WO2022158523A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2022158523A1
WO2022158523A1 PCT/JP2022/001978 JP2022001978W WO2022158523A1 WO 2022158523 A1 WO2022158523 A1 WO 2022158523A1 JP 2022001978 W JP2022001978 W JP 2022001978W WO 2022158523 A1 WO2022158523 A1 WO 2022158523A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
gear
engagement device
electric machine
engagement
Prior art date
Application number
PCT/JP2022/001978
Other languages
English (en)
French (fr)
Inventor
草部圭一朗
津田耕平
中矢文平
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to EP22742645.9A priority Critical patent/EP4238811A4/en
Priority to US18/034,250 priority patent/US20230391316A1/en
Priority to CN202280008257.4A priority patent/CN116648373A/zh
Publication of WO2022158523A1 publication Critical patent/WO2022158523A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K2006/542Transmission for changing ratio with overdrive ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/462Detecting synchronisation, i.e. speed difference is approaching zero
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention provides an input member drivingly connected to an internal combustion engine, an output member drivingly connected to a wheel, a rotating electrical machine, and a distribution vehicle in which each of a plurality of rotating elements is drivingly connected to the input member and the rotating electrical machine.
  • the first engagement device is engaged and the second engagement device is disengaged.
  • an electric torque converter mode (eTC mode) that amplifies the torque of and transmits it to the output member side to run the vehicle, and the first engagement device and the second engagement device are engaged, and A hybrid mode in which torque is transmitted to the output member can be selected.
  • Japanese Patent Laying-Open No. 2005-176481 discloses such a vehicle drive system.
  • This vehicle drive system corresponds to the second engagement device when the rotational speed of the rotating electrical machine matches or substantially matches the rotational speed of the internal combustion engine maintained at the target rotational speed when the eTC mode is shifted to the hybrid mode. By engaging the clutch, the internal combustion engine and the rotating electric machine are drivingly connected.
  • the distributing differential gear mechanism operates in a differential state, but the transition from the eTC mode to the hybrid mode is not a differential state, but a state in which each rotary element rotates at a constant speed. to engage the second engagement device.
  • engagement timing is not long, and it is not easy to smoothly engage the second engagement device.
  • a control device for a vehicle drive system includes an input member that is drivingly connected to an internal combustion engine, an output member that is drivingly connected to a wheel, a rotating electrical machine, a first rotating element, a second rotating element, and a distributing differential gear mechanism comprising a third rotating element, wherein the first rotating element is drivingly connected to the input member and the third rotating element is drivingly connected to the rotor of the rotating electrical machine; and at least the second rotating element.
  • a first engagement device for connecting and disconnecting power transmission and connecting and disconnecting power transmission between two selected from three rotating elements of the first rotating element, the second rotating element, and the third rotating element.
  • control device for a vehicle drive device including a second engagement device, wherein the first engagement device is brought into an engaged state and the second engagement device is released.
  • the rotation speed of the second rotating element is lower than the rotation speed of the first rotation element, and the rotation speed difference between the rotation speed of the second rotation element and the rotation speed of the first rotation element is a specified synchronization threshold.
  • the rotational speed of the internal combustion engine is caused to output the target torque
  • the rotational speed of the third rotational element follows the rotational speed of the first rotational element and the rotational speed of the second rotational element.
  • Asynchronous control is performed to control the electric machine, and a rotational speed difference between the rotational speed of the second rotating element and the rotational speed of the first rotating element becomes equal to or less than the synchronization threshold value due to the increase in the rotational speed of the output member.
  • the target torque is output from the internal combustion engine, and the rotation speed of the rotating electric machine is controlled in accordance with the rotation speed of the second rotating element, thereby reducing the rotation speed difference to the synchronization threshold value or less.
  • engagement control is executed to shift the second engagement device from the disengaged state to the engaged state.
  • the vehicle when the rotational speed of the second rotating element (speed of the vehicle) is lower than the rotational speed of the first rotating element (rotating speed of the internal combustion engine), the rotational speed of the third rotating element (rotating electric machine by following the rotation speed of the first rotation element and the rotation speed of the second rotation element, the vehicle can be appropriately accelerated in the first mode.
  • the speed of the vehicle increases, and the rotational speed difference between the rotational speed of the second rotational element (vehicle speed) and the rotational speed of the first rotational element (rotational speed of the internal combustion engine) is equal to or less than the specified synchronization threshold.
  • the rotational speed difference between the three rotational elements of the differential gear mechanism for distribution reaches the synchronization threshold value
  • the stipulated differential rotation set below is maintained (synchronization maintenance control). Therefore, it is possible to appropriately accelerate the vehicle while maintaining a small rotational speed difference between the three rotating elements of the distribution differential gear mechanism. Since the engagement control for shifting the second engagement device from the disengaged state to the engaged state is executed during execution of the synchronization maintenance control, the engagement operation of the second engagement device can be performed smoothly. That is, according to this configuration, it is possible to smoothly engage the engagement device at the time of transition of the operation mode from the electric torque converter mode to the hybrid mode.
  • Skeleton diagram of the first drive unit of the vehicle drive system Skeleton diagram of the second drive unit of the vehicle drive system
  • Control block diagram of vehicle drive system Velocity diagram of distribution differential gear mechanism and transmission mechanism in first mode (eTC mode)
  • Velocity diagram of distribution differential gear mechanism and transmission mechanism in second mode (first HV mode and second HV mode)
  • Time chart when transitioning from eTC mode to first HV mode Flowchart when transitioning from eTC mode to first HV mode
  • the vehicle drive device 100 includes a first drive section 100A and a second drive section 100B.
  • the first drive unit 100A drives the pair of first wheels W1
  • the second drive unit 100B drives the pair of second wheels W2.
  • the first wheel W1 is the front wheel of the vehicle and the second wheel W2 is the rear wheel of the vehicle.
  • the first drive unit 100A includes an input member I that is drivingly connected to the internal combustion engine EG, a first output member O1 that is drivingly connected to the first wheel W1, a first stator St1 and a first stator St1.
  • a first rotary electric machine MG1 having a rotor Ro1, a distributing differential gear mechanism SP, a transmission mechanism T having a transmission engagement device CLt, a first engagement device CL1, a second engagement device CL2, It has
  • the first driving section 100A further includes a first output differential gear mechanism DF1.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally. It includes a state in which two rotating elements are connected so as to be able to transmit driving force via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains.
  • the transmission member may include an engagement device for selectively transmitting rotation and driving force, such as a friction engagement device and a mesh type engagement device.
  • driving connection it refers to a state in which a plurality of rotating elements in the planetary gear mechanism are connected to each other without interposing other rotating elements.
  • the input member I, the distribution differential gear mechanism SP, the first engagement device CL1, and the second engagement device CL2 are arranged on the first axis X1 as the rotational axis of the first rotor Ro1.
  • the first rotating electrical machine MG1 is arranged on the second axis X2 as its rotation axis.
  • the transmission engagement device CLt of the transmission mechanism T is arranged on the third axis X3 as its rotation axis.
  • the first output member O1 and the first output differential gear mechanism DF1 are arranged on the fourth axis X4 as their rotation axis.
  • the second drive unit 100B includes a second rotating electric machine MG2 including a second stator St2 and a second rotor Ro2, and a second output member O2 drivingly connected to the second wheel W2. I have.
  • the second driving section 100B further includes a second counter gear mechanism CG2 and a second output differential gear mechanism DF2.
  • the second rotating electric machine MG2 is arranged on the fifth axis X5 as the rotational axis of the second rotor Ro2. Furthermore, in this embodiment, the second counter gear mechanism CG2 is arranged on the sixth axis X6 as its rotation axis. Further, in the present embodiment, the second output member O2 and the second output differential gear mechanism DF2 are arranged on the seventh axis X7 as their rotation axis.
  • the above-described first axis X1 to seventh axis X7 are arranged parallel to each other.
  • the direction parallel to the first axis X1 to the seventh axis X7 will be referred to as the "axial direction L" of the vehicle drive device 100.
  • the side on which the input member I is arranged with respect to the internal combustion engine EG is defined as the "first axial side L1”
  • the opposite side is defined as the "second axial side L2”.
  • a direction orthogonal to each of the first axis X1 to the seventh axis X7 is defined as a "radial direction R" with respect to each axis.
  • the input member I is an input shaft 1 extending along the axial direction L.
  • the input shaft 1 is drivingly connected to the output shaft Eo of the internal combustion engine EG via a damper device DP that damps fluctuations in transmitted torque.
  • the internal combustion engine EG is a prime mover (gasoline engine, diesel engine, etc.) that is driven by combustion of fuel to take out power.
  • the first rotary electric machine MG1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .
  • the first rotating electric machine MG1 is electrically connected to a power storage device BT (see FIG. 3) such as a battery or a capacitor. Then, the first rotating electrical machine MG1 is powered by the electric power stored in the power storage device BT to generate driving force.
  • the first rotary electric machine MG1 generates power using the driving force of the internal combustion engine EG or the driving force transmitted from the first output member O1 to charge the power storage device BT.
  • the first stator St1 of the first rotating electrical machine MG1 is fixed to a non-rotating member (for example, a case that houses the first rotating electrical machine MG1, etc.).
  • a first rotor Ro1 of the first rotating electric machine MG1 is rotatably supported with respect to a first stator St1.
  • the first rotor Ro1 is arranged inside in the radial direction R with respect to the first stator St1.
  • the distribution differential gear mechanism SP includes a first distribution rotation element Es1, a second distribution rotation element Es2, and a third distribution rotation element Es3.
  • the first distribution rotary element Es1 is drivingly connected to the input member I.
  • the third distributing rotating element Es3 is drivingly connected to the first rotor Ro1.
  • the distribution differential gear mechanism SP is a planetary gear mechanism including a first sun gear S1, a first carrier C1, and a first ring gear R1.
  • the distributing differential gear mechanism SP includes a first carrier C1 that supports the first pinion gear P1, a first sun gear S1 that meshes with the first pinion gear P1, and a radial direction R with respect to the first sun gear S1.
  • It is a single pinion type planetary gear mechanism provided with a first ring gear R1 that is arranged outside and meshes with the first pinion gear P1.
  • the first distribution rotating element Es1 is the first sun gear S1. Furthermore, in this embodiment, the second distributing rotary element Es2 is the first carrier C1. Further, in this embodiment, the third distribution rotary element Es3 is the first ring gear R1. Therefore, the order of the rotational speed of each rotary element of the differential gear mechanism SP for distribution according to the present embodiment is the order of the first rotary element Es1 for distribution, the second rotary element Es2 for distribution, and the third rotary element Es3 for distribution. It has become.
  • the “order of rotational speed” refers to the order of rotational speed in the rotating state of each rotating element.
  • the rotation speed of each rotating element changes depending on the rotation state of the planetary gear mechanism, but the order of the rotation speed of each rotating element is fixed because it is determined by the structure of the planetary gear mechanism.
  • the order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIGS. 4, 5, etc.) of each rotating element.
  • the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis.
  • the arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the planetary gear mechanism.
  • the first driving section 100A includes a first gear G1 that rotates integrally with the first rotor Ro1, and a second gear G2 that is drivingly connected to the first gear G1.
  • the first gear G1 is arranged on the second axis X2.
  • the first gear G1 is coupled to the first rotor Ro1 via a first rotor shaft RS1 extending along the axial direction L so as to rotate integrally with the first rotor Ro1.
  • the second gear G2 meshes with the first gear G1.
  • the second gear G2 is arranged on the first axis X1.
  • the second gear G2 is connected to rotate integrally with the first ring gear R1.
  • a cylindrical gear forming member 2 having the first axis X1 as its axis is provided.
  • a second gear G ⁇ b>2 is formed on the outer peripheral surface of the gear forming member 2
  • a first ring gear R ⁇ b>1 is formed on the inner peripheral surface of the gear forming member 2 .
  • the transmission mechanism T transmits the rotation transmitted from the distribution differential gear mechanism SP to the first output member O1.
  • the transmission engagement device CLt of the transmission mechanism T is an engagement device for switching the state of power transmission.
  • the transmission mechanism T is a transmission TM that can form a plurality of gear stages with different gear ratios.
  • the transmission TM transmits the rotation transmitted from the distribution differential gear mechanism SP to the first output member O1 after shifting the rotation at a gear ratio according to the gear stage formed by the transmission engagement device CLt.
  • the transmission TM directly transmits the rotation transmitted from the distributing differential gear mechanism SP to the first output member O1.
  • the transmission engagement device CLt forms one of at least two gear stages with different gear ratios.
  • the transmission engagement device CLt includes a first gear stage (low speed stage) ST1 having a relatively large gear ratio and a second gear stage (high speed gear) ST2 having a gear ratio smaller than that of the first gear stage ST1. to form either
  • the transmission TM includes a third gear G3, a fourth gear G4, a fifth gear G5, a sixth gear G6, and a transmission output gear 3.
  • the third gear G3 and the fourth gear G4 are arranged coaxially.
  • the third gear G3 and the fourth gear G4 are arranged on the first axis X1.
  • the third gear G3 is coupled to rotate integrally with the first carrier C1 of the distribution differential gear mechanism SP.
  • the third gear G3 is arranged on the first side L1 in the axial direction with respect to the distribution differential gear mechanism SP.
  • the fourth gear G4 is connected to rotate integrally with the first ring gear R1 of the distribution differential gear mechanism SP. Further, in this embodiment, the fourth gear G4 also functions as the second gear G2. In other words, the second gear G2 and the fourth gear G4 are formed on the outer peripheral surface of the gear forming member 2 as one gear. As a result, the manufacturing cost of the vehicle drive device 100 (first drive section 100A) can be reduced compared to a configuration in which the second gear G2 and the fourth gear G4 are provided independently.
  • the fifth gear G5 is in mesh with the third gear G3.
  • the sixth gear G6 meshes with the fourth gear G4.
  • the sixth gear G6 meshes with the fourth gear G4 (second gear G2) at a position different from that of the first gear G1 in the circumferential direction of the fourth gear G4 (second gear G2).
  • the shift output gear 3 is rotatable relative to the fifth gear G5 and the sixth gear G6.
  • the fifth gear G5, sixth gear G6, and transmission output gear 3 are arranged on the third axis X3.
  • the fifth gear G5, the sixth gear G6, and the transmission output gear 3 are arranged side by side in the axial direction L in the stated order from the first axial side L1 toward the second axial side L2. ing.
  • the number of teeth of the third gear G3 and the number of teeth of the fourth gear G4 are different. That is, the outer diameter of the third gear G3 and the outer diameter of the fourth gear G4 are different.
  • the third gear G3 and the fourth gear G4 are arranged coaxially, and the fifth gear G5 meshing with the third gear G3 and the sixth gear G6 meshing with the fourth gear G4 are provided. arranged coaxially. Therefore, when the outer diameter of the third gear G3 is smaller than the outer diameter of the fourth gear G4, the outer diameter of the fifth gear G5 is larger than the outer diameter of the sixth gear G6.
  • the outer diameter of the third gear G3 is larger than the outer diameter of the fourth gear G4, the outer diameter of the fifth gear G5 is smaller than the outer diameter of the sixth gear G6. Therefore, the gear ratio of the fifth gear G5 to the third gear G3 and the gear ratio of the sixth gear G6 to the fourth gear G4 are different.
  • the outer diameter of the third gear G3 is smaller than the outer diameter of the fourth gear G4, and the number of teeth of the third gear G3 is smaller than that of the fourth gear G4. Therefore, in this embodiment, the outer diameter of the fifth gear G5 is larger than the outer diameter of the sixth gear G6, and the number of teeth of the fifth gear G5 is larger than that of the sixth gear G6. Therefore, the gear ratio of the fifth gear G5 to the third gear G3 is greater than the gear ratio of the sixth gear G6 to the fourth gear G4.
  • the transmission engagement device CLt is configured to connect either the fifth gear G5 or the sixth gear G6 to the transmission output gear 3.
  • the gear ratio of the fifth gear G5 to the third gear G3 is greater than the gear ratio of the sixth gear G6 to the fourth gear G4. Therefore, when the transmission engagement device CLt connects the fifth gear G5 to the shift output gear 3, the first shift stage (low speed stage) ST1 having a gear ratio larger than that of the second shift stage ST2 is formed.
  • a second shift stage (high speed stage) ST2 having a gear ratio smaller than that of the first shift stage ST1 is formed.
  • the transmission engagement device CLt is configured to be switchable to a neutral state in which the transmission mechanism T does not transmit power.
  • the transmission mechanism T does not transmit the rotation transmitted from the distribution differential gear mechanism SP to the first output member O1, that is, the state of the internal combustion engine EG and the first rotating electric machine MG1. Neither driving force is transmitted to the first wheel W1.
  • the transmission engagement device CLt is a meshing type configured to be able to switch between an engaged state and a released state by moving an engagement driving member (dog sleeve) with an actuator such as a solenoid, an electric motor, or a hydraulic cylinder. It is an engagement device (dog clutch). Of course, this does not preclude the transmission engagement device CLt from being constituted by a friction engagement device.
  • the first output differential gear mechanism DF1 is configured to distribute the rotation of the first output member O1 to the pair of first wheels W1.
  • the first output differential gear mechanism DF1 is a bevel gear type differential gear mechanism.
  • the first output differential gear mechanism DF1 includes a hollow first differential case, a first pinion shaft supported so as to rotate integrally with the first differential case, and the first pinion shaft.
  • a pair of first pinion gears rotatably supported on one pinion shaft, and a pair of first side gears meshing with the pair of first pinion gears and functioning as distribution output elements are provided.
  • the first differential case houses a first pinion shaft, a pair of first pinion gears, and a pair of first side gears.
  • the first differential input gear 4 as the first output member O1 is connected to the first differential case so as to protrude outward in the radial direction R of the first differential case.
  • a first drive shaft DS1 drivingly connected to the first wheel W1 is rotatably connected to each of the pair of first side gears.
  • the first output differential gear mechanism DF1 distributes the rotation of the first output member O1 (first differential input gear 4) to the pair of first wheels W1 via the pair of first drive shafts DS1. .
  • the first engaging device CL1 is arranged in the power transmission path between the input member I and the first distributing rotary element Es1 of the distributing differential gear mechanism SP.
  • the first engagement device CL1 is configured to connect and disconnect power transmission between the input member I and the first sun gear S1.
