WO2021227382A1 - 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用 - Google Patents

一种高效析氢催化剂Ir@NBD-C的制备方法及其应用 Download PDF

Info

Publication number
WO2021227382A1
WO2021227382A1 PCT/CN2020/124695 CN2020124695W WO2021227382A1 WO 2021227382 A1 WO2021227382 A1 WO 2021227382A1 CN 2020124695 W CN2020124695 W CN 2020124695W WO 2021227382 A1 WO2021227382 A1 WO 2021227382A1
Authority
WO
WIPO (PCT)
Prior art keywords
nbd
hydrogen evolution
catalyst
evolution catalyst
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2020/124695
Other languages
English (en)
French (fr)
Inventor
张佳楠
程俊淇
李进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Publication of WO2021227382A1 publication Critical patent/WO2021227382A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of inorganic nanomaterial chemistry and electrochemical technology, and specifically relates to a high-efficiency carbon composite hydrogen evolution catalyst material Ir@NBD-C, a preparation method and its application in improving the hydrogen evolution performance of the catalyst.
  • the catalytic efficiency of the metal catalyst can be effectively improved.
  • the effective doping of N can greatly improve its catalytic performance, which has attracted the attention of researchers, and hydrogen evolution catalyst materials based on N-doped carbon materials are emerging in endlessly.
  • Zhang et al. Zhang Zhang et al. (Juntao Zhang 1 , Rui Sui, et al, Sci China Mater.
  • N-MoP /N-CNTs used NH 4 H 2 PO 2 as both phosphorus and nitrogen sources to obtain N-MoP /N-CNTs.
  • N is doped into carbon nanotubes, and the defects formed by heteroatom doping are beneficial to tie the catalyst particles and have better bonding with the catalyst particles; in the HER reaction process, MoN formed by co-doping with N and P , MoP accelerates the adsorption rate of H and the desorption rate of H 2.
  • MoN formed by co-doping with N and P
  • MoP accelerates the adsorption rate of H and the desorption rate of H 2.
  • it still has a high overpotential of 103mV and a high Tafel slope at a current density of 10mA cm-2 , and it has only been subjected to the lsv test after 1000 cycles of CV operation, and its stability and other performance needs to be improved.
  • the purpose of the present invention is to overcome the defects of the prior art, open up a new way, and provide a high-efficiency carbon composite alkaline hydrogen evolution catalyst material Ir@NBD-C, which binds Ir single atoms and Ir clusters by nitrogen and boron.
  • the size of the noble metal nanoparticles on the defective carbon substrate is reduced to less than 2nm, which effectively increases the specific surface area of the metal nanoparticles and exposes more active sites. At a certain current density, the overpotential of the catalyst is significantly reduced. Improve the catalytic performance of the HER reaction.
  • the present invention also provides a preparation method of the above-mentioned catalyst material Ir@NBD-C and its application in improving the hydrogen evolution performance of the catalyst.
  • a method for preparing high-efficiency hydrogen evolution catalyst Ir@NBD-C which mixes the defective carbon substrate with deionized water (generally ultrasonic treatment 60-80min); then adds hydrated iridium trichloride, melamine and boric acid and mixes evenly (generally Magnetic stirring for 4-5h), drying to obtain a powder sample; calcination in an inert atmosphere at 600 ⁇ 50°C for 1-2h (the reaction temperature is preferably 600°C, and the calcination time is preferably 1h) to obtain the hydrogen evolution catalyst Ir@NBD-C -600.
  • the mass ratio of the defective carbon substrate, hydrated iridium trichloride, melamine and boric acid may be 3-5:1:4-6:3-5. It is advisable to add 5 ⁇ 0.5mg hydrated iridium trichloride, 25 ⁇ 5mg melamine and 20 ⁇ 5mg boric acid for every 20 ⁇ 5mg defective carbon substrate, and the weighing error of ⁇ 0.5mg will not affect the performance of the catalyst. A significant change in the ratio will affect the internal structure and performance of the material product; preferably, 5 mg hydrated iridium trichloride, 20 mg melamine and 25 mg boric acid are added for every 25 mg of defective carbon substrate. There is no significant change in performance after scaling up in the same proportion.
  • the defective carbon substrate is prepared through the following steps:
  • the ultrasound time is preferably 30min;
  • the mixing time is preferably 120min;
  • the black block is acid washed to remove alkaline impurities, then washed with deionized water to neutrality, and dried to obtain black powder; centrifugal washing is used for washing with deionized water.
  • the centrifugal speed is 9000-11000rpm, and the centrifugal time is 5-10min.
  • the drying temperature is preferably 80°C, the centrifugal speed is preferably 11000 rpm, and the centrifugal time is preferably 10 min;
  • the carbon material is commercially purchased Ketjen black or carbon nanotubes; a suitable mass ratio of the carbon material to potassium hydroxide is 1:12-13, and the potassium hydroxide is too little. It does not achieve the ideal etching level for carbon materials such as commercial Ketjen Black. Too much potassium hydroxide causes waste of potassium hydroxide and concentrated sulfuric acid or concentrated nitric acid.
  • the ratio of carbon material to potassium hydroxide is preferably 1:12.
  • the acid selected for pickling is sulfuric acid or nitric acid.
  • the reaction temperature is room temperature, and the magnetic stirring speed is 840-1200 rpm/min.
  • the drying temperature is 70-80°C.
  • the invention also provides the high-efficiency hydrogen evolution catalyst Ir@NBD-C prepared by the above preparation method.
  • the present invention also provides the application of the above-mentioned high-efficiency hydrogen evolution catalyst Ir@NBD-C in hydrogen production by electrolysis of water, which can effectively improve the hydrogen evolution performance of the catalyst.
  • the present invention provides a new way to prepare high-efficiency hydrogen evolution catalyst materials. Compared with methods such as chemical vapor deposition method and template method, the method of the present invention uses simple wet chemical method and fire method to obtain the target product;
  • the present invention uses defective carbon substrates such as Ketjen Black, which can be directly obtained by KOH etching;
  • the present invention introduces a boron source and a nitrogen source into the carbon material at the same time. It is found that nitrogen and boron can control the size of Ir particles.
  • the small-sized Ir particles obtained under the effect of the beam show high hydrogen evolution activity. Under a certain current density, it has a lower overpotential.
  • the present invention utilizes the binding effect of heteroatoms on metal single atoms and metal clusters to reduce the growth rate of Ir metal nanoparticles, so that the diameter of Ir nanoparticles is below 2nm.
  • Figure 1 is a transmission electron microscopy (TEM) image of Ir@NBD-C, a high-efficiency hydrogen evolution catalyst material prepared in Example 1.
