WO2021238912A1 - 一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法 - Google Patents

一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法 Download PDF

Info

Publication number
WO2021238912A1
WO2021238912A1 PCT/CN2021/095787 CN2021095787W WO2021238912A1 WO 2021238912 A1 WO2021238912 A1 WO 2021238912A1 CN 2021095787 W CN2021095787 W CN 2021095787W WO 2021238912 A1 WO2021238912 A1 WO 2021238912A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
nitrogen
vanadium
porous carbon
doped
Prior art date
Application number
PCT/CN2021/095787
Other languages
English (en)
French (fr)
Inventor
耿建新
杨欣玥
孙龙华
王曼云
贾云灿
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010448236.7A external-priority patent/CN111892047A/zh
Priority claimed from CN202110544559.0A external-priority patent/CN115367726A/zh
Priority claimed from CN202110544939.4A external-priority patent/CN115367745B/zh
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2021238912A1 publication Critical patent/WO2021238912A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of advanced carbon material preparation. More specifically, it relates to a transition metal compound hybrid and nitrogen-doped porous carbon material and a preparation method thereof.
  • Porous carbon material has a wide range of applications in many disciplines due to their excellent physical and chemical properties, especially in the field of energy technology (including lithium batteries and fuel cells).
  • Porous carbon material is a functional carbon material with developed pore structure and adjustable surface properties. It has the advantages of large specific surface area, low density, high mechanical strength, good chemical stability, good electrical conductivity, diverse preparation methods and low cost.
  • the non-polar surface of carbon materials limits its performance in applications.
  • more and more scholars are focusing on the doping and hybrid modification of carbon materials. Heteroatom doping and transition metal compound hybridization endow porous carbon materials with richer functionality.
  • N atom is the most common heteroatom. It contains a lone pair of electrons.
  • the introduction of N atoms into the carbon skeleton makes the surface of the carbon material locally polarized. While N doping improves the conductivity of the material, it also increases defect sites, reactivity and alkalinity. Ways to achieve N doping include in-situ doping during the preparation process and post-treatment methods using ammonia nitridation.
  • Dai's team constructed a three-dimensional N and P co-doped mesoporous carbon foam (Nature Nanotechnology 2015, 10,444). This mesoporous carbon foam has a high specific surface area (1663m 2 g -1 ), which can be used in OER and ORR processes. It has good electrocatalytic performance.
  • Transition metal elements have the characteristics of high valence electrons and high coordination numbers.
  • the underfilled d orbitals endow transition metal compounds with unique performance advantages.
  • Transition metal compounds include oxides, sulfides, nitrides, carbides, etc.
  • these compounds Defect structures, hybrid structures, heterojunctions, etc. can also be formed, which enriches the properties and application fields of transition metal compounds. Therefore, the use of transition metal compounds to hybridize carbon materials is another important way to improve the performance of carbon materials.
  • nitrides and carbon compounds have electrical conductivity and outstanding performance, and have become a research hotspot in recent years.
  • Patent CN 111477874 A discloses a material for lithium-sulfur battery cathode and a preparation method thereof.
  • the material is a self-supporting mesoporous vanadium nitride/carbon nanotube composite material with a three-dimensional network structure.
  • the vanadium oxide nanowires are synthesized by the method, and then obtained by nitriding under the condition of ammonia gas.
  • CN 112038551 A discloses a lithium-sulfur battery diaphragm material with high specific capacity and a preparation method thereof.
  • the diaphragm material is vanadium nitride mesogenic nano-sheets.
  • the material first synthesizes Na 2 V 6 O 16 nano-sheets by hydrothermal method, and then It is obtained by heating it in an ammonia atmosphere.
  • the literature has also reported a variety of preparation methods for vanadium/carbon nitride materials, including Applied Surface Science 2019,466,982; Nature Communication 2017,8,14627, etc. These documents and patent reports mainly adopt ammonia nitriding methods to prepare nitriding materials. vanadium.
  • patents and literature also report doped or composite structures of transition metal nitrides, such as nitrogen-doped titanium oxide and titanium dioxide/titanium nitride composite materials.
  • Patent CN 108722464 A discloses a Pd three-way low-temperature catalyst with nitrogen-doped titanium dioxide as a carrier, and a preparation method and application thereof.
  • ammonia water is used as a nitrogen source, and the titanium dioxide is nitrogen-doped by calcination. , And finally get nitrogen-doped titanium dioxide.
  • Document RSC Advances 2020, 10, 2670 mixed titanium dioxide hollow spheres with urea and calcined at high temperature to obtain titanium dioxide@TiN composite material. It should be pointed out that ammonia water is still needed as a regulator during the preparation of the titanium dioxide precursor.
  • the document Nature Communications 2016, 7, 13216 reported a composite of carbides (W 2 C) and multi-walled carbon nanotubes (MWNTs).
  • This material is based on MWNTs.
  • harsh oxidation conditions are used to modify MWNTs.
  • it is prepared by high-temperature calcination in the presence of a tungsten source.
  • the above-mentioned methods for preparing functionalized porous carbon materials are either limited by the harsh conditions of traditional solvothermal methods, ammonia ammoniation and other methods, or limited by the limited types of materials that can hybridize carbon materials, restricting porous carbon Further improvement of material performance.
  • the first object of the present invention is to provide a porous carbon material hybridized with a transition metal compound and doped with nitrogen.
  • the transition metal compound in the porous carbon material is uniformly distributed on the porous carbon and is not easy to agglomerate, and the porous carbon material has a large specific surface area.
  • the second object of the present invention is to provide a method for preparing a transition metal compound hybrid and nitrogen-doped porous carbon material.
  • the present invention adopts the following technical solutions:
  • a transition metal compound hybrid and nitrogen-doped porous carbon material characterized in that the structure of the porous carbon material contains nitrogen-doped porous graphitized carbon and a transition metal compound;
  • the transition metal compound is hybridized in the nitrogen-doped porous graphitized carbon
  • the transition metal compound is selected from vanadium nitride, oxygen-doped titanium nitride, WC, W 2 C/W or WC/W 2 C/W.
  • W 2 C/W refers to a mixture of W 2 C and W
  • WC/W 2 C/W refers to a mixture of W 2 C, WC and W.
  • the porous carbon material contains 100 parts of nitrogen-doped porous graphitized carbon and 0.1-400 parts of transition metal compounds;
  • the doping amount of nitrogen in the porous graphitized carbon is 0.01-55 atom%
  • oxygen-doped titanium nitride oxygen is atomically doped into the crystal lattice of the titanium nitride molecule, and the doping amount of oxygen is 0.5-20 atom%; and the oxygen-doped titanium nitride particles The diameter is in the range of 1-1000nm; or
  • the WC, W 2 C/W or WC/W 2 C/W is in the form of particles or flakes, and the size is in the range of 1-1000 nm.
  • porous carbon material is prepared from raw materials including the following parts by weight:
  • Nitrogen source 1-1000 parts;
  • the carbon source is selected from the group consisting of glyceraldehyde D-glyceraldehyde, L-glyceraldehyde, erythrose, D-erythrose, L-erythrose, threose, D-threose, and L-threose.
  • the nitrogen source is selected from histamine, 1H-1,2,3-triazole, 1,2,4-triazole, thiazole, pyridine, bipyridine, pyridazine, pyrazine, pyrazine, 1,2,3 triazine, 1,3,5-triazine, 1,3,4-triazine, pyrazole, imidazole, 2-methylimidazole, 4-methylimidazole, urea, dicyandiamide, melamine , Thiourea, p-aminobenzene, mesitidine, spermine, purine, adenine, guanine, 1-methylguanine, 2-methylguanine, 3-methylguanine, 6-methylguanine Purine, 7-methylguanine, N-dimethylguanine, N,9-diacetylguanine, N-acetylguanine, diacetylguanine, 2,9-diacetylguanine,
  • the pore former is selected from potassium carbonate, potassium bicarbonate, potassium chloride, potassium nitrate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, potassium sulfide, potassium sulfite, potassium hydrogen sulfite, and chloride Calcium, calcium lactate, calcium citrate, calcium gluconate, calcium nitrate, calcium phosphate, calcium sulfide, calcium sulfite, calcium bisulfite, calcium carbonate, calcium bicarbonate, calcium sulfate, sodium nitrate, sodium phosphate, sodium hydrogen phosphate , Sodium dihydrogen phosphate, sodium sulfide, sodium sulfite, sodium bisulfite, sodium carbonate, sodium bicarbonate, sodium chlorate, sodium sulfate, sodium bisulfate, sodium ferrate, sodium fluoride, sodium chloride, sodium bromide, One or more of sodium iodide, magnesium chloride, magnesium hydroxide, magnesium nitrate, magnesium phosphate
  • the vanadium precursor is selected from vanadyl acetylacetonate, sodium metavanadate, vanadyl sulfate hydrate, vanadium chloride, vanadium tetracarbonyl cyclopentadienyl, vanadium acetylacetonate, vanadium triisopropoxide , Ammonium metavanadate, vanadium oxychloride, vanadium dioxide, vanadium trioxide, vanadium oxide, vanadium fluoride, vanadium naphthenate, vanadium tetraphenylporphine oxide, vanadium trifluoroamide, vanadium bromide, Octaethylporphin vanadyl, vanadium dichloride, vanadium tetrachloride, triethoxy vanadium oxide, vanadium gallium, cesium orthovanadate, vanadium phthalocyanine oxide, silver metavanadate, vanadium dioxide
  • the titanium precursor is selected from titanium tetrachloride, titanium tetraiodide, titanium tetrabromide, tetraethyl titanate, tetrabutyl titanate, isopropyl titanate, titanyl sulfate, and potassium titanate oxalate , Potassium titanium oxalate hydrate, potassium bisoxalate oxytitanate hydrate, ammonium titanyl oxalate hydrate, fluorotitanic acid, ammonium fluorotitanate, potassium fluorotitanate, di(triethanolamine) diisopropyl titanate, titanium nitrate , One or more of titanium dioxide, dititanium trioxide, and metatitanic acid.
  • the tungsten precursor is a soluble salt of tungsten, selected from tungstic acid, ammonium tungstate, ammonium tungstate hydrate, sodium tungstate, sodium tungstate dihydrate, potassium tungstate, calcium tungstate, and magnesium tungstate , Ammonium paratungstate, ammonium paratungstate hydrate, ammonium metatungstate, ammonium metatungstate hydrate, sodium metatungstate, sodium metatungstate hydrate, silicotungstic acid, silicotungstic acid hydrate, phosphotungstic acid, phosphotungstic acid hydrate , Sodium tungstate tungstate hydrate, tungsten tetrachloride, tungsten pentachloride, tungsten hexachloride, tungsten dichloride, tungsten hexafluoride, one or more of them.
  • a preparation method of transition metal compound hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the freeze-dried sample is calcined and washed to obtain the porous carbon material.
  • the transition metal compound when the raw material contains the vanadium precursor, in the prepared porous carbon material, the transition metal compound is vanadium nitride; when the raw material contains the titanium precursor, the prepared porous carbon material In the carbon material, the transition metal compound is oxygen-doped titanium nitride; when the raw material contains the tungsten precursor, in the prepared porous carbon material, the transition metal compound is WC, W 2 C/W or WC/W 2 One of C/W.
  • the calcination is performed under an inert atmosphere, the calcination temperature is 300-1500° C., and the time is 0.01-20 hours.
  • the calcination temperature is 650-1300°C, and the time is 1-6 hours.
  • the calcination is carried out after the temperature is raised to the calcination temperature at a heating rate of 0.1-30°C/min; or
  • the calcination temperature is 800-1500°C, and the calcination time is 0.01-20 hours;
  • the calcination is performed after the temperature is raised to the calcination temperature at a temperature increase rate of 0.1-30° C./min.
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 1 to 259 parts: 100 parts, and the calcination temperature is controlled at 800-999 °C, the time is controlled within 0.5-10h; or
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 1 to 259 parts: 100 parts, the calcination temperature is controlled at 1000-1099°C, and the time is controlled at 0.1-5h; or
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 1 to 259 parts: 100 parts, the calcination temperature is controlled at 1100-1500°C, and the time is controlled at 0.01-2h,
  • the WC hybrid nitrogen-doped porous graphitized carbon material is prepared.
  • the raw material contains the tungsten precursor
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 260-600 parts: 100 parts, the calcination temperature is controlled at 1000-1099°C, and the time is controlled at 0.01-1h; or
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 401-800 parts: 100 parts, the calcination temperature is controlled at 1000-1099°C, and the time is controlled at 1.01-2h; or
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 260-1000 parts: 100 parts, the calcination temperature is controlled at 1100-1500°C, and the time is controlled at 0.01-2h,
  • the W 2 C/W hybrid nitrogen-doped porous graphitized carbon material is prepared.
