WO2021223559A1 - 一种抗硫抗水锰系低温脱硝催化剂及其制备方法 - Google Patents

一种抗硫抗水锰系低温脱硝催化剂及其制备方法 Download PDF

Info

Publication number
WO2021223559A1
WO2021223559A1 PCT/CN2021/085660 CN2021085660W WO2021223559A1 WO 2021223559 A1 WO2021223559 A1 WO 2021223559A1 CN 2021085660 W CN2021085660 W CN 2021085660W WO 2021223559 A1 WO2021223559 A1 WO 2021223559A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
manganese
low
resistant
water
Prior art date
Application number
PCT/CN2021/085660
Other languages
English (en)
French (fr)
Inventor
张涛
刘安阳
张深根
张柏林
孙超
邓立锋
罗春云
陈嘉俊
Original Assignee
江苏龙净科杰环保技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏龙净科杰环保技术有限公司 filed Critical 江苏龙净科杰环保技术有限公司
Publication of WO2021223559A1 publication Critical patent/WO2021223559A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the invention relates to the technical field of catalyst preparation, in particular to a high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst and a preparation method.
  • Selective catalytic reduction is the most widely used technology for removing nitrogen oxides from flue gas.
  • NH 3 acts as a reducing agent to reduce harmful nitrogen oxides to harmless nitrogen by means of a catalytic reaction.
  • the flue gas temperature range is wide and low, below 300 °C, SO 2
  • the high water vapor content and harsh working conditions restrict the use of traditional medium, high temperature and low temperature denitration catalysts.
  • the flue gas temperature is low (generally lower than 200°C)
  • the traditional medium and high temperature catalyst cannot meet the actual demand. Therefore, manganese-based denitrification catalysts with excellent denitrification performance at low temperatures of 120-200°C have become the focus of research.
  • the present invention provides a sulfur-resistant and water-manganese-resistant low-temperature denitration catalyst and a preparation method thereof.
  • the technical scheme is as follows:
  • the present invention provides an anti-sulfur and anti-water manganese low-temperature denitration catalyst, which includes an anti-sulfur additive, an active component, and a hydrophobic substance.
  • the carrier of the catalyst is a titanium dioxide nanotube synthesized by a hydrothermal method using a waste SCR catalyst as a raw material.
  • the precursor of the active component is one or two of manganese nitrate and manganese acetate, and the mass percentage of the active component in the catalyst is 8-20%wt.
  • the anti-sulfur auxiliary agent is one or two of molybdenum disulfide and tungsten disulfide, and the mass percentage in the catalyst is 5-10%wt.
  • the hydrophobic substance is at least one of fluorocarbon resin, polytetrafluoroethylene emulsion, and organosiloxane, and the mass percentage in the catalyst is 2 to 5% by weight.
  • the present invention also provides a preparation method of the above-mentioned sulfur-resistant and water-manganese-resistant low-temperature denitration catalyst, which includes the following steps:
  • Titanium dioxide nanotube precursor (2) Mix the titanium dioxide nanotube precursor with anti-sulfur additives, silica sol, propylhydroxymethyl cellulose, glass fiber, aluminum dihydrogen phosphate, deionized water, stale, honeycomb extrusion molding, and short after drying to obtain Titanium dioxide nanotube honeycomb carrier;
  • the mass/volume ratio of the spent SCR catalyst to the alkaline solution in step (1) is 0.005-0.01 g/mL;
  • the alkaline solution is a solution of sodium hydroxide or potassium hydroxide with a concentration of 8-12 mol /L.
  • the step (1) requires standing for 30-60 minutes before the hydrothermal reaction; the hydrothermal reaction is carried out in a hydrothermal reaction kettle, the hydrothermal reaction temperature is 150-220°C, and the reaction time is 12-24h.
  • the acid is a nitric acid, hydrochloric acid or sulfuric acid solution with a concentration of 0.05 to 0.12 mol/L; the washing water is deionized water; the drying is performed at a temperature of 60-100°C, The drying time is 8-10h.
  • the anti-sulfur additive in step (2) is one or two of molybdenum disulfide or tungsten disulfide; the silica sol contains 20-30%wt of silica and 0.04-0.5%wt Of sodium oxide.
  • the mass ratio of the titanium dioxide nanotube precursor and the anti-sulfur additive, silica sol, propylhydroxymethyl cellulose, glass fiber, aluminum dihydrogen phosphate, and deionized water in step (2) is (75-85) :(5-10):(3-5):(1-3):(3-5):(2-8):(120-150).
  • the aging temperature in step (2) is normal temperature, and the aging time is 12-72h; the drying temperature is 60-80°C, and the drying time is 24-48h.
  • the calcination temperature in step (2) is 300 to 500° C., and the calcination time is 12 to 24 hours.
  • the impregnating solution in step (3) includes an active component precursor and a hydrophobic substance, wherein the active component precursor is one or two of manganese nitrate and manganese acetate, and the hydrophobic substance is a fluorocarbon resin , At least one of polytetrafluoroethylene emulsion and organosiloxane.
  • the active component precursor is one or two of manganese nitrate and manganese acetate
  • the hydrophobic substance is a fluorocarbon resin , At least one of polytetrafluoroethylene emulsion and organosiloxane.
  • the active component precursor in step (3) accounts for 12-25% by weight of the immersion liquid.
  • the drying temperature is 60-80° C., and the drying time is 12-48 h; for the calcination, the calcination temperature is 300-400° C., and the calcination time is 2 to 4 h.
  • the present invention uses waste SCR low-temperature denitrification catalyst to produce titanium dioxide nanotube precursor through closed hydrothermal reaction, which is used as the raw material for preparing honeycomb low-temperature denitrification catalyst.
  • the titanium dioxide in the waste SCR catalyst reacts into titanium salt and acid After washing, washing with water, and calcination, it is regenerated into titanium dioxide nanotubes, and has a higher specific surface area than ordinary titanium dioxide, large pore volume, and small nanometer particle size.
  • the anti-sulfur additives molybdenum disulfide and tungsten disulfide are added to the carrier to enhance the sulfur resistance of the catalyst.