  • Figures (a), (b), and (c) are TEM images at different resolutions. The scales are respectively 50nm, 20nm, 10nm; and the size distribution diagram (d) of Ir nanoparticles;
  • Figure 2 is a high-angle circular dark-field scanning transmission microscope (HAADF-STEM) image (HAADF-STEM) of the high-efficiency hydrogen evolution catalyst material Ir@NBD-C prepared in Example 1, where (a) and (b) are STEM images at different resolutions , The scale bars are 5nm and 2nm respectively;
  • Figure 3 is the EDS mapping diagram of the high-efficiency hydrogen evolution catalyst material Ir@NBD-C prepared in Example 1; (a) is the randomly selected area of the EDS test sample, (b), (c), (d), (e) Figure (f) represents the distribution of the elements carbon, boron, nitrogen, oxygen, and iridium on the prepared samples. It can be seen that boron, nitrogen, oxygen, and iridium are evenly distributed on the carbon substrate;
  • Fig. 4 is an X-ray diffraction spectrum (XRD) of Ir@NBD-C, a high-efficiency hydrogen evolution catalyst material prepared in Example 1;
  • Figure 5 is an X-ray photoelectron spectroscopy (XPS) diagram of Ir@NBD-C, a high-efficiency hydrogen evolution catalyst material prepared in Example 1;
  • XPS X-ray photoelectron spectroscopy
  • Figure 6 shows the polarization curve (a) and the corresponding Tafel slope curve (b) of the electrochemical test of the high-efficiency hydrogen evolution catalyst material Ir@NBD-C prepared in Example 1 in a 1M KOH solution;
  • Figure 7 shows the polarization curve (a) and the corresponding Tafel slope curve (b) of the electrochemical test of the high-efficiency hydrogen evolution catalyst material Ir@NBD-C prepared in Example 1 in a 0.5M H 2 SO 4 solution;
  • Figure 8 shows the polarization curve (a) and the corresponding Tafel slope curve (b) of the electrochemical test of the high-efficiency hydrogen evolution catalyst material Ir@NBD-C prepared in Example 1 in a 1M PBS buffered neutral solution;
  • Figure 9 is a TEM image of the catalyst material sample prepared in Comparative Example 1, where (a) and (b) are TEM images at different resolutions, and the scale bars are respectively 50nm and 10nm;
  • Figure 10 is a TEM image of the catalyst material sample prepared in Comparative Example 2, where (a) and (b) are TEM images at different resolutions, and the scale bars are respectively 50nm and 20nm;
  • Figure 11 is a TEM image of a sample of the catalyst material prepared in Comparative Example 3.
  • Figures (a) and (b) are TEM images at different resolutions, and the scale bars are respectively 50nm and 20nm;
  • Figure 12 shows the electrochemical polarization curve (a) and the corresponding Tafel slope curve (b) of the catalyst materials prepared in Comparative Examples 1, 2 and 3 in 1M KOH solution;
  • Figure 13 shows the electrochemical polarization curve (a) and the corresponding Tafel slope curve (b) of the catalyst materials prepared in Comparative Examples 1, 2 and 3 in a 0.5M H 2 SO 4 solution;
  • Figure 14 shows the electrochemical polarization curve (a) and the corresponding Tafel slope curve (b) of the catalyst materials prepared in Comparative Examples 1, 2 and 3 in a 1M PBS buffered neutral solution.
  • hydrated iridium chloride (analytical pure) was purchased from Sigma-Aldrich Trading Co., Ltd.
  • melamine (chemically pure) was purchased from Sinopharm Chemical Reagents
  • boric acid (superior grade) was purchased from Sinopharm Chemicals.
  • Commercial Ketjen Black and commercial carbon nanotubes were purchased from Shanghai Baoqu Chemical Co., Ltd.
  • a method for preparing high-efficiency hydrogen evolution catalyst Ir@NBD-C which specifically includes the following steps:
  • the obtained powder sample is calcined at 600°C for 1 hour in an argon atmosphere to obtain the hydrogen evolution catalyst Ir@NBD-C-600.
  • a method for preparing Ir@NBC which specifically includes the following steps:
  • Example 3 The obtained powder sample is calcined at 600°C for 1 hour in an argon atmosphere to obtain the hydrogen evolution catalyst Ir@NBC.
  • steps 1) to 7) of Example 1 are omitted, the defective carbon substrate is not used, and commercial Ketjen Black is directly used as the substrate.
  • a preparation method of Ir@D-C which specifically includes the following steps:
  • Step 1)-Step 7) are exactly the same as experimental example 1;
  • a method for preparing Ir@ND-C which specifically includes the following steps:
  • Step 1)-Step 7) are exactly the same as in Experimental Example 1;
  • the transmission electron microscope image (TEM) of the highly efficient hydrogen evolution catalyst material Ir@NBD-C prepared in the above Example 1 and the size distribution diagram of Ir nanoparticles are shown in Figure 1; the high-angle circular dark field scanning transmission microscope image (HAADF-STEM) is shown in Figure 1.
  • the EDS mapping diagram is shown in Figure 3; the X-ray diffraction spectrum (XRD) is shown in Figure 4; the photoelectron spectroscopy (XPS) is shown in Figure 5;
  • the polarization curve (a) of the electrochemical test and the corresponding Tafel slope curve (b) are shown in Figure 6; the polarization curve (a) of the electrochemical test in the 0.5MH 2 SO 4 solution and the corresponding Tafel slope curve (b) The slope curve (b) is shown in Figure 7; the polarization curve (a) and the corresponding Tafel slope curve (b) of the electrochemical test in 1M PBS buffered neutral solution are shown in Figure 8; the hydrogen evolution catalyst material prepared in Comparative Example 1
  • the TEM image of the sample is shown in Figure 9; the TEM image of the hydrogen evolution catalyst material sample prepared in Comparative Example 2 is shown in Figure 10; the TEM image of the hydrogen evolution catalyst material sample prepared in Comparative Example 3 is shown in Figure 11; the catalyst prepared in Comparative Examples 1, 2 and 3 the electrochemical
  • Example 1 uses the defective Ketjen black as the substrate, and the hydrogen evolution catalyst Ir@NBD-C is calcined in an argon atmosphere by a wet chemical method.
  • Ir nanoparticles are uniformly distributed on the carbon substrate, and the particles are uniformly distributed on the carbon substrate.
  • the average particle size is 1.28 ⁇ 0.30nm (see Figure 1); due to the low resolution of the TEM electron microscope image, it is impossible to observe whether there are Ir single atoms and Ir clusters on the defective carbon substrate through the transmission electron microscope. Therefore, we observe the sample with a circular dark-field scanning transmission electron microscope (see Figure 2).
  • the hydrogen evolution catalyst Ir@NBD-C-600 is composed of a series of single atoms (small circles, red), clusters (large circles, orange) and small-sized nanoparticles (Ir crystals marked by yellow parallel lines). Grid stripes).
