駆動力源(D1)に駆動連結され、
 前記第1駆動ユニット(100A)は、前記動作モードとして、前記分配用差動歯車機構(SP)を介して前記第1駆動力源(D1)の駆動力と前記内燃機関(EG)の駆動力とを合わせて前記第2回転要素(E2)から前記出力部材(O1)に出力する第4モードを更に備え、
 前記制御装置(10)は、
 前記蓄電装置(BT)の充電量が前記第1閾値(TH1)未満であって、前記車両の速度(V)が前記第2閾値(TH2)未満である場合において、
 前記車両の速度(V)が零以上であって、前記要求駆動力(Tr)が前記第2駆動ユニット(100B)により出力可能な最大駆動力よりも大きい場合には、前記第1駆動ユニット(100A)の前記動作モードを前記第2モードに代えて前記第4モードとして、前記第1駆動ユニット(100A)及び前記第2駆動ユニット(100B)の双方により前記要求駆動力(Tr)を出力するように制御すると好適である。
 この構成によれば、制御装置(10)は、蓄電装置(BT)の充電量が第1閾値(TH1)未満であって、車両の速度(V)が第2閾値(TH2)未満である場合において、要求駆動力(Tr)が第2駆動ユニット(100B)のみでは出力できない大きさである場合には、第1駆動ユニット(100A)の動作モードを第2モードに代えて第4モードとして、第1駆動ユニット(100A)及び第2駆動ユニット(100B)の双方により要求駆動力(Tr)を出力するように制御する。これにより、要求駆動力(Tr)が大きい場合であっても、第1駆動ユニット(100A)及び第2駆動ユニット(100B)の双方により必要な駆動力を確保することができる。また、車両の速度(V)が第2閾値(TH2)未満の比較的低速の状態で第4モードとすることにより、第1駆動力源(D1)が発電を行う状態とし易い。したがって、蓄電装置(BT)の充電量を確保し、或いは電力の消費を小さく抑えることができる。
 前記第1駆動ユニット(100A)が前記出力部材(O1)と前記分配用差動歯車機構(SP)とを更に備えた構成において、
 前記第1駆動ユニット(100A)は、
 前記入力部材(I)と前記第1回転要素(E1)との間の動力伝達を断接する第1係合装置(CL1)と、
 前記第1回転要素(E1)、前記第2回転要素(E2)、及び前記第3回転要素(E3)の3つの回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置(CL2)と、
 前記第2回転要素(E2)と前記出力部材(O1)との間の動力伝達を断接する第3係合装置(CL3)と、を更に備え、
 前記第1モードでは、前記第1係合装置(CL1)が解放状態であり、前記第2係合装置(CL2)及び前記第3係合装置(CL3)のそれぞれが係合状態とされ、
 前記第2モードでは、前記第1係合装置(CL1)及び前記第2係合装置(CL2)のそれぞれが係合状態であり、前記第3係合装置(CL3)が解放状態とされ、
 前記第3モードでは、前記第1係合装置(CL1)、前記第2係合装置(CL2)、及び前記第3係合装置(CL3)のそれぞれが係合状態とされ、
 前記第4モードでは、前記第1係合装置(CL1)が係合状態であり、前記第2係合装置(CL2)が解放状態であり、前記第3係合装置(CL3)が係合状態とされると好適である。
 この構成によれば、第1係合装置(CL1)、第2係合装置(CL2)、及び第3係合装置(CL3)のそれぞれの係合の状態に応じて、第1駆動ユニット(100A)の動作モードを、第1モード、第2モード、第3モード、及び第4モードのいずれかに適切に変化させることができる。
 また、前記第2駆動力源(D2)は、前記蓄電装置(BT)との間で電力の授受を行う第2の回転電機(MG2)であると好適である。
 この構成によれば、蓄電装置(BT)の充電量が第1閾値(TH1)未満であって、車両の速度(V)が第2閾値(TH2)未満である場合において、車両の速度(V)が零より大きく、要求駆動力(Tr)が零未満の場合、つまり、車両が減速しようとしている場合に、第1駆動力源(D1)に加えて、第2駆動力源(D2)にも回生による発電を行わせることができる。したがって、蓄電装置(BT)の充電量をより十分に確保することができる。
 本開示に係る技術は、車輪を駆動するための車両用駆動装置に利用することができる。
100 :車両用駆動装置
100A:第1駆動ユニット
100B:第2駆動ユニット
10  :制御装置
D1  :第1駆動力源
D2  :第2駆動力源
MG1 :第1回転電機
CL1 :第1係合装置
CL2 :第2係合装置
CL3 :第3係合装置
I   :入力部材
EG  :内燃機関
BT  :蓄電装置
W1  :第1車輪
W2  :第2車輪