  • the prepared high-sulfur and water-resistant low-cost manganese-based low-temperature denitrification catalyst has greatly reduced production costs, enhanced sulfur and water resistance, and has significantly higher denitrification efficiency than the low-temperature and low-temperature denitrification catalyst currently used in industry.
  • the technology of the present invention is not only conducive to saving resources and improving resource reuse, but also solves the current problems of low specific surface area and small pore volume of titanium dioxide, and realizes the industrial application and promotion of manganese-based low-temperature and low-temperature denitration catalysts.
  • Example 1 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • titanium dioxide nanotube precursor To 85 parts of titanium dioxide nanotube precursor, add 5 parts of molybdenum disulfide, 3 parts of 30% wt silica silica sol, 1 part of propylhydroxymethyl cellulose, 3 parts of glass fiber, and 2 parts of aluminum dihydrogen phosphate It is mixed with 120 parts of deionized water, stale, honeycomb extrusion molding, dried at 60°C for 48h, and calcined at 300°C for 24h to obtain a titanium dioxide nanotube honeycomb carrier.
  • Example 2 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • the manganese acetate active component precursor and the polytetrafluoroethylene emulsion are prepared into a 25% wt solution, and the titanium dioxide nanotube honeycomb support obtained in (2) is impregnated, dried at 80°C, and calcined at 400°C for 2 hours.
  • a high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst is prepared, in which the manganese content is 20%.
  • the catalyst has a specific surface area of 172.52 m 2 /g and a pore volume of 0.45 cm 3 /g as measured by the American Beckman SA3100 specific surface area and pore size analyzer.
  • Example 3 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • the manganese acetate active component precursor and organosiloxane are prepared into an 18% wt solution, and the titanium dioxide nanotube honeycomb support obtained in (2) is impregnated, dried at 70° C., and then calcined at 350° C. for 3 hours.
  • a high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst was prepared, in which the manganese content was 15%.
  • the specific surface area and pore volume of the catalyst were 175.26 m 2 /g and the pore volume was 0.52 cm 3 /g as measured by the American Beckman SA3100 specific surface area and pore size analyzer.
  • Example 4 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • titanium dioxide nanotube precursor To 80 parts of titanium dioxide nanotube precursor, add 8 parts of tungsten disulfide, 4 parts of 30% wt silica silica sol, 2 parts of propylhydroxymethyl cellulose, 5 parts of glass fiber, and 5 parts of aluminum dihydrogen phosphate It is mixed with 140 parts of deionized water, stale, honeycomb extrusion molding, dried at 60°C for 36 hours, and calcined at 400°C for 18 hours to obtain a titanium dioxide nanotube honeycomb carrier.
  • Example 5 A manganese-based low-temperature denitration catalyst with high sulfur and water resistance and low cost, the preparation method is as follows:
  • Comparative Example 1 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • the manganese nitrate active component precursor is formulated into a 12%wt solution, and the honeycomb support obtained in (1) is impregnated, dried at 60°C, and calcined at 300°C for 4 hours.
  • a high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst was prepared, in which the manganese content was 8%.
  • the catalyst was tested by the Beckman SA 3100 specific surface area and pore size analyzer. The specific surface area was 52.74 m 2 /g and the pore volume was 0.25 cm 3 /g. .
  • Comparative Example 2 A honeycomb anti-toxic low-temperature SCR low-temperature denitration catalyst, the preparation method is as follows:
  • Comparative Example 3 A high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst, the preparation method is as follows:
  • titanium dioxide nanotube precursor To 85 parts of titanium dioxide nanotube precursor, add 5 parts of molybdenum disulfide, 3 parts of 30% wt silica silica sol, 1 part of propylhydroxymethyl cellulose, 3 parts of glass fiber, and 2 parts of aluminum dihydrogen phosphate It is mixed with 120 parts of deionized water, stale, honeycomb extrusion molding, dried at 60°C for 48h, and calcined at 300°C for 24h to obtain a titanium dioxide nanotube honeycomb carrier.
  • the manganese nitrate active component precursor is configured into a 12% wt solution, and the titanium dioxide nanotube honeycomb support obtained in (2) is impregnated, dried at 60°C, and calcined at 300°C for 4 hours.
  • a high-resistance, water-resistance, low-cost manganese-based low-temperature denitration catalyst was prepared, in which the manganese content was 8%.
  • the specific surface area and pore volume of the catalyst were 175.24m 2 /g and the pore volume was 0.62cm 3 /g. .
  • test conditions are: NO 400mg/Nm 3 , NH 3 400Nm 3 , O 2 5%, SO 2 1000mg/Nm 3 , 10% H 2 O, N 2 as equilibrium gas, AV 5m/h, catalyst 5 ⁇ 5 holes, length 500mm.
  • the concentration of NO X at the inlet and outlet was detected at 120°C, 150°C, 180°C, and 200°C, respectively, and the MRU flue gas analyzer was used for detection.
  • the high-sulfur-resistant hydromanganese-based low-temperature denitration catalyst of the present invention has high low-temperature activity, good sulfur and water resistance, high denitrification efficiency under high sulfur and high water conditions, and the specific surface area and pore volume of the catalyst It is higher than general titanium dioxide, and the addition of hydrophobic substances ensures the high sulfur and water resistance of the present invention. It can be seen that the high-sulfur and hydromanganese-resistant low-temperature denitration catalyst of the present invention has high low-temperature activity, and has a stronger low-temperature, high-sulfur and anti-water poisoning ability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种抗硫抗水锰系低温脱硝催化剂及其制备方法,涉及催化剂制备技术领域,该催化剂包括抗硫助剂、活性组分、疏水物质,催化剂的载体是以废SCR催化剂为原材料水热法合成的二氧化钛纳米管。本发明采用废SCR低温脱硝催化剂经密闭水热反应制成二氧化钛纳米管前驱体,作为制备蜂窝低温脱硝催化剂的原材料,制备的高抗硫抗水低成本锰系低温脱硝催化剂生产成本大幅降低,抗硫抗水能力得到增强,脱硝效率明显高于目前工业应用的低温低温脱硝催化剂。本发明技术不仅有利于节约资源,提高资源化再利用,而且解决了目前二氧化钛比表面积较低、孔容较小的问题,实现了锰系低温低温脱硝催化剂的工业化应用推广。