  • the hydrogen evolution reaction test uses a three-electrode test system, that is, a carbon rod as a counter electrode, Ag/AgCl as a reference electrode, and a glassy carbon electrode as a working electrode, and a three-electrode system is used to test the performance. Specifically, the catalyst materials prepared in Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3 were loaded on the glassy carbon electrode.
  • the hydrogen evolution reaction test environment includes three different environments: acidic, alkaline and neutral. Specifically, it includes 1M KOH alkaline solution, 0.5M H 2 SO 4 acidic solution, and 1M PBS neutral solution. It can be seen from Figure 6(a) that in 1M KOH alkaline solution, the catalyst Ir@NBD-C exhibits a low overpotential of 77mV at 50mA cm -2 , which is much lower than that of commercial Pt/C at the same current density. 195mV overpotential.
  • Figure 8(b) shows that the tafel slope of Ir@NBD-C in 1M PBS neutral solution is 81mV dec -1 , which is slightly higher than that of commercial Pt/C, which is 62mV dec -1. It is also relatively close, indicating that Ir@NBD-C has a higher kinetic reaction rate similar to commercial Pt/C.
  • the doping of nitrogen helps the dispersion of Ir nanoparticles. Further, comparing the TEM images of the catalyst sample Ir@ND-C obtained in Comparative Example 3 and the catalyst sample Ir@NBD-C obtained in Example 1, it can be found that the doping of boron is beneficial to the further dispersion of Ir nanoparticles, even The average particle size of the Ir nanoparticles in the sample Ir@NBD-C has reached a size less than 2nm, which indicates that the co-doping of nitrogen and boron plays a key role in the more uniform dispersion of the Ir nanoparticles.
  • the present invention also tested the HER performance of the Ir@NBC catalyst prepared in Comparative Example 1, the Ir@DC catalyst prepared in Comparative Example 2, and the Ir@ND-C catalyst prepared in Comparative Example 3.
  • Ir@NBC at a current density of 50 mA cm -2 , in 1M KOH alkaline solution, Ir@NBC, Ir@DC and Ir@ND-C exhibited overpotentials of 95 mV, 118 mV, and 106 mV, respectively.
  • the slope of the tafel is 85mV dec -1 , 58mV dec -1 , and 59mV dec -1 .
  • the high-efficiency hydrogen evolution catalyst material Ir@NBD-C of the present invention uses nitrogen and boron to bind metal single atoms and metal clusters to slow down the growth rate of particles and reduce the diameter of precious metal nanoparticles to less than 2nm. (1.28 ⁇ 0.30nm), and achieve uniform distribution on the carbon substrate.
  • the reduction in particle diameter enables the catalyst to have a higher specific surface area; it also enables the catalyst to expose more active surfaces that are conducive to catalysis.
  • the overpotential of the catalyst at a certain current density during the HER process is significantly reduced; and the tethering effect of nitrogen and boron makes the metal nanoparticles maintain good stability during the cycle, and the particle size does not increase significantly after 3000 cycles. This shows that this catalyst has high efficiency and stability in the process of HER reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

提供一种高效析氢(HER)催化剂Ir@NBD-C的制备方法。所述方法在于:将缺陷碳基底与去离子水混匀;然后加入水合三氯化铱、三聚氰胺和硼酸并混合均匀,烘干得到粉末样品;置于惰性气氛下600±50℃煅烧1-2h,即得析氢催化剂Ir@NBD-C-600。所述高效析氢催化剂材料通过利用氮,硼对金属单原子和金属团簇的拴束效应,减缓了颗粒的生长速度,将贵金属纳米颗粒直径降低至2nm以下,并且在碳基底上实现了均匀分布。颗粒直径的减小,使得催化剂具有更高的比表面积;还使得催化剂能暴露出更多的有利于催化的活性面。进而使催化剂在HER过程中一定电流密度下的过电势显著降低;并且氮,硼的拴束效应使得金属纳米颗粒在循环过程中保持了良好的稳定性。