  • the addition ratio of the tungsten source to the carbon source in the tungsten precursor is controlled at 260-400 parts: 100 parts, and the calcination temperature is controlled at 1000-1099 °C, the time is controlled at 1.5-2h, the WC/W 2 C/W hybrid nitrogen-doped porous graphitized carbon material is prepared.
  • vanadium nitride, oxygen-doped titanium nitride, WC, W 2 C/W or WC/W 2 C/W are uniformly distributed on the nitrogen-doped porous graphitized carbon, and it is not easy to Agglomeration, and the porous carbon material has a high specific surface area;
  • the porous carbon material is prepared by the one-pot method (that is, in the preparation of vanadium nitride and oxygen-doped titanium nitride, the nitridation of vanadium or titanium oxides, hydroxides, and sulfides is not done by using ammonia. To prepare), therefore, the preparation method has a simple process, a short production cycle, simple and efficient, and improves the utilization rate of raw materials.
  • the nitrogen source used is not only doped into the obtained porous carbon material, but also the nitrogen source reacts with the transition metal precursor to obtain different transition metal compounds. Hybrid.
  • the one-step method is the first in the related field to realize the preparation of transition metal compounds, the preparation of nitrogen-doped porous carbon, and the hybridization of the former in the latter.
  • Figure 1 shows the XRD characterization of the vanadium nitride hybrid and nitrogen-doped porous carbon material prepared in Example 1.
  • FIG. 2 shows the SEM characterization of the porous carbon material obtained in Example 1. It can be seen that the vanadium nitride hybrid and nitrogen-doped porous carbon have morphological characteristics. There are VN particles (the circled part in Figure 2 is the VN particle, in addition, the function of the circle in Figure 2 is only to indicate the VN particle in the SEM), and the VN particle size is in the range of 10-50nm.
  • Example 3 shows the BET test curve of the vanadium nitride hybrid and nitrogen-doped porous carbon material prepared in Example 1.
  • Example 4 shows the XRD spectrum of the porous carbon material prepared in Example 30.
  • Example 5 shows the Ti K-edge XANES spectra of the porous carbon material O-TiN@N-PGC, commercial TiN, and commercial titanium dioxide prepared in Example 30.
  • FIG. 6 shows an SEM photograph of the porous carbon material prepared in Example 30.
  • FIG. 7 shows the BET curve of the porous carbon material prepared in Example 30.
  • Figure 8 shows the XRD patterns of Examples 59-65, 79-84, and 86, which are WC@N-C materials.
  • Figure 9 shows the XRD patterns of Examples 66-70, 72-73, 77-78, 85, and 87, which are W 2 C/W@NC materials.
  • Figure 10 shows the XRD patterns of Examples 71 and 74-76, which are WC/W 2 C/W@NC materials.
  • Figure 11 shows WC@NC prepared in Example 59 ( Figure a), W 2 C/W@NC prepared in Example 66 ( Figure b), and WC/W 2 C/W@NC prepared in Example 71 (Panel c) TEM images of three materials.
  • FIG. 12 shows the XRD pattern of Comparative Example 7.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • Table 1 shows the specific contents of C, N, and V in the vanadium nitride hybrid and nitrogen-doped porous carbon material obtained through material composition analysis. Among them, C atoms accounted for 81.68%, N atoms accounted for 11.22%, and VN accounted for 1.02%, O atoms accounted for 6.08%.
  • Figure 1 shows the XRD spectrum of the prepared porous carbon material. It can be seen from the figure that the synthesized substance is VN, and VN presents crystals on the surface of the porous carbon.
  • Figure 2 shows the SEM photo of the prepared porous carbon material. From the figure, we can see the morphological characteristics of the porous carbon with vanadium nitride hybridization and nitrogen doping. The morphology of the hole, and there are VN particles, and the size of the VN particles is in the range of 10-50nm.
  • Figure 3 shows the BET curve of the prepared porous carbon material.
  • the specific surface area is 244.82 m 2 /g and the pore volume is 0.39 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 2-120 nm, the specific surface area is 289.56 m 2 /g, and the pore volume is 0.43 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 0.56% for N atoms and 0.26% for VN.
  • the obtained VN particle size is in the range of 2-100 nm, the specific surface area is 255.34 m 2 /g, and the pore volume is 0.41 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 5-150 nm, the specific surface area is 97.89 m 2 /g, and the pore volume is 0.19 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 28.98% for N atoms and 0.06% for VN.
  • the obtained VN particle size is in the range of 4-130 nm, the specific surface area is 286.59 m 2 /g, and the pore volume is 0.58 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 2-120 nm, the specific surface area is 1159.35 m 2 /g, and the pore volume is 1.29 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 0.09% for N atoms and 0.05% for VN.
  • the obtained VN particle size is in the range of 2-120 nm, the specific surface area is 89.39 m 2 /g, and the pore volume is 0.10 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 2-90 nm, the specific surface area is 889.98 m 2 /g, and the pore volume is 0.98 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-70 nm, the specific surface area is 229.39 m 2 /g, and the pore volume is 0.39 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 28.98% for N atoms and 3.27% for VN.
  • the obtained VN particle size is in the range of 4-100 nm, the specific surface area is 96.55 m 2 /g, and the pore volume is 0.19 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 5-120 nm, the specific surface area is 2918.92 m 2 /g, and the pore volume is 0.52 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-130 nm, the specific surface area is 420.09 m 2 /g, and the pore volume is 0.92 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 5-120 nm, the specific surface area is 1123.78 m 2 /g, and the pore volume is 0.94 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 4-120 nm, the specific surface area is 289.27 m 2 /g, and the pore volume is 0.44 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 300.96 m 2 /g, and the pore volume is 0.58 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 109.29 m 2 /g, and the pore volume is 0.19 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 359.08 m 2 /g, and the pore volume is 0.69 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • sucrose 100 parts of sucrose, 400 parts of N-nitro-2-amino-4,6-triazide-1,3,5-triazine, 1200 parts of sodium chloride, 150 parts of vanadium chloride, 2000 parts of water are mixed evenly and freeze-dried;
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 27.09% for N atoms and 3.05% for VN.
  • the obtained VN particle size is in the range of 3-120nm, the specific surface area is 376.07m 2 /g, and the pore volume is 0.61cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 430.05 m 2 /g, and the pore volume is 0.83 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 4-120 nm, the specific surface area is 456.07 m 2 /g, and the pore volume is 0.88 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 4-120 nm, the specific surface area is 513.89 m 2 /g, and the pore volume is 0.98 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 47.25% for N atoms and 1.46% for VN.
  • the obtained VN particle size is in the range of 5-120nm, the specific surface area is 543.05m 2 /g, and the pore volume is 0.92cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 765.09 m 2 /g, and the pore volume is 0.89 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 32.04% for N atoms and 1.37% for VN.
  • the obtained VN particle size is in the range of 4-120nm, the specific surface area is 876.03m 2 /g, and the pore volume is 0.91cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 912.02 m 2 /g, and the pore volume is 0.98 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 4-120 nm, the specific surface area is 94.98 m 2 /g, and the pore volume is 0.14 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 5-120nm, the specific surface area is 89.03m 2 /g, and the pore volume is 0.29cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 4-120nm, the specific surface area is 167.09m 2 /g, and the pore volume is 0.21cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained VN particle size is in the range of 3-120 nm, the specific surface area is 223.06 m 2 /g, and the pore volume is 0.29 cm 3 /g.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 0% doped N atoms and 0% VN.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 0% doped N atoms and 0% VN.
  • a preparation method of a vanadium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the specific contents of C, N, and V in the obtained vanadium nitride hybrid and nitrogen-doped porous carbon materials are respectively 0% doped N atoms and 0% VN.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • Table 2 shows the specific content of C, N, and Ti atoms in the oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material obtained through material composition analysis, of which C atoms accounted for 85.41% and O atoms accounted for 6.09 %, N atoms account for 6.55%, and Ti atoms account for 1.95%.
  • Figure 4 shows the XRD spectrum of the prepared porous carbon material. It can be seen from the figure that the XRD diffraction peak position of the synthesized material is between standard TiN and standard TiO, so the material is oxygen-doped titanium nitride ( O-TiN), O-TiN presents crystals on the surface of porous carbon.
  • Figure 5 shows the Ti K-edge XANES spectrum of O-TiN@N-PGC, commercial TiN, and commercial titanium dioxide. The near-edge absorption of Ti K-edge of O-TiN@N-PGC is between commercial TiN and commercial TiN.
  • Ti in O-TiN@N-PGC is between +3 and +4 valences, which further proves that the titanium nitride in this material is oxygen-doped titanium nitride.
  • Figure 6 shows the SEM photo of the prepared porous carbon material. From the figure, we can see the morphological characteristics of the oxy-doped titanium nitride hybrid and nitrogen-doped porous carbon. It can be seen that the porous carbon has a smooth surface and a large The morphology of the pore sleeve mesopores, and there are O-TiN particles, and the O-TiN particle size is in the range of 20-500nm.
  • Fig. 7 shows the BET curve of the prepared porous carbon material, and the specific surface area is 1204.46 m 2 /g, and the pore volume is 1.37 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-100 nm, the specific surface area is 245.56 m 2 /g, and the pore volume is 0.43 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 45.39%, O atoms accounted for 15.66%, N atoms accounted for 34.72%, and Ti atoms accounted for 4.23%.
  • the obtained O-TiN particle size is in the range of 100-1000 nm, the specific surface area is 300.57 m 2 /g, and the pore volume is 0.97 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-50 nm, the specific surface area is 5.57 m 2 /g, and the pore volume is 0.37 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-100 nm, the specific surface area is 90.57 m 2 /g, and the pore volume is 0.47 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 51.53%, O atoms accounted for 18.93%, N atoms accounted for 16%, and Ti atoms accounted for 13.54%.
  • the obtained O-TiN particle size is in the range of 10-200 nm, the specific surface area is 89.45 m 2 /g, and the pore volume is 0.05 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-120 nm, the specific surface area is 1500.31 m 2 /g, and the pore volume is 2.00 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-150 nm, the specific surface area is 1054.67 m 2 /g, and the pore volume is 1.03 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-150 nm, the specific surface area is 100.57 m 2 /g, and the pore volume is 0.35 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained TIN particle size is in the range of 4-120nm, the specific surface area is 167.09m 2 /g, and the pore volume is 0.21cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-150 nm, the specific surface area is 280.57 m 2 /g, and the pore volume is 0.67 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-200 nm, the specific surface area is 389.45 m 2 /g, and the pore volume is 0.75 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 60.95%, O atoms accounted for 11.33%, N atoms accounted for 22.09%, and Ti atoms accounted for 5.63%.
  • the obtained O-TiN particle size is in the range of 1-150 nm, the specific surface area is 400.57 m 2 /g, and the pore volume is 0.85 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 4-110 nm, the specific surface area is 424.67 m 2 /g, and the pore volume is 0.95 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained TIN particle size is in the range of 2-120nm, the specific surface area is 467.09m 2 /g, and the pore volume is 0.81cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained TIN particle size is in the range of 2-130 nm, the specific surface area is 524.89 m 2 /g, and the pore volume is 0.89 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-200 nm, the specific surface area is 689.45 m 2 /g, and the pore volume is 0.95 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-150 nm, the specific surface area is 400.57 m 2 /g, and the pore volume is 0.85 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained TIN particle size is in the range of 2-130 nm, the specific surface area is 524.89 m 2 /g, and the pore volume is 0.89 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 45.39%, O atoms accounted for 15.66%, N atoms accounted for 34.72%, and Ti atoms accounted for 4.23%.
  • the obtained O-TiN particle size is in the range of 100-1000 nm, the specific surface area is 300.57 m 2 /g, and the pore volume is 0.97 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-50 nm, the specific surface area is 5.57 m 2 /g, and the pore volume is 0.37 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 1-100 nm, the specific surface area is 90.57 m 2 /g, and the pore volume is 0.47 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 10-200nm, the specific surface area is 97.85m 2 /g, and the pore volume is 0.73cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-120 nm, the specific surface area is 1475.31 m 2 /g, and the pore volume is 2.00 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-150 nm, the specific surface area is 1054.67 m 2 /g, and the pore volume is 1.03 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained O-TiN particle size is in the range of 2-150 nm, the specific surface area is 100.57 m 2 /g, and the pore volume is 0.35 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained TIN particle size is in the range of 4-120nm, the specific surface area is 167.09m 2 /g, and the pore volume is 0.21cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 51.53%, O atoms accounted for 18.93%, N atoms accounted for 16%, and Ti atoms accounted for 13.54%.