Description

一种抗硫抗水锰系低温脱硝催化剂及其制备方法 技术领域
本发明涉及催化剂制备技术领域,具体涉及一种高抗硫抗水低成本锰系低温脱硝催化剂及制备方法。
背景技术
选择性催化还原法(SCR,selective catalytic reduction)是应用最为广泛的烟气脱除氮氧化物技术。NH 3作为还原剂,借助催化反应,将有害的氮氧化合物还原成无害的氮气。随着国家环保政策要求越来越严格,玻璃、水泥、焦化、化工、钢铁、炭黑等行业氮氧化物排放要求日趋降低,但是其烟气温度范围广泛较低,在300℃以下,SO 2和水蒸气含量高,苛刻的工况,制约了传统中高温低温脱硝催化剂的使用。当烟气温度较低(一般低于200℃)时,传统的中高温催化剂无法满足实际需求。因此,低温120-200℃优异脱硝性能的锰基脱硝催化剂已成为研究重点。
然而,已知现有较多锰基低温脱硝催化剂生产和配方,主要是挤出成型,并且由于硝酸锰的分解温度较低,无法得到品质稳定的产品,并且成本高、低温抗硫抗性性差,导致无法工业化生产和实际应用推广。
发明内容
基于现有技术中存在的上述不足,急需开发一种低温条件下成本低、活性高、抗硫抗水性能好的锰系低温脱硝催化剂。以此为目的,本发明提供了一种抗硫抗水锰系低温脱硝催化剂及制备方法,技术方案如下:
首先,本发明提供一种抗硫抗水锰系低温脱硝催化剂,包括抗硫助剂、活性组分、疏水物质,催化剂的载体是以废SCR催化剂为原材料水热法合成的 二氧化钛纳米管。
优选地,所述活性组分的前驱体为硝酸锰、醋酸锰中的一种或二种,活性组分在催化剂中的质量百分比为8-20%wt。
优选地,所述抗硫助剂为二硫化钼、二硫化钨中的一种或二种,在催化剂中的质量百分比为5-10%wt。
优选地,所述疏水物质为氟碳树脂、聚四氟乙烯乳液、有机硅氧烷类中的至少一种,在催化剂中的质量百分比为2-5%wt。
第二,本发明还提供上述抗硫抗水锰系低温脱硝催化剂的制备方法,包括以下步骤:
(1)将废SCR催化剂加入到碱性溶液中,密闭水热反应,冷却后用酸洗、再水洗至中性;干燥得到二氧化钛纳米管前驱体;
(2)将二氧化钛纳米管前驱体与抗硫助剂、硅溶胶、丙羟基甲基纤维素、玻璃纤维、磷酸二氢铝、去离子水混合,陈腐,蜂窝挤出成型,干燥后短少,得到二氧化钛纳米管蜂窝载体;
(3)将二氧化钛纳米管蜂窝载体放入浸渍液浸渍,去除后干燥、煅烧,得到抗硫抗水锰系低温脱硝催化剂。
优选地,步骤(1)所述废SCR催化剂与碱性溶液的质量/体积比为0.005-0.01g/mL;所述碱性溶液为氢氧化钠或氢氧化钾的溶液,浓度为8~12mol/L。
优选地,步骤(1)所述水热反应前需静置30-60min;水热反应在水热反 应釜中进行,水热反应温度150-220℃,反应时间12-24h。
优选地,步骤(1)所述酸洗,酸为硝酸、盐酸或硫酸溶液,浓度为0.05~0.12mol/L;所述水洗用水为去离子水;所述干燥,温度为60-100℃,干燥时间为8-10h。
优选地,步骤(2)所述抗硫助剂为二硫化钼或二硫化钨中的一种或二种;所述硅溶胶中含20-30%wt的二氧化硅和0.04-0.5%wt的氧化钠。
优选地,步骤(2)所述二氧化钛纳米管前驱体与抗硫助剂、硅溶胶、丙羟基甲基纤维素、玻璃纤维、磷酸二氢铝、去离子水的质量比为(75-85):(5-10):(3-5):(1-3):(3-5):(2-8):(120-150)。
优选地,步骤(2)所述陈腐温度为常温,陈腐时间为12-72h;所述干燥温度为60~80℃,干燥时间为24~48h。
优选地,步骤(2)所述煅烧温度为300~500℃,煅烧时间为12~24h。
优选地,步骤(3)所述浸渍液包括活性组分前驱体和疏水物质,其中,活性组分前驱体为硝酸锰、醋酸锰中的一种或二种,所述疏水物质为氟碳树脂、聚四氟乙烯乳液、有机硅氧烷类中的至少一种。
优选地,步骤(3)所述活性组分前驱体占浸渍液质量百分数为12~25%wt。
优选地,步骤(3)所述干燥,干燥温度为60~80℃,干燥时间为12-48h;所述煅烧,煅烧温度为300~400℃,煅烧时间为2~4h。
有益效果
本发明的有益效果在于:
本发明采用废SCR低温脱硝催化剂经密闭水热反应制成二氧化钛纳米管前驱体,作为制备蜂窝低温脱硝催化剂的原材料,经水热密闭反应后,废SCR催化剂中的二氧化钛反应变成钛盐,酸洗、水洗后、煅烧后重生为二氧化钛纳米管,并且比表面积比一般二氧化钛高,孔容大,纳米粒径小。在载体中加入抗硫助剂二硫化钼、二硫化钨,增强催化剂抗硫性。浸渍活性物质锰溶液时,加入疏水物质使得制备的催化剂表面形成防水涂层,降低水低温时对脱硝效率的影响。制备的高抗硫抗水低成本锰系低温脱硝催化剂生产成本大幅降低,抗硫抗水能力得到增强,脱硝效率明显高于目前工业应用的低温低温脱硝催化剂。本发明技术不仅有利于节约资源,提高资源化再利用,而且解决了目前二氧化钛比表面积较低、孔容较小的问题,实现了锰系低温低温脱硝催化剂的工业化应用推广。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
除非特别指出,以下实施例和对比例为平行试验,采用同样的处理步骤和参数。