Description

一种高效析氢催化剂Ir@NBD-C的制备方法及其应用 技术领域
本发明属于无机纳米材料化学及电化学技术技术领域,具体涉及一种高效碳复合析氢催化剂材料Ir@NBD-C、制备方法及其在提高催化剂析氢性能方面的应用。
背景技术
析氢反应作为燃料电池中关键的电化学反应,越来越受到人们的关注。为了提高能量转换效率,我们迫切需要一种电化学催化剂来有效提高燃料电池中HER的动力学反应速率。目前,各种非贵金属电催化剂如过渡金属硫化物、磷化物、碳化物、氮化物、合金、氧化物、碳基无金属材料等已被报道可降低成本。然而贵金属催化剂,尤其是铂族催化剂材料,由于其优异的性能,在催化领域仍占有重要的地位。降低贵金属催化剂的成本,提高贵金属催化剂的催化效率已成为当务之急。
通过降低金属纳米颗粒粒径尺寸,提高催化剂比表面积和暴露活性位点,从而可有效提高金属催化剂的催化效率。研究发现,通过对碳基底杂原子的修饰,利用杂原子的捕捉作用可以拴束金属纳米颗粒,降低粒径尺寸,提高其催化性能。特别地,N的有效掺杂可大幅度提高其催化性能,深受研究者的关注,以N掺杂碳材料为基底的析氢催化剂材料层出不穷。例如,Zhang等人(Juntao Zhang 1,Rui Sui,et al,Sci China Mater.2019,62(5):690–698)利用NH 4H 2PO 2同时作为磷源和氮源,得到N-MoP/N-CNTs。其中,N掺杂进碳纳米管,杂原子掺杂构成的缺陷,有利于拴束催化剂颗粒,与催化剂颗粒有更好的键合作用;在HER反应过程,N、P共掺杂形成的MoN、MoP加快了对H的吸附速率以及对H 2的脱附速率。然而,其在10mA cm -2电流密度下依然具有103mV的高过电势,较高的塔菲尔斜率,并且其只进行了c-v运行1000圈后的lsv测试,稳定性等性能有待提高。因此,想进一步提高析氢性能,对杂原子的选择和过渡金属的选择变得至关重要。Cheng等人(Niancai Cheng 1,*,Samantha Stambula 2,*,et al.,Nature Communications,2016)利用原子沉积技术制备出N掺杂石墨烯负载Pt单原子/原子簇材料来应用于析氢反应。酸性条件下,电流密度达到10mA cm -2时,过电势为15mV。然而,实现对金属纳米颗粒尺寸的控制需要的条件严苛,并且材料合成条件不容易控制。
因此,在条件温和,合成方法简单的情况下,通过杂原子掺杂的方式,制备出分散性很好的小粒径的贵金属小尺寸的纳米颗粒催化剂意义重大。我们利用氮、硼原子拴束效应,在缺陷碳基底上,制备出了均匀分散的小尺寸(1.28±0.30nm)的Ir金属纳米颗粒, 在碱性HER测试过程中,电流密度为10mA cm -2时,拥有8mV的过电势。这在已经报道的HER催化剂中,该催化剂在HER中的催化性能处于领先地位。
发明内容
本发明目的在于克服现有技术缺陷,开辟新途径,提供了一种高效碳复合碱性析氢催化剂材料Ir@NBD-C,其通过氮、硼对Ir单原子和Ir原子簇的拴束作用,使得贵金属纳米颗粒在缺陷碳基底上的尺寸降低至2nm以下,有效提高了金属纳米颗粒的比表面积和暴露出了更多的活性位点,在一定电流密度下,显著降低了催化剂的过电势,提高了HER反应的催化性能。
本发明还提供了上述催化剂材料Ir@NBD-C的制备方法及其在提高催化剂析氢性能方面的应用。
为实现上述目的,本发明采用如下技术方案:
一种高效析氢催化剂Ir@NBD-C的制备方法,其将缺陷碳基底与去离子水混匀(一般超声处理60—80min);然后加入水合三氯化铱、三聚氰胺和硼酸并混合均匀(一般磁力搅拌4—5h),烘干得到粉末样品;置于惰性气氛下600±50℃煅烧1-2h(反应温度优选为600℃,煅烧时间优选为1h),即得析氢催化剂Ir@NBD-C-600。
具体的,缺陷碳基底、水合三氯化铱、三聚氰胺和硼酸的质量比可以为3-5:1:4-6:3-5。每20±5mg缺陷碳基底添加5±0.5mg水合三氯化铱、25±5mg三聚氰胺和20±5mg硼酸为宜,称量误差在±0.5mg不影响催化剂性能。比例若有显著变化,则会影响材料产品的内部结构和性能;优选的,每25mg的缺陷碳基底添加5mg水合三氯化铱、20mg三聚氰胺和25mg硼酸。同比例扩大量后,性能没有显著变化。
进一步的,所述缺陷碳基底经下述步骤制备获得:
1)将碳材料与甲苯混合均匀(一般超声处理20—40min),形成一号混合液;超声时间过短不能使碳材料分散均匀,超声达到一定时间后,不能继续提高碳材料的均匀分散度。超声时间优选30min;
2)将氢氧化钾溶于无水乙醇中(一般40-50℃下磁力搅拌20—40min即可),形成二号混合液;搅拌时间过短不能使氢氧化钾分散均匀,搅拌达到一定时间后,不能继续提高氢氧化钾的均匀分散度。搅拌时间优选30min(相比于超声,在40-50℃下进行磁力搅拌,可以加速块状氢氧化钾的溶解);
3)将一号混合液和二号混合液混合后室温磁力搅拌反应100—120min,形成三号混合液;搅拌时间过短不能使氢氧化钾与碳材料充分作用,搅拌达到一定时间后,不能继续提高氢氧 化钾对碳材料的作用效果。搅拌时间优选120min;
4)将三号混合液转移至三颈瓶中,于80-120℃油浴中搅拌加热2-3h以使有机溶剂挥发,收集得到的棕黄色粉末;甲苯沸点为110℃,温度过低,甲苯挥发速率较慢;在油浴环境下,温度过高,为实验带来一定的安全隐患。加热温度优选115℃,加热时间优选2.5h;
5)将所得棕黄色粉末于惰性环境下600-700℃煅烧0.5-1h,得到黑色块体;反应温度优选为700℃,煅烧时间优选为0.5h;
6)黑色块体进行酸洗除去碱性杂质,再用去离子水洗至中性,烘干得到黑色粉末;去离子水洗涤时采用离心洗涤。离心转速为9000-11000rpm,离心时间为5-10min。干燥温度优选80℃,离心转速优选为11000rpm,离心时间优选为10min;
7)将所得黑色粉末置于惰性环境下850-950℃煅烧1-2h(反应温度优选为900℃,煅烧时间优选为1h),获得缺陷碳基底。
具体的,步骤1)中,所述碳材料为商业购买的科琴黑或碳纳米管;所述碳材料与氢氧化钾较适宜的质量比为1:12-13,氢氧化钾过少,达不到对碳材料如商业科琴黑理想的刻蚀程度。氢氧化钾过多,造成氢氧化钾和浓硫酸或浓硝酸药品的浪费。碳材料与氢氧化钾比例优选1:12。
具体的,步骤6)中,酸洗选用的酸为硫酸或硝酸。步骤3)中,反应温度为室温,磁力搅拌转速为840—1200rpm/min。
上述高效析氢催化剂Ir@NBD-C的制备方法,烘干温度为70—80℃。
本发明还提供了采用上述制备方法制备得到的高效析氢催化剂Ir@NBD-C。
本发明还提供了上述高效析氢催化剂Ir@NBD-C在电解水制氢中的应用,其可以有效提高催化剂的析氢性能。
利用此合成方法,除了制备出粒径在1.28±0.30nm尺寸很小的高HER活性的Ir纳米颗粒以外,在合成此催化剂过程中,未选用科研工作者们常常合成的氮磷共掺杂的析氢催化剂材料,还在材料选择上另辟蹊径,选择了将三聚氰胺作为氮源,硼酸作为硼源,从而发现了氮、硼在控制Ir颗粒尺寸的拴束作用,拴束作用下获得的小尺寸的Ir颗粒表现出很高的析氢活性。与现有技术相比,本发明的有益效果体现在:
1)本发明提供了一条制备高效析氢催化剂材料的新途径。相较于化学气相沉积法、模版法等方法,本发明方法利用简单的湿化学法和火法便得到了目标产物;
2)本发明制备工艺简单,易于批量制备。同时,本发明获得的高效析氢催化剂材料具有优异的电化学性能;
3)本发明采用缺陷碳基底如科琴黑,其可直接采用KOH刻蚀得到;
4)本发明在碳材料中同时引入硼源和氮源,发现了氮、硼在控制Ir颗粒尺寸的拴束作用,拴束作用下获得的小尺寸的Ir颗粒表现出很高的析氢活性,在一定电流密度下,拥有较低的过电势,此发现为合成其他新型纳米颗粒析氢催化剂提供了思路;
5)本发明利用杂原子对金属单原子、金属团簇的拴束作用,降低了Ir金属纳米颗粒的生长速率,使Ir纳米颗粒粒径在2nm范围以下。