  • the first engagement device CL1 is a friction engagement device that includes a pair of friction members and whose engagement state between the pair of friction members is controlled by hydraulic pressure.
  • the transmission torque capacity of the first engagement device CL1 can be controlled by putting the first engagement device CL1 into the slipping engagement state. Therefore, when the internal combustion engine EG is started using the driving force of the first rotary electric machine MG1, the torque transmitted from the first rotary electric machine MG1 to the internal combustion engine EG can be controlled. does not need to be stopped once.
  • the "sliding engagement state” is an engagement state in which there is a rotational speed difference (slippage) between a pair of friction members of the friction engagement device.
  • the second engaging device CL2 is selected from three rotary elements of the differential gear mechanism SP for distribution: the first rotary element Es1 for distribution, the second rotary element Es2 for distribution, and the third rotary element Es3 for distribution. is configured to disconnect power transmission between the two.
  • the second engagement device CL2 connects and disconnects power transmission between the first carrier C1 as the second distributing rotary element Es2 and the first ring gear R1 as the third distributing rotary element Es3.
  • the second engagement device CL2 moves an engagement driving member (dog sleeve) by an actuator such as a solenoid, an electric motor, or a hydraulic cylinder, and is configured to be able to switch between an engaged state and a released state. It is a type engagement device (dog clutch).
  • the second engagement device CL2 is arranged between the first engagement device CL1 and the distribution differential gear mechanism SP in the axial direction L. As shown in FIG. Of course, this does not preclude the second engagement device CL2 from being constituted by a frictional engagement device.
  • the second rotating electrical machine MG2 functions as a driving force source for the second wheels W2. That is, in the present embodiment, the second rotating electric machine MG2 is drivingly connected to the second output member O2 without interposing the first output member O1.
  • the second rotating electrical machine MG2 has a function as a motor (motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. .
  • the second rotating electrical machine MG2 is electrically connected to the power storage device BT. Then, the second rotating electrical machine MG2 is powered by the electric power stored in the power storage device BT to generate driving force. During regeneration, the second rotating electric machine MG2 generates power by driving force transmitted from the second output member O2 to charge the power storage device BT.
  • the second stator St2 of the second rotating electrical machine MG2 is fixed to a non-rotating member (for example, a case that houses the second rotating electrical machine MG2, etc.).
  • the second rotor Ro2 of the second rotating electric machine MG2 is rotatably supported with respect to the second stator St2.
  • the second rotor Ro2 is arranged inside in the radial direction R with respect to the second stator St2.
  • the second drive section 100B includes a rotor gear 5 that rotates integrally with the second rotor Ro2.
  • the rotor gear 5 is arranged on the fifth axis X5.
  • the rotor gear 5 is coupled to the second rotor Ro2 via a second rotor shaft RS2 extending along the axial direction L so as to rotate integrally with the second rotor Ro2.
  • the second counter gear mechanism CG2 includes a second counter input gear 61, a second counter output gear 62, and gears such that these gears (second counter input gear 61, second counter output gear 62) rotate integrally. and a second counter shaft 63 to be connected.
  • the second counter input gear 61 is an input element of the second counter gear mechanism CG2.
  • the second counter input gear 61 meshes with the rotor gear 5 .
  • the second counter output gear 62 is an output element of the second counter gear mechanism CG2.
  • the second counter output gear 62 is arranged on the second side L2 in the axial direction relative to the second counter input gear 61 .
  • the second counter output gear 62 is formed to have a diameter smaller than that of the second counter input gear 61 .
  • the second output member O2 is the second differential input gear 7 that meshes with the second counter output gear 62 of the second counter gear mechanism CG2.
  • the second output differential gear mechanism DF2 is configured to distribute the rotation of the second output member O2 to the pair of second wheels W2.
  • the second output differential gear mechanism DF2 is a bevel gear type differential gear mechanism.
  • the second output differential gear mechanism DF2 includes a hollow second differential case, a second pinion shaft supported so as to rotate integrally with the second differential case, and the second pinion shaft.
  • a pair of second pinion gears rotatably supported on a two-pinion shaft, and a pair of second side gears meshing with the pair of second pinion gears and functioning as distribution output elements are provided.
  • the second differential case houses a second pinion shaft, a pair of second pinion gears, and a pair of second side gears.
  • the second differential input gear 7 as the second output member O2 is connected to the second differential case so as to protrude outward in the radial direction R of the second differential case.
  • a second drive shaft DS2 drivingly connected to the second wheel W2 is rotatably connected to each of the pair of second side gears.
  • the second output differential gear mechanism DF2 distributes the rotation of the second output member O2 (the second differential input gear 7) to the pair of second wheels W2 via the pair of second drive shafts DS2.
  • the vehicle drive system 100 includes a control device 10 for controlling each part of the vehicle in which the vehicle drive system 100 is mounted.
  • the control device 10 includes a main control unit 11, an internal combustion engine control unit 12 that controls the internal combustion engine EG, a first rotating electric machine control unit 13 that controls the first rotating electric machine MG1, a second rotating electric machine A second rotary electric machine control unit 14 that controls the MG2, and an engagement control unit 15 that controls engagement states of the first engagement device CL1, the second engagement device CL2, and the transmission engagement device CLt. ing.
  • the main control unit 11 controls the internal combustion engine control unit 12, the first rotating electrical machine control unit 13, the second rotating electrical machine control unit 14, and the engagement control unit 15, respectively. Output commands.
  • the internal combustion engine control unit 12 controls the internal combustion engine EG so that the internal combustion engine EG outputs the target torque commanded by the main control unit 11 or achieves the target rotation speed commanded by the main control unit 11. do.
  • the internal combustion engine control unit 12 controls the internal combustion engine EG using the detection result of the internal combustion engine sensor Se10 that detects the rotational speed of the output shaft Eo.
  • the first rotating electrical machine control unit 13 controls the first rotating electrical machine MG1 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11. It controls the single-rotation electric machine MG1.
  • the first rotary electric machine control unit 13 controls the first rotary electric machine sensor Se11 based on the detection result of a first rotary electric machine sensor Se11 such as a rotation sensor that detects the rotational speed and rotational position of the first rotor Ro1 and a current sensor that detects the current flowing through the stator coil. It controls the single-rotation electric machine MG1.
  • the second rotating electrical machine control unit 14 controls the second rotating electrical machine MG2 to output the target torque commanded by the main control unit 11 or achieve the target rotational speed commanded by the main control unit 11.
  • the second rotary electric machine control unit 14 controls the second rotor Ro2 based on the detection result of the second rotary electric machine sensor Se12 such as a rotation sensor that detects the rotational speed and rotational position of the second rotor Ro2 and a current sensor that detects the current flowing through the stator coil. It controls the two-rotating electric machine MG2.
  • the second rotary electric machine sensor Se12 such as a rotation sensor that detects the rotational speed and rotational position of the second rotor Ro2 and a current sensor that detects the current flowing through the stator coil. It controls the two-rotating electric machine MG2.
  • the engagement control unit 15 controls the first engagement device CL ⁇ b>1 , the second engagement device CL ⁇ b>2 , and the transmission engagement device CLt so that each of the first engagement device CL ⁇ b>1 , the second engagement device CL ⁇ b>2 , and the transmission engagement device CLt is in the engaged state instructed by the main control unit 11 . It controls actuators (not shown) for operating the engagement device CL1, the second engagement device CL2, and the transmission engagement device CLt.
  • Each of the first engagement device CL1, the second engagement device CL2, and the transmission engagement device CLt includes a position detection sensor, a hydraulic pressure sensor, and the like, and a first engagement device for detecting the engagement state of each.
  • a device sensor Se13, a second engagement device sensor Se14, and a transmission engagement device sensor Se15 are provided.
  • the second engagement device CL2 and the transmission engagement device CLt are composed of mesh engagement devices (dog clutches) as described above
  • the second engagement device sensor Se14 and the transmission engagement device sensor Se15 An operation detection sensor (sleeve position detection sensor, oil pressure detection sensor) that detects the movement amount of the engagement driving member (such as a dog sleeve) that moves along with the state transition from the released state to the engaged state and the hydraulic pressure. sensor).
  • the main control unit 11 is configured to be able to acquire information from sensors provided in each part of the vehicle in order to acquire information of each part of the vehicle in which the vehicle drive device 100 is mounted.
  • the main control unit 11 is configured to be able to acquire information from the SOC sensor Se1, the vehicle speed sensor Se2, the accelerator operation amount sensor Se3, and the shift position sensor Se4.
  • the SOC sensor Se1 is a sensor for detecting the state of the power storage device BT electrically connected to the first rotating electrical machine MG1 and the second rotating electrical machine MG2.
  • the SOC sensor Se1 is composed of, for example, a voltage sensor, a current sensor, or the like.
  • the main control unit 11 calculates the state of charge (SOC) of the power storage device BT based on information such as a voltage value and a current value output from the SOC sensor Se1.
  • the vehicle speed sensor Se2 is a sensor for detecting the traveling speed (vehicle speed) of the vehicle in which the vehicle drive device 100 is mounted.
  • the vehicle speed sensor Se2 is a sensor for detecting the rotational speed of the first output member O1.
  • the main control unit 11 calculates the rotation speed (angular velocity) of the first output member O1 based on the rotation speed information output from the vehicle speed sensor Se2. Since the rotation speed of the first output member O1 is proportional to the vehicle speed, the main control section 11 calculates the vehicle speed based on the detection signal of the vehicle speed sensor Se2.
  • the accelerator operation amount sensor Se3 is a sensor for detecting the amount of operation by the driver of an accelerator pedal provided in the vehicle in which the vehicle drive device 100 is mounted.
  • the main control unit 11 calculates the amount of operation of the accelerator pedal by the driver based on the detection signal of the accelerator operation amount sensor Se3.
  • the shift position sensor Se4 is a sensor for detecting the selected position (shift position) of the shift lever operated by the driver of the vehicle in which the vehicle drive system 100 is mounted.
  • the main control section 11 calculates the shift position based on the detection signal of the shift position sensor Se4.
  • the shift lever is configured to select a parking range (P range), a reverse travel range (R range), a neutral range (N range), a forward travel range (D range), and the like.
  • the main control unit 11 selects a plurality of operation modes in the vehicle driving device 100, which will be described later, based on the information from the above sensors.
  • the main control unit 11 controls, via the engagement control unit 15, each of the first engagement device CL1, the second engagement device CL2, and the transmission engagement device CLt to be in an engagement state according to the selected operation mode. , the operation mode is switched to the selected operation mode.
  • the main control unit 11 controls the internal combustion engine EG, the first rotating electric machine MG1, and the second rotating electric machine MG2 via the internal combustion engine control unit 12, the first rotating electric machine control unit 13, and the second rotating electric machine control unit 14. By cooperatively controlling the operating states of the two, it is possible to drive the vehicle appropriately according to the selected operating mode.
  • Table 1 below shows the state of the engagement device in each operation mode of the vehicle drive system 100 .
  • Table 1 shows the states of the first engagement device CL1, the second engagement device CL2, and the transmission engagement device CLt in each operation mode of the vehicle drive system 100 of this embodiment.
  • "o" indicates that the target engagement device is in the engaged state
  • "x” indicates the target engagement device. is in a released state.
  • the vehicle drive system 100 has three operation modes: an electric torque converter mode (hereinafter referred to as "eTC mode"), a first EV mode (EV Lo), and a first EV mode (EV Lo). It has a 2EV mode (EV Hi), a first HV mode (HV Lo), a second HV mode (HV Hi), and a charging mode.
  • eTC mode electric torque converter mode
  • HV Lo first EV mode
  • HV Hi first EV mode
  • HV Hi second HV mode
  • charging mode a charging mode
  • the eTC mode is a mode in which the distribution differential gear mechanism SP amplifies the torque of the internal combustion engine EG by using the torque of the first rotary electric machine MG1 as a reaction force and transmits the torque to the first output member O1 side to drive the vehicle. .
  • This mode is called an electric torque converter mode because the torque of the internal combustion engine EG can be amplified and transmitted to the first output member O1.
  • the eTC mode is selected when the vehicle speed is relatively low, such as when the vehicle starts moving.
  • the first rotating electrical machine MG1 rotates negatively while outputting positive torque to generate power
  • the differential gear mechanism SP for distribution outputs the torque of the first rotating electrical machine MG1 and the torque of the internal combustion engine EG.
  • a torque larger than the torque of the internal combustion engine EG is output from the second distributing rotary element Es2 (first carrier C1). Then, the rotation of the second distributing rotary element Es2 is shifted in the transmission TM at a gear ratio corresponding to the first gear stage ST1 and transmitted to the transmission output gear 3 (see FIG. 4). Therefore, the eTC mode can be selected even when the amount of charge in the power storage device BT is relatively low.
  • the first engagement device CL1 in the engaged state, the second engagement device CL2 is in the disengaged state, and the transmission engagement device CLt transmits power to the transmission mechanism T. It is controlled to be in a state where In this embodiment, the transmission engagement device CLt is controlled so as to be in a state in which the first shift stage (low speed stage) ST1 is established.
  • the internal combustion engine EG and the first rotating electrical machine MG1 are controlled to output torque. Therefore, in the eTC mode, the first engagement device CL1 is in the engaged state, the second engagement device CL2 is in the disengaged state, and the torque of the internal combustion engine EG and the first rotary electric machine MG1 is transmitted to the first output member O1. 1st mode”.
  • the first EV mode (EV Lo) is a mode in which the vehicle travels at a relatively low speed with the driving force of only the first rotating electrical machine MG1 of the internal combustion engine EG and the first rotating electrical machine MG1.
  • the second EV mode (EV Hi) is a mode in which, of the internal combustion engine EG and the first rotary electric machine MG1, the driving force of only the first rotary electric machine MG1 is used to drive the vehicle at a relatively high speed.
  • the first HV mode (HV Lo) is a mode in which the vehicle travels at a relatively low speed using the driving forces of both the internal combustion engine EG and the first rotary electric machine MG1.
  • the second HV mode is a mode in which the vehicle travels at a relatively high speed using the driving forces of both the internal combustion engine EG and the first rotary electric machine MG1.
  • the first EV mode and the second EV mode, and the first HV mode and the second HV mode are selected when the vehicle speed and the amount of charge in the power storage device BT are each equal to or higher than a specified value.
  • the transmission engagement device CLt causes the transmission mechanism T to transmit power. controlled.
  • the transmission engagement device CLt is controlled so as to be in a state in which the first shift stage (low speed stage) ST1 is established.
  • the second EV mode the first engagement device CL1 is in the released state, the second engagement device CL2 is in the engaged state, and the transmission engagement device CLt causes the transmission mechanism T to transmit power. controlled as In the present embodiment, the transmission engagement device CLt is controlled so as to be in a state in which the second shift stage (high speed stage) ST2 is established.
  • the internal combustion engine EG is stopped and the first rotating electric machine MG1 is controlled to output torque.
  • the internal combustion engine EG is separated from the distribution differential gear mechanism SP by disengaging the first engagement device CL1, and the second engagement device CL2 is engaged.
  • the three rotating elements (Es1 to Es3) of the distributing differential gear mechanism SP rotate integrally with each other.
  • the rotation of the first rotary electric machine MG1 transmitted from the first gear G1 to the second gear G2 is transmitted as it is to the third gear G3 and the fourth gear G4 of the transmission TM.
  • the rotation transmitted to the transmission TM is changed to the gear ratio of the first gear ST1 in the first EV mode and to the gear ratio of the second gear ST2 in the second EV mode, depending on the state of the transmission engagement device CLt. It is transmitted to the transmission output gear 3 .
  • the transmission engagement device CLt causes the transmission mechanism T to transmit power.
  • the transmission engagement device CLt is controlled so as to be in a state in which the first shift stage (low speed stage) ST1 is established.
  • the transmission engagement device CLt causes the transmission mechanism T to transmit power. controlled to be In the present embodiment, the transmission engagement device CLt is controlled so as to be in a state in which the second shift stage (high speed stage) ST2 is established.
  • the internal combustion engine EG and the first rotary electric machine MG1 are controlled to output torque. Therefore, in the first HV mode and the second HV mode, the first engagement device CL1 and the second engagement device CL2 are engaged, and the torque of the internal combustion engine EG and the first rotary electric machine MG1 is transmitted to the first output member O1. It corresponds to the "second mode".
  • the second mode is a so-called parallel hybrid mode.
  • the internal combustion engine EG is connected to the distributing differential gear mechanism SP by engaging the first engagement device CL1, and the second engagement device CL2 is engaged.
  • the three rotating elements (Es1 to Es3) of the distributing differential gear mechanism SP rotate integrally with each other.
  • the rotation of the internal combustion engine EG transmitted via the input member I and the rotation of the first rotary electric machine MG1 transmitted from the first gear G1 to the second gear G2 are directly transferred to the third gear of the transmission TM. It is transmitted to G3 and fourth gear G4.
  • the rotation transmitted to the transmission TM is changed to the gear ratio of the first gear ST1 in the first HV mode and to the gear ratio of the second gear ST2 in the second HV mode, depending on the state of the transmission engagement device CLt. It is transmitted to the transmission output gear 3 .
  • the charge mode is a mode in which the power storage device BT is charged by causing the first rotary electric machine MG1 to generate power using the driving force of the internal combustion engine EG.
  • the charging mode is selected when the amount of charge in power storage device BT is less than a specified value.
  • the first engagement device CL1 In the charging mode, the first engagement device CL1 is in the engaged state, the second engagement device CL2 is in the engaged state, and the transmission engagement device CLt is controlled to be in the neutral state.
  • the internal combustion engine EG outputs torque
  • the first rotary electric machine MG1 outputs torque in the direction opposite to the rotation direction of the first rotor Ro1 rotated by the torque of the internal combustion engine EG, thereby generating power.
  • the vehicle may be stopped, or the power generated by the first rotary electric machine MG1 may be used to power the second rotary electric machine MG2, and the driving force of the second rotary electric machine MG2 may be applied to the second wheels W2. You may run a vehicle by transmitting.
  • a mode in which the vehicle is driven by the driving force of the second rotary electric machine MG2 while being in the charging mode is called a so-called series hybrid mode.
  • FIG. 4 shows a velocity diagram of the distribution differential gear mechanism SP and the transmission TM in the eTC mode of this embodiment.