  • the obtained O-TiN particle size is in the range of 10-200 nm, the specific surface area is 89.45 m 2 /g, and the pore volume is 0.05 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material contains C atoms accounted for 47.54%, O atoms accounted for 17.74%, N atoms accounted for 28.09%, and Ti accounted for 6.63%.
  • the obtained O-TiN particle size is in the range of 2-150 nm, the specific surface area is 458.57 m 2 /g, and the pore volume is 0.75 cm 3 /g.
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • a method for preparing an oxygen-doped titanium nitride hybrid and nitrogen-doped porous carbon material includes the following steps:
  • the obtained Ti compound particles are Ti oxides.
  • the N element content is very low, which is caused by the sample adsorbing N 2 gas in the air.
  • the result of the above comparative example shows that the N source is indispensable for the synthesis of O-TiN in nitrogen-doped porous carbon.
  • the porous carbon materials obtained in the above Examples 30-58 were analyzed by XRD and SEM, and the average position of XRD diffraction peaks of the synthesized material was between standard TiN and standard TiO, so the material was oxygen-doped titanium nitride (O-TiN) , O-TiN presents crystals on the pore walls of the porous carbon, and the surface of the porous carbon is smooth, showing the morphology of macroporous sleeve mesopores; Ti K-edge XANES analysis shows that the Ti in the obtained porous carbon material is between +3 Between the valence and +4 valence, it further proves that the titanium nitride in this material is oxygen-doped titanium nitride.
  • the BET test results show that the obtained material has a rich pore structure.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 800°C at 5°C min -1 , the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 800°C at 15°C min -1 , the temperature is kept constant for 1.8 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • xylose Take 100 parts of xylose, take 190 parts of silicotungstic acid, 52 parts of 4-methylimidazole, and 640 parts of calcium phosphate, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 800°C at 2°C min -1 , the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are as follows: after heating at room temperature to 900°C at 10°C min-1, the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Then the material was washed with deionized water for 24 hours, and then filtered and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@N-C.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 800°C at 10°C min -1 , the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1000°C at 2°C min -1 , the temperature is kept constant for 1.8 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1000°C at 15°C min -1 , the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at room temperature at 10°C min -1 , the temperature is kept constant for 0.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept constant for 1 hour, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at room temperature at 10°C min -1 , the temperature is kept constant for 0.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • glucitol Take 100 parts of glucitol, take 390 parts of phosphotungstic acid, 90 parts of isoguanine, and 625 parts of magnesium hydroxide, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1000°C at 10°C min -1 , the temperature is kept constant for 0.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • gluconic acid Take 100 parts of gluconic acid, take 420 parts of tungsten tetrachloride, 96 parts of 1-methylhypoxanthine, and 625 parts of magnesium sulfide, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept constant for 1 hour, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 8°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC/W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept for 0.8 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are as follows: the temperature is raised to 1000°C at 10°C min -1 at room temperature, and the temperature is kept constant for 1.8 hours, after which the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC/W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC/W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1000°C at 10°C min -1 at room temperature, the temperature is kept constant for 1.6 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC/W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1000°C at 2°C min -1 , the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1050°C at 10°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1250°C at room temperature at 5°C min -1 , the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Then the material was washed with deionized water for 24 hours, and then filtered and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1200°C at 8°C min -1 at room temperature, the temperature is kept constant for 1 hour, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1200°C at 10°C min -1 , the temperature is kept constant for 1.2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1200°C at 6°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • L-ribose Take 100 parts of L-ribose, take 220 parts of ammonium paratungstate, 55 parts of urea, and 620 parts of sodium sulfide, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating up to 1400°C at room temperature at 12°C min -1 , the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1480°C at 6°C min -1 at room temperature, the temperature is kept constant for 1.5 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • fructose take 100 parts of fructose, take 260 parts of ammonium paratungstate, 80 parts of dicyandiamide, and 625 parts of sodium sulfide, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating at room temperature to 1300°C at 5°C min -1 , the temperature is kept constant for 0.5 hours, and then the material is cooled to room temperature along with the furnace body. Then the material was washed with deionized water for 24 hours, and then filtered and dried to obtain the final product. After XRD test, it is known that the phase composition of the material is W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • fructose take 100 parts of fructose, take 240 parts of ammonium paratungstate, 45 parts of melamine, and 630 parts of sodium sulfide, dissolve them in 1,900 parts of deionized water, and put them in a freeze dryer for freeze drying.
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1500°C at 10°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Then the material was washed with deionized water for 24 hours, and then filtered and dried to obtain the final product. After XRD test, the phase composition of the material is known to be WC@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are: after heating to 1500°C at 8°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Then the material was washed with deionized water for 24 hours, and then filtered and dried to obtain the final product. After XRD test, it is known that the phase composition of the material is W 2 C/W@NC.
  • Step 1 Preparation of freeze-dried samples
  • Step 2 Calcination in a tube furnace
  • the calcination parameters are as follows: after heating to 720°C at 10°C min -1 at room temperature, the temperature is kept constant for 2 hours, and then the material is cooled to room temperature along with the furnace body. Subsequently, the material was washed with deionized water for 24 hours, and then filtered with suction and dried to obtain the final product. After XRD test, the phase composition of the material is known to be W 2 N@NC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

提供一种过渡金属化合物杂化和氮掺杂的多孔碳材料,该多孔碳材料的结构中包含氮掺杂的多孔石墨化碳,以及过渡金属化合物;其中,所述过渡金属化合物杂化在所述氮掺杂的多孔石墨化碳中;所述过渡金属化合物选自氮化钒、氧掺杂的氮化钛、WC、W 2C/W或WC/W 2C/W。该多孔碳材料中,过渡金属化合物在多孔碳上均匀分布、不易团聚,且该多孔碳材料具有高的比表面积。还提供了该多孔碳材料的制备方法。

Description

一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法 技术领域
本发明涉及先进碳材料制备领域。更具体地,涉及一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法。
背景技术
碳材料因其优异的理化性能而在很多学科领域中具有广泛的应用,尤其是在能源技术领域(包括锂电池和燃料电池)。多孔碳材料是一种孔结构发达、表面性质可调的功能型碳材料,具有比表面积大、密度低、机械强度高、化学稳定性好、导电性好、制备方法多样和成本低廉等优势。但是,碳材料的非极性表面限制了其在应用中性能的发挥。为提高碳材料的性能,越来越多的学者着眼于碳材料的掺杂和杂化改性,杂原子掺杂和过渡金属化合物杂化赋予了多孔碳材料更丰富的功能性。