附图说明
图1为实施例1制备所得高效析氢催化剂材料Ir@NBD-C的透射电镜图(TEM),其中(a),(b),(c)图为不同分辨率下的TEM图,比例尺分别为50nm,20nm,10nm;以及Ir纳米颗粒的尺寸分布图(d)图;
图2为实施例1制备所得高效析氢催化剂材料Ir@NBD-C的高角度环形暗场扫描透射显微镜图(HAADF-STEM),其中(a),(b)图为不同分辨率下的STEM图,比例尺分别为5nm,2nm;
图3为实施例1制备所得高效析氢催化剂材料Ir@NBD-C的EDS mapping图;(a)图为EDS测试样品随机所选区域,(b),(c),(d),(e),(f)图分别代表元素碳、硼、氮、氧、铱元素在所制样品上的分布情况,可以看出硼、氮、氧、铱元素是均匀分布在碳基底上的;
图4为实施例1制备所得高效析氢催化剂材料Ir@NBD-C的X射线衍射谱图(XRD);
图5为实施例1制备所得高效析氢催化剂材料Ir@NBD-C的X射线光电子能谱图(XPS);
图6为实施例1制备所得高效析氢催化剂材料Ir@NBD-C在1M KOH溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b);
图7为实施例1制备所得高效析氢催化剂材料Ir@NBD-C在0.5M H 2SO 4溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b);
图8为实施例1制备所得高效析氢催化剂材料Ir@NBD-C在1M PBS缓冲中性溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b);
图9为对照例1制备所得催化剂材料样品的TEM图,其中(a),(b)图为不同分辨率下的TEM图,比例尺分别为50nm,10nm;
图10为对照例2制备所得催化剂材料样品的TEM图,其中(a),(b)图为不同分辨率下的TEM图,比例尺分别为50nm,20nm;
图11为对照例3制备所得催化剂材料样品样品的TEM图,其中(a),(b)图为不同分辨率下的TEM图,比例尺分别为50nm,20nm;
图12为对照例1、2和3制备所得催化剂材料在1M KOH溶液中的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b);
图13为对照例1、2和3制备所得催化剂材料在0.5M H 2SO 4溶液中的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b);
图14为对照例1、2和3制备所得催化剂材料在1M PBS缓冲中性溶液中的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b)。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。
下述实施例中,水合氯化铱(分析纯)购自西格玛奥德里奇贸易有限公司,三聚氰胺(化学纯)购自国药集团化学试剂,硼酸(优级纯)购自国药集团化学试剂。商业科琴黑和商业碳纳米管购自上海宝渠化学有限公司。
实施例1
一种高效析氢催化剂Ir@NBD-C的制备方法,其具体包括如下步骤:
1)将200mg商业科琴黑加入到100ml甲苯中进行超声处理30min,形成一号混合液;
2)将2.4g氢氧化钾加入到50ml无水乙醇中,进行磁力搅拌30min,形成二号混合液;
3)将一号混合液和二号混合液混合,再进行磁力搅拌120min,形成三号混合液;
4)将三号混合液转移至三颈瓶中,在115℃进行油浴加热2.5h,同时不断进行机械搅拌以待有机溶剂挥发,收集得到棕黄色粉末;
5)将所得粉末样品于氩气环境下700℃煅烧0.5h,得到黑色块体;
6)用0.5M H 2SO 4对黑色块体进行充分清洗,除去碱性杂质,再用去离子水离心洗涤至中性,80℃下烘干得到黑色粉末;
7)将所得黑色粉末放置于氩气环境下900℃煅烧1h,制备出缺陷碳基底;
8)取25mg缺陷碳基底,加入40mL去离子水,进行超声处理30min,得到四号混合液;
9)向四号混合液中依次加入5mg水合三氯化铱、20mg三聚氰胺和25mg硼酸后,形成五号混合液后,磁力搅拌5h。然后在80℃下烘干,得到粉末样品。
10)将所得粉末样品于氩气环境下600℃煅烧1h即得该析氢催化剂Ir@NBD-C-600。
对照例1
一种Ir@NBC的制备方法,其具体包括如下步骤:
1)取25mg商业科琴黑,加入40mL去离子水,进行超声处理30min,得到一号混合液;
2)向一号混合液中依次加入5mg水合三氯化铱、20mg三聚氰胺和25mg硼酸,形成二号混合液后,磁力搅拌5h。然后在80℃下烘干,得到粉末样品;
3)将所得粉末样品于氩气环境下600℃煅烧1h即得该析氢催化剂Ir@NBC。该催化剂与实施例1所述催化剂的不同之处在于:省略实施例1的步骤1)至7),不使用缺陷碳基底,直接选用商业科琴黑作为基底。
对照例2
一种Ir@D-C的制备方法,其具体包括如下步骤:
步骤1)—步骤7)与实验例1完全相同;
8)取25mg缺陷碳基底,加入40mL去离子水,进行超声处理30min,得到四号混合液;
9)向四号混合液中依次加入5mg水合三氯化铱后,形成五号混合液后,进行磁力搅拌5h。之后在80℃下烘干,得到粉末样品;
10)将所得粉末样品于氩气环境下600℃煅烧1h即得该析氢催化剂Ir@D-C。该催化剂与实施例1所述催化剂的不同之处在于:步骤9)中不添加三聚氰胺和硼酸。
对照例3
一种Ir@ND-C的制备方法,其具体包括如下步骤:
步骤1)—步骤7)与实验例1中完全相同;
8)取25mg缺陷碳基底,加入40mL去离子水,进行超声处理30min,得到四号混合液;
9)向四号混合液中依次加入5mg水合三氯化铱、20mg三聚氰胺后,形成五号混合液后,进行磁力搅拌5h。之后在80℃下烘干,得到粉末样品;
10)将所得粉末样品于氩气环境下600℃煅烧1h即得该析氢催化剂Ir@ND-C。该催化剂与实施例1所述催化剂的不同之处在于:步骤9)中不添加硼酸。
相关测试:
上述实施例1制备所得高效析氢催化剂材料Ir@NBD-C的透射电镜图(TEM)以及Ir纳米颗粒的尺寸分布图见图1;高角度环形暗场扫描透射显微镜图(HAADF-STEM)见图2;EDS mapping图见图3;X射线衍射谱图(XRD)见图4;光电子能谱图(XPS)见图5;实施例1制备所得高效析氢催化剂材料Ir@NBD-C在1M KOH溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b)见图6;在0.5M H 2SO 4溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b)见图7;在1M PBS缓冲中性溶液的电化学测试的极化曲线(a)和相应的塔菲尔斜率曲线(b)见图8;对照例1制备所得析氢催化剂材料样品的TEM图见图 9;对照例2制备所得析氢催化剂材料样品的TEM图见图10;对照例3制备所得析氢催化剂材料样品的TEM图见图11;对照例1、2和3制备所得催化剂材料在1M KOH溶液中的电化学测试的极化曲线见图12;对照例1、2和3制备所得催化剂材料在0.5M H 2SO 4溶液中的电化学测试的极化曲线对应的塔菲尔斜率曲线见图13;对照例1、2和3制备所得催化剂材料在1M PBS缓冲中性溶液中的电化学测试的极化曲线对应的塔菲尔斜率曲线见图14。