实施例1一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V NaOH(g/ml)=0.005加入到8mol/L氢氧化 钠溶液中搅拌均匀30min后置于水热反应釜内150℃密闭反应24h,冷却后用0.05mol/LHCl洗涤,去离子水洗涤至中性。60℃干燥10h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体85份中加入二硫化钼5份,3份30%wt二氧化硅的硅溶胶、1份丙羟基甲基纤维素、3份玻纤,磷酸二氢铝2份和去离子水120份混料、陈腐、蜂窝挤出成型、60℃干燥48h、300℃煅烧24h,得到二氧化钛纳米管蜂窝载体。
(3)将硝酸锰活性组分前驱体、氟炭树脂配置成12%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,60℃干燥后,300℃煅烧4h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量8%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积180.52m 2/g,孔容0.65cm 3/g。
实施例2一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V KOH(g/ml)=0.01加入到12mol/L氢氧化钾溶液中搅拌均匀60min后置于水热反应釜内220℃密闭反应12h,冷却后用0.1mol/LH 2SO 4洗涤,去离子水洗涤至中性。100℃干燥8h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体75份中加入二硫化钨10份,5份30%wt二氧化硅的硅溶胶、3份丙羟基甲基纤维素、5份玻纤,磷酸二氢铝8份和去离子水150份混料、陈腐、蜂窝挤出成型、80℃干燥24h、500℃煅烧12h,得到二氧化钛纳米管蜂窝载体。
(3)将醋酸锰活性组分前驱体、聚四氟乙烯乳液配置成25%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,80℃干燥后,400℃煅烧2h。制得 高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量20%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积172.52m 2/g,孔容0.45cm 3/g。
实施例3一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V NaOH(g/ml)=0.008加入到10mol/L氢氧化钠溶液中搅拌均匀60min后置于水热反应釜内210℃密闭反应24h,冷却后用0.05mol/LHNO 3洗涤,去离子水洗涤至中性。90℃干燥10h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体80份中加入二硫化钼3份,二硫化钨3份,4份30%wt二氧化硅的硅溶胶、3份丙羟基甲基纤维素、5份玻纤,磷酸二氢铝6份和去离子水135份混料、陈腐、蜂窝挤出成型、70℃干燥36h、400℃煅烧18h,得到二氧化钛纳米管蜂窝载体。
(3)将醋酸锰活性组分前驱体、有机硅氧烷配置成18%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,70℃干燥后,350℃煅烧3h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量15%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积175.26m 2/g,孔容0.52cm 3/g。
实施例4一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V KOH(g/ml)=0.008加入到10mol/L氢氧化钾溶液中搅拌均匀60min后置于水热反应釜内200℃密闭反应24h,冷却后用0.05mol/LHCl洗涤,去离子水洗涤至中性。90℃干燥10h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体80份中加入二硫化钨8份,4份30%wt二氧化硅的硅溶胶、2份丙羟基甲基纤维素、5份玻纤,磷酸二氢铝5份和去离子水140份混料、陈腐、蜂窝挤出成型、60℃干燥36h、400℃煅烧18h,得到二氧化钛纳米管蜂窝载体。
(3)将硝酸锰活性组分前驱体、聚四氟乙烯乳液配置成18%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,70℃干燥后,300℃煅烧3h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量15%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积178.32m 2/g,孔容0.55cm 3/g。