N原子是最常见的杂原子,它含有一对孤对电子,将N原子引入到碳骨架中使得碳材料表面发生局部极化。N掺杂在提高材料导电性的同时,还增加了缺陷位、反应活性以及碱性。实现N掺杂的途径包括,制备过程中的原位掺杂和使用氨气氮化的后处理方法。Dai团队构建了一种三维的N、P共掺杂的介孔碳泡沫(Nature Nanotechnology 2015,10,444),这种介孔碳泡沫具有高比表面积(1663m 2g -1),在OER和ORR过程中具有良好的电催化性能。
过渡金属元素具有价电子和配位数高的特点,未充满的d轨道赋予了过渡金属化合物独特的性能优势,过渡金属化合物包括氧化物、硫化物、氮化物、碳化物等,此外,这些化合物还可以形成缺陷结构、杂化结构、异质结等,这更丰富了过渡金属化合物的性质及应用领域。因此,采用过渡金属化合物对碳材料进行杂化是提高碳材料性能的另一个重要途径。在上述过渡金属化合物中,氮化物和碳化合物具有导电性、性能突出,是近年来的研究热点。
采用杂原子、过渡金属化合物、或二者同时对碳材料进行改性,对提高碳材料的性质具有重要意义。专利CN 111477874 A公开了一种用于锂硫电池正极的材料及其制备方法,该材料为自支撑的具有三维网络结构的介孔氮化钒/碳纳米管复合材料,该材料首先通过水热法合成氧化钒纳米线、然后再在氨气条件下氮化处里得到的。CN 112038551 A公开了一种比容量高的锂硫电池隔膜材料及其制备方法,该隔膜材料为氮化钒介晶纳米片,该材料首先通过水热合成Na 2V 6O 16纳米片、然后再通过在氨气气氛下热处里得到的。文献中也报道了多种氮化钒/碳材料的制备方法,包括Applied Surface Science 2019,466,982;Nature Communication 2017,8,14627等,这些文献和专利报到主要采用氨气氮化的途径制备氮化钒。此外,专利和文献中还报告了过渡金属氮化物的掺杂或复合结构,比如氮掺杂氧化钛和二氧化钛/氮化钛复合材料。专利CN 108722464 A公开了一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用,在该材料的制备中采用氨水作为氮源,通过煅烧的方式对二氧化钛进行氮掺杂,最后得到氮掺杂二氧化钛。文献RSC Advances 2020,10,2670将二氧化钛空心球与尿素混合后进行高温煅烧,得到了二氧化钛@TiN复合材料,需要指出的是在二氧化钛前驱体制备过程中仍然需要使用氨水作为调节剂。文献Nature Communications 2016,7,13216报道了一种碳化物(W 2C)和多壁碳纳米管(MWNTs)的复合物,该材料是在MWNTs的基础上,首先采用苛刻的氧化条件修饰MWNTs,然后再通过在钨源存在的条件下高温煅烧制备得到的。上述制备功能化多孔碳材料的方法,或受限于传统的溶剂热法、氨气氨化等方法的苛刻条件,或受限于有限的对碳材料进行杂化的物质种类,限制了多孔碳材料性能的进一步提升。
发明内容
本发明的第一个目的在于提供一种过渡金属化合物杂化和氮掺杂的多孔碳材料。该多孔碳材料中过渡金属化合物在多孔碳上均匀分布、不易团聚,且该多孔碳材料比表面积大。
本发明的第二个目的在于提供一种过渡金属化合物杂化和氮掺杂的多孔碳材料的制备方法。
为达到上述第一个目的,本发明采用下述技术方案:
一种过渡金属化合物杂化和氮掺杂的多孔碳材料,其特征在于,该多孔碳材料的结构中包含氮掺杂的多孔石墨化碳,以及过渡金属化合物;
其中,所述过渡金属化合物杂化在所述氮掺杂的多孔石墨化碳中;
所述过渡金属化合物选自氮化钒、氧掺杂的氮化钛、WC、W 2C/W或WC/W 2C/W。
上述W 2C/W是指W 2C与W的混合物;WC/W 2C/W是指W 2C、WC与W的混合物。
进一步地,按重量份计,所述多孔碳材料中包含100份氮掺杂的多孔石墨化碳、0.1-400份过渡金属化合物;
其中,氮在多孔石墨化碳中的掺杂量为0.01-55atom%;
氮掺杂的多孔石墨化碳孔径分布在1nm-20μm之间,孔体积为0.05-2.0cm 3/g,比表面积为5-1500m 2/g。
进一步地,所述氧掺杂氮化钛中,氧以原子形式掺杂进氮化钛分子的晶格中,氧的掺杂量为0.5-20atom%;且所述氧掺杂氮化钛粒径在1-1000nm范围内;或
所述WC、W 2C/W或WC/W 2C/W为颗粒状或片状,尺寸在在1-1000nm范围内。
进一步地,所述多孔碳材料由包括如下重量份的原料制备得到:
碳源100份;
氮源1-1000份;
造孔剂100-2000份;
去离子水1000-5000份;以及
下述组分中的一种:
钒前驱体5-2000份,或钛前驱体5-2000份,或钨前驱体1-1000份。
进一步地,所述碳源选自甘油醛D-甘油醛、L-甘油醛、赤藓糖、D-赤藓糖、L-赤藓糖、苏力糖、D-苏力糖、L-苏力糖、阿拉伯糖、D-阿拉伯糖、L-阿拉伯糖、核糖、D-核糖、L-核糖、脱氧核糖、2-脱氧-D-核糖、2-脱氧-L-核糖、木糖、D-木糖、L-木糖、来苏糖、D-来苏糖、L-来苏糖、葡萄糖、D-葡萄糖、L-葡萄糖、脱氧葡萄糖、2-脱氧-D-葡萄糖、2-脱氧-L-葡萄糖、甘露糖、D-甘露糖、L-甘露糖、果糖、D-果糖、L-果糖、半乳糖、D-半乳糖、L-半乳糖、D-甘露[型]庚酮糖、葡萄糖醇、D-葡萄糖醇、L-葡萄糖醇、葡萄糖酸、D-葡萄糖酸、L-葡萄糖酸、D-葡萄糖酸-内酯、葡萄糖酸钙、D-葡萄糖酸钙、L-葡萄糖酸钙、乳糖、D-乳糖、L-乳糖、蔗糖、D-蔗糖、L-蔗糖、麦芽糖、D-麦芽糖、L-麦芽糖、淀粉、肝糖、纤维素、聚乙烯吡咯烷酮中的一种或多种。
进一步地,所述氮源选自组织胺、1H-1,2,3-三氮唑、1,2,4-三氮唑、噻唑、吡啶、联吡啶、哒嗪、嘧嗪、吡嗪、1,2,3三嗪、1,3,5-三嗪、1,3,4-三嗪、吡唑、咪唑、2-甲基咪唑、4-甲基咪唑、尿素、双氰胺、三聚氰胺、硫脲、对氨基苯、均三氨基苯、精胺、嘌呤、腺嘌呤、鸟嘌呤、1-甲基鸟嘌呤、2-甲基鸟嘌呤、3-甲基鸟嘌呤、6-甲基鸟嘌呤、7-甲基鸟嘌呤、N-二甲基鸟嘌呤、N,9-二乙酰鸟嘌呤、N-乙酰鸟嘌呤、二乙酰鸟嘌呤、2,9-二乙酰鸟嘌呤、双乙酰鸟嘌呤、2-乙酰鸟嘌呤、N-2-乙酰基鸟嘌呤、硫鸟嘌呤、异鸟嘌呤、鸟腺嘌呤、次黄嘌呤、1-甲基次黄嘌呤、6-氯鸟嘌呤、盐酸鸟嘌呤、嘧啶、胞嘧啶、尿嘧啶、胸腺嘧啶、5-甲基胞嘧啶、5-羟基胞嘧啶、3,6-二胺基-1,2,4,5-四嗪、N-硝基-3,6-二胺基-1,2,4,5-四嗪、2,4,6-三叠氮基-1,3,5-三嗪、N-硝基-2-胺基-4,6-三叠氮基-1,3,5-三嗪、四唑、5-胺基-硝基-二氢-四唑、2-甲基-5-胺基-硝基-二氢-四唑、2-乙基-5-胺基-硝基-二氢-四唑、5-甲胺基-硝基-二氢-四唑、2-甲基-5-甲胺基-硝基-二氢-四唑、2-乙基-5-甲胺基-硝基-二氢-四唑、3-氨基-1,2,4-三氮唑、5-氨基-1,2,4-三氮唑、1,2,3-三氮唑、N-硝基-5-氨基-1,2,4-三氮唑、4,5-二氰基咪唑、2-胍啶苯并咪唑、盐酸胍、胍碳酸盐、巴比妥酸中的一种或多种。
进一步地,所述造孔剂选自碳酸钾、碳酸氢钾、氯化钾、硝酸钾、磷酸钾、磷酸氢钾、磷酸二氢钾、硫化钾、亚硫酸钾、亚硫酸氢钾、氯化钙、乳酸钙、柠檬酸钙、葡萄糖酸钙、硝酸钙、磷酸钙、硫化钙、亚硫酸钙、亚硫酸氢钙、碳酸钙、碳酸氢钙、硫酸钙、硝酸钠、磷酸钠、磷酸氢钠、磷酸二氢钠、硫化钠、亚硫酸钠、亚硫酸氢钠、碳酸钠、碳酸氢钠、氯酸钠、硫酸钠、硫酸氢钠、高铁酸钠、氟化钠、氯化钠、溴化钠、碘化钠、氯化镁、氢氧化镁、硝酸镁、磷酸镁、硫化镁、溴化镁、碘化镁、亚硫酸镁、亚硫酸氢镁中的一种或多种。
进一步地,所述钒前驱体选自乙酰丙酮氧钒、偏钒酸钠、硫酸氧钒水合物、氯化钒、四羰基环戊二烯基钒、乙酰丙酮钒、三异丙氧基氧化钒、偏钒酸铵、三氯氧钒、二氧化钒、三氧化二钒、氧化钒、氟化钒、环烷酸钒、四苯基卟吩氧化钒、三氟氨化钒、溴化钒、八乙基卟吩氧钒、二氯化二茂钒、四氯化钒、氧化三乙氧基钒、镓化钒、原钒酸铯、酞菁氧化钒、偏钒酸银、二氧化钒中的一种或多种;
进一步地,所述钛前驱体选自四氯化钛、四碘化钛、四溴化钛、钛酸四乙酯、钛酸四丁酯、钛酸异丙酯、硫酸氧钛、草酸钛钾、水合草酸钛钾、双草酸氧化钛酸钾水合物、草酸氧钛铵水合物、氟钛酸、氟钛酸铵、氟钛酸钾、二(三乙醇胺)钛酸二异丙酯、硝酸钛、二氧化钛、三氧化二钛、偏钛酸中的一种或多种。
进一步地,所述钨前驱体为钨的可溶性盐,选自钨酸、钨酸铵、钨酸铵水合物、钨酸钠、二水合钨酸钠、钨酸钾、钨酸钙、钨酸镁、仲钨酸铵、仲钨酸铵水合物、偏钨酸铵、偏钨酸铵水合物、偏钨酸钠、偏钨酸钠水合物、硅钨酸、硅钨酸水合物、磷钨酸、磷钨酸水合物、十二磷钨酸钠水合物、四氯化钨、五氯化钨、六氯化钨、二氯二氧化钨、六氟化钨中的一种或几种。
为达到上述第二个目的,本发明采用下述技术方案:
一种过渡金属化合物杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
将碳源、氮源、造孔剂、与选自钛前驱体或钒前驱体或钨前驱体中的一种溶于去离子水中,冷冻 干燥;
将冷冻干燥后的样品进行煅烧,洗涤,得所述多孔碳材料。
本发明的上述制备方法中,当原料中包含所述钒前驱体时,制备得到的多孔碳材料中,过渡金属化合物为氮化钒;当原料中包含所述钛前驱体时,制备得到的多孔碳材料中,过渡金属化合物为氧掺杂的氮化钛;当原料中包含所述钨前驱体时,制备得到的多孔碳材料中,过渡金属化合物为WC、W 2C/W或WC/W 2C/W中的一种。
进一步地,当原料中包含所述钒前驱体或钛前驱体时,所述煅烧在惰性气氛下进行,煅烧的温度为300-1500℃,时间为0.01-20小时。
优选地,所述煅烧的温度为650-1300℃,时间为1-6小时。
优选地,以0.1-30℃/min的升温速率升温到煅烧温度后,再进行煅烧;或
当原料中包含所述钨前驱体时,所述煅烧的温度为800-1500℃,煅烧的时间为0.01-20小时;
优选地,以0.1~30℃/min的升温速率升温到煅烧温度后,再进行煅烧。
进一步地,当原料中包含所述钨前驱体时,将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在800-999℃,时间控制在0.5-10h;或
将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在1000-1099℃,时间控制在0.1-5h;或
将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在1100-1500℃,时间控制在0.01-2h,
制备得到WC杂化的氮掺杂多孔石墨化碳材料。
进一步地,当原料中包含所述钨前驱体时,
将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~600份:100份,煅烧的温度控制在1000-1099℃,时间控制在0.01-1h;或
将所述钨前驱体中的钨源与所述碳源的添加比例控制在401~800份:100份,煅烧的温度控制在1000-1099℃,时间控制在1.01-2h;或
将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~1000份:100份,煅烧的温度控制在1100-1500℃,时间控制在0.01-2h,
制备得到W 2C/W杂化的氮掺杂多孔石墨化碳材料。
进一步地,当原料中包含所述钨前驱体时,将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~400份:100份,煅烧的温度控制在1000-1099℃,时间控制在1.5-2h,制备得到WC/W 2C/W杂化的氮掺杂多孔石墨化碳材料。
本发明的有益效果如下:
本发明提供的多孔碳材料中,氮化钒、氧掺杂的氮化钛、WC、W 2C/W或WC/W 2C/W在氮掺杂的多孔石墨化碳上均匀分布、不易团聚,且该多孔碳材料具有高的比表面积;
该多孔碳材料是通过一锅法制备的(即在氮化钒、氧掺杂氮化钛的制备中,不是通过使用氨气对钒或钛的氧化物、氢氧化物、硫化物的氮化来制备),因此制备方法工艺简单、生产周期短,简单高效并提高了原料的利用率。此外,本发明的制备方法中,使用的氮源不仅掺杂在了得到的多孔碳材料中,同时氮源还与过渡金属的前驱体发生反应而得到不同的过渡金属化合物,实现对多孔碳的杂化。一步法实现过渡金属化合物的制备、氮掺杂多孔碳的制备、及前者在后者中的杂化中在相关领域中属首次。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出实施例1中制备得到的氮化钒杂化、氮掺杂的多孔碳材料的XRD表征。
图2示出实施例1所得多孔碳材料的SEM表征,看出氮化钒杂化和氮掺杂的多孔碳形貌特征,可以看出多孔碳表面光滑,呈现出大孔套介孔的形貌,并且有VN颗粒(图2中圈圈出来的部分即为VN颗粒,此外,图2中的圈的作用仅仅为标示SEM中的VN颗粒)存在,VN颗粒尺寸在10-50nm范围内。
图3示出实施例1中制备得到的氮化钒杂化、氮掺杂的多孔碳材料的BET测试曲线。
图4示出实施例30制备得到的多孔碳材料的XRD谱图。
图5示出实施例30制备得到的多孔碳材料O-TiN@N-PGC、商业化TiN以及商业化二氧化钛的Ti K-edge XANES谱图。
图6示出实施例30制备得到的多孔碳材料的SEM照片。
图7示出实施例30制备得到的多孔碳材料的BET曲线。
图8示出的为实施例59-65、79-84、86的XRD图,为WC@N-C材料。
图9示出的为实施例66-70、72-73、77-78、85、87的XRD图,为W 2C/W@N-C材料。
图10示出的为实施例71、74-76的XRD图,为WC/W 2C/W@N-C材料。
图11示出的为实施例59制备的WC@N-C(a图)、实施例66制备的W 2C/W@N-C(b图)和实施例71制备的WC/W 2C/W@N-C(c图)三种材料的TEM图。
图12示出的为对比例7的XRD图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-蔗糖、20份三聚氰胺、500份氯化钠、20份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至1000℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
表1示出通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量,其中,C原子占81.68%,N原子占11.22%,VN占1.02%,O原子占6.08%。
表1
元素 原子质量(%)
C 81.68
N 11.22
V 1.02
O 6.08
图1示出制备得到的多孔炭材料的XRD谱图,从图中可以可知,得出合成的物质为VN,VN在多孔碳表面呈现晶体存在。
图2示出制备得到的多孔炭材料的SEM照片,从图中可看出氮化钒杂化和氮掺杂的多孔碳形貌特征,可以看出多孔碳表面光滑,呈现出大孔套介孔的形貌,并且有VN颗粒存在,VN颗粒尺寸在10-50nm范围内。
图3示出制备得到的多孔炭材料的BET曲线,得出比表面积为244.82m 2/g,孔体积为0.39cm 3/g。
实施例2
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份淀粉、400份尿素、700份氯化钠、150份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/分钟的升温速率将温度升高至1200℃,在氩气气氛下煅烧1小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占28.98%,VN占3.13%。
得到的VN颗粒尺寸在2-120nm范围内,比表面积为289.56m 2/g,孔体积为0.43cm 3/g。
实施例3
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-葡萄糖酸、1份三聚氰胺、600份氯化钠、200份三氯氧钒,1800份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至650℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占0.56%,VN占0.26%。
得到的VN颗粒尺寸在2-100nm范围内,比表面积为255.34m 2/g,孔体积为0.41cm 3/g。
实施例4
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份纤维素、50份尿素、100份氯化钠、500份环烷酸钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至1300℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占18.34%,VN占2.27%。
得到的VN颗粒尺寸在5-150nm范围内,比表面积为97.89m 2/g,孔体积为0.19cm 3/g。
实施例5
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份半乳糖、400份硫脲、700份氯化钙、5份乙酰丙酮钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占28.98%,VN占0.06%。
得到的VN颗粒尺寸在4-130nm范围内,比表面积为286.59m 2/g,孔体积为0.58cm 3/g。
实施例6
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-赤藓糖、1000份1H-1,2,3-三氮唑、2000份磷酸钠、2000份偏钒酸铵,5000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以0.1℃/分钟的升温速率将温度升高至300℃,在氩气气氛下煅烧20小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占54.74%,VN占24.94%。
得到的VN颗粒尺寸在2-120nm范围内,比表面积为1159.35m 2/g,孔体积为1.29cm 3/g。
实施例7
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份苏力糖、1份1,2,4-三氮唑、100份磷酸氢钠、5份二氧化钒,1000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以0.1℃/分钟的升温速率将温度升高至1500℃,在氩气气氛下煅烧0.01小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占0.09%,VN占0.05%。
得到的VN颗粒尺寸在2-120nm范围内,比表面积为89.39m 2/g,孔体积为0.10cm 3/g。
实施例8