上述的表征结果表明:实施例1采用缺陷科琴黑为基底,通过湿化学法,在氩气气氛下煅烧获得的析氢催化剂Ir@NBD-C,Ir纳米颗粒均匀分布在碳基底上,且颗粒平均粒径在1.28±0.30nm(见图1);由于TEM电镜图的低分辨率,无法通过透射电镜观察缺陷碳基底上是否有Ir单原子和Ir原子簇存在。因此,我们用环形暗场扫描透射电镜对样品进行观察(见图2)。通过图2看出,析氢催化剂Ir@NBD-C-600是由一系列单原子(小圈,红色),原子簇(大圈,橙色)以及小尺寸纳米颗粒组成(黄色平行线标识的Ir晶格条纹)。通过测量图2颗粒出现的晶格条纹间距,可以确定Ir纳米颗粒暴露出了Ir{111}和Ir{200}晶面,表明负载在碳基底上的颗粒为纯金属Ir;通过EDS图谱(图3)看出,部分Ir是以单原子或团簇形式存在,其余Ir原子聚集为纳米颗粒,并且氮、硼、铱元素是均匀分散在碳基底上的;X射线衍射(XRD)图谱(图4)反应出样品出现了2个峰(红色数字已标出),和PDF:#46-1044-Ir标准卡片对比,可以确定,位于2θ=40.7°和47.3°位置的两个峰归因于两个Ir单质峰:Ir{111}和Ir{200},结果与图2观察到的HAADF—STEM图的结果一致;X射线光电子能谱图(图5)中,出现了明显的O 1s,N 1s,C 1s,B 1s,Ir 4f峰,表明N,B,Ir同时掺杂进入了缺陷碳基底中,O 1s峰的出现是因为样品测试时的表面氧化作用。
析氢反应测试采用了三电极测试体系,即将碳棒作为对电极,Ag/AgCl作为参比电极,玻碳电极作为工作电极,采用三电极体系测试性能。具体地,是将实施例1,对照例1,对照例2和对照例3制备的催化剂材料负载到玻碳电极上。关于实验负载催化剂材料到玻碳电极上的方法是:取5.0mg的催化剂样品,溶于由360.0μL去离子水,120.0μL无水乙醇,20.0μL萘酚所配置的溶液中;将所配溶液超声30min混匀后,用移液枪量取10.0μL混合溶液后,垂直滴加在玻碳电极上,等其自然干燥后,即可作为工作电极使用。
析氢反应测试环境分别包括酸性、碱性和中性三种不同环境。具体的,包括1M KOH碱性溶液,0.5M H 2SO 4酸性溶液,1M PBS中性溶液。通过图6(a)可看出,在1M  KOH碱性溶液中,催化剂Ir@NBD-C在50mA cm -2表现出77mV的低过电势,远低于商业Pt/C在相同电流密度下的195mV过电势。通过图6(b)可看出Ir@NBD-C在1M KOH碱性溶液中的tafel斜率为47mV dec -1,略高于商业Pt/C的tafel斜率为25mV dec -1,二者的tafel值较为接近,表明Ir@NBD-C具有类似于商业Pt/C的动力学反应速率;通过图7(a)可看出,在0.5M H 2SO 4酸性溶液中,催化剂Ir@NBD-C在50mA cm -2表现出56mV的低过电势,远低于商业Pt/C在相同电流密度下的80mV的过电势。通过图7(b)可看出Ir@NBD-C在0.5M H 2SO 4酸性溶液的tafel斜率为46mV dec -1,略低于商业Pt/C的tafel斜率为49mV dec -1,二者的tafel值同样较为接近,表明Ir@NBD-C具有类似于商业Pt/C的较高的动力学反应速率;通过图8(a)可看出,在1M PBS中性溶液中,催化剂Ir@NBD-C在30mA cm -2表现出191mV的过电势,和商业Pt/C在相同电流密度下的过电势十分接近(183mV)。通过图8(b)可看出Ir@NBD-C在1M PBS中性溶液的tafel斜率为81mV dec -1,略高于商业Pt/C的tafel斜率为62mV dec -1,二者的tafel值同样较为接近,表明Ir@NBD-C具有类似于商业Pt/C的较高的动力学反应速率。
为了探索缺陷碳基底的作用,我们对对照例1得到的催化剂样品Ir@NBC通过TEM电镜进行观察,如图9(a)的低分辨率图和图9(b))高分辨率图所示:出现大块儿的Ir颗粒明显的聚集(黑色聚集体)。将图9和图1对比可发现,使用缺陷碳基底得到的Ir@NBD-C-600催化剂中,Ir纳米颗粒是均匀分布的,没有出现图9中明显的Ir颗粒聚集的现象。
为了探索氮掺杂的作用,我们对对照例2中不掺杂氮得到的催化剂样品Ir@D-C通过TEM电镜进行观察,如图10(a)的低分辨率图和图10(b))高分辨率图所示:同样出现了明显的Ir颗粒的聚集(黑色聚集体)。进一步地,我们对掺杂氮得到的催化剂样品Ir@ND-C通过TEM电镜进行观察,如图11(a)的低分辨率图和图11(b))高分辨率图所示。将图11(掺杂N样品)和图10(未掺杂N样品)进行对比发现,氮掺杂后的催化剂样品的颗粒粒径要明显小于未掺杂氮的催化剂样品的颗粒粒径,表明氮的掺杂有助于Ir纳米颗粒的分散。进一步地,将对照例3得到的催化剂样品Ir@ND-C和实施例1得到的催化剂样品Ir@NBD-C的TEM图对比可以发现,硼的掺杂有利于Ir纳米颗粒的进一步分散,甚至样品Ir@NBD-C中的Ir纳米颗粒的平均粒径达到了小于2nm的尺寸,这表明氮、硼共掺杂对Ir纳米颗粒更均匀地分散起到了关键作用。
作为对照,本发明还测试了对照例1制备的Ir@NBC催化剂、对照例2制备的Ir@D-C催化剂以及对照例3制备的Ir@ND-C催化剂的HER性能。如图12所示,在电流密度为50mA cm -2下,1M KOH碱性溶液中,Ir@NBC,Ir@D-C和Ir@ND-C分别表现出95 mV,118mV,106mV的过电势,三者的tafel斜率依次为85mV dec -1,58mV dec -1,59mV dec -1。如图13所示,在电流密度为50mA cm -2下,0.5M H 2SO 4酸性溶液中,Ir@NBC,Ir@D-C和Ir@ND-C分别表现出78mV,72mV,68mV的过电势,三者的tafel斜率依次为84mV dec -1,78mV dec -1,94mV dec -1。如图14所示,在电流密度为30mA cm -2下,1M PBS中性溶液中,Ir@NBC,Ir@D-C和Ir@ND-C分别表现出198mV,276mV,334mV的过电势,三者的tafel斜率依次为133mV dec -1,82mV dec -1,197mV dec - 1,表明中性溶液中,三者的动力学反应比较缓慢。
综上看出:本发明高效析氢催化剂材料Ir@NBD-C通过利用氮,硼对金属单原子和金属团簇的拴束效应,减缓了颗粒的生长速度,将贵金属纳米颗粒直径降低至2nm以下(1.28±0.30nm),并且在碳基底上实现了均匀分布。颗粒直径的减小,使得催化剂具有更高的比表面积;还使得催化剂能暴露出更多的有利于催化的活性面。进而使催化剂在HER过程中一定电流密度下的过电势显著降低;并且氮,硼的拴束效应使得金属纳米颗粒在循环过程中保持了良好的稳定性,循环3000圈后粒径没有明显增加。这表明此催化剂在HER反应过程中具有高效的催化和稳定性能。

Claims (8)

  1. 一种高效析氢催化剂Ir@NBD-C制备方法,其特征在于,将缺陷碳基底与去离子水混匀;然后加入水合三氯化铱、三聚氰胺和硼酸并混合均匀,烘干得到粉末样品;置于惰性气氛下600±50℃煅烧1-2h,即得析氢催化剂Ir@NBD-C。
  2. 如权利要求1所述高效析氢催化剂Ir@NBD-C的制备方法,其特征在于,缺陷碳基底、水合三氯化铱、三聚氰胺和硼酸的质量比为3-5:1:4-6:3-5。
  3. 如权利要求1所述高效析氢催化剂Ir@NBD-C的制备方法,其特征在于,所述缺陷碳基底经下述步骤制备获得:
    1)将碳材料与甲苯混合均匀,形成一号混合液;
    2)将氢氧化钾溶于无水乙醇中,形成二号混合液;
    3)将一号混合液和二号混合液混合后室温磁力搅拌反应100—120min,形成三号混合液;
    4)将三号混合液于80-120℃油浴中搅拌加热2-3h,收集得到的棕黄色粉末;
    5)将所得棕黄色粉末于惰性环境下600-700℃煅烧0.5-1h,得到黑色块体;
    6)黑色块体进行酸洗除去碱性杂质,再用去离子水洗至中性,烘干得到黑色粉末;
    7)将所得黑色粉末置于惰性环境下850-950℃煅烧1-2h,获得缺陷碳基底。
  4. 如权利要求3所述高效析氢催化剂Ir@NBD-C的制备方法,其特征在于,步骤1)中,所述碳材料为科琴黑或碳纳米管;所述碳材料和氢氧化钾加入的质量比为1:12-13。
  5. 如权利要求4所述高效析氢催化剂Ir@NBD-C的制备方法,其特征在于,步骤6)中,酸洗选用的酸为硫酸或硝酸。
  6. 如权利要求1至5任一所述高效析氢催化剂Ir@NBD-C的制备方法,其特征在于,烘干温度为70—80℃。
  7. 采用权利要求1至6任一所述制备方法制备得到的高效析氢催化剂Ir@NBD-C。