  • the vertical axis corresponds to the rotational speed of each rotating element of the distributing differential gear mechanism SP and the transmission TM.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the distribution differential gear mechanism SP and the transmission TM.
  • the symbols shown above the vertical lines are the symbols of the corresponding rotating elements.
  • the symbols shown below the vertical lines are the symbols of the elements drivingly connected to the rotating elements corresponding to the symbols shown above. The method of describing such velocity diagrams is the same for other velocity diagrams such as FIG.
  • the first engagement device CL1 is in the engaged state and the second engagement device CL2 is in the released state.
  • the internal combustion engine EG rotates forward and outputs positive torque
  • the first rotating electric machine MG1 rotates negatively and outputs positive torque to generate power.
  • torque greater than the torque of the internal combustion engine EG is transmitted to the first carrier C1 of the distribution differential gear mechanism SP.
  • the rotation of the first carrier C1 rotated by this torque is transmitted to the third gear G3 of the transmission TM.
  • the rotation reduced by the gear ratio corresponding to the first gear stage ST1 is transmitted to the shift output gear 3 between the third gear G3 and the fifth gear G5.
  • FIG. 5 shows velocity diagrams of the distribution differential gear mechanism SP and the transmission TM in the first HV mode and the second HV mode of this embodiment.
  • the first engaging device CL1 and the second engaging device CL2 are in the engaged state.
  • the first engagement device CL1 is in the released state, but the second engagement device CL2 is in the engaged state, so the rotating state of the distributing differential gear mechanism SP is the same. is.
  • the second engagement device CL2 is brought into the engaged state so that the distributing differential gear
  • the three rotating elements (Es1 to Es3) of the mechanism SP are brought into a state of rotating integrally with each other.
  • the first engagement device CL1 is in the released state with respect to the three rotating elements (Es1 to Es3) of the distributing differential gear mechanism SP that rotate integrally in this manner. Torque of the single-rotation electric machine MG1 is transmitted.
  • the torque of the internal combustion engine EG and the first rotary electric machine MG1 is transmitted because the first engagement device CL1 is in the disengaged state.
  • the rotation output from the first carrier C1, which is the second distributing rotating element Es2 is the rotation of the transmission TM. It is transmitted to the third gear G3.
  • the rotation output from the first ring gear R1, which is the third distributing rotating element Es3, is transmitted to the fourth gear G4 of the transmission TM.
  • the rotation reduced by the gear ratio corresponding to the first gear stage ST1 is transmitted to the shift output gear 3 between the third gear G3 and the fifth gear G5.
  • the rotation reduced by the gear ratio corresponding to the second gear stage ST2 is transmitted to the shift output gear 3 between the fourth gear G4 and the sixth gear G6. .
  • the rotation speed of the internal combustion engine EG (the rotation speed of the first sun gear S1 (first distribution rotary element Es1)) and the rotation speed of the first rotating electric machine MG1 (the first
  • the second engagement device CL2 in the released state is engaged in a state in which the 1 ring gear R1 (rotational speed of the third distributing rotary element Es3) is the same.
  • the second engagement device CL2 is a mesh type engagement device, the second engagement device CL2 is more easily repelled than in the case of a frictional engagement device, which is called ratcheting. may occur. As shown in FIG.
  • the distributing differential gear mechanism SP in the eTC mode, is in a differential state in which each rotating element has a rotational difference. However, in the first HV mode, as shown in FIG. 5, the distributing differential gear mechanism SP rotates integrally with each rotating element having no rotational difference.
  • the control device 10 changes the rotational speed difference between the first carrier C1 (second distributing rotary element Es2) and the first ring gear R1 (third distributing rotary element Es3) to the third
  • the rotation speed of the one-rotating electric machine MG1 is increased to match the rotation speeds of these two distribution rotary elements as shown in FIG. 5, and the second engagement device CL2 is engaged.
  • the second engagement device CL2 will not engage smoothly.
  • the control device 10 of the present embodiment adjusts the rotational speed of the internal combustion engine EG and the rotational speed of the first rotary electric machine MG1 to the first carrier C1 (second distribution rotary element Es2) before engaging the second engagement device CL2. ) to create a state in which the second engagement device CL2 can stably engage, and the ratchet is engaged during the engagement of the second engagement device CL2. suppress the occurrence of ting.
  • control device 10 When the control device 10 shifts from the eTC mode (first mode) to the first HV mode (second mode) while the rotational speed of the first output member O1 is increasing, that is, during acceleration, the following operations are performed. control.
  • the controller 10 controls the rotational speed of the first carrier C1 (second distribution rotary element Es2 (second rotary element)) to match the rotational speed of the first sun gear S1 (first distribution rotary element Es1 (first rotary element)).
  • the internal combustion engine EG is caused to output the target torque and the first The first rotating electric machine MG1 is controlled so that the rotation speed of the 1 ring gear R1 (third distribution rotation element Es3 (third rotation element)) follows the rotation speed of the first sun gear S1 and the rotation speed of the first carrier C1.
  • Execute asynchronous control In the asynchronous control, the control device 10 torque-controls the first rotary electric machine MG1 so that the first rotary electric machine MG1 outputs the target torque.
  • Asynchronous control can be said to be a control mode of the distribution differential gear mechanism SP. As shown in FIG. not synchronized with the rotation speed of
  • the control device 10 Synchronization maintenance for maintaining the rotation speed difference below the synchronization threshold by causing the internal combustion engine EG to output a target torque and controlling the rotation speed of the first rotary electric machine MG1 in accordance with the rotation speed of the first carrier C1. Execute control. That is, unlike the torque control of the first rotary electric machine MG1 in the asynchronous control, the control device 10 rotates the first rotary electric machine MG1 so that the first rotary electric machine MG1 reaches the target rotational speed in the synchronization maintenance control. speed control. Then, the control device 10 executes engagement control for shifting the second engagement device CL2 from the disengaged state to the engaged state during execution of the synchronization maintenance control.
  • the control device 10 performs torque control on the first rotating electrical machine MG1 so that the first rotating electrical machine MG1 outputs the target torque.
  • the rotational speed of the first rotating electric machine MG1 may be controlled.
  • the control device 10 controls the output of the first rotary electric machine MG1 so as to correct the deviation of the rotation speed of the internal combustion engine EG (first sun gear S1) from a predetermined constant rotation speed.
  • a rotational speed control that adjusts the torque may be implemented. In other words, the rotational speed of the internal combustion engine EG may deviate from a predetermined constant rotational speed. It is also preferred that the speed is controlled.
  • the eTC mode continues until the rotation speed of the first carrier C1 reaches or exceeds the specified rotation speed (#1, #10).
  • the specified rotational speed is set to a value smaller than the rotational speed of the first sun gear S1 (internal combustion engine EG) as the first distribution rotary element Es1 (first rotary element) by a predetermined synchronization threshold value.
  • the control device 10 controls the first rotary electric machine MG1 by rotational speed control instead of torque control ( FIG. 7 : #2). In other words, synchronization maintenance control is executed to maintain the rotation speed difference below the synchronization threshold value.
  • the control device 10 controls the rotation speed of the first rotating electrical machine MG1 so as to have a prescribed differential rotation set to a synchronization threshold value or less.
  • the first rotating electrical machine MG1 so as not to exceed the rotation speed of the first sun gear S1 (internal combustion engine EG)
  • the second engagement device CL2 is controlled during the execution of the synchronization maintenance control. can be smoothly engaged.
  • the second engagement device CL2 is a dog clutch as in the present embodiment
  • the rotational speed of the first carrier C1 and the rotational speed of the first ring gear R1 are completely the same, the chamfer of the dog sleeve and the dog of the gear will It may not be possible to engage the teeth. Therefore, it is preferable to provide a difference between the rotation speed of the first carrier C1 and the rotation speed of the first ring gear R1. At this time, either the rotational speed of the first carrier C1 or the rotational speed of the first ring gear R1 may be lowered.
  • the rotation speed of the first ring gear R1 (the rotation speed of the first rotary electric machine MG1) is higher than that of the first carrier C1
  • an engagement shock in the acceleration direction is produced at the time of engagement. easily occur. Therefore, when the second engagement device CL2 is engaged while accelerating the vehicle from the eTC mode to the first HV mode, the rotation speed of the first ring gear R1 (the rotation speed of the first rotating electrical machine MG1) is higher than
  • the synchronization threshold is set to be lower than the rotational speed of the first carrier C1.
  • the second engagement device CL2 is not limited to the meshing engagement device as in the present embodiment, and may be configured by a friction engagement device.
  • the friction engagement device since the transmission torque capacity can be controlled by setting the sliding engagement state, ratcheting rarely occurs at the time of engagement unlike the mesh type engagement device, and the frictional engagement device is relatively smooth. easy to engage.
  • the second engagement device CL2 is a frictional engagement device, the rotational speed of the first ring gear R1 and the rotational speed of the first carrier C1 are controlled to have a rotational speed difference as described above. Thereby, it is possible to make the transition from the released state to the engaged state more smoothly.
  • the rotational speed of the internal combustion engine EG changes in rotation of the distribution differential gear mechanism SP (changes in rotation of the first sun gear S1, first carrier C1, and first ring gear R1). ). That is, the driving force (vehicle system torque) decreases due to the inertia torque fluctuation as indicated by the dashed line in FIG. In this embodiment, this decrease in vehicle system torque can be compensated for, for example, by the torque of the second rotating electric machine MG2, as shown in FIG.
  • the second rotating electric machine MG2 is provided in addition to the first rotating electric machine MG1.
  • the second rotating electrical machine MG2 of the present embodiment is a rotating electrical machine drivingly connected to the second wheel W2, which is a wheel different from the first wheel W1, without interposing the first output member O1.
  • the second rotary electric machine MG2 outputs torque so as to compensate for the torque corresponding to the inertia of the internal combustion engine EG that accompanies the change in the rotation speed of the internal combustion engine EG due to the start of synchronization maintenance control.
  • the driving force of the vehicle that decreases due to the execution of the synchronization maintenance control is compensated for, and the vehicle can continue to run stably.
  • inertia torque compensation control is executed by the second rotating electric machine MG2 (#3).
  • the torque (compensation torque) by the second rotary electric machine MG2 is output from time t2, and the vehicle system torque is maintained as indicated by the solid line.
  • the second rotating electric machine MG2 may be driven and connected to the first output member O1 without the transmission mechanism T (transmission TM) interposed therebetween.
  • the compensation torque may be output by the internal combustion engine EG instead of by the second rotating electric machine MG2, and the vehicle system torque may be maintained.
  • the rotational speed control of the first rotating electric machine MG1 is continued until the specified period T1 elapses (Fig. 7: #4, #12). That is, the control device 10 starts the engagement control after the state in which the rotational speed difference is equal to or lower than the synchronization threshold continues for a predetermined period of time T1.
  • the engagement control of the second engagement device CL2 is started.
  • the second engagement device CL2 is a mesh type engagement device, and as shown in FIG. 6, the stroke of the sleeve of the mesh type engagement device starts at time t4 (FIG. 7: #5 ).
  • This specified period T1 is controlled so that the rotational speed of the first rotating electrical machine MG1 can be stably controlled after the difference between the rotation speed of the first rotating electrical machine MG1 and the target rotation speed first becomes equal to or less than the synchronization threshold value. is set at the time when By continuing the rotation speed control of the first rotary electric machine MG1 until the specified period T1 elapses, the rotation speed of the first rotary electric machine MG1 is stabilized, and the second engagement device CL2 can be smoothly engaged.
  • control device 10 starts the synchronization maintenance control and after the predetermined synchronization maintenance control duration time has elapsed, You may start the combination control.
  • the control device 10 ends the rotation speed control of the first rotating electric machine MG1, and again controls the first rotating electric machine MG1 by torque control (#6, #7, #15 in FIG. 7).
  • the second engagement device CL2 includes a dog sleeve (engagement driving member) that moves along with the state transition from the released state to the engaged state, a sleeve position detection sensor that detects the amount of movement of the dog sleeve, and a hydraulic pressure sensor.
  • the control device 10 Based on the detection result of the second engagement device sensor Se14, the control device 10 ends the synchronization maintenance control within a specified range with reference to the engagement start position of the dog sleeve (Fig. 6: time t5, Fig. 7: #6 , #7, #15). This prescribed range is set in consideration of movement error of the dog sleeve so that the synchronization maintenance control is terminated before the chamfer formed in the dog sleeve contacts the dog teeth of the gear. After the synchronization maintenance control ends, the control device 10 shifts the control method of the first rotating electrical machine MG1 to torque control for outputting torque in accordance with the target torque.
  • a second engagement device sensor Se14 operation detection sensor
  • the movement of the dog sleeve continues until the second engagement device CL2 is completely engaged.
  • the control mode of the distributing differential gear mechanism SP shifts from direct-coupling transfer control to direct-coupling control.
  • the second engagement device CL2 is in a completely engaged state, and the vehicle drive device 100 is driven in the first HV mode (HV Lo) (#8 in FIG. 7).
  • HV Lo HV Lo
  • the engagement of the second engagement device CL2 makes it possible to use all the torque of the internal combustion engine EG as the vehicle system torque, eliminating the need for the inertia compensation torque.
  • the inertia torque compensation control by the second rotating electric machine MG2 ends.
  • control device 10 ends the synchronization maintenance control within a specified range based on the engagement start position of the dog sleeve, so that the first engagement device CL2 can be smoothly engaged after the second engagement device CL2 is engaged.
  • the rotary electric machine MG1 can be driven and controlled by torque control to start the first HV mode.
  • the condition for the control device 10 to terminate the synchronization maintenance control is not limited to the specified range based on the engagement start position of the dog sleeve, but may be the elapsed time from the start of movement of the dog sleeve (stroke elapsed time T2).
  • a control device (10) for a vehicle drive system includes an input member (I) drivingly connected to an internal combustion engine (EG), an output member (O1) drivingly connected to wheels (W1), A rotary electric machine (MG1), a first rotating element (Es1), a second rotating element (Es2), and a third rotating element (Es3), wherein the first rotating element (Es1) is connected to the input member (I) a distributing differential gear mechanism (SP) drive-connected, wherein the third rotating element (Es3) is drive-connected to the rotor (Ro1) of the rotating electric machine (MG1); and at least the second rotating element (Es2) a transmission mechanism (T) for transmitting power between the output member (O2) and the input member arranged in a power transmission path between the input member (I) and the first rotating element (Es1); a first engagement device (CL1) for connecting and disconnecting power transmission between (I) and the first rotating element (Es1); the first rotating element (Es1); the second rotating element (
  • the internal combustion engine (EG) is caused to output the target torque, and the second rotating element
  • synchronization maintenance control is executed to maintain the rotation speed difference at a specified differential rotation set to the synchronization threshold value or less.
  • engagement control is executed to shift the second engagement device (CL2) from the disengaged state to the engaged state.
  • the third rotation element Accelerate the vehicle appropriately in the first mode by making the rotational speed of (ES3) (the rotational speed of the rotating electric machine) follow the rotational speed of the first rotational element (ES1) and the rotational speed of the second rotational element (Es2).
  • the speed of the vehicle increases, and the rotation speed of the second rotation element (Es2) (the speed of the vehicle) and the rotation speed of the first rotation element (Es1) (the rotation speed of the internal combustion engine (EG))
  • the rotational speed control of the internal combustion engine (EG) and the rotary electric machine (MG1) is performed in accordance with the rotational speed of the second rotating element (Es2), whereby the distribution
  • the rotational speed difference between the three rotating elements of the differential gear mechanism (SP) is maintained at a prescribed differential rotation set to a synchronization threshold value or less (synchronization maintenance control).
  • engagement control is executed to shift the second engagement device (CL2) from the disengaged state to the engaged state. can be done. That is, according to this configuration, it is possible to smoothly engage the engagement device at the time of transition of the operation mode from the electric torque converter mode to the hybrid mode.
  • the second engagement device is a mesh type engagement device.
  • the second engagement device (CL2) includes an engagement driving member that moves along with the state transition from the released state to the engaged state, and an operation detection sensor that detects the amount of movement of the engagement driving member. (Se14), wherein the control device (10) performs the synchronization maintenance control within a specified range based on the engagement start position of the engagement drive member based on the detection result of the operation detection sensor (Se14). is terminated, and after the synchronization maintenance control is terminated, the control method of the rotating electric machine (MG1) is preferably shifted to torque control for outputting torque in accordance with the target torque.
  • control device (10) terminates the synchronization maintenance control within a specified range based on the engagement start position of the engagement drive member, so that the second engagement device (CL2) is in the engaged state. After that, the rotary electric machine (MG1) can be smoothly driven and controlled by torque control.
  • control device (10) starts the engagement control after the state in which the rotational speed difference is equal to or less than the synchronization threshold continues for a predetermined period (T1).
  • the rotating electrical machine (MG1) is a first rotating electrical machine (MG1)
  • the vehicle drive device (100) includes a second rotating electrical machine (MG2) in addition to the first rotating electrical machine (MG1).
  • the second rotating electric machine (NG2) is a rotating electric machine drivingly connected to a wheel (W2) different from the wheel (W1) without interposing the output member (O1), or the transmission mechanism (T).
  • the second rotating electric machine (MG2) is driven and connected to the output member (O1) without intervening, and the second rotating electric machine (MG2) rotates according to a change in the rotation speed of the internal combustion engine (EG) due to the start of the synchronization maintenance control. It is preferable to output torque so as to compensate for the torque corresponding to the inertia of the internal combustion engine (EG).
  • the second rotating electric machine (MG2) outputs torque so as to compensate for the torque corresponding to the inertia of the internal combustion engine (EG) that accompanies the change in the rotation speed of the internal combustion engine (EG) due to the start of synchronization maintenance control. do.
  • the driving force of the vehicle that decreases due to the execution of the synchronization maintenance control is compensated for, and the vehicle can continue to run stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