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份木糖、800份均三氨基苯、1800份碳酸氢钾、450份镓化钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至1300℃,在氩气气氛下煅烧15小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占41.98%,VN占5.90%。
得到的VN颗粒尺寸在2-90nm范围内,比表面积为889.98m 2/g,孔体积为0.98cm 3/g。
实施例9
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-来苏糖、20份嘧啶、400份磷酸二氢钾、20份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至950℃,在氩气气氛下煅烧20小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占12.79%,VN占1.35%。
得到的VN颗粒尺寸在3-70nm范围内,比表面积为229.39m 2/g,孔体积为0.39cm 3/g。
实施例10
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖、400份胞嘧啶、500份硫化钾、150份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/分钟的升温速率将温度升高至1200℃,在氩气气氛下煅烧1小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占28.98%,VN占3.27%。
得到的VN颗粒尺寸在4-100nm范围内,比表面积为96.55m 2/g,孔体积为0.19cm 3/g。
实施例11
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份甘露糖、700份6-甲基鸟嘌呤、1000份硝酸钙、235份硫酸氧钒水合物,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧20小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占38.08%,VN占3.93%。
得到的VN颗粒尺寸在5-120nm范围内,比表面积为2918.92m 2/g,孔体积为0.52cm 3/g。
实施例12
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份果糖、1000份N,9-二乙酰鸟嘌呤、1300份亚硫酸钙、435份偏钒酸铵,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占54.43%,VN占5.99%。
得到的VN颗粒尺寸在3-130nm范围内,比表面积为420.09m 2/g,孔体积为0.92cm 3/g。
实施例13
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖醇、600份N-2-乙酰基鸟嘌呤、1900份氢氧化镁、355份三氟氨化钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占34.79%,VN占4.35%。
得到的VN颗粒尺寸在5-120nm范围内,比表面积为1123.78m 2/g,孔体积为0.94cm 3/g。
实施例14
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖酸钙、300份5-羟基胞嘧啶、600份亚硫酸氢镁、350份原钒酸铯,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占26.92%,VN占4.21%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为289.27m 2/g,孔体积为0.44cm 3/g。
实施例15
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份乳糖、600份3,6-二胺基-1,2,4,5-四嗪、900份磷酸钾、500份偏钒酸银,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占34.75%,VN占5.97%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为300.96m 2/g,孔体积为0.58cm 3/g。
实施例16
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖酸、900份鸟腺嘌呤、200份硫化镁、335份二氯化二茂钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占47.45%,VN占4.23%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为109.29m 2/g,孔体积为0.19cm 3/g。
实施例17
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-乳糖、20份2,4,6-三叠氮基-1,3,5-三嗪、1100份氯化钠、20份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至1000℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占10.89%,VN占1.09%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为359.08m 2/g,孔体积为0.69cm 3/g。
实施例18
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份蔗糖、400份N-硝基-2-胺基-4,6-三叠氮基-1,3,5-三嗪、1200份氯化钠、150份氯化钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/分钟的升温速率将温度升高至1200℃,在氩气气氛下煅烧1小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占27.09%,VN占3.05%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为376.07m 2/g,孔体积为0.61cm 3/g。
实施例19
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-蔗糖、600份四唑、1300份氯化钠、200份三氯氧钒,1800份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至650℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占34.98%,VN占3.47%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为430.05m 2/g,孔体积为0.83cm 3/g。
实施例20
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份麦芽糖、50份5-胺基-硝基-二氢-四唑、1400份氯化钠、500份环烷酸钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至1300℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占18.34%,VN占6.04%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为456.07m 2/g,孔体积为0.88cm 3/g。
实施例21
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-麦芽糖、800份2-甲基-5-胺基-硝基-二氢-四唑、1500份氯化钙、35份乙酰丙酮钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占42.79%,VN占1.07%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为513.89m 2/g,孔体积为0.98cm 3/g。
实施例22
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-麦芽糖、900份2-乙基-5-胺基-硝基-二氢-四唑、1600份碳酸钠、35份乙酰丙酮氧钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占47.25%,VN占1.46%。
得到的VN颗粒尺寸在5-120nm范围内,比表面积为543.05m 2/g,孔体积为0.92cm 3/g。
实施例23
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份肝糖、1000份5-甲胺基-硝基-二氢-四坐标、1700份碳酸氢钠、35份偏钒酸钠,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占54.79%,VN占1.35%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为765.09m 2/g,孔体积为0.89cm 3/g。
实施例24
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份聚乙烯吡咯烷酮、500份2-甲基-5-甲基胺-硝基-二氢-四唑、1800份硫酸钠、35份硫酸氧钒水合物,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占32.04%,VN占1.37%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为876.03m 2/g,孔体积为0.91cm 3/g。
实施例25
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份赤藓糖、600份2-乙基-5-甲胺基-硝基-二氢-四唑、1900份硫酸氢钠、35份四羰基环戊二烯基钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占34.89%,VN占1.41%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为912.02m 2/g,孔体积为0.98cm 3/g。
实施例26
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-赤藓糖、700份3-氨基-1,2,4-三氮唑、100份磷酸钠、35份偏钒酸铵,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占38.09%,VN占1.12%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为94.98m 2/g,孔体积为0.14cm 3/g。
实施例27
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份苏力糖、900份5-氨基-1,2,4-三氮唑、200份磷酸氢钠、35份二氧化钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N 原子占47.23%,VN占1.12%。
得到的VN颗粒尺寸在5-120nm范围内,比表面积为89.03m 2/g,孔体积为0.29cm 3/g。
实施例28
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-苏力糖、1000份1,2,3-三氮唑、300份磷酸二氢钠、35份三氧化二钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占54.09%,VN占1.03%。
得到的VN颗粒尺寸在4-120nm范围内,比表面积为167.09m 2/g,孔体积为0.21cm 3/g。
实施例29
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份阿拉伯糖、400份N-硝基-5-氨基-1,2,4-三氮唑、400份硫化钠、35份氧化钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,N原子占28.03%,VN占1.05%。
得到的VN颗粒尺寸在3-120nm范围内,比表面积为223.06m 2/g,孔体积为0.29cm 3/g。
对比例1
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-葡萄糖酸、600份氯化钠、200份三氯氧钒,1800份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至650℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,掺杂的N原子占0%,VN占0%。
对比例2
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份纤维素、600份氯化钠、500份环烷酸钒,2000份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/分钟的升温速率将温度升高至1300℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,掺杂的N原子占0%,VN占0%。
对比例3
一种氮化钒杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份半乳糖、700份氯化钙、35份乙酰丙酮钒,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氮化钒杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氮化钒杂化、氮掺杂的多孔碳材料中C、N、V的具体含量分别为,掺杂的N原子占0%,VN占0%。
我们对对比例的样品进行形貌表征,发现VN颗粒发生严重团聚,并且通过XPS表征,我们发现 N元素含量发生明显下降,并且材料的比表面积也发生了明显的下降。说明N源的存在对合成VN是必不可少的。
实施例30
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份甘油醛、20份三聚氰胺、1500份碳酸钠、20份硫酸氧钛、1000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至900℃,在氩气气氛下煅烧2小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
表2示出通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C、N、Ti原子的具体含量,其中,C原子占85.41%,O原子占6.09%,N原子占6.55%,Ti原子占1.95%。
表2
元素 原子质量(%)
C 85.41
O 6.09
N 6.55
Ti 1.95
图4示出制备得到的多孔碳材料的XRD谱图,从图中可以可知,合成的物质的XRD衍射峰位置介于标准TiN与标准TiO之间,所以该物质为氧掺杂氮化钛(O-TiN),O-TiN在多孔碳表面呈现晶体存在。图5示出O-TiN@N-PGC、商业化TiN、商业化二氧化钛的Ti K-edge XANES谱图,O-TiN@N-PGC的Ti K-edge近边吸收介于商业化TiN以及商业化二氧化钛之间,即O-TiN@N-PGC中的Ti介于+3价与+4价之间,进一步印证了该材料中的氮化钛为氧掺杂氮化钛。图6示出制备得到的多孔碳材料的SEM照片,从图中可看出氧掺杂氮化钛杂化和氮掺杂的多孔碳形貌特征,可以看出多孔碳表面光滑,呈现出大孔套介孔的形貌,并且有O-TiN颗粒存在,O-TiN颗粒尺寸在20-500nm范围内。
图7示出制备得到的多孔碳材料的BET曲线,得出比表面积为1204.46m 2/g,孔体积为1.37cm 3/g。
实施例31
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-半乳糖、1份盐酸胍、500份碳酸钾、200份四氯化钛、1700份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/min的升温速率将温度升高至800℃,在氩气气氛下煅烧4小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占98.41%,O原子占0.95%,N原子占0.49%,Ti原子占0.15%。
得到的O-TiN颗粒尺寸在2-100nm范围内,比表面积为245.56m 2/g,孔体积为0.43cm 3/g。
实施例32
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份淀粉、900份盐酸胍、1800份氯化钾、400份氟钛酸铵、5000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/min的升温速率将温度升高至1200℃,在氩气气氛下煅烧0.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占45.39%,O原子占15.66%,N原子占34.72%,Ti原子占4.23%。
得到的O-TiN颗粒尺寸在100-1000nm范围内,比表面积为300.57m 2/g,孔体积为0.97cm 3/g。
实施例33
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份苏力糖、1份咪唑、100份磷酸二氢钾、5份二氧化钛、1000份去离子水混合均匀, 进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以1℃/min的升温速率将温度升高至300℃,在氩气气氛下煅烧20小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占98.88%,O原子占0.87%,N原子占0.02%,Ti占0.23%。
得到的O-TiN颗粒尺寸在1-50nm范围内,比表面积为5.57m 2/g,孔体积为0.37cm 3/g。
实施例34