Claims (5)

  1.  車両の前輪及び後輪を駆動するための車両用駆動装置であって、
     前記前輪及び前記後輪のうち、一方を第1車輪とし、他方を第2車輪として、
     前記車両が備える内燃機関に駆動連結される入力部材、及び第1駆動力源を備え、前記第1車輪を駆動する第1駆動ユニットと、
     第2駆動力源を備え、前記第2車輪を駆動する第2駆動ユニットと、
     前記第1駆動ユニット、前記第2駆動ユニット、及び前記内燃機関を制御する制御装置と、を備え、
     前記第1駆動力源は、蓄電装置との間で電力の授受を行う回転電機であり、
     前記第1駆動ユニットは、動作モードとして、第1モードと、第2モードと、を備え、
     前記第1モードでは、前記内燃機関と前記第1車輪との間での動力伝達が遮断された状態、かつ、前記第1駆動力源と前記第1車輪との間での動力伝達が行われる状態となり、
     前記第2モードでは、前記内燃機関と前記第1駆動力源との間での動力伝達が行われる状態、かつ、前記内燃機関及び前記第1駆動力源の双方と前記第1車輪との間での動力伝達が遮断された状態であって、前記内燃機関から伝達される駆動力により前記第1駆動力源が発電を行う状態となり、
     前記制御装置は、
     前記蓄電装置の充電量が規定の第1閾値未満であって、前記車両の速度が規定の第2閾値未満である場合において、
     前記車両の速度が零以上であって、前記車両に要求される駆動力である要求駆動力が零以上の場合には、前記第1駆動ユニットの前記動作モードを前記第2モードとして、前記第2駆動ユニットにより前記要求駆動力を出力するように制御し、
     前記車両の速度が零より大きく、前記要求駆動力が零未満の場合には、前記第1駆動ユニットの前記動作モードを前記第1モードとして、前記第1駆動力源に回生による発電を行わせると共に、前記内燃機関を動作状態とし、前記第1駆動ユニット及び前記第2駆動ユニットの双方により前記要求駆動力を出力するように制御する、車両用駆動装置。
  2.  前記第1駆動ユニットは、前記動作モードとして、第3モードを更に備え、
     前記第3モードでは、前記内燃機関及び前記第1駆動力源の双方と前記第1車輪との間での動力伝達が行われる状態となり、
     前記制御装置は、前記蓄電装置の充電量が前記第1閾値未満であって、前記車両の速度が前記第2閾値以上である場合に、前記第1駆動ユニットの前記動作モードを前記第3モードとして、前記第1駆動力源に回生による発電を行わせると共に、前記第1駆動ユニットと前記第2駆動ユニットとを合わせて前記要求駆動力を出力するように制御する、請求項1に記載の車両用駆動装置。
  3.  前記第1駆動ユニットは、
     前記第1車輪に駆動連結される出力部材と、
     回転速度の順に、第1回転要素、第2回転要素、及び第3回転要素を備えた分配用差動歯車機構と、を更に備え、
     前記第1回転要素は、前記入力部材に駆動連結され、
     前記第2回転要素は、前記出力部材に駆動連結され、
     前記第3回転要素は、前記第1駆動力源に駆動連結され、
     前記第1駆動ユニットは、前記動作モードとして、前記分配用差動歯車機構を介して前記第1駆動力源の駆動力と前記内燃機関の駆動力とを合わせて前記第2回転要素から前記出力部材に出力する第4モードを更に備え、
     前記制御装置は、
     前記蓄電装置の充電量が前記第1閾値未満であって、前記車両の速度が前記第2閾値未満である場合において、
     前記車両の速度が零以上であって、前記要求駆動力が前記第2駆動ユニットにより出力可能な最大駆動力よりも大きい場合には、前記第1駆動ユニットの前記動作モードを前記第2モードに代えて前記第4モードとして、前記第1駆動ユニット及び前記第2駆動ユニットの双方により前記要求駆動力を出力するように制御する、請求項2に記載の車両用駆動装置。
  4.  前記第1駆動ユニットは、
     前記入力部材と前記第1回転要素との間の動力伝達を断接する第1係合装置と、
     前記第1回転要素、前記第2回転要素、及び前記第3回転要素の3つの回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置と、
     前記第2回転要素と前記出力部材との間の動力伝達を断接する第3係合装置と、を更に備え、
     前記第1モードでは、前記第1係合装置が解放状態であり、前記第2係合装置及び前記第3係合装置のそれぞれが係合状態とされ、
     前記第2モードでは、前記第1係合装置及び前記第2係合装置のそれぞれが係合状態であり、前記第3係合装置が解放状態とされ、
     前記第3モードでは、前記第1係合装置、前記第2係合装置、及び前記第3係合装置のそれぞれが係合状態とされ、
     前記第4モードでは、前記第1係合装置が係合状態であり、前記第2係合装置が解放状態であり、前記第3係合装置が係合状態とされる、請求項3に記載の車両用駆動装置。
  5.  前記第2駆動力源は、前記蓄電装置との間で電力の授受を行う第2の回転電機である、請求項1から4のいずれか一項に記載の車両用駆動装置。
PCT/JP2021/020376 2020-05-29 2021-05-28 車両用駆動装置 WO2021241726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21812653.0A EP4159525A4 (en) 2020-05-29 2021-05-28 VEHICLE DRIVE DEVICE
CN202180026098.6A CN115427272A (zh) 2020-05-29 2021-05-28 车辆用驱动装置
US17/798,327 US11807104B2 (en) 2020-05-29 2021-05-28 Vehicle drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094621 2020-05-29
JP2020094621A JP7371573B2 (ja) 2020-05-29 2020-05-29 車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2021241726A1 true WO2021241726A1 (ja) 2021-12-02