分配用差動歯車機構(SP)は、入力部材(I)に駆動連結された第1回転要素(Es1)、出力部材(O2)に駆動連結された第2回転要素(Es2)、回転電機(MG1)に駆動連結された第3回転要素(Es3)を備える。出力部材(O2)の回転速度の上昇によって第2回転要素(Es2)の回転速度と第1回転要素(Es1)の回転速度との回転速度差が同期しきい値以下となった場合には、内燃機関(EG)に目標トルクを出力させると共に、第2回転要素(Es2)の回転速度に合わせて回転電機(MG1)の回転速度制御を行うことにより、その回転速度差を同期しきい値以下に設定された規定差回転に維持する同期維持制御を実行し、同期維持制御の実行中に、第2係合装置(CL2)を解放状態から係合状態に移行させる係合制御を実行する。

Description

車両用駆動装置の制御装置
 本発明は、内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、回転電機と、複数の回転要素の内のそれぞれが入力部材及び回転電機に駆動連結された分配用差動歯車機構と、分配用差動歯車機構と出力部材との間の動力伝達を行う伝達機構と、入力部材と分配用差動歯車機構との間の動力伝達を断接する第1係合装置と、分配用差動歯車機構の複数の回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置とを備えた車両用駆動装置に関する。
 上記のような車両用駆動装置には、第1係合装置を係合状態とし、第2係合装置を解放状態とし、分配用差動歯車機構により、回転電機のトルクを反力として内燃機関のトルクを増幅して出力部材側に伝達し、車両を走行させる電気トルクコンバータモード(eTCモード)と、第1係合装置及び第2係合装置を係合状態とし、内燃機関及び回転電機のトルクを出力部材に伝達させるハイブリッドモードとを選択可能なものがある。特開2005-176481号公報には、そのような車両用駆動装置が開示されている。この車両用駆動装置は、eTCモードからハイブリッドモードへの遷移に際して、目標回転速度に維持されている内燃機関の回転速度に回転電機の回転速度が一致又はほぼ一致したら第2係合装置に相当するクラッチを締結して、内燃機関と回転電機とが駆動連結される。
特開2005-176481号公報
 しかし、eTCモードからハイブリッドモードへの遷移に際して、内燃機関の回転速度と回転電機の回転速度とに差がある場合、第2係合装置が円滑に係合できない可能性がある。特に、eTCモードでは、分配用差動歯車機構が差動状態で動作しているが、eTCモードからハイブリッドモードへの遷移は、差動状態ではなく、各回転要素が等速回転している状態で第2係合装置が係合される。しかし、そのような係合タイミングは長い期間ではなく、第2係合装置を円滑に係合することは容易ではない。
 上記背景に鑑みて、電気トルクコンバータモードからハイブリッドモードへの動作モードの遷移に際して円滑に係合装置を係合させる技術の提供が望まれる。
 上記に鑑みた、車両用駆動装置の制御装置は、内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、回転電機と、第1回転要素、第2回転要素、及び第3回転要素を備え、前記第1回転要素が前記入力部材に駆動連結され、前記第3回転要素が前記回転電機のロータに駆動連結された分配用差動歯車機構と、少なくとも前記第2回転要素と前記出力部材との間の動力伝達を行う伝達機構と、前記入力部材と前記第1回転要素との間の動力伝達経路に配置されて前記入力部材と前記第1回転要素との間の動力伝達を断接する第1係合装置と、前記第1回転要素、前記第2回転要素、及び前記第3回転要素の3つの回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置と、を備えた車両用駆動装置を制御対象とする車両用駆動装置の制御装置であって、前記第1係合装置を係合状態とし、前記第2係合装置を解放状態とし、前記内燃機関及び前記回転電機のトルクを前記出力部材に伝達させる第1モードと、前記第1係合装置及び前記第2係合装置を係合状態とし、前記内燃機関及び前記回転電機のトルクを前記出力部材に伝達させる第2モードと、を実行可能であり、前記出力部材の回転速度を上昇させている状態で、前記第1モードから前記第2モードに移行する場合に、前記第2回転要素の回転速度が前記第1回転要素の回転速度よりも低く、且つ、前記第2回転要素の回転速度と前記第1回転要素の回転速度との回転速度差が規定の同期しきい値より大きい間は、前記内燃機関に目標トルクを出力させると共に、前記第3回転要素の回転速度を前記第1回転要素の回転速度及び前記第2回転要素の回転速度に従動させるように前記回転電機を制御する非同期制御を実行し、前記出力部材の回転速度の上昇によって前記第2回転要素の回転速度と前記第1回転要素の回転速度との回転速度差が前記同期しきい値以下となった場合には、前記内燃機関に目標トルクを出力させると共に、前記第2回転要素の回転速度に合わせて前記回転電機の回転速度制御を行うことにより、当該回転速度差を前記同期しきい値以下に設定された規定差回転に維持する同期維持制御を実行し、当該同期維持制御の実行中に、前記第2係合装置を解放状態から係合状態に移行させる係合制御を実行する。
 この構成によれば、第2回転要素の回転速度(車両の速度)が第1回転要素の回転速度(内燃機関の回転速度)よりも低い場合には、第3回転要素の回転速度(回転電機の回転速度)を第1回転要素の回転速度及び第2回転要素の回転速度に従動させることで、第1モードで適切に車両を加速させることができる。また、車両の速度が上昇して、第2回転要素の回転速度(車両の速度)と第1回転要素の回転速度(内燃機関の回転速度)との回転速度差が規定の同期しきい値以下となった後は、第2回転要素の回転速度に合わせて内燃機関及び回転電機の回転速度制御を行うことにより、分配用差動歯車機構の3つの回転要素の回転速度差が同期しきい値以下に設定された規定差回転に維持される(同期維持制御)。よって、分配用差動歯車機構の3つの回転要素の回転速度差を小さく維持しつつ、適切に車両を加速させることができる。そして、同期維持制御の実行中に、第2係合装置を解放状態から係合状態に移行させる係合制御を実行するので、第2係合装置の係合動作を円滑に行うことができる。即ち、本構成によれば、電気トルクコンバータモードからハイブリッドモードへの動作モードの遷移に際して円滑に係合装置を係合させることができる。
 さらなる特徴と利点は、図面を参照して説明する例示的且つ非限定的な実施形態についての以下の記載から明確となる。
車両用駆動装置の第1駆動部のスケルトン図 車両用駆動装置の第2駆動部のスケルトン図 車両用駆動装置の制御ブロック図 第1モード(eTCモード)における分配用差動歯車機構及び伝達機構の速度線図 第2モード(第1HVモード及び第2HVモード)における分配用差動歯車機構及び伝達機構の速度線図 eTCモードから第1HVモードへの遷移時のタイムチャート eTCモードから第1HVモードへの遷移時のフローチャート
 以下、車両用駆動装置の制御装置の実施形態を図面に基づいて説明する。図1及び図2に示すように、車両用駆動装置100は、第1駆動部100Aと、第2駆動部100Bと、を備えている。第1駆動部100Aは一対の第1車輪W1を駆動対象とし、第2駆動部100Bは一対の第2車輪W2を駆動対象としている。本実施形態では、第1車輪W1は車両の前輪であり、第2車輪W2は車両の後輪である。
 図1に示すように、第1駆動部100Aは、内燃機関EGに駆動連結される入力部材Iと、第1車輪W1に駆動連結される第1出力部材O1と、第1ステータSt1及び第1ロータRo1を備えた第1回転電機MG1と、分配用差動歯車機構SPと、伝達係合装置CLtを備えた伝達機構Tと、第1係合装置CL1と、第2係合装置CL2と、を備えている。本実施形態では、第1駆動部100Aは、第1出力用差動歯車機構DF1を更に備えている。
 ここで、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。尚、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、遊星歯車機構の各回転要素について「駆動連結」という場合には、遊星歯車機構における複数の回転要素が、互いに他の回転要素を介することなく連結されている状態を指すものとする。
 入力部材I、分配用差動歯車機構SP、第1係合装置CL1、及び第2係合装置CL2は、第1ロータRo1の回転軸心としての第1軸X1上に配置されている。第1回転電機MG1は、その回転軸心としての第2軸X2上に配置されている。伝達機構Tの伝達係合装置CLtは、その回転軸心としての第3軸X3上に配置されている。本実施形態では、第1出力部材O1及び第1出力用差動歯車機構DF1は、それらの回転軸心としての第4軸X4上に配置されている。
 図2に示すように、第2駆動部100Bは、第2ステータSt2及び第2ロータRo2を備えた第2回転電機MG2と、第2車輪W2に駆動連結される第2出力部材O2と、を備えている。本実施形態では、第2駆動部100Bは、第2カウンタギヤ機構CG2と、第2出力用差動歯車機構DF2と、を更に備えている。
 本実施形態では、第2回転電機MG2は、第2ロータRo2の回転軸心としての第5軸X5上に配置されている。更に、本実施形態では、第2カウンタギヤ機構CG2は、その回転軸心としての第6軸X6上に配置されている。また、本実施形態では、第2出力部材O2及び第2出力用差動歯車機構DF2は、それらの回転軸心としての第7軸X7上に配置されている。
 本実施形態では、上述した第1軸X1~第7軸X7の各軸は、互いに平行に配置されている。以下の説明では、これら第1軸X1~第7軸X7に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、図1に示すように、軸方向Lにおいて、内燃機関EGに対して入力部材Iが配置される側を「軸方向第1側L1」とし、その反対側を「軸方向第2側L2」とする。また、これら第1軸X1~第7軸X7のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。尚、どの軸を基準とするかを区別する必要がない場合やどの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。
 本実施形態では、入力部材Iは、軸方向Lに沿って延在する入力軸1である。入力軸1は、伝達されるトルクの変動を減衰するダンパ装置DPを介して、内燃機関EGの出力軸Eoに駆動連結されている。内燃機関EGは、燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジン、ディーゼルエンジン等)である。
 第1回転電機MG1は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、第1回転電機MG1は、バッテリやキャパシタ等の蓄電装置BT(図3参照)と電気的に接続されている。そして、第1回転電機MG1は、蓄電装置BTに蓄えられた電力により力行して駆動力を発生する。また、第1回転電機MG1は、内燃機関EGの駆動力、又は第1出力部材O1の側から伝達される駆動力により発電を行って蓄電装置BTを充電する。
 第1回転電機MG1の第1ステータSt1は、非回転部材(例えば、第1回転電機MG1等を収容するケース)に固定されている。第1回転電機MG1の第1ロータRo1は、第1ステータSt1に対して回転自在に支持されている。本実施形態では、第1ロータRo1は、第1ステータSt1に対して径方向Rの内側に配置されている。
 分配用差動歯車機構SPは、第1分配用回転要素Es1と、第2分配用回転要素Es2と、第3分配用回転要素Es3と、を備えている。第1分配用回転要素Es1は、入力部材Iに駆動連結されている。第3分配用回転要素Es3は、第1ロータRo1に駆動連結されている。
 本実施形態では、分配用差動歯車機構SPは、第1サンギヤS1と第1キャリヤC1と第1リングギヤR1とを備えた遊星歯車機構である。本例では、分配用差動歯車機構SPは、第1ピニオンギヤP1を支持する第1キャリヤC1と、第1ピニオンギヤP1に噛み合う第1サンギヤS1と、当該第1サンギヤS1に対して径方向Rの外側に配置されて第1ピニオンギヤP1に噛み合う第1リングギヤR1と、を備えたシングルピニオン型の遊星歯車機構である。
 本実施形態では、第1分配用回転要素Es1は、第1サンギヤS1である。更に、本実施形態では、第2分配用回転要素Es2は、第1キャリヤC1である。また、本実施形態では、第3分配用回転要素Es3は、第1リングギヤR1である。したがって、本実施形態に係る分配用差動歯車機構SPの各回転要素の回転速度の順は、第1分配用回転要素Es1、第2分配用回転要素Es2、第3分配用回転要素Es3の順となっている。
 ここで、「回転速度の順」とは、各回転要素の回転状態における回転速度の順番のことである。各回転要素の回転速度は、遊星歯車機構の回転状態によって変化するが、各回転要素の回転速度の高低の並び順は、遊星歯車機構の構造によって定まるものであるため一定となる。尚、各回転要素の回転速度の順は、各回転要素の速度線図(図4、図5等参照)における配置順に等しい。ここで、「各回転要素の速度線図における配置順」とは、速度線図における各回転要素に対応する軸が、当該軸に直交する方向に沿って配置される順番のことである。速度線図における各回転要素に対応する軸の配置方向は、速度線図の描き方によって異なるが、その配置順は遊星歯車機構の構造によって定まるものであるため一定となる。
 本実施形態では、第1駆動部100Aは、第1ロータRo1と一体的に回転する第1ギヤG1と、第1ギヤG1に駆動連結された第2ギヤG2と、を備えている。
 本実施形態では、第1ギヤG1は、第2軸X2上に配置されている。そして、第1ギヤG1は、軸方向Lに沿って延在する第1ロータ軸RS1を介して、第1ロータRo1と一体的に回転するように連結されている。本実施形態では、第2ギヤG2は、第1ギヤG1に噛み合っている。また、第2ギヤG2は、第1軸X1上に配置されている。また、本実施形態では、第2ギヤG2は、第1リングギヤR1と一体的に回転するように連結されている。本例では、第1軸X1を軸心とする筒状のギヤ形成部材2が設けられている。そして、ギヤ形成部材2の外周面に第2ギヤG2が形成され、ギヤ形成部材2の内周面に第1リングギヤR1が形成されている。
 伝達機構Tは、分配用差動歯車機構SPから伝達された回転を第1出力部材O1に伝達する。伝達機構Tの伝達係合装置CLtは、動力伝達の状態を切り替えるための係合装置である。本実施形態では、伝達機構Tは、変速比が異なる複数の変速段を形成し得る変速機TMである。
 変速機TMは、分配用差動歯車機構SPから伝達された回転を、伝達係合装置CLtによって形成された変速段に応じた変速比で変速して第1出力部材O1に伝達する。尚、変速機TMは、伝達係合装置CLtによって形成された変速段に応じた変速比が1の場合、分配用差動歯車機構SPから伝達された回転をそのまま第1出力部材O1に伝達する。伝達係合装置CLtは、変速比が異なる少なくとも2つの変速段の何れかを形成する。本実施形態では、伝達係合装置CLtは、比較的変速比が大きい第1変速段(低速段)ST1と、当該第1変速段ST1よりも変速比が小さい第2変速段(高速段)ST2との何れかを形成する。
 本実施形態では、変速機TMは、第3ギヤG3と、第4ギヤG4と、第5ギヤG5と、第6ギヤG6と、変速出力ギヤ3と、を備えている。第3ギヤG3と第4ギヤG4とは、同軸上に配置されている。本実施形態では、第3ギヤG3と第4ギヤG4とは、第1軸X1上に配置されている。第3ギヤG3は、分配用差動歯車機構SPの第1キャリヤC1と一体的に回転するように連結されている。本実施形態では、第3ギヤG3は、分配用差動歯車機構SPに対して軸方向第1側L1に配置されている。