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份赤癣糖、10份三氮唑、200份氯化钾、500份氟钛酸、1000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/min的升温速率将温度升高至650℃,在氩气气氛下煅烧10小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占98.27%,O原子占0.98%,N原子占0.12%,Ti占0.63%。
得到的O-TiN颗粒尺寸在1-100nm范围内,比表面积为90.57m 2/g,孔体积为0.47cm 3/g。
实施例35
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份半乳糖、500份尿素、1000份氯化钠、700份钛酸四丁酯、3000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至950℃,在氩气气氛下煅烧3小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占51.53%,O原子占18.93%,N原子占16%,Ti原子占13.54%。
得到的O-TiN颗粒尺寸在10-200nm范围内,比表面积为89.45m 2/g,孔体积为0.05cm 3/g。
实施例36
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份果糖、1000份嘌呤、2000份硫酸钠、2000份氟钛酸钾、5000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/min的升温速率将温度升高至1500℃,在氩气气氛下煅烧0.01小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占18.06%,O原子占2.47%,N原子占55.69%,Ti占23.78%。
得到的O-TiN颗粒尺寸在2-120nm范围内,比表面积为1500.31m 2/g,孔体积为2.00cm 3/g。
实施例37
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-乳糖、350份N-二甲基鸟嘌呤、1200份硫酸钠、3500份草酸钛钾、4600份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至1300℃,在氩气气氛下煅烧0.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占81.55%,O原子占7.33%,N原子占5.49%,Ti占5.63%。
得到的O-TiN颗粒尺寸在2-150nm范围内,比表面积为1054.67m 2/g,孔体积为1.03cm 3/g。
实施例38
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份纤维素、50份硫脲、200份硫酸钠、500份水合草酸钛钾、900份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至700℃,在氩气气氛下煅烧6.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占94.33%,O原子占1.95%,N原子占2.09%,Ti占1.63%。
得到的O-TiN颗粒尺寸在2-150nm范围内,比表面积为100.57m 2/g,孔体积为0.35cm 3/g。
实施例39
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-苏力糖、1000份1,2,3-三氮唑,300份磷酸二氢钠、35份三氧化二钛,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/分钟的升温速率将温度升高至800℃,在氩气气氛下煅烧5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C,N、V的具体含量分别为,C原子占44.07%,O原子占0.81%,N原子占54.09%,TIN占1.03%。
得到的TIN颗粒尺寸在4-120nm范围内,比表面积为167.09m 2/g,孔体积为0.21cm 3/g。
实施例40
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份阿拉伯糖、900份4-甲基咪唑、900份硫化钠、95份草酸氧钛水合物、1350份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/min的升温速率将温度升高至1300℃,在氩气气氛下煅烧7小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占40.97%,O原子占10.78%,N原子占46.02%,Ti原子占2.23%。
得到的O-TiN颗粒尺寸在1-150nm范围内,比表面积为280.57m 2/g,孔体积为0.67cm 3/g。
实施例41
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份麦芽糖、1000份吡唑、1000份碳酸钠、105份钛酸四丁酯、1400份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至950℃,在氩气气氛下煅烧13小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占64.23%,O原子占11.89%,N原子占20.54%,Ti原子占3.34%。
得到的O-TiN颗粒尺寸在1-200nm范围内,比表面积为389.45m 2/g,孔体积为0.75cm 3/g。
实施例42
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份蔗糖、300份4,5-二氰基咪唑、1300份硝酸钠、400份草酸氧钛铵水合物、1100份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至1000℃,在氩气气氛下煅烧6.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占60.95%,O原子占11.33%,N原子占22.09%,Ti原子占5.63%。
得到的O-TiN颗粒尺寸在1-150nm范围内,比表面积为400.57m 2/g,孔体积为0.85cm 3/g。
实施例43
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-蔗糖、400份噻唑、1400份磷酸钠、410份硫酸氧钛、1500份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/min的升温速率将温度升高至550℃,在氩气气氛下煅烧13小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占60.07%,O原子占10.11%,N原子占24.49%,Ti原子占5.33%。
得到的O-TiN颗粒尺寸在4-110nm范围内,比表面积为424.67m 2/g,孔体积为0.95cm 3/g。
实施例44
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-蔗糖、500份对氨基苯,1500份氯酸钠、420份二氧化钛,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/分钟的升温速率将温度升高至450℃,在氩气气氛下煅烧15小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C,N、V的具体含量分别为,C原子占60.13%,O原子占6.75%,N原子占28.09%,TIN占5.03%。
得到的TIN颗粒尺寸在2-120nm范围内,比表面积为467.09m 2/g,孔体积为0.81cm 3/g。
实施例45
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份甘露糖、600份胞嘧啶,1600氯化钾、430份硝酸钛,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/分钟的升温速率将温度升高至600℃,在氩气气氛下煅烧12小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C,N、V的具体含量分别为,C原子占52.57%,O原子占7.64%,N原子占34.44%,TIN占5.35%。
得到的TIN颗粒尺寸在2-130nm范围内,比表面积为524.89m 2/g,孔体积为0.89cm 3/g。
实施例46
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份木糖、1000份1-甲基鸟嘌呤、1900份磷酸氢钾、470份钛酸四丁酯、1400份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至950℃,在氩气气氛下煅烧13小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占74.47%,O原子占1.65%,N原子占20.54%,Ti原子占3.34%。
得到的O-TiN颗粒尺寸在2-200nm范围内,比表面积为689.45m 2/g,孔体积为0.95cm 3/g。
实施例47
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖醇、300份6-甲基鸟嘌呤、1300份硝酸钾、400份氟钛酸钾、1100份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至1000℃,在氩气气氛下煅烧6.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占70.36%,O原子占1.92%,N原子占22.09%,Ti原子占5.63%。
得到的O-TiN颗粒尺寸在1-150nm范围内,比表面积为400.57m 2/g,孔体积为0.85cm 3/g。
实施例48
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖酸、650份鸟腺嘌呤,1600硫化钾、430份硝酸钛,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/分钟的升温速率将温度升高至600℃,在氩气气氛下煅烧12小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C,N、V的具体含量分别为,C原子占50.69%,O原子占9.52%,N原子占34.44%,TIN占5.35%。
得到的TIN颗粒尺寸在2-130nm范围内,比表面积为524.89m 2/g,孔体积为0.89cm 3/g。
实施例49
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份核糖、900份1H-1,2,3-三氮唑、1800份葡萄糖酸钙、400份氟钛酸铵、5000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/min的升温速率将温度升高至1200℃,在氩气气氛下煅烧0.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占45.39%,O原子占15.66%,N原子占34.72%,Ti原子占4.23%。
得到的O-TiN颗粒尺寸在100-1000nm范围内,比表面积为300.57m 2/g,孔体积为0.97cm 3/g。
实施例50
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份2-脱氧-L-核糖、1份1,2,4-三氮唑、100份硝酸钙、5份二氧化钛、1000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以1℃/min的升温速率将温度升高至300℃,在氩气气氛下煅烧20小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占98.88%,O原子占0.87%,N原子占0.02%,Ti占0.23%。
得到的O-TiN颗粒尺寸在1-50nm范围内,比表面积为5.57m 2/g,孔体积为0.37cm 3/g。
实施例51
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份来苏糖、10份3-氨基-1,2,4-三氮唑、200份碳酸钙、500份氟钛酸、1000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/min的升温速率将温度升高至650℃,在氩气气氛下煅烧10小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占98.27%,O原子占0.98%,N原子占0.12%,Ti占0.63%。
得到的O-TiN颗粒尺寸在1-100nm范围内,比表面积为90.57m 2/g,孔体积为0.47cm 3/g。
实施例52
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-来苏糖、100份5-氨基-1,2,4-三氮唑、300份亚硫酸氢钙、300份钛酸异丙酯、1900份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以10℃/min的升温速率将温度升高至800℃,在氩气气氛下煅烧7小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占95.67%,O原子占2.13%,N原子占1.56%,Ti占0.64%。
得到的O-TiN颗粒尺寸在10-200nm范围内,比表面积为97.85m 2/g,孔体积为0.73cm 3/g。
实施例53
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖、1000份吡啶、2000份硫酸钙、1000份氟钛酸钾、5000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以20℃/min的升温速率将温度升高至1500℃,在氩气气氛下煅烧0.01小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占18.06%,O原子占2.47%,N原子占55.69%,Ti占23.78%。
得到的O-TiN颗粒尺寸在2-120nm范围内,比表面积为1475.31m 2/g,孔体积为2.00cm 3/g。
实施例54
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-葡萄糖、350份嘧嗪、1200份亚硫酸氢镁、3500份草酸氧钛铵水合物、4600份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至1300℃,在氩气气氛下煅烧0.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占81.55%,O原子占7.33%,N原子占5.49%,Ti占5.63%。
得到的O-TiN颗粒尺寸在2-150nm范围内,比表面积为1054.67m 2/g,孔体积为1.03cm 3/g。
实施例55
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-葡萄糖、50份1,2,3-三嗪、200份亚硫酸镁、500份偏钛酸、900份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以25℃/min的升温速率将温度升高至700℃,在氩气气氛下煅烧6.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占94.33%,O原子占1.95%,N原子占2.09%,Ti占1.63%。
得到的O-TiN颗粒尺寸在2-150nm范围内,比表面积为100.57m 2/g,孔体积为0.35cm 3/g。
实施例56
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份D-葡萄糖酸-内酯、500份双氰胺,1500溴化钠、420份硝酸钛,1500份水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/分钟的升温速率将温度升高至1000℃,在氩气气氛下煅烧12小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C,N、V的具体含量分别为,C原子占58.36%,O原子占3.77%,N原子占32.44%,TIN占5.43%。
得到的TIN颗粒尺寸在4-120nm范围内,比表面积为167.09m 2/g,孔体积为0.21cm 3/g。
实施例57
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份半乳糖、500份嘧啶、1000份柠檬酸钙、700份钛酸四丁酯、3000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至950℃,在氩气气氛下煅烧3小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占51.53%,O原子占18.93%,N原子占16%,Ti原子占13.54%。
得到的O-TiN颗粒尺寸在10-200nm范围内,比表面积为89.45m 2/g,孔体积为0.05cm 3/g。
实施例58
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-核糖、50份四唑、200份氟化钠、410份二(三乙醇胺)钛酸二异丙酯、1900份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以30℃/min的升温速率将温度升高至1100℃,在氩气气氛下煅烧11小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占47.54%,O原子占17.74%,N原子占28.09%,Ti占6.63%。
得到的O-TiN颗粒尺寸在2-150nm范围内,比表面积为458.57m 2/g,孔体积为0.75cm 3/g。
对比例4