  8. 权利要求7中所述的高效析氢催化剂Ir@NBD-C在电解水制氢中的应用。
PCT/CN2020/124695 2020-05-14 2020-10-29 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用 Ceased WO2021227382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010408333.3A CN111558390B (zh) 2020-05-14 2020-05-14 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用
CN202010408333.3 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021227382A1 true WO2021227382A1 (zh) 2021-11-18

Family

ID=72074755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124695 Ceased WO2021227382A1 (zh) 2020-05-14 2020-10-29 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN111558390B (zh)
WO (1) WO2021227382A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481204A (zh) * 2022-01-26 2022-05-13 青岛科技大学 一种磷化钴负载贵金属纳米材料的制备
CN114534742A (zh) * 2022-02-24 2022-05-27 海南大学 一种高熵单原子催化剂及其制备方法
CN114665110A (zh) * 2022-02-09 2022-06-24 大连理工大学 一种用于提高氧还原耐久性的硼氮修饰的金属电催化剂的制备方法及应用
CN115332549A (zh) * 2022-08-31 2022-11-11 陕西科技大学 一种铁/碳量子点电催化剂及其制备方法
CN115404513A (zh) * 2022-08-09 2022-11-29 苏州科技大学 一种碳包覆型异质结构电催化剂及其制备与应用
CN115739129A (zh) * 2022-12-01 2023-03-07 武汉大学 一种纳米层状六方相贵金属硒化物及其制备方法与应用
CN116043269A (zh) * 2023-02-17 2023-05-02 上海理工大学 一种Pt单原子和团簇负载在氮掺杂多孔碳内部的合成方法
CN116078413A (zh) * 2022-12-13 2023-05-09 青岛科技大学 一种基于微生物模板衍生的低贵金属磷化物电催化剂及其制备方法和应用
CN116314890A (zh) * 2023-04-18 2023-06-23 郑州大学 一种Pt-Fe合金催化剂及其制备方法和在质子交换膜燃料电池中的应用
CN116356369A (zh) * 2023-03-31 2023-06-30 江南大学 一种类石榴状的高熵合金/碳纳米杂化材料及其制备方法和应用
CN117599827A (zh) * 2023-11-24 2024-02-27 东北林业大学 一种简便环保的微晶纤维素基电催化析氧材料的制备方法
CN117680142A (zh) * 2024-01-02 2024-03-12 大连工业大学 一种Nd-IrO2纳米催化剂及其制备方法和应用
CN117943126A (zh) * 2024-01-16 2024-04-30 广州然益生物环保科技有限公司 一种用于环境除臭的制剂及其制备方法
CN118454723A (zh) * 2024-05-16 2024-08-09 平顶山学院 一种调控Ru@NC核壳异质界面电子效应实现高效析氢的催化剂及其制备方法
CN120250064A (zh) * 2025-06-09 2025-07-04 浙江工业大学 一种碱析氢电催化剂的制备方法、产品及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558390B (zh) * 2020-05-14 2021-07-06 郑州大学 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用
CN112615012B (zh) * 2020-12-28 2023-06-02 郑州大学 一种低铂燃料电池催化剂Pt/DC-N的制备方法
CN113856726B (zh) * 2021-10-28 2023-05-23 中南大学 一种适用于β-硝基醇制备的高效低成本非均相催化剂
CN119465245A (zh) * 2024-10-24 2025-02-18 中国石油大学(北京) 一种自支撑、孔道结构可调、金属有序分布、三维电催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025209A2 (de) * 2010-08-27 2012-03-01 Elcomax Gmbh Elektrochemische abscheidung von nanoskaligen katalysatorpartikeln
CN108048866A (zh) * 2017-11-29 2018-05-18 华南理工大学 氮掺杂多孔碳包覆的钴铱核壳结构纳米颗粒的制备及其催化水裂解应用
CN108220997A (zh) * 2018-01-31 2018-06-29 中国科学院福建物质结构研究所 一种含碳包镍单壁碳纳米管复合材料及其制备方法和用途
CN109286025A (zh) * 2017-11-03 2019-01-29 郑州大学 一种氮掺杂多孔缺陷碳纳米纤维网络及其制备方法、应用
CN110152712A (zh) * 2019-06-06 2019-08-23 郑州大学 一种Ru基析氢催化剂及其制备方法和应用
CN110694646A (zh) * 2019-10-22 2020-01-17 上海交通大学 一种双金属硫化物复合电催化剂及其制备方法与应用
CN111558390A (zh) * 2020-05-14 2020-08-21 郑州大学 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025209A2 (de) * 2010-08-27 2012-03-01 Elcomax Gmbh Elektrochemische abscheidung von nanoskaligen katalysatorpartikeln
CN109286025A (zh) * 2017-11-03 2019-01-29 郑州大学 一种氮掺杂多孔缺陷碳纳米纤维网络及其制备方法、应用
CN108048866A (zh) * 2017-11-29 2018-05-18 华南理工大学 氮掺杂多孔碳包覆的钴铱核壳结构纳米颗粒的制备及其催化水裂解应用
CN108220997A (zh) * 2018-01-31 2018-06-29 中国科学院福建物质结构研究所 一种含碳包镍单壁碳纳米管复合材料及其制备方法和用途
CN110152712A (zh) * 2019-06-06 2019-08-23 郑州大学 一种Ru基析氢催化剂及其制备方法和应用
CN110694646A (zh) * 2019-10-22 2020-01-17 上海交通大学 一种双金属硫化物复合电催化剂及其制备方法与应用
CN111558390A (zh) * 2020-05-14 2020-08-21 郑州大学 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481204B (zh) * 2022-01-26 2023-11-03 青岛科技大学 一种磷化钴负载贵金属纳米材料的制备