 第4ギヤG4は、分配用差動歯車機構SPの第1リングギヤR1と一体的に回転するように連結されている。また、本実施形態では、第4ギヤG4は、第2ギヤG2としても機能する。換言すれば、第2ギヤG2と第4ギヤG4とが、1つのギヤとしてギヤ形成部材2の外周面に形成されている。これにより、第2ギヤG2と第4ギヤG4とが独立して設けられた構成と比較して、車両用駆動装置100(第1駆動部100A)の製造コストを低減することができる。
 第5ギヤG5は、第3ギヤG3に噛み合っている。第6ギヤG6は、第4ギヤG4に噛み合っている。本実施形態では、第6ギヤG6は、第4ギヤG4(第2ギヤG2)の周方向における第1ギヤG1とは異なる位置で、第4ギヤG4に噛み合っている。変速出力ギヤ3は、第5ギヤG5及び第6ギヤG6に対して相対的に回転可能に構成されている。第5ギヤG5、第6ギヤG6、及び変速出力ギヤ3は、第3軸X3上に配置されている。本実施形態では、第5ギヤG5、第6ギヤG6、及び変速出力ギヤ3は、軸方向第1側L1から軸方向第2側L2に向けて、記載の順に軸方向Lに並んで配置されている。
 第3ギヤG3の歯数と第4ギヤG4の歯数とは異なっている。つまり、第3ギヤG3の外径と第4ギヤG4の外径とが異なっている。そして、上述したように、第3ギヤG3と第4ギヤG4とが同軸上に配置されていると共に、第3ギヤG3に噛み合う第5ギヤG5と第4ギヤG4に噛み合う第6ギヤG6とが同軸上に配置されている。そのため、第3ギヤG3の外径が第4ギヤG4の外径よりも小さい場合には、第5ギヤG5の外径が第6ギヤG6の外径よりも大きい。一方、第3ギヤG3の外径が第4ギヤG4の外径よりも大きい場合には、第5ギヤG5の外径が第6ギヤG6の外径よりも小さい。したがって、第3ギヤG3に対する第5ギヤG5の歯数比と、第4ギヤG4に対する第6ギヤG6の歯数比とが異なっている。本実施形態では、第3ギヤG3の外径が第4ギヤG4の外径よりも小さく、第3ギヤG3の歯数は第4ギヤG4の歯数よりも少ない。そのため、本実施形態では、第5ギヤG5の外径が第6ギヤG6の外径よりも大きく、第5ギヤG5の歯数は第6ギヤG6の歯数よりも多い。したがって、第3ギヤG3に対する第5ギヤG5の歯数比は、第4ギヤG4に対する第6ギヤG6の歯数比よりも大きい。
 本実施形態では、伝達係合装置CLtは、第5ギヤG5及び第6ギヤG6の何れかを、変速出力ギヤ3に連結するように構成されている。上述したように、本実施形態では、第3ギヤG3に対する第5ギヤG5の歯数比は、第4ギヤG4に対する第6ギヤG6の歯数比よりも大きい。そのため、伝達係合装置CLtが第5ギヤG5を変速出力ギヤ3に連結させた場合には、第2変速段ST2よりも変速比が大きい第1変速段(低速段)ST1が形成される。一方、伝達係合装置CLtが第6ギヤG6を変速出力ギヤ3に連結させた場合には、第1変速段ST1よりも変速比が小さい第2変速段(高速段)ST2が形成される。
 更に、本実施形態では、伝達係合装置CLtは、伝達機構Tに動力伝達を行わせないニュートラル状態に切り替え可能に構成されている。伝達係合装置CLtがニュートラル状態の場合、伝達機構Tが分配用差動歯車機構SPから伝達された回転を第1出力部材O1に伝達しない状態、つまり、内燃機関EG及び第1回転電機MG1のいずれの駆動力も第1車輪W1に伝達されない状態となる。本例では、伝達係合装置CLtは、ソレノイド、電動機、油圧シリンダ等のアクチュエータによって、係合駆動部材(ドグスリーブ)を移動させて、係合状態と解放状態とを切り替え可能に構成された噛み合い式係合装置(ドグクラッチ)である。当然ながら、伝達係合装置CLtが摩擦係合装置によって構成されることを妨げるものではない。
 第1出力用差動歯車機構DF1は、第1出力部材O1の回転を一対の第1車輪W1に分配するように構成されている。本実施形態では、第1出力用差動歯車機構DF1は、傘歯車型の差動歯車機構である。具体的には、第1出力用差動歯車機構DF1は、中空の第1差動ケースと、当該第1差動ケースと一体的に回転するように支持された第1ピニオンシャフトと、当該第1ピニオンシャフトに対して回転可能に支持された一対の第1ピニオンギヤと、当該一対の第1ピニオンギヤに噛み合って分配出力要素として機能する一対の第1サイドギヤと、を備えている。第1差動ケースには、第1ピニオンシャフト、一対の第1ピニオンギヤ、及び一対の第1サイドギヤが収容されている。本実施形態では、第1差動ケースには、第1出力部材O1としての第1差動入力ギヤ4が、当該第1差動ケースの径方向Rの外側に突出するように連結されている。そして、一対の第1サイドギヤのそれぞれには、第1車輪W1に駆動連結された第1ドライブシャフトDS1が一体的に回転可能に連結されている。こうして、第1出力用差動歯車機構DF1は、一対の第1ドライブシャフトDS1を介して、第1出力部材O1(第1差動入力ギヤ4)の回転を一対の第1車輪W1に分配する。
 第1係合装置CL1は、入力部材Iと分配用差動歯車機構SPの第1分配用回転要素Es1との間の動力伝達経路に配置されている。本実施形態では、第1係合装置CL1は、入力部材Iと第1サンギヤS1との間の動力伝達を断接するように構成されている。本例では、第1係合装置CL1は、一対の摩擦部材を備え、当該一対の摩擦部材同士の係合の状態が油圧によって制御される摩擦係合装置である。これにより、第1係合装置CL1を滑り係合状態として、第1係合装置CL1の伝達トルク容量を制御することができる。したがって、第1回転電機MG1の駆動力を利用して内燃機関EGを始動する場合に、第1回転電機MG1から内燃機関EGに伝達されるトルクを制御することができるため、第1回転電機MG1を一旦停止する必要がない。ここで、「滑り係合状態」とは、摩擦係合装置の一対の摩擦部材間に回転速度差(滑り)がある係合状態である。
 第2係合装置CL2は、分配用差動歯車機構SPの第1分配用回転要素Es1、第2分配用回転要素Es2、及び第3分配用回転要素Es3の3つの回転要素のうちから選択される2つの間の動力伝達を断接するように構成されている。本実施形態では、第2係合装置CL2は、第2分配用回転要素Es2としての第1キャリヤC1と、第3分配用回転要素Es3としての第1リングギヤR1との間の動力伝達を断接するように構成されている。本例では、第2係合装置CL2は、ソレノイド、電動機、油圧シリンダ等のアクチュエータによって、係合駆動部材(ドグスリーブ)を移動させて、係合状態と解放状態とを切り替え可能に構成された噛み合い式係合装置(ドグクラッチ)である。本実施形態では、第2係合装置CL2は、軸方向Lにおける第1係合装置CL1と分配用差動歯車機構SPとの間に配置されている。当然ながら、第2係合装置CL2が摩擦係合装置によって構成されることを妨げるものではない。
 図2に示すように、本実施形態では、第2回転電機MG2は、第2車輪W2の駆動力源として機能する。つまり、本実施形態では、第2回転電機MG2は、第1出力部材O1を介することなく、第2出力部材O2に駆動連結されている。
 第2回転電機MG2は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、第2回転電機MG2は、蓄電装置BTと電気的に接続されている。そして、第2回転電機MG2は、蓄電装置BTに蓄えられた電力により力行して駆動力を発生する。また、第2回転電機MG2は、回生中には、第2出力部材O2の側から伝達される駆動力により発電を行って蓄電装置BTを充電する。
 第2回転電機MG2の第2ステータSt2は、非回転部材(例えば、第2回転電機MG2等を収容するケース)に固定されている。第2回転電機MG2の第2ロータRo2は、第2ステータSt2に対して回転自在に支持されている。本実施形態では、第2ロータRo2は、第2ステータSt2に対して径方向Rの内側に配置されている。
 本実施形態では、第2駆動部100Bは、第2ロータRo2と一体的に回転するロータギヤ5を備えている。ロータギヤ5は、第5軸X5上に配置されている。そして、ロータギヤ5は、軸方向Lに沿って延在する第2ロータ軸RS2を介して、第2ロータRo2と一体的に回転するように連結されている。
 第2カウンタギヤ機構CG2は、第2カウンタ入力ギヤ61と、第2カウンタ出力ギヤ62と、これらのギヤ(第2カウンタ入力ギヤ61、第2カウンタ出力ギヤ62)が一体的に回転するように連結する第2カウンタ軸63と、を備えている。第2カウンタ入力ギヤ61は、第2カウンタギヤ機構CG2の入力要素である。第2カウンタ入力ギヤ61は、ロータギヤ5に噛み合っている。第2カウンタ出力ギヤ62は、第2カウンタギヤ機構CG2の出力要素である。本実施形態では、第2カウンタ出力ギヤ62は、第2カウンタ入力ギヤ61よりも軸方向第2側L2に配置されている。また、本実施形態では、第2カウンタ出力ギヤ62は、第2カウンタ入力ギヤ61よりも小径に形成されている。本実施形態では、第2出力部材O2は、第2カウンタギヤ機構CG2の第2カウンタ出力ギヤ62に噛み合う第2差動入力ギヤ7である。
 第2出力用差動歯車機構DF2は、第2出力部材O2の回転を一対の第2車輪W2に分配するように構成されている。本実施形態では、第2出力用差動歯車機構DF2は、傘歯車型の差動歯車機構である。具体的には、第2出力用差動歯車機構DF2は、中空の第2差動ケースと、当該第2差動ケースと一体的に回転するように支持された第2ピニオンシャフトと、当該第2ピニオンシャフトに対して回転可能に支持された一対の第2ピニオンギヤと、当該一対の第2ピニオンギヤに噛み合って分配出力要素として機能する一対の第2サイドギヤと、を備えている。第2差動ケースには、第2ピニオンシャフト、一対の第2ピニオンギヤ、及び一対の第2サイドギヤが収容されている。本実施形態では、第2差動ケースには、第2出力部材O2としての第2差動入力ギヤ7が、当該第2差動ケースの径方向Rの外側に突出するように連結されている。そして、一対の第2サイドギヤのそれぞれには、第2車輪W2に駆動連結された第2ドライブシャフトDS2が一体的に回転可能に連結されている。こうして、第2出力用差動歯車機構DF2は、一対の第2ドライブシャフトDS2を介して、第2出力部材O2(第2差動入力ギヤ7)の回転を一対の第2車輪W2に分配する。
 図3に示すように、車両用駆動装置100は、当該車両用駆動装置100が搭載される車両の各部の制御を行うための制御装置10を備えている。本実施形態では、制御装置10は、主制御部11と、内燃機関EGを制御する内燃機関制御部12と、第1回転電機MG1を制御する第1回転電機制御部13と、第2回転電機MG2を制御する第2回転電機制御部14と、第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtの係合の状態を制御する係合制御部15と、を備えている。
 主制御部11は、内燃機関制御部12、第1回転電機制御部13、第2回転電機制御部14、及び係合制御部15のそれぞれに対して、各制御部が担当する装置を制御する指令を出力する。内燃機関制御部12は、内燃機関EGが、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように内燃機関EGを制御する。内燃機関制御部12は、出力軸Eoの回転速度を検出する内燃機関センサSe10の検出結果を用いて内燃機関EGを制御する。
 第1回転電機制御部13は、第1回転電機MG1が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第1回転電機MG1を制御する。第1回転電機制御部13は、第1ロータRo1の回転速度及び回転位置を検出する回転センサやステータコイルに流れる電流を検出する電流センサ等の第1回転電機センサSe11の検出結果に基づいて第1回転電機MG1を制御する。第2回転電機制御部14は、第2回転電機MG2が、主制御部11から指令された目標トルクを出力するように、或いは、主制御部11から指令された目標回転速度となるように第2回転電機MG2を制御する。第2回転電機制御部14は、第2ロータRo2の回転速度及び回転位置を検出する回転センサやステータコイルに流れる電流を検出する電流センサ等の第2回転電機センサSe12の検出結果に基づいて第2回転電機MG2を制御する。
 係合制御部15は、第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtのそれぞれが、主制御部11から指令された係合の状態となるように、第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtを動作させるためのアクチュエータ(図示を省略)を制御する。第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtのそれぞれには、位置検出センサや油圧センサなどにより構成され、それぞれの係合状態を検出するための第1係合装置センサSe13、第2係合装置センサSe14、伝達係合装置センサSe15が備えられている。例えば、第2係合装置CL2や伝達係合装置CLtが上述したように噛み合い式係合装置(ドグクラッチ)により構成されている場合、第2係合装置センサSe14及び伝達係合装置センサSe15は、解放状態から係合状態への状態移行に伴って移動する係合駆動部材(ドグスリーブなど)の位置や油圧によって当該係合駆動部材の移動量を検出する動作検出センサ(スリーブ位置検出センサ、油圧検出センサ)である。
 また、主制御部11は、車両用駆動装置100が搭載される車両の各部の情報を取得するために、当該車両の各部に設けられたセンサからの情報を取得可能に構成されている。本実施形態では、主制御部11は、SOCセンサSe1、車速センサSe2、アクセル操作量センサSe3、及びシフト位置センサSe4からの情報を取得可能に構成されている。
 SOCセンサSe1は、第1回転電機MG1及び第2回転電機MG2と電気的に接続された、蓄電装置BTの状態を検出するためのセンサである。SOCセンサSe1は、例えば、電圧センサや電流センサ等により構成されている。主制御部11は、SOCセンサSe1から出力される電圧値や電流値等の情報に基づいて、蓄電装置BTの充電量(SOC:State of Charge)を算出する。
 車速センサSe2は、車両用駆動装置100が搭載される車両の走行速度(車速)を検出するためのセンサである。本実施形態では、車速センサSe2は、第1出力部材O1の回転速度を検出するためのセンサである。主制御部11は、車速センサSe2から出力される上記回転速度の情報に基づいて、第1出力部材O1の回転速度(角速度)を算出する。第1出力部材O1の回転速度は車速に比例するため、主制御部11は、車速センサSe2の検出信号に基づいて車速を算出する。
 アクセル操作量センサSe3は、車両用駆動装置100が搭載される車両に設けられたアクセルペダルの運転者による操作量を検出するためのセンサである。主制御部11は、アクセル操作量センサSe3の検出信号に基づいて、運転者によるアクセルペダルの操作量を算出する。
 シフト位置センサSe4は、車両用駆動装置100が搭載される車両の運転者により操作されるシフトレバーの選択位置(シフト位置)を検出するためのセンサである。主制御部11は、シフト位置センサSe4の検出信号に基づいてシフト位置を算出する。シフトレバーは、パーキングレンジ(Pレンジ)、後進走行レンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)、前進走行レンジ(Dレンジ)等を選択可能に構成されている。
 主制御部11は、上記のセンサからの情報に基づいて、後述する車両用駆動装置100における複数の動作モードの選択を行う。主制御部11は、係合制御部15を介して、第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtのそれぞれを、選択した動作モードに応じた係合の状態に制御することにより、当該選択した動作モードへの切り替えを行う。更に、主制御部11は、内燃機関制御部12、第1回転電機制御部13、及び第2回転電機制御部14を介して、内燃機関EG、第1回転電機MG1、及び第2回転電機MG2の動作状態を協調制御することにより、選択した動作モードに応じた適切な車両の走行を可能とする。