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份葡萄糖酸钙、1250份氯化镁、305份氟钛酸铵、1200份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以5℃/min的升温速率将温度升高至950℃,在氩气气氛下煅烧6小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占97.95%,O原子占2.05%,N原子占0%,Ti原子占0%。
对比例5
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份乳糖、250份乳酸钙、300份硫酸氧钛、1300份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至1050℃,在氩气气氛下煅烧4.5小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占95.33%,O原子占4.67%,N原子占0%,Ti原子占0%。
对比例6
一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料的制备方法,包括如下步骤:
(1)将100份L-赤藓糖、1050份硫化钾、3000份二氧化钛、5000份去离子水混合均匀,进行冷冻干燥;
(2)将冷冻干燥后的样品放在管式炉内,以15℃/min的升温速率将温度升高至1500℃,在氩气气氛下煅烧0.01小时;
(3)将得到的样品放入去离子水中洗涤24小时,进行抽滤,真空干燥得到氧掺杂氮化钛杂化、氮掺杂的多孔碳材料。
通过物质组成分析,得到的氧掺杂氮化钛杂化、氮掺杂的多孔碳材料中C原子占97.55%,O原子占2.45%,N原子占0%,Ti原子占0%。
通过对对比实施例中所得样品的表征,没有发现TiN颗粒存在。通过XRD表征,所得Ti化合物的颗粒为Ti的氧化物。物质组成分析表面,与实施例中所得样品相比,N元素含量很低,是由样品吸附空气中的N 2气引起的。上述对比例的结果,说明了N源对在氮掺杂多孔碳中合成O-TiN是必不可少的。
上述实施例30-58所得多孔碳材料经XRD和SEM分析,合成的物质的XRD衍射峰均位置介于标准TiN与标准TiO之间,所以该物质为氧掺杂氮化钛(O-TiN),O-TiN在多孔碳的孔壁上呈现晶体存 在,孔碳表面光滑,呈现出大孔套介孔的形貌;Ti K-edge XANES分析表明,所得多孔碳材料中的Ti介于+3价与+4价之间,进一步印证了该材料中的氮化钛为氧掺杂氮化钛。BET测试结果表明,所得材料具有丰富的孔结构。
实施例59
步骤一:冷冻干燥样品的制备
取100份的阿拉伯糖,钨酸取60份,50份组织胺,600份的碳酸钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以5℃min -1升温至800℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例60
步骤一:冷冻干燥样品的制备
取100份的乳糖,钨酸钠取130份,50份噻唑,630份的硝酸钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以15℃min -1升温至800℃之后,恒温1.8个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例61
步骤一:冷冻干燥样品的制备
取100份的木糖,硅钨酸取190份,52份4-甲基咪唑,640份的磷酸钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以2℃min -1升温至800℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例62
步骤一:冷冻干燥样品的制备
取100份的D-来苏糖,四氯化钨取200份,49份硫脲,624份的碳酸钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min-1升温至900℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例63
步骤一:冷冻干燥样品的制备
取100份的葡萄糖,六氯化钨取255份,50份均三氨基苯,628份的硫酸钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至800℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例64
步骤一:冷冻干燥样品的制备
取100份的甘露糖,钨酸钠取241份,50份2-甲基鸟嘌呤,625份的亚硫酸钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以2℃min -1升温至1000℃之后,恒温1.8个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例65
步骤一:冷冻干燥样品的制备
取100份的果糖,钨酸钙取240份,52份7-甲基鸟嘌呤,630份的碳酸氢钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以15℃min -1升温至1000℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例66
步骤一:冷冻干燥样品的制备
取100份的苏力糖,仲钨酸铵水合物取265份,70份N-乙酰鸟嘌呤,625份的硫酸氢钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温0.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例67
步骤一:冷冻干燥样品的制备
取100份的半乳糖,偏钨酸钠取270份,78份双乙酰鸟嘌呤,630份的氯化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例68
步骤一:冷冻干燥样品的制备
取100份的L-半乳糖,硅钨酸取320份,85份N-2-乙酰基鸟嘌呤,629份的碘化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温0.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例69
步骤一:冷冻干燥样品的制备
取100份的葡萄糖醇,磷钨酸取390份,90份异鸟嘌呤,625份的氢氧化镁,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温0.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例70
步骤一:冷冻干燥样品的制备
取100份的葡萄糖酸,四氯化钨取420份,96份1-甲基次黄嘌呤,625份的硫化镁,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例71
步骤一:冷冻干燥样品的制备
取100份的赤藓糖,钨酸铵水合物取380份,78份5-甲基胞嘧啶,625份的氯化钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以8℃min -1升温至1000℃之后,恒 温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC/W 2C/W@N-C。
实施例72
步骤一:冷冻干燥样品的制备
取100份的L-葡萄糖醇,十二磷钨酸钠水合物取400份,95份次黄嘌呤,640份的磷酸镁,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温0.8个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例73
步骤一:冷冻干燥样品的制备
取100份的麦芽糖,仲钨酸铵取398份,96份四唑,626份的亚硫酸钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1.8个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例74
步骤一:冷冻干燥样品的制备
取100份的D-葡萄糖酸-内酯,二氯二氧化钨取260份,80份嘧啶,630份的亚硫酸镁,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC/W 2C/W@N-C。
实施例75
步骤一:冷冻干燥样品的制备
取100份的葡萄糖酸钙,六氟化钨取300份,80份胞嘧啶,625份的亚硫酸氢镁,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC/W 2C/W@N-C。
实施例76
步骤一:冷冻干燥样品的制备
取100份的D-赤藓糖,钨酸钠取385份,81份5-羟基胞嘧啶,627份的硝酸钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1000℃之后,恒温1.6个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC/W 2C/W@N-C。
实施例77
步骤一:冷冻干燥样品的制备
取100份的蔗糖,钨酸钾取390份,95份N-硝基-3,6-二胺基-1,2,4,5-四嗪,629份的磷酸氢钾,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以2℃min -1升温至1000℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例78
步骤一:冷冻干燥样品的制备
取100份的淀粉,偏钨酸铵取360份,91份2-乙基-5-胺基-硝基-二氢-四唑,630份的乳酸钙,溶 解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1050℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例79
步骤一:冷冻干燥样品的制备
取100份的D-阿拉伯糖,磷钨酸取86份,50份1,2,4-三氮唑,629份的硫化钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以5℃min -1升温至1250℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例80
步骤一:冷冻干燥样品的制备
取100份的L-阿拉伯糖,磷钨酸水合物取260份,80份3-氨基-1,2,4-三氮唑630份的亚硫酸钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以8℃min -1升温至1200℃之后,恒温1个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例81
步骤一:冷冻干燥样品的制备
取100份的乳糖,十二磷钨酸钠水合物取160份,630份5-氨基-1,2,4-三氮唑,170份的亚硫酸氢钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1200℃之后,恒温1.2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例82
步骤一:冷冻干燥样品的制备
取100份的D-乳糖,四氯化钨取165份,30份1,2,3-三氮唑,625份的碳酸钙,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以6℃min -1升温至1200℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例83
步骤一:冷冻干燥样品的制备
取100份的L-核糖,仲钨酸铵取220份,55份尿素,620份的硫化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以12℃min -1升温至1400℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例84
步骤一:冷冻干燥样品的制备
取100份的果糖,仲钨酸铵取230份,50份双氰胺,624份的硫化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以6℃min -1升温至1480℃之后,恒温1.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例85
步骤一:冷冻干燥样品的制备
取100份的果糖,仲钨酸铵取260份,80份双氰胺,625份的硫化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以5℃min -1升温至1300℃之后,恒温0.5个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
实施例86
步骤一:冷冻干燥样品的制备
取100份的果糖,仲钨酸铵取240份,45份三聚氰胺,630份的硫化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至1500℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为WC@N-C。
实施例87
步骤一:冷冻干燥样品的制备
取100份的果糖,仲钨酸铵取430份,95份三聚氰胺,630份的硫化钠,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以8℃min -1升温至1500℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2C/W@N-C。
对比例7
用简单的一锅法合成钨基化合物杂化的碳材料的具体合成步骤,如下所述:
步骤一:冷冻干燥样品的制备
取629份的硫酸钠,100份的果糖,80份三聚氰胺,钨酸铵取300份,溶解在1900份去离子水中,放入冷冻干燥机中进行冷冻干燥。
步骤二:管式炉煅烧
将冷冻干燥好的样品,放入管式炉中,煅烧参数为:在室温下以10℃min -1升温至720℃之后,恒温2个小时,之后材料随炉体冷却到室温。随后将材料用去离子水洗涤24小时,之后经过抽滤,烘干,得到最终产物。经过XRD测试,知材料相组成为W 2N@N-C。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

  1. 一种过渡金属化合物杂化和氮掺杂的多孔碳材料,其特征在于,该多孔碳材料的结构中包含氮掺杂的多孔石墨化碳,以及过渡金属化合物;
    其中,所述过渡金属化合物杂化在所述氮掺杂的多孔石墨化碳中;
    所述过渡金属化合物选自氮化钒、氧掺杂的氮化钛、WC、W 2C/W或WC/W 2C/W。
  2. 根据权利要求1所述的多孔碳材料,其特征在于,按重量份计,所述多孔碳材料中包含100份氮掺杂的多孔石墨化碳、0.1-400份过渡金属化合物;
    其中,氮在多孔石墨化碳中的掺杂量为0.01-55atom%;
    氮掺杂的多孔石墨化碳孔径分布在1nm-20μm之间,孔体积为0.05-2.0cm 3/g,比表面积为5-1500m 2/g。
  3. 根据权利要求1所述的多孔碳材料,其特征在于,所述氧掺杂氮化钛中,氧以原子形式掺杂进氮化钛分子的晶格中,氧的掺杂量为0.5-20atom%;且所述氧掺杂氮化钛粒径在1-1000nm范围内;或
    所述WC、W 2C/W或WC/W 2C/W为颗粒状或片状,尺寸在在1-1000nm范围内。
  4. 根据权利要求1所述的多孔碳材料,其特征在于,所述多孔碳材料由包括如下重量份的原料制备得到:
    碳源100份;
    氮源1-1000份;
    造孔剂100-2000份;
    去离子水1000-5000份;以及
    下述组分中的一种:
    钒前驱体5-2000份,或钛前驱体5-2000份,或钨前驱体1-1000份。
  5. 根据权利要求1所述的多孔碳材料,其特征在于,所述碳源选自甘油醛D-甘油醛、L-甘油醛、赤藓糖、D-赤藓糖、L-赤藓糖、苏力糖、D-苏力糖、L-苏力糖、阿拉伯糖、D-阿拉伯糖、L-阿拉伯糖、核糖、D-核糖、L-核糖、脱氧核糖、2-脱氧-D-核糖、2-脱氧-L-核糖、木糖、D-木糖、L-木糖、来苏糖、D-来苏糖、L-来苏糖、葡萄糖、D-葡萄糖、L-葡萄糖、脱氧葡萄糖、2-脱氧-D-葡萄糖、2-脱氧-L-葡萄糖、甘露糖、D-甘露糖、L-甘露糖、果糖、D-果糖、L-果糖、半乳糖、D-半乳糖、L-半乳糖、D-甘露[型]庚酮糖、葡萄糖醇、D-葡萄糖醇、L-葡萄糖醇、葡萄糖酸、D-葡萄糖酸、L-葡萄糖酸、D-葡萄糖酸-内酯、葡萄糖酸钙、D-葡萄糖酸钙、L-葡萄糖酸钙、乳糖、D-乳糖、L-乳糖、蔗糖、D-蔗糖、L-蔗糖、麦芽糖、D-麦芽糖、L-麦芽糖、淀粉、肝糖、纤维素、聚乙烯吡咯烷酮中的一种或多种;
    优选地,所述氮源选自组织胺、1H-1,2,3-三氮唑、1,2,4-三氮唑、噻唑、吡啶、联吡啶、哒嗪、嘧嗪、吡嗪、1,2,3三嗪、1,3,5-三嗪、1,3,4-三嗪、吡唑、咪唑、2-甲基咪唑、4-甲基咪唑、尿素、双氰胺、三聚氰胺、硫脲、对氨基苯、均三氨基苯、精胺、嘌呤、腺嘌呤、鸟嘌呤、1-甲基鸟嘌呤、2-甲基鸟嘌呤、3-甲基鸟嘌呤、6-甲基鸟嘌呤、7-甲基鸟嘌呤、N-二甲基鸟嘌呤、N,9-二乙酰鸟嘌呤、N-乙酰鸟嘌呤、二乙酰鸟嘌呤、2,9-二乙酰鸟嘌呤、双乙酰鸟嘌呤、2-乙酰鸟嘌呤、N-2-乙酰基鸟嘌呤、硫鸟嘌呤、异鸟嘌呤、鸟腺嘌呤、次黄嘌呤、1-甲基次黄嘌呤、6-氯鸟嘌呤、盐酸鸟嘌呤、嘧啶、胞嘧啶、尿嘧啶、胸腺嘧啶、5-甲基胞嘧啶、5-羟基胞嘧啶、3,6-二胺基-1,2,4,5-四嗪、N-硝基-3,6-二胺基-1,2,4,5-四嗪、2,4,6-三叠氮基-1,3,5-三嗪、N-硝基-2-胺基-4,6-三叠氮基-1,3,5-三嗪、四唑、5-胺基-硝基-二氢-四唑、2-甲基-5-胺基-硝基-二氢-四唑、2-乙基-5-胺基-硝基-二氢-四唑、5-甲胺基-硝基-二氢-四唑、2-甲基-5-甲胺基-硝基-二氢-四唑、2-乙基-5-甲胺基-硝基-二氢-四唑、3-氨基-1,2,4-三氮唑、5-氨基-1,2,4-三氮唑、1,2,3-三氮唑、N-硝基-5-氨基-1,2,4-三氮唑、4,5-二氰基咪唑、2-胍啶苯并咪唑、盐酸胍、胍碳酸盐、巴比妥酸中的一种或多种;
    优选地,所述造孔剂选自碳酸钾、碳酸氢钾、氯化钾、硝酸钾、磷酸钾、磷酸氢钾、磷酸二氢钾、硫化钾、亚硫酸钾、亚硫酸氢钾、氯化钙、乳酸钙、柠檬酸钙、葡萄糖酸钙、硝酸钙、磷酸钙、硫化钙、亚硫酸钙、亚硫酸氢钙、碳酸钙、碳酸氢钙、硫酸钙、硝酸钠、磷酸钠、磷酸氢钠、磷酸二氢钠、硫化钠、亚硫酸钠、亚硫酸氢钠、碳酸钠、碳酸氢钠、氯酸钠、硫酸钠、硫酸氢钠、高铁酸钠、氟化钠、氯化钠、溴化钠、碘化钠、氯化镁、氢氧化镁、硝酸镁、磷酸镁、硫化镁、溴化镁、碘化镁、亚硫酸镁、亚硫酸氢镁中的一种或多种;