CN114481204A (zh) * 2022-01-26 2022-05-13 青岛科技大学 一种磷化钴负载贵金属纳米材料的制备
CN114665110A (zh) * 2022-02-09 2022-06-24 大连理工大学 一种用于提高氧还原耐久性的硼氮修饰的金属电催化剂的制备方法及应用
CN114534742A (zh) * 2022-02-24 2022-05-27 海南大学 一种高熵单原子催化剂及其制备方法
CN115404513A (zh) * 2022-08-09 2022-11-29 苏州科技大学 一种碳包覆型异质结构电催化剂及其制备与应用
CN115332549A (zh) * 2022-08-31 2022-11-11 陕西科技大学 一种铁/碳量子点电催化剂及其制备方法
CN115332549B (zh) * 2022-08-31 2024-01-19 陕西科技大学 一种铁/碳量子点电催化剂及其制备方法
CN115739129B (zh) * 2022-12-01 2024-02-20 武汉大学 一种纳米层状六方相贵金属硒化物及其制备方法与应用
CN115739129A (zh) * 2022-12-01 2023-03-07 武汉大学 一种纳米层状六方相贵金属硒化物及其制备方法与应用
CN116078413A (zh) * 2022-12-13 2023-05-09 青岛科技大学 一种基于微生物模板衍生的低贵金属磷化物电催化剂及其制备方法和应用
CN116043269A (zh) * 2023-02-17 2023-05-02 上海理工大学 一种Pt单原子和团簇负载在氮掺杂多孔碳内部的合成方法
CN116356369A (zh) * 2023-03-31 2023-06-30 江南大学 一种类石榴状的高熵合金/碳纳米杂化材料及其制备方法和应用
CN116314890A (zh) * 2023-04-18 2023-06-23 郑州大学 一种Pt-Fe合金催化剂及其制备方法和在质子交换膜燃料电池中的应用
CN117599827A (zh) * 2023-11-24 2024-02-27 东北林业大学 一种简便环保的微晶纤维素基电催化析氧材料的制备方法
CN117680142A (zh) * 2024-01-02 2024-03-12 大连工业大学 一种Nd-IrO2纳米催化剂及其制备方法和应用
CN117943126A (zh) * 2024-01-16 2024-04-30 广州然益生物环保科技有限公司 一种用于环境除臭的制剂及其制备方法
CN117943126B (zh) * 2024-01-16 2024-06-07 广州然益生物环保科技有限公司 一种用于环境除臭的制剂及其制备方法
CN118454723A (zh) * 2024-05-16 2024-08-09 平顶山学院 一种调控Ru@NC核壳异质界面电子效应实现高效析氢的催化剂及其制备方法
CN120250064A (zh) * 2025-06-09 2025-07-04 浙江工业大学 一种碱析氢电催化剂的制备方法、产品及应用

Also Published As

Publication number Publication date
CN111558390A (zh) 2020-08-21
CN111558390B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021227382A1 (zh) 一种高效析氢催化剂Ir@NBD-C的制备方法及其应用
Chen et al. Well-defined CoSe 2@ MoSe 2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting
Peng et al. Controlled growth cerium oxide nanoparticles on reduced graphene oxide for oxygen catalytic reduction
CN113422071B (zh) 一种钴铁双金属有机骨架衍生碳材料的制备方法及其应用
CN101703935B (zh) 一种负载型金属催化剂及其制备方法
CN106876728A (zh) 高密度过渡金属单原子负载石墨烯基催化剂及其制备方法
Wu et al. N, S co-doped carbon with embedment of FeNi alloy as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
CN109873176A (zh) 燃料电池用碳载有序铂钴铜催化剂及其制备方法
CN104475126A (zh) 燃料电池用碳载核壳型铂钴-铂催化剂及其制备方法
Chen et al. One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation
CN113198470B (zh) 一种负载氧化亚铜和还原氧化石墨烯的碳基底复合催化剂及其制备方法与应用
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN111416132A (zh) 一种燃料电池用碳载有序铂铜镍催化剂及其制备方法
CN110280240A (zh) 一种碳纳米片负载贵金属纳米粒子催化剂及其制备方法和应用
CN110292939B (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
Zheng et al. Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance
CN112736257B (zh) 一种嵌入式多孔Fe-Nx@Pd-NC纳米棒的制备方法及其制备的纳米棒和应用
Xie et al. High catalytic activity of Co 3 O 4 nanoparticles encapsulated in a graphene supported carbon matrix for oxygen reduction reaction
CN113403631A (zh) 颗粒状CuCo-MOF/MoS2催化剂及其制备方法和应用
Cheng et al. Synthesis of MnOOH and its application in a supporting hexagonal Pd/C catalyst for the oxygen reduction reaction
Yang et al. Preparation of monolayer HSr 2 Nb 3 O 10 nanosheets for photocatalytic hydrogen evolution
Cai et al. Surface tuning of carbon supported chemically ordered nanoparticles for promoting their catalysis toward the oxygen reduction reaction
Wang et al. Ordered mesoporous carbons-supported gold nanoparticles as highly efficient electrocatalysts for oxygen reduction reaction
Sun et al. Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER
CN115341225A (zh) 一种具有电催化活性的m-mof纳米材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935144

Country of ref document: EP

Kind code of ref document: A1