 下記の表1は、車両用駆動装置100の各動作モードにおける係合装置の状態を示している。表1には、本実施形態の車両用駆動装置100の各動作モードにおける、第1係合装置CL1、第2係合装置CL2、及び伝達係合装置CLtの状態を示している。尚、表1の第1係合装置CL1及び第2係合装置CL2の欄において、「〇」は対象の係合装置が係合状態であることを示し、「×」は対象の係合装置が解放状態であることを示している。また、表1の伝達係合装置CLtの欄において、「Lo」は伝達係合装置CLtが第1変速段(低速段)ST1を形成していることを示し、「Hi」は伝達係合装置CLtが第2変速段(高速段)ST2を形成していることを示し、「N」は伝達係合装置CLtがニュートラル状態となっていることを示している。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、本実施形態では、車両用駆動装置100は、動作モードとして、電気式トルクコンバータモード(以下、「eTCモード」と記す)と、第1EVモード(EV Lo)と、第2EVモード(EV Hi)と、第1HVモード(HV Lo)と、第2HVモード(HV Hi)と、充電モードと、を備えている。
 eTCモードは、分配用差動歯車機構SPにより、第1回転電機MG1のトルクを反力として内燃機関EGのトルクを増幅して第1出力部材O1側に伝達し、車両を走行させるモードである。このモードは、内燃機関EGのトルクを増幅して第1出力部材O1に伝達することができるため、所謂、電気式トルクコンバータモードと称される。eTCモードは、車両の発進時等、車速が比較的低い場合に選択される。本実施形態のeTCモードでは、第1回転電機MG1は、負回転しつつ正トルクを出力して発電し、分配用差動歯車機構SPは、第1回転電機MG1のトルクと内燃機関EGのトルクとを合わせて、内燃機関EGのトルクよりも大きいトルクを第2分配用回転要素Es2(第1キャリヤC1)から出力する。そして、第2分配用回転要素Es2の回転は、変速機TMにおいて第1変速段ST1に応じた変速比で変速されて変速出力ギヤ3に伝達される(図4参照)。そのため、蓄電装置BTの充電量が比較的低い場合であってもeTCモードを選択可能である。
 表1に示すように、eTCモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が解放状態であり、伝達係合装置CLtが伝達機構Tに動力伝達を行わせる状態となるように制御される。本実施形態では、伝達係合装置CLtは、第1変速段(低速段)ST1を形成した状態となるように制御される。そして、eTCモードでは、内燃機関EG及び第1回転電機MG1がトルクを出力するように制御される。よって、eTCモードは、第1係合装置CL1を係合状態とし、第2係合装置CL2を解放状態とし、内燃機関EG及び第1回転電機MG1のトルクを第1出力部材O1に伝達させる「第1モード」に相当する。
 第1EVモード(EV Lo)は、内燃機関EG及び第1回転電機MG1のうち、第1回転電機MG1のみの駆動力により、相対的に低速で車両を走行させるモードである。第2EVモード(EV Hi)は、内燃機関EG及び第1回転電機MG1のうち、第1回転電機MG1のみの駆動力により、相対的に高速で車両を走行させるモードである。第1HVモード(HV Lo)は、内燃機関EG及び第1回転電機MG1の双方の駆動力により、相対的に低速で車両を走行させるモードである。第2HVモード(HV Hi)は、内燃機関EG及び第1回転電機MG1の双方の駆動力により、相対的に高速で車両を走行させるモードである。第1EVモード及び第2EVモード、並びに、第1HVモード及び第2HVモードは、車速及び蓄電装置BTの充電量のそれぞれが規定値以上である場合に選択される。
 第1EVモードでは、第1係合装置CL1が解放状態であり、第2係合装置CL2が係合状態であり、伝達係合装置CLtが伝達機構Tに動力伝達を行わせる状態となるように制御される。本実施形態では、伝達係合装置CLtは、第1変速段(低速段)ST1を形成した状態となるように制御される。一方、第2EVモードでは、第1係合装置CL1が解放状態であり、第2係合装置CL2が係合状態であり、伝達係合装置CLtが伝達機構Tに動力伝達を行わせる状態となるように制御される。本実施形態では、伝達係合装置CLtは、第2変速段(高速段)ST2を形成した状態となるように制御される。そして、第1EVモード及び第2EVモードでは、内燃機関EGが停止し、第1回転電機MG1がトルクを出力するように制御される。
 第1EVモード及び第2EVモードでは、第1係合装置CL1が解放状態とされることによって内燃機関EGが分配用差動歯車機構SPから分離されると共に、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素(Es1~Es3)が互いに一体的に回転する状態となる。その結果、第1ギヤG1から第2ギヤG2に伝達された第1回転電機MG1の回転は、そのまま変速機TMの第3ギヤG3及び第4ギヤG4に伝達される。変速機TMに伝達された回転は、伝達係合装置CLtの状態に応じて、第1EVモードでは第1変速段ST1の変速比、第2EVモードでは第2変速段ST2の変速比で変速されて変速出力ギヤ3に伝達される。
 第1HVモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、伝達係合装置CLtが伝達機構Tに動力伝達を行わせる状態となるように制御される。本実施形態では、伝達係合装置CLtは、第1変速段(低速段)ST1を形成した状態となるように制御される。一方、第2HVモードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、伝達係合装置CLtが伝達機構Tに動力伝達を行わせる状態となるように制御される。本実施形態では、伝達係合装置CLtは、第2変速段(高速段)ST2を形成した状態となるように制御される。そして、第1HVモード及び第2HVモードでは、内燃機関EG及び第1回転電機MG1がトルクを出力するように制御される。よって、第1HVモード及び第2HVモードは、第1係合装置CL1及び第2係合装置CL2を係合状態とし、内燃機関EG及び第1回転電機MG1のトルクを第1出力部材O1に伝達させる「第2モード」に相当する。第2モードは、所謂、パラレルハイブリッドモードと称される。
 第1HVモード及び第2HVモードでは、第1係合装置CL1が係合状態とされることによって内燃機関EGが分配用差動歯車機構SPに連結されると共に、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素(Es1~Es3)が互いに一体的に回転する状態となる。その結果、入力部材Iを介して伝達される内燃機関EGの回転、及び、第1ギヤG1から第2ギヤG2に伝達された第1回転電機MG1の回転は、そのまま変速機TMの第3ギヤG3及び第4ギヤG4に伝達される。変速機TMに伝達された回転は、伝達係合装置CLtの状態に応じて、第1HVモードでは第1変速段ST1の変速比、第2HVモードでは第2変速段ST2の変速比で変速されて変速出力ギヤ3に伝達される。
 充電モードは、内燃機関EGの駆動力により第1回転電機MG1に発電を行わせて、蓄電装置BTを充電するモードである。充電モードは、蓄電装置BTの充電量が規定値未満である場合に選択される。
 充電モードでは、第1係合装置CL1が係合状態であり、第2係合装置CL2が係合状態であり、伝達係合装置CLtがニュートラル状態となるように制御される。そして、充電モードでは、内燃機関EGがトルクを出力し、第1回転電機MG1が内燃機関EGのトルクによって回転する第1ロータRo1の回転方向とは反対方向のトルクを出力することにより発電するように制御される。尚、充電モードでは、車両を停車させていても良いし、第1回転電機MG1が発電した電力により第2回転電機MG2を力行させ、当該第2回転電機MG2の駆動力を第2車輪W2に伝達することで車両を走行させても良い。このように充電モードとしつつ第2回転電機MG2の駆動力によって車両を走行させるモードは、所謂、シリーズハイブリッドモードと称される。
 図4は、本実施形態のeTCモードにおける分配用差動歯車機構SP及び変速機TMの速度線図を示している。図4の速度線図において、縦軸は、分配用差動歯車機構SP及び変速機TMの各回転要素の回転速度に対応している。そして、並列配置された複数本の縦線のそれぞれは、分配用差動歯車機構SP及び変速機TMの各回転要素に対応している。また、図4の速度線図において、複数本の縦線の上方に示された符号は、対応する回転要素の符号である。そして、複数本の縦線の下方に示された符号は、上方に示された符号に対応する回転要素に駆動連結された要素の符号である。このような速度線図の記載方法は、図5等の他の速度線図においても同様である。
 上述したように、本実施形態のeTCモードでは、第1係合装置CL1が係合状態で、第2係合装置CL2が解放状態である。図4に示すように、本実施形態のeTCモードでは、内燃機関EGが正回転しつつ正トルクを出力し、第1回転電機MG1が負回転しつつ正トルクを出力して発電する。これにより、内燃機関EGのトルクよりも大きいトルクが分配用差動歯車機構SPの第1キャリヤC1に伝達される。このトルクによって回転する第1キャリヤC1の回転が、変速機TMの第3ギヤG3に伝達される。そして、第3ギヤG3と第5ギヤG5との間で、第1変速段ST1に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。
 図5は、本実施形態の第1HVモード及び第2HVモードにおける、分配用差動歯車機構SP及び変速機TMの速度線図を示している。上述したように、第1HVモード及び第2HVモードでは、第1係合装置CL1及び第2係合装置CL2を係合状態である。尚、第1EVモード及び第2EVモードでは、第1係合装置CL1は解放状態であるが、第2係合装置CL2が係合状態であるため、分配用差動歯車機構SPの回転状態は同じである。
 図5に示すように、本実施形態の第1EVモード及び第2EVモード、並びに、第1HVモード及び第2HVモードでは、第2係合装置CL2が係合状態とされることによって分配用差動歯車機構SPの3つの回転要素(Es1~Es3)が互いに一体的に回転する状態となる。このように一体回転する分配用差動歯車機構SPの3つの回転要素(Es1~Es3)に対して、第1EVモード及び第2EVモードでは、第1係合装置CL1が解放状態であるため、第1回転電機MG1のトルクが伝達される。一方、第1HVモード及び第2HVモードでは、図5に示すように、第1係合装置CL1が解放状態であるため、内燃機関EG及び第1回転電機MG1のトルクが伝達される。
 これらのトルクによって回転する分配用差動歯車機構SPの3つの回転要素(Es1~Es3)のうち、第2分配用回転要素Es2である第1キャリヤC1から出力された回転が、変速機TMの第3ギヤG3に伝達される。一方、第3分配用回転要素Es3である第1リングギヤR1から出力された回転が、変速機TMの第4ギヤG4に伝達される。そして、第1EVモード及び第1HVモードでは、第3ギヤG3と第5ギヤG5との間で、第1変速段ST1に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。一方、第2EVモード及び第2HVモードでは、第4ギヤG4と第6ギヤG6との間で、第2変速段ST2に応じた変速比で減速された回転が、変速出力ギヤ3に伝達される。
 ところで、eTCモードから第1HVモードへの遷移に際しては、内燃機関EGの回転速度(第1サンギヤS1(第1分配用回転要素Es1)の回転速度)と、第1回転電機MG1の回転速度(第1リングギヤR1(第3分配用回転要素Es3)の回転速度)が一致した状態で、解放状態の第2係合装置CL2が係合されることが好ましい。しかし、本実施形態のように、第2係合装置CL2が噛み合い式係合装置の場合には、摩擦係合装置の場合に比べて第2係合装置CL2が弾かれやすく、いわゆるラチェッティングを生じてしまう可能性がある。図4に示すように、eTCモードでは、分配用差動歯車機構SPは、各回転要素に回転差がある差動状態である。しかし、第1HVモードでは、図5に示すように、分配用差動歯車機構SPは、各回転要素に回転差が無い状態で一体回転する。
 制御装置10は、図4に示すように、第1キャリヤC1(第2分配用回転要素Es2)と第1リングギヤR1(第3分配用回転要素Es3)とに回転速度差がある状態から、第1回転電機MG1の回転速度を上昇させて、図5に示すようにこれら2つの分配用回転要素の回転速度を一致させ、第2係合装置CL2を係合させる。しかし、eTCモードからハイブリッドモードへの遷移に際して、これらの回転速度がうまく整合できていないと、第2係合装置CL2が円滑に係合できない可能性がある。そこで、第2係合装置CL2を円滑に係合するためには、第1キャリヤC1(第2分配用回転要素Es2)の回転速度と第1リングギヤR1(第3分配用回転要素Es3)との回転速度を適切に制御することが必要である。本実施形態の制御装置10は、第2係合装置CL2を係合させる前に、内燃機関EGの回転速度及び第1回転電機MG1の回転速度が第1キャリヤC1(第2分配用回転要素Es2)の回転速度と同等となるように第1回転電機MG1を制御して、第2係合装置CL2が安定して係合できる状態を作り、第2係合装置CL2の係合中にラチェッティングが生じることを抑制する。
 制御装置10は、第1出力部材O1の回転速度を上昇させている状態、即ち加速中で、eTCモード(第1モード)から第1HVモード(第2モード)に移行する場合に、以下のような制御を実行する。制御装置10は、第1キャリヤC1(第2分配用回転要素Es2(第2回転要素))の回転速度が第1サンギヤS1(第1分配用回転要素Es1(第1回転要素))の回転速度よりも低く、且つ、第1キャリヤC1の回転速度と第1サンギヤS1の回転速度との回転速度差が規定の同期しきい値より大きい間は、内燃機関EGに目標トルクを出力させると共に、第1リングギヤR1(第3分配用回転要素Es3(第3回転要素))の回転速度を第1サンギヤS1の回転速度及び第1キャリヤC1の回転速度に従動させるように第1回転電機MG1を制御する非同期制御を実行する。非同期制御において、制御装置10は、第1回転電機MG1が目標トルクを出力するように、第1回転電機MG1をトルク制御する。非同期制御は、分配用差動歯車機構SPの制御モードということができ、図6に示すように非同期制御においては、内燃機関EGの回転速度(第1サンギヤS1の回転速度)と第1キャリヤC1の回転速度とは同期していない。
 さらに、制御装置10は、第1出力部材O1の回転速度の上昇によって第1キャリヤC1の回転速度と第1サンギヤS1の回転速度との回転速度差が同期しきい値以下となった場合には、内燃機関EGに目標トルクを出力させると共に、第1キャリヤC1の回転速度に合わせて第1回転電機MG1の回転速度制御を行うことにより、回転速度差を同期しきい値以下に維持する同期維持制御を実行する。即ち、制御装置10は、非同期制御において第1回転電機MG1をトルク制御するのと異なり、同期維持制御においては、第1回転電機MG1が目標回転速度となるように、第1回転電機MG1を回転速度制御する。そして、制御装置10は、同期維持制御の実行中に、第2係合装置CL2を解放状態から係合状態に移行させる係合制御を実行する。
 尚、上記においては、非同期制御において、第1回転電機MG1が目標トルクを出力するように、制御装置10が第1回転電機MG1をトルク制御する形態について例示したが、制御装置10はトルク制御に加えて第1回転電機MG1を回転速度制御してもよい。具体的には、制御装置10は、当該トルク制御に加えて、内燃機関EG(第1サンギヤS1)の回転速度の所定の一定回転速度からのずれを補正するように第1回転電機MG1の出力トルクを調整する回転速度制御を実施してもよい。即ち、内燃機関EGの回転速度は、所定の一定回転速度からずれる場合があり、当該ずれを第1回転電機MG1の回転速度によって補正するために、第1回転電機MG1がトルク制御に加えて回転速度制御されることも好適である。