实施例5一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V KOH(g/ml)=0.012加入到8mol/L氢氧化钾溶液中搅拌均匀60min后置于水热反应釜内180℃密闭反应18h,冷却后用0.1mol/LHCl洗涤,去离子水洗涤至中性。60℃干燥10h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体75份中加入二硫化钼10份,5份30%wt二氧化硅的硅溶胶、2份丙羟基甲基纤维素、5份玻纤,磷酸二氢铝6份和去离子水145份混料、陈腐、蜂窝挤出成型、60℃干燥36h、500℃煅烧20h,得到二氧化钛纳米管蜂窝载体。
(3)将醋酸锰活性组分前驱体、氟炭树脂配置成10%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,70℃干燥后,400℃煅烧4h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量10%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积176.85m2/g,孔容0.58cm3/g。。
对比例1一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)废SCR催化剂85份中加入二硫化钼5份,3份30%wt二氧化硅的硅溶胶、1份丙羟基甲基纤维素、3份玻纤,磷酸二氢铝2份和去离子水120份混料、陈腐、蜂窝挤出成型、60℃干燥48h、300℃煅烧24h,得到催化剂蜂窝载体。
(2)将硝酸锰活性组分前驱体配制成12%wt的溶液,浸渍(1)得到的蜂 窝载体,60℃干燥后,300℃煅烧4h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量8%,催化剂经美国贝克曼SA 3100比表面积及孔径分析仪检测比表面积52.74m 2/g,孔容0.25cm 3/g。
对比例2一种蜂窝抗毒低温SCR低温脱硝催化剂,制备方法如下:
(1)二氧化钛纳米管前驱体85份中加入二硫化钼5份,3份30%wt二氧化硅的硅溶胶、1份丙羟基甲基纤维素、3份玻纤,磷酸二氢铝2份和去离子水120份混料、陈腐、蜂窝挤出成型、60℃干燥48h、300℃煅烧24h,得到二氧化钛纳米管蜂窝载体。
(2)将硝酸锰活性组分前驱体、氟炭树脂配置成12%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,60℃干燥后,300℃煅烧4h。制得高抗硫抗水低成本锰系低温脱硝催化剂,其中锰含量8%,催化剂经美国贝克曼SA3100比表面积及孔径分析仪检测比表面积53.01m 2/g,孔容0.25cm 3/g。
对比例3一种高抗硫抗水低成本锰系低温脱硝催化剂,制备方法如下:
(1)将废SCR催化剂按照m TiO2/V NaOH(g/ml)=0.005加入到8mol/L氢氧化钠溶液中搅拌均匀30min后置于水热反应釜内150℃密闭反应24h,冷却后用0.05mol/LHCl洗涤,去离子水洗涤至中性。60℃干燥10h后,得到二氧化钛纳米管前驱体。
(2)二氧化钛纳米管前驱体85份中加入二硫化钼5份,3份30%wt二氧化硅的硅溶胶、1份丙羟基甲基纤维素、3份玻纤,磷酸二氢铝2份和去离子水120份混料、陈腐、蜂窝挤出成型、60℃干燥48h、300℃煅烧24h,得到二氧化钛纳米管蜂窝载体。
(3)将硝酸锰活性组分前驱体配置成12%wt溶液,浸渍(2)得到的二氧化钛纳米管蜂窝载体,60℃干燥后,300℃煅烧4h。制得高抗硫抗水低成本锰 系低温脱硝催化剂,其中锰含量8%,催化剂经美国贝克曼SA 3100比表面积及孔径分析仪检测比表面积175.24m 2/g,孔容0.62cm 3/g。
催化剂性能测试实验:
取实施例1-5及对比例1-3制备的催化剂,在固定床反应器中检测。
测试条件为:NO 400mg/Nm 3,NH 3400Nm 3,O 25%,SO 21000mg/Nm 3,10%H 2O,N 2为平衡气,AV5m/h,催化剂5×5孔,长度500mm。
分别在120℃、150℃、180℃、200℃温度下检测进出口NO X的浓度,采用MRU烟气分析仪进行检测。
催化剂脱硝活性检测结果如下表1所示:
表1不同催化剂的脱硝活性检测结果
Figure PCTCN2021085660-appb-000001
从上表1可以看出,本发明高抗硫抗水锰系低温脱硝催化剂低温活性高,抗硫抗水性好,在高硫高水条件下的脱硝效率比较高,并且催化剂比表面积和孔容比一般二氧化钛高,加上疏水物质,保证本发明高抗硫抗水性能优。可见, 本发明高抗硫抗水锰系低温脱硝催化剂低温活性高,并且低温高抗硫抗水中毒能力更强。
以上对本发明优选的具体实施方式和实施例作了详细说明,但是本发明并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明构思的前提下作出各种变化。

Claims (10)

  1. 一种抗硫抗水锰系低温脱硝催化剂,其特征在于:包括抗硫助剂、活性组分、疏水物质,催化剂的载体是以废SCR催化剂为原材料水热法合成的二氧化钛纳米管。
  2. 根据权利要求1所述的抗硫抗水锰系低温脱硝催化剂,其特征在于:所述活性组分为锰;抗硫助剂为二硫化钼、二硫化钨中的一种或二种;疏水物质为氟碳树脂、聚四氟乙烯乳液、有机硅氧烷类中的至少一种。
  3. 根据权利要求1所述的抗硫抗水锰系低温脱硝催化剂,其特征在于:所述活性组分在催化剂中的质量百分比为8-20%wt;抗硫助剂在催化剂中的质量百分比为5-10%wt;疏水物质在催化剂中的质量百分比为2-5%wt。
  4. 一种权利要求1-3任一项所述抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:包括以下步骤:
    (1)将废SCR催化剂加入到碱性溶液中,密闭水热反应,冷却后用酸洗、再水洗至中性;干燥得到二氧化钛纳米管前驱体;
    (2)将二氧化钛纳米管前驱体与抗硫助剂、硅溶胶、丙羟基甲基纤维素、玻璃纤维、磷酸二氢铝、去离子水混合,陈腐,蜂窝挤出成型,干燥后短少,得到二氧化钛纳米管蜂窝载体;
    (3)将二氧化钛纳米管蜂窝载体放入浸渍液浸渍,去除后干燥、煅烧,得到抗硫抗水锰系低温脱硝催化剂。
  5. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(1)所述废SCR催化剂与碱性溶液的质量/体积比为0.005-0.01g/mL;所述碱性溶液为氢氧化钠或氢氧化钾的溶液,浓度为8~12mol/L。
  6. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(1)所述水热反应前需静置30-60min;水热反应在水热反应釜中进行,水热反应温度150-220℃,反应时间12-24h。
  7. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(2)所述抗硫助剂为二硫化钼或二硫化钨中的一种或二种;所述硅溶胶中含20-30%wt的二氧化硅和0.04-0.5%wt的氧化钠;所述二氧化钛纳米管前驱体与抗硫助剂、硅溶胶、丙羟基甲基纤维素、玻璃纤维、磷酸二氢铝、去离子水的质量比为(75-85):(5-10):(3-5):(1-3):(3-5):(2-8):(120-150)。
  8. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(2)所述陈腐温度为常温,陈腐时间为12-72h;所述干燥温度为60~80℃,干燥时间为24~48h;步骤(2)所述煅烧温度为300~500℃,煅烧时间为12~24h。
  9. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(3)所述浸渍液包括活性组分前驱体和疏水物质,其中,活性组分前驱体为硝酸锰、醋酸锰中的一种或二种,所述疏水物质为氟碳树脂、聚四氟乙烯乳液、有机硅氧烷类中的至少一种;步骤(3)所述活性组分前驱体占浸渍液质量百分数为12~25%wt。
  10. 根据权利要求4所述的抗硫抗水锰系低温脱硝催化剂的制备方法,其特征在于:步骤(3)所述干燥,干燥温度为60~80℃,干燥时间为12-48h;步骤(3)所述煅烧,煅烧温度为300~400℃,煅烧时间为2~4h。
PCT/CN2021/085660 2020-05-06 2021-04-06 一种抗硫抗水锰系低温脱硝催化剂及其制备方法 WO2021223559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010371919.7A CN111659364A (zh) 2020-05-06 2020-05-06 一种抗硫抗水锰系低温脱硝催化剂及其制备方法
CN202010371919.7 2020-05-06

Publications (1)

Publication Number Publication Date
WO2021223559A1 true WO2021223559A1 (zh) 2021-11-11

Family

ID=72383278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085660 WO2021223559A1 (zh) 2020-05-06 2021-04-06 一种抗硫抗水锰系低温脱硝催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111659364A (zh)
WO (1) WO2021223559A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210330A (zh) * 2021-12-29 2022-03-22 安徽元琛环保科技股份有限公司 一种金属钛基脱硝催化剂及其制备方法及应用
CN114210320A (zh) * 2021-12-31 2022-03-22 上海复翼环保科技有限公司 一种异质双原子低温耐硫scr催化剂及其制备方法
CN114471599A (zh) * 2022-03-01 2022-05-13 江苏鲲鹏环保工程技术有限公司 一种用于深度脱硝处理的脱硝催化剂及其制备方法
CN114588891A (zh) * 2022-02-18 2022-06-07 国电电力发展股份有限公司 一种脱硝催化剂及其制备方法与应用
CN115155563A (zh) * 2022-07-19 2022-10-11 华电青岛环保技术有限公司 抗硫抗水耐高温平板式scr脱硝催化剂及其制备方法
CN115463656A (zh) * 2022-08-10 2022-12-13 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种脱除烟气o3的高抗硫抗水催化剂及其制备方法和应用
CN115646481A (zh) * 2022-09-28 2023-01-31 合肥工业大学 一种耐硫性好的低温scr脱硝催化剂及其制备方法
CN115739072A (zh) * 2022-11-18 2023-03-07 山西普丽环境工程股份有限公司 一种耐磨损板式低温脱硝催化剂及其制备方法
CN115888747A (zh) * 2022-10-11 2023-04-04 清华大学 脱硝催化剂及其制备方法
CN116116454A (zh) * 2023-03-01 2023-05-16 天津水泥工业设计研究院有限公司 水泥窑用负载型宽温抗硫抗水型scr脱硝催化剂及其制备方法与应用
CN116550391A (zh) * 2023-04-19 2023-08-08 山东科技大学 用于有机质固体热解的巨菌草多孔炭基催化剂的制备方法
CN117816253A (zh) * 2024-03-06 2024-04-05 无锡威孚环保催化剂有限公司 一种臭氧分解催化剂及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659364A (zh) * 2020-05-06 2020-09-15 江苏龙净科杰环保技术有限公司 一种抗硫抗水锰系低温脱硝催化剂及其制备方法
CN114682247B (zh) * 2020-12-30 2023-12-12 中国石油大学(北京) 一种低温脱硝催化剂及其制备方法和应用
CN113198545A (zh) * 2021-04-05 2021-08-03 靳书艳 一种耐高温、抗磨损蜂窝式催化剂的制备方法
CN113769732A (zh) * 2021-09-16 2021-12-10 山东博霖环保科技发展有限公司 一种中温烟气scr脱硝催化剂及其制备方法
CN116393123A (zh) * 2023-06-08 2023-07-07 成都达奇科技股份有限公司 非炭基脱硝催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264450A (zh) * 2008-04-28 2008-09-17 中国矿业大学 全微波法耐硫型钼基催化剂的制备方法
CN102941083A (zh) * 2012-11-08 2013-02-27 环境保护部华南环境科学研究所 一种中低温核壳型脱硝催化剂及其制备方法与应用
CN106861422A (zh) * 2015-12-13 2017-06-20 天津赫维科技有限公司 一种工业氮氧化物废气的处理方法
CN111659364A (zh) * 2020-05-06 2020-09-15 江苏龙净科杰环保技术有限公司 一种抗硫抗水锰系低温脱硝催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733101B (zh) * 2009-12-03 2012-10-10 浙江天蓝环保技术股份有限公司 以二氧化钛纳米管为载体的脱硝催化剂及其制备工艺
CN102500358B (zh) * 2011-11-23 2013-09-11 浙江大学 一种具有良好抗碱金属和碱土金属中毒性能的脱硝催化剂
CN109529948A (zh) * 2018-11-29 2019-03-29 北京工业大学 一种提高锰基低温scr脱硝催化剂抗水、抗硫性的方法
CN110404553A (zh) * 2019-08-05 2019-11-05 无锡威孚环保催化剂有限公司 具有抗水抗硫性的低温scr脱硝催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264450A (zh) * 2008-04-28 2008-09-17 中国矿业大学 全微波法耐硫型钼基催化剂的制备方法
CN102941083A (zh) * 2012-11-08 2013-02-27 环境保护部华南环境科学研究所 一种中低温核壳型脱硝催化剂及其制备方法与应用
CN106861422A (zh) * 2015-12-13 2017-06-20 天津赫维科技有限公司 一种工业氮氧化物废气的处理方法
CN111659364A (zh) * 2020-05-06 2020-09-15 江苏龙净科杰环保技术有限公司 一种抗硫抗水锰系低温脱硝催化剂及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210330B (zh) * 2021-12-29 2023-11-10 安徽元琛环保科技股份有限公司 一种金属钛基脱硝催化剂及其制备方法及应用
CN114210330A (zh) * 2021-12-29 2022-03-22 安徽元琛环保科技股份有限公司 一种金属钛基脱硝催化剂及其制备方法及应用
CN114210320A (zh) * 2021-12-31 2022-03-22 上海复翼环保科技有限公司 一种异质双原子低温耐硫scr催化剂及其制备方法
CN114588891A (zh) * 2022-02-18 2022-06-07 国电电力发展股份有限公司 一种脱硝催化剂及其制备方法与应用
CN114471599A (zh) * 2022-03-01 2022-05-13 江苏鲲鹏环保工程技术有限公司 一种用于深度脱硝处理的脱硝催化剂及其制备方法
CN115155563A (zh) * 2022-07-19 2022-10-11 华电青岛环保技术有限公司 抗硫抗水耐高温平板式scr脱硝催化剂及其制备方法
CN115463656A (zh) * 2022-08-10 2022-12-13 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种脱除烟气o3的高抗硫抗水催化剂及其制备方法和应用
CN115646481A (zh) * 2022-09-28 2023-01-31 合肥工业大学 一种耐硫性好的低温scr脱硝催化剂及其制备方法
CN115888747A (zh) * 2022-10-11 2023-04-04 清华大学 脱硝催化剂及其制备方法
CN115739072A (zh) * 2022-11-18 2023-03-07 山西普丽环境工程股份有限公司 一种耐磨损板式低温脱硝催化剂及其制备方法
CN116116454A (zh) * 2023-03-01 2023-05-16 天津水泥工业设计研究院有限公司 水泥窑用负载型宽温抗硫抗水型scr脱硝催化剂及其制备方法与应用
CN116550391A (zh) * 2023-04-19 2023-08-08 山东科技大学 用于有机质固体热解的巨菌草多孔炭基催化剂的制备方法
CN117816253A (zh) * 2024-03-06 2024-04-05 无锡威孚环保催化剂有限公司 一种臭氧分解催化剂及其制备方法

Also Published As

Publication number Publication date
CN111659364A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021223559A1 (zh) 一种抗硫抗水锰系低温脱硝催化剂及其制备方法
CN101428215B (zh) 一种烟气脱硝催化剂的制备方法及由该方法制备的烟气脱硝催化剂
CN109225248B (zh) 蜂窝式低温脱硝催化剂及其制备工艺
CN110801848B (zh) 平板式宽温抗硫scr脱硝催化剂及其制备方法
CN108465467B (zh) 一种应用于中低温烟气的高效nh3-scr脱硝催化剂、制备方法及其应用
CN110694662B (zh) 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN109821531B (zh) 一种基于氧化铈载体的平板式高温抗硫scr脱硝催化剂及其制备方法
CN112536049B (zh) 一种Bi2Se3和TiO2纳米复合材料及其制备方法和应用
CN103894175B (zh) 一种中低温硫回收有机硫水解催化剂及制备和应用
CN107469812A (zh) 低温脱除燃煤废气中NOx和VOCs的催化剂制备方法
CN109092328A (zh) 一种scr脱硝废催化剂回收利用的方法
CN105170174A (zh) 一种用于低温scr脱硝的渗氮碳基催化剂及其制备方法
CN110694670A (zh) 一种柴油车尾气净化分子筛的制备方法
CN111111638B (zh) 一种粉煤灰光催化材料的制备方法
CN114558449A (zh) 一种烟气脱硝剂的制备方法和应用
CN106824174A (zh) 一种高效净化氮氧化物的小球状催化剂及其制备方法
CN110801821B (zh) 高温脱除硫化氢复合吸附剂的制备方法
CN113398905B (zh) 一种基于网状TiO2载体的MnO2纳米线低温脱硝催化剂及其制备方法
CN105688658A (zh) 一种用于硫化氢脱除的多金属氧酸盐或其单体的水溶液
CN104998684A (zh) 一种稀土改性scr脱硝催化剂及其制备方法
CN103861658B (zh) 一种球形钛铝复合氧化物载体的制备方法
CN105148961A (zh) 一种scr烟气脱硝催化剂及其制备方法
CN109985663A (zh) 一种对一锅法原位合成的Cu-SSZ-13分子筛进行后处理的方法
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN110951107A (zh) 一种pi气凝胶材料的可控制备及在光催化还原co2中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800280

Country of ref document: EP

Kind code of ref document: A1