    优选地,所述钒前驱体选自乙酰丙酮氧钒、偏钒酸钠、硫酸氧钒水合物、氯化钒、四羰基环戊二烯基钒、乙酰丙酮钒、三异丙氧基氧化钒、偏钒酸铵、三氯氧钒、二氧化钒、三氧化二钒、氧化钒、氟化钒、环烷酸钒、四苯基卟吩氧化钒、三氟氨化钒、溴化钒、八乙基卟吩氧钒、二氯化二茂钒、四 氯化钒、氧化三乙氧基钒、镓化钒、原钒酸铯、酞菁氧化钒、偏钒酸银、二氧化钒中的一种或多种;
    优选地,所述钛前驱体选自四氯化钛、四碘化钛、四溴化钛、钛酸四乙酯、钛酸四丁酯、钛酸异丙酯、硫酸氧钛、草酸钛钾、水合草酸钛钾、双草酸氧化钛酸钾水合物、草酸氧钛铵水合物、氟钛酸、氟钛酸铵、氟钛酸钾、二(三乙醇胺)钛酸二异丙酯、硝酸钛、二氧化钛、三氧化二钛、偏钛酸中的一种或多种;
    优选地,所述钨前驱体为钨的可溶性盐,选自钨酸、钨酸铵、钨酸铵水合物、钨酸钠、二水合钨酸钠、钨酸钾、钨酸钙、钨酸镁、仲钨酸铵、仲钨酸铵水合物、偏钨酸铵、偏钨酸铵水合物、偏钨酸钠、偏钨酸钠水合物、硅钨酸、硅钨酸水合物、磷钨酸、磷钨酸水合物、十二磷钨酸钠水合物、四氯化钨、五氯化钨、六氯化钨、二氯二氧化钨、六氟化钨中的一种或几种。
  6. 如权利要求1-5任一项所述的多孔碳材料的制备方法,其特征在于,包括如下步骤:
    将碳源、氮源、造孔剂、与选自钛前驱体或钒前驱体或钨前驱体中的一种溶于去离子水中,冷冻干燥;
    将冷冻干燥后的样品进行煅烧,洗涤,得所述多孔碳材料。
  7. 根据权利要求6所述的制备方法,其特征在于,当原料中包含所述钒前驱体或钛前驱体时,所述煅烧在惰性气氛下进行,煅烧的温度为300-1500℃,时间为0.01-20小时;
    优选地,所述煅烧的温度为650-1300℃,时间为1-6小时;
    优选地,以0.1-30℃/min的升温速率升温到煅烧温度后,再进行煅烧;或
    当原料中包含所述钨前驱体时,所述煅烧的温度为800-1500℃,煅烧的时间为0.01-20小时;
    优选地,以0.1~30℃/min的升温速率升温到煅烧温度后,再进行煅烧。
  8. 根据权利要求6所述的制备方法,其特征在于,当原料中包含所述钨前驱体时,将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在800-999℃,时间控制在0.5-10h;或
    将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在1000-1099℃,时间控制在0.1-5h;或
    将所述钨前驱体中的钨源与所述碳源的添加比例控制在1~259份:100份,煅烧的温度控制在1100-1500℃,时间控制在0.01-2h,
    制备得到WC杂化的氮掺杂多孔石墨化碳材料。
  9. 根据权利要求6所述的制备方法,其特征在于,当原料中包含所述钨前驱体时,
    将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~600份:100份,煅烧的温度控制在1000-1099℃,时间控制在0.01-1h;或
    将所述钨前驱体中的钨源与所述碳源的添加比例控制在401~800份:100份,煅烧的温度控制在1000-1099℃,时间控制在1.01-2h;或
    将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~1000份:100份,煅烧的温度控制在1100-1500℃,时间控制在0.01-2h,
    制备得到W 2C/W杂化的氮掺杂多孔石墨化碳材料。
  10. 根据权利要求6所述的制备方法,其特征在于,当原料中包含所述钨前驱体时,将所述钨前驱体中的钨源与所述碳源的添加比例控制在260~400份:100份,煅烧的温度控制在1000-1099℃,时间控制在1.5-2h,制备得到WC/W 2C/W杂化的氮掺杂多孔石墨化碳材料。
PCT/CN2021/095787 2020-05-25 2021-05-25 一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法 WO2021238912A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010448236.7A CN111892047A (zh) 2020-05-25 2020-05-25 一种氮化钒杂化和氮掺杂的多孔碳材料及其制备方法和应用
CN202010448236.7 2020-05-25
CN202110544559.0 2021-05-19
CN202110544939.4 2021-05-19
CN202110544559.0A CN115367726A (zh) 2021-05-19 2021-05-19 一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料及其制备方法和应用
CN202110544939.4A CN115367745B (zh) 2021-05-19 2021-05-19 一种含钨物质杂化和氮掺杂的多孔碳材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021238912A1 true WO2021238912A1 (zh) 2021-12-02

Family

ID=78722977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095787 WO2021238912A1 (zh) 2020-05-25 2021-05-25 一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2021238912A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180539A (zh) * 2021-12-24 2022-03-15 广东省科学院半导体研究所 纳米多孔氮化钒材料及其制备方法和储能器件
CN114229825A (zh) * 2021-12-24 2022-03-25 北京航空航天大学 一种金属单原子掺杂的三维多孔碳材料及其制备方法和应用
CN115000425A (zh) * 2022-06-20 2022-09-02 巢湖学院 一种氮化钼量子点\氮掺杂碳复合材料及制备方法
CN115028155A (zh) * 2022-05-30 2022-09-09 上海安朵生物医学科技有限公司 一种生物质多孔碳材料的制备方法,该方法制备的碳材料及其应用
CN115094464A (zh) * 2022-07-05 2022-09-23 河南师范大学 一种水分解双功能电催化剂的制备方法
CN115180690A (zh) * 2022-07-18 2022-10-14 四川大学 一种氮掺杂石墨烯包覆金属铜纳米催化剂及其制备方法
CN115806286A (zh) * 2022-12-27 2023-03-17 博路天成新能源科技有限公司 一种锂离子电池用多孔碳负极材料的制备方法
CN115814759A (zh) * 2022-11-28 2023-03-21 中盐常州化工股份有限公司 一种精制盐水用硅铝吸附材料及其制备方法
CN115893370A (zh) * 2022-12-12 2023-04-04 安徽工业大学 一种铁基氮掺杂多孔碳材料的普适性制备方法
CN116251566A (zh) * 2023-03-01 2023-06-13 西华师范大学 一种铋掺杂聚乙烯吡咯烷酮多孔炭材料的制备方法及应用
CN116393153A (zh) * 2023-03-20 2023-07-07 广东墨睿科技有限公司 一种石墨烯-氮掺杂二氧化钛复合材料及其制法与应用
CN116505002A (zh) * 2023-06-29 2023-07-28 杭州德海艾科能源科技有限公司 一种全钒液流电池用石墨毡电极及其活化方法与应用
CN116970389A (zh) * 2023-07-31 2023-10-31 中国科学院苏州生物医学工程技术研究所 一种绿色荧光碳点及其制备方法和应用
CN117586523A (zh) * 2023-11-29 2024-02-23 山东大学 一种含六元碳氮杂环的自组装超分子材料及其制备方法与应用
CN117936758A (zh) * 2024-03-22 2024-04-26 葫芦岛市铭浩新能源材料有限公司 一种多孔碳包覆改性的锂电池负极材料、其制备方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用
CN108910859A (zh) * 2018-07-16 2018-11-30 东华大学 一种金属负载氮掺杂块状多孔碳材料的制备方法
CN109675595A (zh) * 2017-10-18 2019-04-26 中国科学院福建物质结构研究所 一种碳化钨/多孔碳复合材料及其制备方法和在电化学产氢中的应用
CN111892047A (zh) * 2020-05-25 2020-11-06 北京化工大学 一种氮化钒杂化和氮掺杂的多孔碳材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用
CN109675595A (zh) * 2017-10-18 2019-04-26 中国科学院福建物质结构研究所 一种碳化钨/多孔碳复合材料及其制备方法和在电化学产氢中的应用
CN108910859A (zh) * 2018-07-16 2018-11-30 东华大学 一种金属负载氮掺杂块状多孔碳材料的制备方法
CN111892047A (zh) * 2020-05-25 2020-11-06 北京化工大学 一种氮化钒杂化和氮掺杂的多孔碳材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINYUE YANG,SHANG CHEN,WENBIN GONG,XIAODONG MENG,JUNPENG MA,JIE ZHANG,LIRONG ZHENG,HÉCTOR D. ABRUÑA,JIANXIN GENG: "Kinetic Enhancement of Sulfur Cathodes by N-Doped Porous Graphitic Carbon with Bound VN Nanocrystals,", SMALL, vol. 16, no. 48, 1 December 2020 (2020-12-01), pages 1 - 10, XP055871948, ISSN: 1613-6810, DOI: 10.1002/smll.202004950 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180539A (zh) * 2021-12-24 2022-03-15 广东省科学院半导体研究所 纳米多孔氮化钒材料及其制备方法和储能器件
CN114229825A (zh) * 2021-12-24 2022-03-25 北京航空航天大学 一种金属单原子掺杂的三维多孔碳材料及其制备方法和应用
CN114180539B (zh) * 2021-12-24 2023-08-15 广东省科学院半导体研究所 纳米多孔氮化钒材料及其制备方法和储能器件
CN115028155A (zh) * 2022-05-30 2022-09-09 上海安朵生物医学科技有限公司 一种生物质多孔碳材料的制备方法,该方法制备的碳材料及其应用
CN115028155B (zh) * 2022-05-30 2024-03-08 上海安朵生物医学科技有限公司 一种生物质多孔碳材料的制备方法,该方法制备的碳材料及其应用
CN115000425A (zh) * 2022-06-20 2022-09-02 巢湖学院 一种氮化钼量子点\氮掺杂碳复合材料及制备方法
CN115000425B (zh) * 2022-06-20 2024-05-14 巢湖学院 一种氮化钼量子点\氮掺杂碳复合材料及制备方法
CN115094464A (zh) * 2022-07-05 2022-09-23 河南师范大学 一种水分解双功能电催化剂的制备方法
CN115094464B (zh) * 2022-07-05 2024-05-14 河南师范大学 一种水分解双功能电催化剂的制备方法
CN115180690A (zh) * 2022-07-18 2022-10-14 四川大学 一种氮掺杂石墨烯包覆金属铜纳米催化剂及其制备方法
CN115180690B (zh) * 2022-07-18 2023-07-07 四川大学 一种氮掺杂石墨烯包覆金属铜纳米催化剂及其制备方法
CN115814759A (zh) * 2022-11-28 2023-03-21 中盐常州化工股份有限公司 一种精制盐水用硅铝吸附材料及其制备方法
CN115893370B (zh) * 2022-12-12 2023-07-07 安徽工业大学 一种铁基氮掺杂多孔碳材料的普适性制备方法
CN115893370A (zh) * 2022-12-12 2023-04-04 安徽工业大学 一种铁基氮掺杂多孔碳材料的普适性制备方法
CN115806286A (zh) * 2022-12-27 2023-03-17 博路天成新能源科技有限公司 一种锂离子电池用多孔碳负极材料的制备方法
CN115806286B (zh) * 2022-12-27 2024-04-26 博路天成新能源科技有限公司 一种锂离子电池用多孔碳负极材料的制备方法
CN116251566B (zh) * 2023-03-01 2024-04-30 西华师范大学 一种铋掺杂聚乙烯吡咯烷酮多孔炭材料的制备方法及应用
CN116251566A (zh) * 2023-03-01 2023-06-13 西华师范大学 一种铋掺杂聚乙烯吡咯烷酮多孔炭材料的制备方法及应用
CN116393153A (zh) * 2023-03-20 2023-07-07 广东墨睿科技有限公司 一种石墨烯-氮掺杂二氧化钛复合材料及其制法与应用
CN116505002B (zh) * 2023-06-29 2023-09-29 杭州德海艾科能源科技有限公司 一种全钒液流电池用石墨毡电极及其活化方法与应用
CN116505002A (zh) * 2023-06-29 2023-07-28 杭州德海艾科能源科技有限公司 一种全钒液流电池用石墨毡电极及其活化方法与应用
CN116970389A (zh) * 2023-07-31 2023-10-31 中国科学院苏州生物医学工程技术研究所 一种绿色荧光碳点及其制备方法和应用
CN116970389B (zh) * 2023-07-31 2024-05-10 中国科学院苏州生物医学工程技术研究所 一种绿色荧光碳点及其制备方法和应用
CN117586523A (zh) * 2023-11-29 2024-02-23 山东大学 一种含六元碳氮杂环的自组装超分子材料及其制备方法与应用
CN117936758A (zh) * 2024-03-22 2024-04-26 葫芦岛市铭浩新能源材料有限公司 一种多孔碳包覆改性的锂电池负极材料、其制备方法及用途
CN117936758B (zh) * 2024-03-22 2024-05-24 葫芦岛市铭浩新能源材料有限公司 一种多孔碳包覆改性的锂电池负极材料、其制备方法及用途

Similar Documents

Publication Publication Date Title
WO2021238912A1 (zh) 一种过渡金属化合物杂化和氮掺杂的多孔碳材料及其制备方法
CN111892047A (zh) 一种氮化钒杂化和氮掺杂的多孔碳材料及其制备方法和应用
CN107610938B (zh) 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用
Sher Shah et al. Transition metal carbide‐based nanostructures for electrochemical hydrogen and oxygen evolution reactions
Liu et al. Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage
CN113422073B (zh) 钴修饰的碳载超细铂纳米合金催化剂的制备方法
US8895467B2 (en) Ag/MnyOx/C catalyst, preparation and application thereof
CN108246331B (zh) 石墨烯碳化氮量子点修饰的ZnS微米复合材料及其制备方法和应用
CN104028269A (zh) 一种石墨烯负载金属纳米复合材料、制备方法及应用
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN110624552B (zh) 一种石墨烯纳米金属复合材料的制备方法
CN105734323A (zh) 一种纳米镁基可逆储氢复合材料及其制备方法
CN101436670A (zh) 一种燃料电池阴极催化剂及其制备方法
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN115367726A (zh) 一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料及其制备方法和应用
CN109622044B (zh) 一种高效析氢催化剂材料、制备方法及应用
CN108889326B (zh) 一种二硫化钼与石墨相氮化碳的三维网络框架的制备方法
Ma et al. Enhanced photocatalytic nitrogen fixation on oxygen doped high specific surface area g-C3N4 under simulated sunlight
CN112246273B (zh) 一种用于二氧化碳转化制备低碳醇的催化剂、制备方法及应用
Guo et al. Ultrathin nitrogen-doped carbon Ti3C2Tx-TiN heterostructure derived from ZIF-8 nanoparticles sandwiched MXene for high-performance capacitive deionization
CN115367745B (zh) 一种含钨物质杂化和氮掺杂的多孔碳材料及其制备方法
CN117486204A (zh) 一种低温MXenes基原位生长CNTs复合材料的制备方法
CN111235602B (zh) 一种高性能析氢电极及其制备与应用
CN108993469B (zh) 一种ZnO量子点TiO2纳米片复合结构及其制备方法
CN109553067B (zh) 一种光催化分解甲酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812378

Country of ref document: EP

Kind code of ref document: A1