 以下、eTCモードから第1HVモードへの遷移時のタイムチャート(図6)、及びフローチャート(図7)も参照して説明する。図6に示すように、eTCモードにおいて、内燃機関EGの回転速度を一定に保った状態で、第1回転電機MG1の回転速度を上昇させる。図4及び図5に示すように、第1回転電機MG1(第1リングギヤR1)の回転方向は、最初は負であるが、図5に示すように時刻t1以降は正となる。内燃機関EGの回転速度が一定に保たれているため、第1回転電機MG1(第1リングギヤR1)の回転速度の上昇に伴って第1キャリヤC1の回転速度が上昇していく。図7に示すように、第1キャリヤC1の回転速度が規定回転速度以上となるまで、eTCモードが継続される(#1、#10)。規定回転速度は、第1分配用回転要素Es1(第1回転要素)としての第1サンギヤS1(内燃機関EG)の回転速度に対して予め規定された同期しきい値だけ小さい値に設定されている。
 図6に示すように、時刻t2において、第1キャリヤC1の回転速度が規定回転速度以上となると(第1キャリヤC1の回転速度と第1サンギヤS1の回転速度との回転速度差が同期しきい値以下となると)、制御装置10は、トルク制御に代えて、第1回転電機MG1を回転速度制御により制御する(図7:#2)。即ち、当該回転速度差を同期しきい値以下に維持する同期維持制御が実行される。
 制御装置10は、この同期維持制御の実行中、同期しきい値以下に設定された規定差回転を持たせるように第1回転電機MG1の回転速度制御を行う。第1回転電機MG1が第1サンギヤS1(内燃機関EG)の回転速度を超えないように制御されることによって、同期維持制御の実行中に実行される係合制御において、第2係合装置CL2を円滑に係合させることができる。
 本実施形態のように、第2係合装置CL2がドグクラッチの場合、第1キャリヤC1の回転速度と第1リングギヤR1の回転速度とが完全に一致していると、ドグスリーブのチャンファとギヤのドグ歯とが係合できない場合がある。このため、第1キャリヤC1の回転速度と第1リングギヤR1の回転速度とに差を持たせることが好ましい。この時、第1キャリヤC1の回転速度と第1リングギヤR1の回転速度との何れを低くしてもよい。但し、車両が加速中の場合には、第1リングギヤR1の回転速度(第1回転電機MG1の回転速度)の方が第1キャリヤC1よりも高くなると係合時に加速方向への係合ショックを生じ易い。従って、eTCモードから第1HVモードへと、車両を加速させながら第2係合装置CL2を係合させる場合には、第1リングギヤR1の回転速度(第1回転電機MG1の回転速度)の方が第1キャリヤC1の回転速度よりも低くなるように、同期しきい値が設定されると好適である。
 また、第2係合装置CL2は、本実施形態のように噛み合い式係合装置に限らず、摩擦係合装置によって構成されていてもよい。摩擦係合装置では、滑り係合状態とすることによって、伝達トルク容量を制御することができるため、噛み合い式係合装置のように係合時にラチェッティングが生じることは少なく、相対的に円滑に係合させ易い。しかし、第2係合装置CL2が摩擦係合装置の場合であっても、上記のように第1リングギヤR1の回転速度と第1キャリヤC1の回転速度とが回転速度差を有するように制御することによって、より円滑に解放状態から係合状態に遷移させることができる。
 この回転速度制御の実行中は、eTCモードとは異なり、内燃機関EGの回転速度が分配用差動歯車機構SPの回転変化(第1サンギヤS1、第1キャリヤC1、第1リングギヤR1の回転変化)と共に上昇することとなる。即ち、イナーシャトルク変動によって駆動力(車両システムトルク)が、図6に破線で示すように減少する。本実施形態では、この車両システムトルクの減少は、図6に示すように、例えば第2回転電機MG2のトルクによって補償することができる。
 上述したように、本実施形態では、第1回転電機MG1に加えて第2回転電機MG2を備えている。本実施形態の第2回転電機MG2は、第1出力部材O1を介することなく第1車輪W1とは別の車輪である第2車輪W2に駆動連結されている回転電機である。この第2回転電機MG2が、同期維持制御の開始による内燃機関EGの回転速度の変化に伴う内燃機関EGのイナーシャ分のトルクを補うようにトルクを出力する。これにより、同期維持制御の実行によって減少する車両の駆動力が補償され、安定した車両の走行を継続することができる。
 図7に示すように、第1回転電機MG1の回転速度制御の実行(#2)に続いて、第2回転電機MG2によるイナーシャトルク補償制御が実行される(#3)。これにより、図6に示すように、時刻t2から第2回転電機MG2によるトルク(補償トルク)が出力され、実線で示すように、車両システムトルクが維持される。
 尚、第2回転電機MG2は、第1出力部材O1に伝達機構T(変速機TM)を介することなく駆動連結される形態であってもよい。また、第2回転電機MG2ではなく、内燃機関EGによって補償トルクが出力され、車両システムトルクが維持される構成であってもよい。
 時刻t2において同期維持制御が開始された後、規定期間T1が経過するまで第1回転電機MG1の回転速度制御が継続される(図7:#4,#12)。即ち、制御装置10は、回転速度差が同期しきい値以下の状態が、予め規定された規定期間T1継続した後に、係合制御を開始する。規定期間T1経過後の時刻t4になると、第2係合装置CL2の係合制御が開始される。本実施形態では、第2係合装置CL2は、噛み合い式係合装置であり、図6に示すように、時刻t4より噛み合い式係合装置のスリーブのストロークが開始される(図7:#5)。この規定期間T1は、第1回転電機MG1の回転速度と目標回転速度との差が最初に同期しきい値以下となった後に、第1回転電機MG1を安定して回転速度制御できるように制御が収束する時間に設定される。規定期間T1が経過するまで第1回転電機MG1の回転速度制御を継続することによって、第1回転電機MG1の回転速度が安定し、第2係合装置CL2を円滑に係合させることができる。
 尚、実験やシミュレーション等によって、予め制御の収束時間が一定範囲内に絞り込める場合には、制御装置10は、同期維持制御を開始して予め規定した同期維持制御継続時間が経過した後に、係合制御を開始してもよい。
 時刻t4より第2係合装置CL2の係合を開始し、時刻t5においてストローク量が規定値を超えると、分配用差動歯車機構SPの制御モードは、同期維持制御から直結移行制御へと移る。制御装置10は、第1回転電機MG1の回転速度制御を終了し、再びトルク制御によって第1回転電機MG1を制御する(図7:#6,#7,#15)。上述したように、第2係合装置CL2は、解放状態から係合状態への状態移行に伴って移動するドグスリーブ(係合駆動部材)と、ドグスリーブの移動量を検出するスリーブ位置検出センサや油圧検出センサなどの第2係合装置センサSe14(動作検出センサ)とを備えている。制御装置10は、第2係合装置センサSe14による検出結果に基づいて、ドグスリーブの噛み合い開始位置を基準とした規定範囲内で同期維持制御を終了する(図6:時刻t5、図7:#6,#7,#15)。この規定範囲は、ドグスリーブの移動の誤差を考慮して、ドグスリーブに形成されたチャンファが、ギヤのドグ歯に接触する前に同期維持制御が終了されるように設定されている。制御装置10は、同期維持制御の終了後、第1回転電機MG1の制御方式を、目標トルクに合わせてトルクを出力するトルク制御に移行する。
 第1回転電機MG1の制御方式がトルク制御に戻った後も、第2係合装置CL2が完全に係合するまでドグスリーブの移動は継続する。図6に示す時刻t6でドグスリーブが所定の位置までの移動を完了すると、分配用差動歯車機構SPの制御モードは、直結移行制御から直結制御に移る。第2係合装置CL2は、完全な係合状態となって第1HVモード(HV Lo)によって車両用駆動装置100が駆動される(図7:#8)。第2係合装置CL2の係合によって、内燃機関EGのトルクの全てを車両システムトルクとして用いることができるので、イナーシャ補償トルクは必要がなくなる。時刻t7において第2回転電機MG2によるイナーシャトルク補償制御が終了される。
 上述したように、制御装置10は、ドグスリーブの噛み合い開始位置を基準とした規定範囲内で同期維持制御を終了することで、第2係合装置CL2が係合状態となった後に円滑に第1回転電機MG1をトルク制御により駆動制御して、第1HVモードを開始することができる。
 制御装置10が同期維持制御を終了する条件は、ドグスリーブの噛み合い開始位置を基準とした規定範囲に限らず、ドグスリーブの移動開始からの経過時間(ストローク経過時間T2)であってもよい。
〔実施形態の概要〕
 以下、上記において説明した車両用駆動装置の制御装置(10)の概要について簡単に説明する。
 1つの態様として、車両用駆動装置の制御装置(10)は、内燃機関(EG)に駆動連結される入力部材(I)と、車輪(W1)に駆動連結される出力部材(O1)と、回転電機(MG1)と、第1回転要素(Es1)、第2回転要素(Es2)、及び第3回転要素(Es3)を備え、前記第1回転要素(Es1)が前記入力部材(I)に駆動連結され、前記第3回転要素(Es3)が前記回転電機(MG1)のロータ(Ro1)に駆動連結された分配用差動歯車機構(SP)と、少なくとも前記第2回転要素(Es2)と前記出力部材(O2)との間の動力伝達を行う伝達機構(T)と、前記入力部材(I)と前記第1回転要素(Es1)との間の動力伝達経路に配置されて前記入力部材(I)と前記第1回転要素(Es1)との間の動力伝達を断接する第1係合装置(CL1)と、前記第1回転要素(Es1)、前記第2回転要素(Es2)、及び前記第3回転要素(Es3)の3つの回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置(CL2)と、を備えた車両用駆動装置(100A(100))を制御対象とする車両用駆動装置の制御装置(10)であって、前記第1係合装置(CL1)を係合状態とし、前記第2係合装置(CL2)を解放状態とし、前記内燃機関(EG)及び前記回転電機(MG1)のトルクを前記出力部材(O1)に伝達させる第1モードと、前記第1係合装置(CL1)及び前記第2係合装置(CL2)を係合状態とし、前記内燃機関(EG)及び前記回転電機(MG1)のトルクを前記出力部材(O1)に伝達させる第2モードと、を実行可能であり、前記出力部材(O1)の回転速度を上昇させている状態で、前記第1モードから前記第2モードに移行する場合に、前記第2回転要素(Es2)の回転速度が前記第1回転要素(Es1)の回転速度よりも低く、且つ、前記第2回転要素(Es2)の回転速度と前記第1回転要素(Es1)の回転速度との回転速度差が規定の同期しきい値より大きい間は、前記内燃機関(EG)に目標トルクを出力させると共に、前記第3回転要素(Es3)の回転速度を前記第1回転要素(Es1)の回転速度及び前記第2回転要素(Es2)の回転速度に従動させるように前記回転電機(MG1)を制御する非同期制御を実行し、前記出力部材(O1)の回転速度の上昇によって前記第2回転要素(Es2)の回転速度と前記第1回転要素(Es1)の回転速度との回転速度差が前記同期しきい値以下となった場合には、前記内燃機関(EG)に目標トルクを出力させると共に、前記第2回転要素(Es2)の回転速度に合わせて前記回転電機(MG1)の回転速度制御を行うことにより、当該回転速度差を前記同期しきい値以下に設定された規定差回転に維持する同期維持制御を実行し、当該同期維持制御の実行中に、前記第2係合装置(CL2)を解放状態から係合状態に移行させる係合制御を実行する。
 この構成によれば、第2回転要素(ES2)の回転速度(車両の速度)が第1回転要素(Es1)の回転速度(内燃機関の回転速度)よりも低い場合には、第3回転要素(ES3)の回転速度(回転電機の回転速度)を第1回転要素(ES1)の回転速度及び第2回転要素(Es2)の回転速度に従動させることで、第1モードで適切に車両を加速させることができる。また、車両の速度が上昇して、第2回転要素(Es2)の回転速度(車両の速度)と第1回転要素(Es1)の回転速度(内燃機関(EG)の回転速度)との回転速度差が規定の同期しきい値以下となった後は、第2回転要素(Es2)の回転速度に合わせて内燃機関(EG)及び回転電機(MG1)の回転速度制御を行うことにより、分配用差動歯車機構(SP)の3つの回転要素の回転速度差が同期しきい値以下に設定された規定差回転に維持される(同期維持制御)。よって、分配用差動歯車機構(SP)の3つの回転要素の回転速度差を小さく維持しつつ、適切に車両を加速させることができる。そして、同期維持制御の実行中に、第2係合装置(CL2)を解放状態から係合状態に移行させる係合制御を実行するので、第2係合装置(CL2)の係合動作を円滑に行うことができる。即ち、本構成によれば、電気トルクコンバータモードからハイブリッドモードへの動作モードの遷移に際して円滑に係合装置を係合させることができる。
 ここで、前記第2係合装置は、噛み合い式の係合装置であると好適である。
 噛み合い式の係合装置では、摩擦係合装置のように滑り係合状態を実現させて伝達トルク容量を制御することは困難である。しかし、上記のように制御することによって、第2係合装置(CL2)が噛み合い式の係合装置であっても、電気トルクコンバータモードからハイブリッドモードへの動作モードの遷移に際して円滑に係合装置を係合させることができる。
 また、前記第2係合装置(CL2)は、前記解放状態から前記係合状態への状態移行に伴って移動する係合駆動部材と、前記係合駆動部材の移動量を検出する動作検出センサ(Se14)と、を備え、制御装置(10)は、前記動作検出センサ(Se14)による検出結果に基づいて、前記係合駆動部材の噛み合い開始位置を基準とした規定範囲内で前記同期維持制御を終了し、前記同期維持制御の終了後、前記回転電機(MG1)の制御方式を、目標トルクに合わせてトルクを出力するトルク制御に移行すると好適である。
 この構成によれば、制御装置(10)は、係合駆動部材の噛み合い開始位置を基準とした規定範囲内で同期維持制御を終了することで、第2係合装置(CL2)が係合状態となった後に円滑に回転電機(MG1)をトルク制御により駆動制御することができる。
 また、制御装置(10)は、前記回転速度差が前記同期しきい値以下の状態が、予め規定された規定期間(T1)継続した後に、前記係合制御を開始すると好適である。
 この構成によれば、規定期間(T1)が経過するまで回転電機(MG1)の回転速度制御を継続することによって、回転電機(MG1)の回転速度が安定し、第2係合装置(CL)2を円滑に係合させることができる。
 ここで、前記回転電機(MG1)を第1回転電機(MG1)とし、車両用駆動装置(100)は、前記第1回転電機(MG1)に加えて第2回転電機(MG2)を備え、前記第2回転電機(NG2)は、前記出力部材(O1)を介することなく前記車輪(W1)とは別の車輪(W2)に駆動連結されている回転電機、又は、前記伝達機構(T)を介することなく前記出力部材(O1)に駆動連結されている回転電機であり、前記第2回転電機(MG2)が、前記同期維持制御の開始による前記内燃機関(EG)の回転速度の変化に伴う前記内燃機関(EG)のイナーシャ分のトルクを補うようにトルクを出力すると好適である。
 この構成によれば、第2回転電機(MG2)が、同期維持制御の開始による内燃機関(EG)の回転速度の変化に伴う内燃機関(EG)のイナーシャ分のトルクを補うようにトルクを出力する。これにより、同期維持制御の実行によって減少する車両の駆動力が補償され、安定した車両の走行を継続することができる。
10:制御装置、100:車両用駆動装置、CL1:第1係合装置、CL2:第2係合装置、EG:内燃機関、Es1:第1分配用回転要素(第1回転要素)、Es2:第2分配用回転要素(第2回転要素)、Es3:第3分配用回転要素(第3回転要素)、I:入力部材、MG1:第1回転電機(回転電機)、MG2:第2回転電機、O1:第1出力部材(出力部材)、Ro1:第1ロータ(第1回転電機のロータ)、Se14:第2係合装置センサ(動作検出センサ)、SP:分配用差動歯車機構、T:伝達機構、T1:規定期間、T2:ストローク経過時間、W1:第1車輪(車輪)