Family

ID=78744822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020376 WO2021241726A1 (ja) 2020-05-29 2021-05-28 車両用駆動装置

Country Status (5)

Country Link
US (1) US11807104B2 (ja)
EP (1) EP4159525A4 (ja)
JP (1) JP7371573B2 (ja)
CN (1) CN115427272A (ja)
WO (1) WO2021241726A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019205324B4 (de) * 2019-04-12 2024-03-28 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946820A (ja) 1995-08-02 1997-02-14 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2007230431A (ja) * 2006-03-02 2007-09-13 Denso Corp 車両の駆動制御装置
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204105A (ja) * 2000-01-19 2001-07-27 Toyota Motor Corp 前後輪駆動車両の制御装置
JP4730327B2 (ja) * 2007-03-09 2011-07-20 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP5282708B2 (ja) * 2009-09-24 2013-09-04 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP5527259B2 (ja) * 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
JP6119966B2 (ja) * 2012-12-21 2017-04-26 三菱自動車工業株式会社 ハイブリッド車の走行モード切換制御装置
JP5794260B2 (ja) * 2013-08-05 2015-10-14 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946820A (ja) 1995-08-02 1997-02-14 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2007230431A (ja) * 2006-03-02 2007-09-13 Denso Corp 車両の駆動制御装置
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159525A4

Also Published As

Publication number Publication date
CN115427272A (zh) 2022-12-02
JP2021187312A (ja) 2021-12-13
EP4159525A1 (en) 2023-04-05
EP4159525A4 (en) 2023-12-06
US11807104B2 (en) 2023-11-07
JP7371573B2 (ja) 2023-10-31
US20230112389A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP2010076680A (ja) ハイブリッド駆動装置
EP3375650B1 (en) Drive unit for hybrid vehicles
US10759413B2 (en) Control system for hybrid vehicle
WO2022158523A1 (ja) 車両用駆動装置の制御装置
JP4200460B2 (ja) ハイブリッド駆動装置
JP2010125900A (ja) ハイブリッド駆動装置
JP2017088069A (ja) ハイブリッド車両の駆動力制御装置
WO2021241726A1 (ja) 車両用駆動装置
US10059185B2 (en) Control system for hybrid vehicle
JP3884423B2 (ja) ハイブリッド車両の動力伝達装置
JP7268799B2 (ja) 車両用駆動装置
JP2022045146A (ja) 車両用駆動装置
US20220305901A1 (en) Vehicle control apparatus
JP7314753B2 (ja) 車両用駆動装置
WO2022131030A1 (ja) 車両用駆動装置
JP2018001884A (ja) ハイブリッド車両の走行モード切換制御装置
JP7363848B2 (ja) 車両用駆動装置
JP2021091385A (ja) 車両用駆動装置
US20240001754A1 (en) Vehicle drive device
JP2022073265A (ja) 車両用駆動装置
JP2023076310A (ja) 車両用駆動装置
JP2022157283A (ja) 車両用駆動装置
JP2022156339A (ja) 車両用駆動装置
JP2022154301A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812653

Country of ref document: EP

Effective date: 20230102