Claims (5)

  1.  内燃機関に駆動連結される入力部材と、
     車輪に駆動連結される出力部材と、
     回転電機と、
     第1回転要素、第2回転要素、及び第3回転要素を備え、前記第1回転要素が前記入力部材に駆動連結され、前記第3回転要素が前記回転電機のロータに駆動連結された分配用差動歯車機構と、
     少なくとも前記第2回転要素と前記出力部材との間の動力伝達を行う伝達機構と、
     前記入力部材と前記第1回転要素との間の動力伝達経路に配置されて前記入力部材と前記第1回転要素との間の動力伝達を断接する第1係合装置と、
     前記第1回転要素、前記第2回転要素、及び前記第3回転要素の3つの回転要素のうちから選択される2つの間の動力伝達を断接する第2係合装置と、を備えた車両用駆動装置を制御対象とする車両用駆動装置の制御装置であって、
     前記第1係合装置を係合状態とし、前記第2係合装置を解放状態とし、前記内燃機関及び前記回転電機のトルクを前記出力部材に伝達させる第1モードと、前記第1係合装置及び前記第2係合装置を係合状態とし、前記内燃機関及び前記回転電機のトルクを前記出力部材に伝達させる第2モードと、を実行可能であり、
     前記出力部材の回転速度を上昇させている状態で、前記第1モードから前記第2モードに移行する場合に、
     前記第2回転要素の回転速度が前記第1回転要素の回転速度よりも低く、且つ、前記第2回転要素の回転速度と前記第1回転要素の回転速度との回転速度差が規定の同期しきい値より大きい間は、前記内燃機関に目標トルクを出力させると共に、前記第3回転要素の回転速度を前記第1回転要素の回転速度及び前記第2回転要素の回転速度に従動させるように前記回転電機を制御する非同期制御を実行し、
     前記出力部材の回転速度の上昇によって前記第2回転要素の回転速度と前記第1回転要素の回転速度との回転速度差が前記同期しきい値以下となった場合には、前記内燃機関に目標トルクを出力させると共に、前記第2回転要素の回転速度に合わせて前記回転電機の回転速度制御を行うことにより、当該回転速度差を前記同期しきい値以下に設定された規定差回転に維持する同期維持制御を実行し、
     当該同期維持制御の実行中に、前記第2係合装置を解放状態から係合状態に移行させる係合制御を実行する、車両用駆動装置の制御装置。
  2.  前記第2係合装置は、噛み合い式の係合装置である、請求項1に記載の車両用駆動装置の制御装置。
  3.  前記第2係合装置は、前記解放状態から前記係合状態への状態移行に伴って移動する係合駆動部材と、前記係合駆動部材の移動量を検出する動作検出センサと、を備え、
     前記動作検出センサによる検出結果に基づいて、前記係合駆動部材の噛み合い開始位置を基準とした規定範囲内で前記同期維持制御を終了し、
     前記同期維持制御の終了後、前記回転電機の制御方式を、目標トルクに合わせてトルクを出力するトルク制御に移行する、請求項2に記載の車両用駆動装置の制御装置。
  4.  前記回転速度差が前記同期しきい値以下の状態が、予め規定された規定期間継続した後に、前記係合制御を開始する、請求項1から3の何れか一項に記載の車両用駆動装置の制御装置。
  5.  前記回転電機を第1回転電機とし、前記第1回転電機に加えて第2回転電機を備え、
     前記第2回転電機は、前記出力部材を介することなく前記車輪とは別の車輪に駆動連結されている回転電機、又は、前記伝達機構を介することなく前記出力部材に駆動連結されている回転電機であり、
     前記第2回転電機が、前記同期維持制御の開始による前記内燃機関の回転速度の変化に伴う前記内燃機関のイナーシャ分のトルクを補うようにトルクを出力する、請求項1から4の何れか一項に記載の車両用駆動装置の制御装置。
PCT/JP2022/001978 2021-01-20 2022-01-20 車両用駆動装置の制御装置 WO2022158523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22742645.9A EP4238811A4 (en) 2021-01-20 2022-01-20 CONTROL DEVICE FOR VEHICLE DRIVING DEVICE
US18/034,250 US20230391316A1 (en) 2021-01-20 2022-01-20 Control device of vehicle drive device
CN202280008257.4A CN116648373A (zh) 2021-01-20 2022-01-20 车用驱动装置的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007378A JP7367710B2 (ja) 2021-01-20 2021-01-20 車両用駆動装置の制御装置
JP2021-007378 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158523A1 true WO2022158523A1 (ja) 2022-07-28

Family

ID=82549502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001978 WO2022158523A1 (ja) 2021-01-20 2022-01-20 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US20230391316A1 (ja)
EP (1) EP4238811A4 (ja)
JP (1) JP7367710B2 (ja)
CN (1) CN116648373A (ja)
WO (1) WO2022158523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076359A (zh) * 2022-08-01 2022-09-20 一汽解放汽车有限公司 换挡控制方法、装置、计算机设备和计算机程序产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048706A1 (ja) * 2022-09-02 2024-03-07 株式会社アイシン 車両用駆動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105908A (ja) * 1999-10-08 2001-04-17 Toyota Motor Corp ハイブリッド車両の制御装置
JP2005124399A (ja) * 1999-10-08 2005-05-12 Toyota Motor Corp 4輪駆動車の制御装置
JP2005176481A (ja) 2003-12-10 2005-06-30 Jatco Ltd パラレルハイブリッド車両
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP2013154682A (ja) * 2012-01-27 2013-08-15 Fuji Heavy Ind Ltd ハイブリッド車両の駆動装置
JP2020192922A (ja) * 2019-05-29 2020-12-03 トヨタ自動車株式会社 車両

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320280B2 (ja) * 2014-11-28 2018-05-09 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105908A (ja) * 1999-10-08 2001-04-17 Toyota Motor Corp ハイブリッド車両の制御装置
JP2005124399A (ja) * 1999-10-08 2005-05-12 Toyota Motor Corp 4輪駆動車の制御装置
JP2005176481A (ja) 2003-12-10 2005-06-30 Jatco Ltd パラレルハイブリッド車両
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP2013154682A (ja) * 2012-01-27 2013-08-15 Fuji Heavy Ind Ltd ハイブリッド車両の駆動装置
JP2020192922A (ja) * 2019-05-29 2020-12-03 トヨタ自動車株式会社 車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4238811A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076359A (zh) * 2022-08-01 2022-09-20 一汽解放汽车有限公司 换挡控制方法、装置、计算机设备和计算机程序产品
CN115076359B (zh) * 2022-08-01 2023-09-08 一汽解放汽车有限公司 换挡控制方法、装置和计算机设备

Also Published As

Publication number Publication date
JP2022111747A (ja) 2022-08-01
EP4238811A4 (en) 2024-05-01
US20230391316A1 (en) 2023-12-07
EP4238811A1 (en) 2023-09-06
CN116648373A (zh) 2023-08-25
JP7367710B2 (ja) 2023-10-24

Similar Documents

Publication Publication Date Title
RU2585501C2 (ru) Устройство приведения в движение для гибридного транспортного средства
JP3638876B2 (ja) 車両の駆動装置及び車両
WO2022158523A1 (ja) 車両用駆動装置の制御装置
CN111976464B (zh) 换挡时利用电机调速的混合动力车辆驱动系统
JP2010076680A (ja) ハイブリッド駆動装置
WO2013132639A1 (ja) ハイブリッドシステムの制御装置
WO2013136483A1 (ja) 車両用駆動装置
JP2005054938A (ja) 車両の変速装置
JP2004210116A (ja) ハイブリッド車両の駆動装置
CN111216551B (zh) 四轮驱动车的控制装置
JPH09123773A (ja) ハイブリッド駆動装置
WO2021241726A1 (ja) 車両用駆動装置
JP7268799B2 (ja) 車両用駆動装置
JP6589757B2 (ja) ハイブリッド車両の走行モード切換制御装置
JP6969952B2 (ja) ハイブリッド車両のパワーユニット
WO2022209650A1 (ja) 車両用駆動装置
JP2017206213A (ja) 車両用駆動装置
JP2009120065A (ja) ハイブリッド車両用駆動装置
JP2023076310A (ja) 車両用駆動装置
WO2022131030A1 (ja) 車両用駆動装置
JP2022157283A (ja) 車両用駆動装置
JP2022156339A (ja) 車両用駆動装置
JP2022154301A (ja) 車両用駆動装置
JP2023080705A (ja) 車両用駆動装置
JP2021091385A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022742645

Country of ref document: EP

Effective date: 20230602

WWE Wipo information: entry into national phase

Ref document number: 202280008257.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE