WO2021201112A1 - 組成物および成形体 - Google Patents

組成物および成形体 Download PDF

Info

Publication number
WO2021201112A1
WO2021201112A1 PCT/JP2021/013863 JP2021013863W WO2021201112A1 WO 2021201112 A1 WO2021201112 A1 WO 2021201112A1 JP 2021013863 W JP2021013863 W JP 2021013863W WO 2021201112 A1 WO2021201112 A1 WO 2021201112A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
pentene
composition
organic compound
composition according
Prior art date
Application number
PCT/JP2021/013863
Other languages
English (en)
French (fr)
Inventor
賢士 野間
智也 又吉
孝行 渡辺
江里口 真男
遼太 堀谷
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202180022975.2A priority Critical patent/CN115315479A/zh
Priority to JP2022512630A priority patent/JPWO2021201112A1/ja
Priority to US17/905,360 priority patent/US20230120980A1/en
Priority to EP21779628.3A priority patent/EP4130143A1/en
Publication of WO2021201112A1 publication Critical patent/WO2021201112A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Definitions

  • the present invention relates to a composition and a molded product.
  • 4-Methyl-1-pentene-based polymers containing 4-methyl-1-pentene as the main constituent monomer are excellent in various performances such as releasability, heat resistance, water resistance, and solvent resistance, and are therefore used in various applications. Widely used.
  • a film using 4-methyl-1-pentene is used as a release film for molding a flexible printed circuit board or a composite material by taking advantage of its features such as high melting point and good releasability.
  • Patent Document 1 by using a film using a 4-methyl-1-pentene polymer as an interlayer film of laminated glass, the vibration damping property and shock absorption performance of the glass are improved and the transparency is improved. It is disclosed that can be maintained.
  • the present inventors have obtained specific physical properties with the 4-methyl-1-pentene polymer.
  • I focused on combining with the organic compounds that I have.
  • the composition was prepared in which the content ratio of the 4-methyl-1-pentene polymer and the organic compound having specific physical properties was controlled before the application of the organic compound. It was found that the temperature showing the maximum value of the tangential loss can be shifted to the low temperature side while maintaining the maximum value of the tangent loss, and good formability can be maintained, as compared with the 4-methyl-1-pentene polymer of. ..
  • the present invention has been made in view of the above circumstances, and provides a composition capable of shifting the temperature showing the maximum value of the tangent loss to the low temperature side and maintaining good moldability.
  • composition shown below is provided.
  • the temperature showing the maximum value of loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement under the conditions of a temperature rise rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1% is at least 10 ° C. or higher and 100 ° C. or lower.
  • the viscosity (mPa ⁇ s) of the organic compound (b) is in the range of 65 to 120, or the melt flow rate of the 4-methyl-1-pentene copolymer (a) and the organic compound (b) ( A composition in which the ratio of g / 10 min.) Is 1: 1.0 to 0.1.
  • the temperature showing the maximum value of loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement under the conditions of a temperature rise rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1% is at least 10 ° C. or higher and 100 ° C. or lower.
  • Organic compound (b) and Including A composition in which the organic compound (b) is 5 to 250 parts by mass with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a).
  • the organic compound (b) is a composition having a viscosity (mPa ⁇ s) in the range of 65 to 120 or a melt flow rate (g / 10 min.) Of 6 or less.
  • the 4-methyl-1-pentene polymer (a) is a structural unit derived from 4-methyl-1-pentene and a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms other than 4-methyl-1-pentene.
  • the ⁇ -olefin polymer (b2) contains a copolymer using a compound having a polymerizable double bond selected from styrenes, dienes, cyclic compounds, and oxygen-containing compounds as a comonomer [8]. ]
  • the composition according to. [10] The temperature showing the maximum value of the loss tangent (tan ⁇ ) of the dynamic viscoelasticity of the 4-methyl-1-pentene polymer (a) is at least one in the range of 10 ° C. or higher and 40 ° C. or lower, and the above.
  • foaming agent is an inorganic or organic pyrolytic chemical foaming agent or a physical foaming agent.
  • the term "abbreviation” means to include a range in consideration of manufacturing tolerances, assembly variations, etc., unless otherwise specified explicitly.
  • the notation “a to b" in the description of the numerical range means a or more and b or less unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • the composition of the present embodiment has a temperature showing a maximum value of loss tangent (tan ⁇ ) obtained by dynamic viscoelasticity measurement under the conditions of a heating rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1%.
  • 4-Methyl-1-pentene polymer (a) having at least one or more in the range of at least 10 ° C. or higher and 100 ° C. or lower and having a maximum loss tangent value of 0.5 or more and 3.5 or less, and an organic compound.
  • the organic compound (b) is 5 to 250 parts by mass with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a) containing the compound (b), and the organic compound (b) is contained.
  • the viscosity (mPa ⁇ s) of the above is in the range of 65 to 120, or the melt flow rate (g / 10 min.) Of the 4-methyl-1-pentene-based copolymer (a) and the organic compound (b).
  • the ratio is 1: 1.0 to 0.1.
  • the 4-methyl-1-pentene polymer (a) was determined by dynamic viscoelasticity measurement under the conditions of a temperature rise rate of 4 ° C./min, a frequency of 1.59 Hz, and a strain amount of 0.1%.
  • the maximum value of the loss tangent (tan ⁇ ) is at least one in the range of 10 ° C. or higher and 100 ° C. or lower, and the maximum value of the loss tangent is 0.5 or more and 3.5 or less.
  • the 4-methyl-1-pentene polymer (a) is cut into a test piece having a length of 30 mm and a width of 10 mm, and has a frequency of 1.59 Hz, a heating rate of 4 ° C./min, a measurement temperature range of 0 ° C. to 110 ° C., and strain. It can be measured using a rheometer under the conditions of an amount of 0.1%, a distance between chucks of 20 mm, and a twist mode.
  • the present inventors have introduced a 4-methyl-1-pentene polymer (a) having a maximum value of a specific loss tangent (tan ⁇ ) and a specific temperature range showing the maximum value, and the organic compound (b) described later. It was found that the temperature showing the maximum value of the tangent loss can be shifted to the low temperature side and good moldability can be maintained by using it together.
  • the present inventors have combined the 4-methyl-1-pentene polymer (a) having such a specific substance with a new specific organic compound (b) to obtain a 4-methyl-1-pentene polymer.
  • the temperature (Tg) showing the maximum value of the loss tangent (tan ⁇ ) of (a) can be shifted to the low temperature side, and good moldability can be maintained in the obtained composition. Further, shifting the temperature (Tg) showing the maximum value to the low temperature side is intended to obtain shock absorption at a low temperature.
  • the loss tangent of the 4-methyl-1-pentene polymer (a) according to the present embodiment is, for example, (1) the type and blending ratio of the 4-methyl-1-pentene polymer (a), (2). It is possible to control within the above range by appropriately adjusting the presence or absence of cross-linking, (3) the molding method of the composition, and the like. Specifically, for example, the compounding ratio of the 4-methyl-1-pentene polymer (a) in the composition is increased, and the 4-methyl-1-pentene polymer (a) is crosslinked. There is no such thing.
  • the 4-methyl-1-pentene polymer (a) according to the present embodiment is preferably uncrosslinked from the viewpoint of improving followability and flexibility. That is, the 4-methyl-1-pentene polymer (a) according to the present embodiment is uncrosslinked without being subjected to a cross-linking treatment such as ionization radiation cross-linking using an electron beam or ⁇ -ray, for example. preferable. As a result, the maximum value of the loss tangent in the range of 10 ° C. or higher and 100 ° C. or lower can be improved, and the 4-methyl-1-pentene polymer (a) having further excellent moldability can be obtained.
  • a cross-linking treatment such as ionization radiation cross-linking using an electron beam or ⁇ -ray, for example. preferable.
  • one or more temperatures showing the maximum value of the loss tangent (tan ⁇ ) of dynamic viscoelasticity are in the range of at least 10 ° C. or higher and 80 ° C. or lower. It is preferably in the range of 10 ° C. or higher and 60 ° C. or lower, more preferably one or more in the range of 10 ° C. or higher and 50 ° C. or lower, and further preferably in the range of 10 ° C. or higher and 50 ° C. or lower. It is particularly preferable to have one. As a result, when the composition of the present embodiment is used in an environment of 20 ° C. or lower, better moldability and impact absorption at a low temperature can be obtained.
  • the maximum value of the loss tangent is preferably 0.8 or more, more preferably 1.0 or more. It is more preferably 1.2 or more.
  • the maximum value of the loss tangent is preferably 3.0 or less, and more preferably 2.8 or less.
  • the larger the maximum value of the loss tangent the stronger the viscous property of the composition.
  • a composition with a strong viscous property can convert more of the mechanical energy given when deforming into thermal energy and can absorb more energy, so that the restoration rate after deformation is considered to be even slower. .. As a result, it is considered that the shape after deformation can be maintained even better while maintaining the flexibility of the composition, and that the deformation can follow the shape even better.
  • Examples of the 4-methyl-1-pentene polymer (a) according to the present embodiment include a structural unit (c1) derived from 4-methyl-1-pentene and a carbon atom other than 4-methyl-1-pentene.
  • Examples thereof include a 4-methyl-1-pentene / ⁇ -olefin copolymer (c) containing a structural unit (c2) derived from ⁇ -olefins of numbers 2 to 20.
  • ⁇ -olefin having 2 to 20 carbon atoms does not contain 4-methyl-1-pentene unless otherwise specified.
  • the 4-methyl-1-pentene / ⁇ -olefin copolymer (c) according to the present embodiment has a structural unit (c1) and a structural unit (c2) from the viewpoint of further improving the flexibility and moldability of the composition. ),
  • the content of the constituent unit (c1) is 10 mol% or more and 90 mol% or less
  • the content of the constituent unit (c2) is 10 mol% or more and 90 mol% or less. It is preferable to have.
  • the 4-methyl-1-pentene / ⁇ -olefin copolymer (c) according to the present embodiment has a constituent unit (c1) from the viewpoint of improving the flexibility and mechanical properties of the composition.
  • the content of the constituent unit (c1) is 30 mol% or more and 90 mol% or less, and the content of the constituent unit (c2) is 10 mol% or more and 70. It is more preferably mol% or less, the content of the constituent unit (c1) is 50 mol% or more and 90 mol% or less, and the content of the constituent unit (c2) is 10 mol% or more and 50 mol% or less. It is even more preferable that the content of the constituent unit (c1) is 60 mol% or more and 90 mol% or less, and the content of the constituent unit (c2) is 10 mol% or more and 40 mol% or less. It is particularly preferable that the content of the unit (c1) is 65 mol% or more and 90 mol% or less, and the content of the constituent unit (c2) is 10 mol% or more and 35 mol% or less.
  • the ⁇ -olefin having 2 to 20 carbon atoms used in the 4-methyl-1-pentene / ⁇ -olefin copolymer (c) is, for example, a linear or branched ⁇ -olefin.
  • Cyclic olefins, aromatic vinyl compounds, conjugated dienes, functionalized vinyl compounds and the like, and linear ⁇ -olefins are preferable.
  • the number of carbon atoms of the linear ⁇ -olefin is preferably 2 to 10, more preferably 2 to 5, and even more preferably 2 to 3.
  • Examples of the linear ⁇ -olefin include ethylene, propylene, 1-butene, 1-pentene and the like, and ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene.
  • One or more selected from, and at least one selected from ethylene and propylene are more preferred.
  • the number of carbon atoms of the branched ⁇ -olefin is preferably 5 to 20, more preferably 5 to 15.
  • Examples of the branched ⁇ -olefin include 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene and the like.
  • the number of carbon atoms of the cyclic olefin is preferably 5 to 15.
  • Examples of the cyclic olefin include cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, vinylcyclohexane and the like.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-.
  • aromatic vinyl compound examples include mono such as ethyl styrene or polyalkyl styrene.
  • the number of carbon atoms of the conjugated diene is preferably 4 to 20, more preferably 4 to 10.
  • conjugated diene examples include 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, and 1,3-.
  • Octadien and the like can be mentioned.
  • Examples of the functionalized vinyl compound include hydroxyl group-containing olefins, halogenated olefins, (meth) acrylic acids, propionic acids, 3-butenoic acids, 4-pentenoic acids, 5-hexenoic acids, 6-heptenoic acids, and 7-octenes.
  • Unsaturated carboxylic acids such as acids, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid and their acid anhydrides and unsaturated amines such as acid halides, allylamines, 5-hexeneamines and 6-hepteneamines, (2, 7-Octadienyl) succinic acid anhydride, pentapropenyl succinic acid anhydride, unsaturated epoxy compound, ethylenically unsaturated silane compound and the like can be mentioned.
  • the hydroxyl group-containing olefin include linear or branched terminal hydroxylated ⁇ -olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
  • the halogenated olefin include linear or branched halogenated ⁇ -olefins having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms.
  • ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
  • ethylene and propylene are preferable, but propylene is particularly preferable because it can improve flexibility and the like.
  • the 4-methyl-1-pentene / ⁇ -olefin copolymer (c) contains a structural unit (c1) and a structural unit other than the structural unit (c2) as long as the object of the present invention is not impaired. May be good.
  • Other configurations include structural units derived from non-conjugated polyenes. Examples of the non-conjugated polyene include linear, branched or cyclic diene having a carbon atom number of preferably 5 to 20, more preferably 5 to 10, various norbornene, norbornadiene and the like. Among these, 5-vinylidene-2-norbornene and 5-ethylidene-2-norbornene are preferable.
  • the ultimate viscosity [ ⁇ ] of the 4-methyl-1-pentene polymer (a) according to the present embodiment in decalin at 135 ° C. improves the moldability, flexibility and mechanical strength of the composition. From the viewpoint, it is preferably 0.01 to 5.0 dL / g, more preferably 0.1 to 4.0 dL / g, and even more preferably 0.5 to 3.0 dL / g. It is particularly preferably 1.0 to 2.8 dL / g.
  • the density of the 4-methyl-1-pentene polymer (a) according to the present embodiment measured according to ASTM D 1505 (substitution method in water) is preferably 0.810 to 0.850 g / cm 3 , more preferably. It is 0.820 to 0.850 g / cm 3 , more preferably 0.830 to 0.850 g / cm 3 .
  • the melt flow rate of the 4-methyl-1-pentene polymer (a) according to the present embodiment is preferably 0.1 to 100 (g / 10 min.), More preferably 1 to 70 (g / 10 min.). , More preferably 1 to 20 (g / 10 min.).
  • the 4-methyl-1-pentene polymer (a) according to this embodiment can be produced by various methods.
  • the content of the 4-methyl-1-pentene polymer (a) in the composition according to the present embodiment is not particularly limited, but is preferably 50% by mass or more when the whole composition is 100% by mass. More preferably 60% by mass or more, further preferably 65% by mass or more, still more preferably 70% by mass or more, particularly preferably 75% by mass or more, while preferably 100% by mass or less, more preferably 99.5% by mass. It is 9% by mass or less, more preferably 99% by mass or less, still more preferably 98% by mass or less, and particularly preferably 97% by mass or less. As a result, it is possible to obtain a composition having an excellent balance of flexibility, shape followability, light weight, mechanical properties, handleability, appearance, moldability, moisture resistance and the like.
  • the amount of the organic compound (b) is 5 to 250 parts by mass with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a), which is adjusted according to the organic compound (b) described later. It is preferable to be done. By setting the mass ratio within the above numerical range, both moldability and impact absorption at low temperature can be achieved.
  • the organic compound (b) of the present embodiment preferably has a viscosity (mPa ⁇ s) in the range of 65 to 120.
  • the viscosity (mPa ⁇ s) is preferably 70 to 100, more preferably 75 to 90. By setting the viscosity within the above numerical range, both moldability and impact absorption at low temperature can be achieved.
  • the viscosity of the organic compound (b) of the present embodiment can be calculated by converting it from the value of the kinematic viscosity measured at 40 ° C. according to JIS K2283.
  • the upper limit of the organic compound (b) and the melt flow rate (g / 10 min.) Of the present embodiment is preferably 18 or less, 16 or less, 14 or less, 12 or less, 10 or less, and 8 or less. ..
  • the upper limit of the melt flow rate (g / 10 min.) May be 6 or less, preferably 5.5 or less, and more preferably 5.0 or less. This makes it easier to achieve both moldability and shock absorption at low temperatures.
  • the lower limit of the melt flow rate (g / 10 min.) Is not particularly limited, but is preferably 1 or more, for example, from the viewpoint of maintaining good moldability.
  • the ratio of the melt flow rate (g / 10 min.) Of the 4-methyl-1-pentene copolymer (a) and the organic compound (b) is 1: 1.0. It is preferably ⁇ 0.1, more preferably 1: 0.8 to 0.1, and even more preferably 1: 0.6 to 0.1. By setting the value within the above numerical range, both moldability and impact absorption at low temperature can be achieved.
  • each melt flow rate can be measured under the conditions of 230 ° C. and a test load of 2.16 kgf according to JIS K7210.
  • the organic compound (b) is a saturated hydrocarbon compound (b1) having a viscosity (mPa ⁇ s) in the range of 65 to 120 and a pour point of ⁇ 10 ° C. or lower, and MFR (g / 10 min. ) Is preferably one or two selected from the group consisting of ⁇ -olefin polymers (b2) having 2 to 20 carbon atoms in the range of 20 or less.
  • the pour point of the saturated hydrocarbon compound (b1) is ⁇ 10 ° C. or lower, preferably ⁇ 12 ° C. or lower. By setting the pour point to the upper limit or less, it becomes easier to obtain followability and flexibility at low temperatures, and it becomes easier to improve tackability while maintaining good moldability.
  • the pour point is measured according to JIS K2269.
  • the density of the saturated hydrocarbon compound (b1) is preferably 0.70 to 1.00 g / cm 3 , more preferably 0.75 to 0.95 g / cm 3 , and even more preferably 0.80 to 0.90 g. / Cm 3 .
  • the number of carbon atoms is preferably 20 or more, the number of carbon atoms is more preferably 20 or more and 40 or less, and liquid paraffin or the like is particularly preferable.
  • the content of the saturated hydrocarbon compound (b1) is preferably 5 to 100 parts by mass, and more preferably 5 to 80 parts by mass with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a). It is more preferably 5 to 50 parts by mass.
  • the shore A hardness of the ⁇ -olefin polymer (b2) is preferably 20 to 100, more preferably 25 to 90, still more preferably 30 to 80, and even more preferably 35 to 68.
  • Shore A hardness can be measured according to JIS K6253.
  • the density of the ⁇ -olefin polymer (b2) is preferably 0.75 to 1.15 g / cm 3 , more preferably 0.80 to 0.10 g / cm 3 , and even more preferably 0.85 to 0.95 g. It is / cm 3 , and more preferably 0.86 to 0.90 g / cm 3 .
  • the ⁇ -olefin polymer (b2) may contain at least ⁇ -olefin as a constituent unit. More specifically, the following examples are given.
  • Examples of the ⁇ -olefin polymer (b2) include homopolymerization of ⁇ -olefins and copolymerization of two or more types of ⁇ -olefins.
  • Examples of the ⁇ -olefins include those having 2 to 20 carbon atoms, preferably 2 to 8 carbon atoms, and specifically, ethylene, propylene, 1-butene, 1-hexene, 1-octene, and 4-. Examples thereof include methyl-1-pentene. Of these, ethylene and propylene are preferable.
  • the ⁇ -olefins may be copolymerized with two or more types of ⁇ -olefins.
  • the copolymerization may be any of alternating copolymerization, random copolymerization, and block copolymerization.
  • the ⁇ -olefin polymer (b2) may contain at least ⁇ -olefin as a constituent unit, and may be a copolymer to which a comonomer other than ⁇ -olefin is applied.
  • Such comonomer includes, for example, styrenes such as styrene, 4-methylstyrene, and 4-dimethylaminostyrene, 1,4-butadiene, 1,5-hexadiene, 1,4-hexadiene, 1,7-octadiene, and the like.
  • examples thereof include compounds having a polymerizable double bond of cyclic compounds such as dienes, norbornene, and cyclopentene, and oxygen-containing compounds such as hexenol, hexenoic acid, and methyl octene.
  • block copolymers of ⁇ -olefins and styrenes are preferable. That is, the ⁇ -olefin polymer (b2) may be a styrene-based elastomer.
  • the content of the ⁇ -olefin polymer (b2) is preferably 20 to 250 parts by mass, and more preferably 30 to 240 parts by mass with respect to 100 parts by mass of the 4-methyl-1-pentene polymer (a). Parts, more preferably 50 to 230 parts by mass.
  • composition according to the present embodiment may contain components other than the 4-methyl-1-pentene polymer (a) and the organic compound (b).
  • the composition according to the present embodiment is a modified resin (a2) (however, the 4-methyl-1-pentene polymer (a) according to the present embodiment, and the modified resin (a2), from the viewpoint of improving the appearance, the touch, and the like. (Excluding the organic compound (b)) may be contained.
  • the modified resin (a2) according to the present embodiment include one or more selected from thermoplastic resins, thermoplastic elastomers and rubbers.
  • thermoplastic resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and high-pressure method low-density.
  • polyethylene Polyethylene, polypropylene, poly1-butene, poly4-methyl-1-pentene, poly3-methyl-1-butene, ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer, 1-butene / ⁇ -Thermoplastic polyolefin resins such as olefin copolymers, cyclic olefin copolymers, and chlorinated polyolefins; aliphatic polyamides (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612), polyether blockamides Thermoplastic polyamide resin such as polymer; thermoplastic polyester resin such as polyethylene terephthalate and polybutylene terephthalate; thermoplastic vinyl aromatic resin such as polystyrene, ABS resin and AS resin; vinyl chloride resin; vinylidene chloride resin; acrylic Resin; ethylene / vinyl acetate copolymer; ethylene / methacryl
  • examples of the rubber include ethylene / ⁇ -olefin / diene copolymer rubber, propylene / ⁇ -olefin / diene copolymer rubber and the like.
  • examples of the thermoplastic elastomer include olefin-based elastomers, styrene-based elastomers, acid-modified styrene-based elastomers, vinyl chloride-based elastomers, urethane-based elastomers, ester-based elastomers, and amide-based elastomers.
  • these modified resins (a2) may be acid-modified with acrylic acid, methacrylic acid, maleic acid or the like. These modified resins (a2) may be used alone or in combination of two or more.
  • low density polyethylene low density polyethylene, medium density polyethylene, high density polyethylene, high pressure method low density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, poly 3-methyl- One or more selected from 1-butene, ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer, 1-butene / ⁇ -olefin copolymer is preferable, and polyethylene, polypropylene, poly 1 -Buten, poly 4-methyl-1-pentene, ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer, 1-butene / ⁇ -olefin copolymer, ethylene / vinyl acetate copolymer, poly One or more selected from ether blockamide, ionomer, fluorine-based resin, acid-modified fluorine-based resin, rosin-based resin, terpen
  • the 4-methyl-1-pentene polymer (a) according to the present embodiment has appropriate compatibility.
  • Kuraray's styrene-isoprene block copolymer product name: Hybler, brand: 5127
  • hydrogenated styrene-isoprene block copolymer product name: Hybler, brand: 7125,
  • product name: Septon, brand: 2004F hydrogenated styrene-isoprene-butadiene block copolymer
  • product name: Hybler, brand: 7311F hydrogenated styrene-butadiene block copolymer manufactured by Clayton Polymer Japan.
  • composition according to the present embodiment may be used alone from these modified resins (a2), or may be used in combination of two or more.
  • the content of the modified resin (a2) in the composition according to the present embodiment is not particularly limited, but when the whole composition is 100% by mass, it is preferably 0.5% by mass or more, more preferably 1% by mass. Above, more preferably 2% by mass or more, still more preferably 3% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less, still more preferably 30% by mass. % Or less, particularly preferably 25% by mass or less.
  • the content of the modified resin (a2) is at least the above lower limit value, the appearance, touch, and the like of the composition according to the present embodiment can be improved.
  • the content of the modified resin (a2) is not more than the above upper limit value, the performance balance such as flexibility of the composition according to the present embodiment can be further improved.
  • the composition according to this embodiment is, if necessary, a foaming agent, a heat-resistant stabilizer, an antioxidant, an ultraviolet absorber, a pigment, an antioxidant, a copper damage inhibitor, a flame retardant, a neutralizing agent, a plasticizer, and the like.
  • Additives such as nucleating agents, weather-resistant stabilizers, light-resistant stabilizers, anti-aging agents, fatty acid metal salts, softeners, dispersants, colorants, lubricants, natural oils, synthetic oils, and waxes may be added.
  • plasticizers, softeners, natural oils and synthetic oils are used to adjust the temperature at which the maximum value of the loss tangent (tan ⁇ ) of the solid viscoelasticity of the composition according to the present embodiment is exhibited and the maximum value of the loss tangent.
  • the type and the amount of addition may be controlled.
  • Examples of the above-mentioned foaming agent include chemical foaming agents and physical foaming agents.
  • Examples of the chemical foaming agent include an inorganic or organic pyrolysis type chemical foaming agent.
  • Examples of the inorganic thermal decomposition type chemical foaming agent include inorganic carbonates such as sodium hydrogen carbonate, sodium carbonate, ammonium hydrogen carbonate and ammonium carbonate, and nitrites such as ammonium nitrite.
  • Examples of the organic heat-decomposable chemical foaming agent include nitroso compounds such as N, N'-dimethyl-N, N'-dinitrosoterephthalamide and N, N'-dinitrosopentamethylenetetramine; azodicarboxylicamide and azobis.
  • Azo compounds such as isobutyronitrile, azocyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate; benzenesulfonyl hydrazide, toluenesulfonylhydrazide, p, p'-oxybis (benzenesulfonylhydrazide), diphenylsulfon-3, Sulfonyl hydrazide compounds such as 3'-disulfonylhydrazide; azoide compounds such as calcium azide, 4,4'-diphenyldisulfonyl azide, p-toluenesulfonyl azide and the like can be mentioned.
  • the pyrolysis type chemical foaming agent may be used alone or in combination of two or more.
  • the physical foaming agent include carbon dioxide, nitrogen, hydrocarbons (propane, butane, pentane, hexane, heptane, cyclohexane, etc.), hydrofluoroolefins (HF ⁇ ), heat-expandable microcapsules, or a mixture of carbon dioxide and nitrogen.
  • HF ⁇ hydrofluoroolefins
  • heat-expandable microcapsules or a mixture of carbon dioxide and nitrogen.
  • Both can be supplied in any of gaseous, liquid or supercritical states.
  • the composition of the present embodiment is a dry blend of 4-methyl-1-pentene polymer (a), an organic compound (b), and any other components as raw materials, a tumbler mixer, a Banbury mixer, and a uniaxial extruder.
  • the molded product of the present embodiment is obtained by molding using the above-mentioned composition by a known method.
  • the molded product according to the present embodiment is a foam, for example, it can be obtained by foam-molding a resin composition containing a foaming agent into a specific shape using a molding apparatus.
  • the components having poor compatibility in the compounding material are likely to cause a phenomenon of shaving that is deposited at the die outlet, and the extruded product is streaked. , There is a problem that the moldability tends to decrease.
  • the foamed molded product according to the present embodiment since the above-mentioned composition is used, the generation of eyebrows can be effectively suppressed, and good moldability can be stably obtained.
  • the chemical foaming agent may be mixed with the composition of the present embodiment and uniformly mixed before being charged into the extrusion molding machine, or the chemical foaming agent processed into a masterbatch may be used.
  • carbon dioxide is used as the physical foaming agent
  • the composition of the present embodiment is kneaded and plasticized in the extrusion molding machine and then directly injected into the extrusion molding machine.
  • the foaming ratio is calculated from the weight of each sample measured in water and air using the ALFA MIRAGE electronic hydrometer MD-300S according to ASTM D 1505 (underwater substitution method) for the density of the composition and foam before foaming. Above, it is a value obtained by dividing the density of the composition by the density of the foam.
  • the foaming ratio is not particularly limited, but can be appropriately determined in the range of, for example, 1 to 50 times in consideration of the physical characteristics of the sheet 11.
  • the shape of the molded product according to the present embodiment is not particularly limited, but is preferably a sheet shape.
  • the thickness is preferably in the range of 0.1 mm or more and 30 mm or less, more preferably in the range of 0.2 mm or more and 20 mm or less, and further preferably in the range of 0.3 mm or more and 12 mm or less.
  • the density thereof is preferably 0.10 to 1.0 g / cm 3.
  • the more preferable upper limit of the density of the foam is 0.90 g / cm 3 or less, 0.85 g / cm 3 or less, and 0.80 g / cm 3 or less in this order.
  • more preferable lower limit values of the density of the foam are 0.20 g / cm 3 or more, 0.30 g / cm 3 or more, and 0.40 g / cm 3 or more.
  • the density of the foam is adjusted by controlling the type and content of the organic compound (b), the foaming ratio, the foaming conditions, and the like.
  • the foaming ratio is not particularly limited and can be appropriately determined in consideration of various physical properties of the obtained foam.
  • the molded product according to the present embodiment may have ventilation holes in order to enhance air permeability, depending on the intended use.
  • ventilation holes in order to enhance air permeability, depending on the intended use.
  • a large number of vents communicating with each other can be provided on the front and back by processing techniques such as mechanical punching, needle processing, laser perforation, and water jet.
  • compositions and molded articles according to the present embodiment are widely used regardless of the field.
  • mobility goods such as automobile parts, railway parts, aircraft parts, marine parts, bicycle parts; electronic equipment; household electrical equipment; audio equipment; camera supplies; precision equipment; game equipment; VR equipment; civil engineering parts, building parts, etc.
  • Civil engineering and building supplies such as building materials; household goods such as furniture and bedding; daily necessities such as kitchen supplies, toiletries, stationery; leisure goods such as outdoor goods and backpacks; agricultural goods such as gardening; apparel goods (clothes, underwear, underwear) kind (for example, brassiere, shoulder pad, correction underwear, etc.) core material, hat, belt, land cell lining, business card holder, glasses, etc.), shoe supplies (various insoles, shoe lining materials, various equipment, shoes, shoes, etc.) (Strings, etc.), accessories, decorative products such as portable accessories; medical supplies such as medical supplies and healthcare products; sports products such as sports products; educational and toy supplies such as books and toys; packaging supplies, etc. Packaging-related products; Cosmetic-related products such as face wash and makeup products; Electric lighting products such as LED lighting; Culture products such as marine products; Safety products such as child sheets; Music products; Pet products; Fishing products and the like.
  • ⁇ Measurement method> (1) Dynamic viscoelasticity measurement 1
  • the 4-methyl-1-pentene polymer (a) was cut into strips having a length of 30 mm and a width of 10 mm to prepare test pieces.
  • the obtained test piece was subjected to the conditions of a chuck-to-chuck distance of 20 mm, a frequency of 1.59 Hz, a strain amount of 0.1%, a heating rate of 4 ° C./min, and a twist mode using MCR301 manufactured by Antonio Par.
  • the temperature dependence of dynamic viscoelasticity in the temperature range of ⁇ 60 ° C. to 240 ° C. was measured. From the resulting graph, the maximum value of the temperature (T a) and tan [delta indicating the maximum value of the loss tangent (tan [delta) were determined, respectively.
  • melt flow rate (MFR) According to JIS K7210, the measurement was performed under the conditions of 230 ° C. and a test load of 2.16 kgf.
  • Viscosity was obtained by converting from the value of kinematic viscosity measured at 40 ° C. according to JIS K2283.
  • Foaming magnification of foam measures the density of the composition and foam before foaming in water and in air using an ALFA MIRAGE electronic hydrometer MD-300S according to ASTM D 1505 (underwater substitution method). After calculating from the weight of each sample, the density of the composition was divided by the density of the foam.
  • a single-screw extrusion molding machine (cylinder inner diameter D: 50 mm, full flight screw, L / D: 32 mm when the effective screw length is L, carbon dioxide supply position: 17.5 D from the screw supply part side), T-die (die width: 320 mm, lip opening: 0.2 to 1.8 mm), cooling roll (outer diameter 50 mm, mirror-finished steel with hard chrome-plated surface treatment, water-cooled), carbon dioxide supply device, cooling A device consisting of a roll and a pick-up machine was used.
  • the above raw materials are put into an extrusion molding machine at the ratios shown in Table 1, and the cylinders are melted and kneaded (each component raw material) under the conditions of a temperature of each part of the cylinder of 100 to 250 ° C. and a screw rotation speed of 10 to 36 rpm.
  • the head portion was extruded into a sheet from a T die so that the extrusion rate was 3.5 to 8.5 kg / hour at a resin temperature of 130 to 204 ° C.
  • the extruded sheet is cooled by a cooling roll (water flow temperature inside the roll is 30 ° C.), picked up using a pick-up machine (pick-up speed 0.4 to 2.3 m / min), and molded with a sheet width of about 240 to 300 mm. I got a body.
  • a single-screw extrusion molding machine (cylinder inner diameter D: 50 mm, full flight screw, L / D: 32 mm when the effective screw length is L), T die (die width: 320 mm, lip opening: 0.
  • a device consisting of a cooling roll (outer diameter 50 mm, steel with mirror-finished hard chrome-plated surface treatment, water-cooled type), a cooling roll, and a take-up machine was used.
  • the extruded sheet is cooled by a cooling roll (water flow temperature inside the roll is 30 ° C.), picked up using a pick-up machine (pick-up speed 0.8 to 0.9 m / min), and molded with a sheet width of about 240 to 270 mm. I got a body.
  • Moldability Presence or absence of eyebrows It was evaluated according to the following criteria by visual inspection in the steady operation state at the time of molding.
  • -Criterion A Almost no shaving was confirmed during extrusion from the die.
  • B A small amount of Mayani was generated during extrusion from the die, but almost no effect on the molded product was confirmed.
  • C Mayani was generated during extrusion from the die, and a small effect such as roughness was confirmed on the surface of the molded body, but a large effect such as adhesion to the molded body was hardly confirmed.
  • D Mayani was generated during extrusion from the die, and the effect of roughness on the surface of the molded body was confirmed, but the effect of adhesion to the molded body was sometimes confirmed.
  • E A large amount of shavings were generated during extrusion from the die, and a large effect such as adhesion to the molded product was confirmed.
  • Moldability It was evaluated according to the following criteria by visual inspection in the steady operation state at the time of molding.
  • -Criterion A The tackiness was small, and no adhesion to the take-up machine roll occurred when the molded product was picked up.
  • B The tackiness was small, and adhesion to the take-up machine roll occurred rarely when the molded product was picked up, but almost no effect on the molded product was confirmed.
  • C It has tackiness, and adhesion to the take-up machine roll or the like occurs when the molded body is picked up, and a slight influence such as wrinkles on the surface of the molded body is confirmed, but a large influence such as molding trouble is not confirmed.
  • D The tackiness is high, and when the molded product is picked up, it frequently adheres to the take-up machine roll or the like, and there is a possibility that molding troubles such as roll wrapping may occur.

Abstract

組成物は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、有機化合物(b)と、を含み、前記4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部であり、前記有機化合物(b)の粘度(mPa・s)が65~120の範囲内である、または前記4-メチル-1-ペンテン系共重合体(a)と有機化合物(b)のメルトフローレート(g/10min.)の比率が1:1.0~0.1である。

Description

組成物および成形体
 本発明は、組成物および成形体に関する。
 4-メチル-1-ペンテンを主たる構成モノマーとする4-メチル-1-ペンテン系重合体は、離型性、耐熱性、耐水性、耐溶剤性等の諸性能に優れているため各種用途に広く使用されている。例えば、4-メチル-1-ペンテンを用いたフィルムは、高融点、良好な離型性などの特長を活かし、フレキシブルプリント基板や複合材料の成形用離型フィルムなどの用途に供されている。一例として、特許文献1には、4-メチル-1-ペンテン系重合体を用いたフィルムを合わせガラスの中間膜として用いることで、ガラスの制振性と衝撃吸収性能を向上させ、かつ透明性を維持できることが開示されている。
特開2019-156943号公報
 本発明者らは、従来の4-メチル-1-ペンテン系重合体に新たな特性を付与する観点から鋭意検討を行った結果、4-メチル-1-ペンテン系重合体と、特定の物性を有する有機化合物とを組み合わせることに、初めて着目した。そして、さらに検討を重ねた結果、4-メチル-1-ペンテン系重合体と、特定の物性を有する有機化合物との含有量比を制御した組成物とすることで、当該有機化合物を適用する前の4-メチル-1-ペンテン系重合体よりも、損失正接の極大値を保持しながら、正接損失の極大値を示す温度を低温側にシフトし、なおかつ良好な成形性が保持できることを見出した。
 本発明は、上記事情に鑑みてなされたものであり、正接損失の極大値を示す温度を低温側にシフトし、なおかつ良好な成形性が保持できる組成物を提供するものである。
 すなわち、本発明によれば、以下に示す組成物が提供される。
[1]
 昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、
 有機化合物(b)と、
を含み、
 前記4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部である、組成物であって、
 前記有機化合物(b)の粘度(mPa・s)が65~120の範囲内である、または前記4-メチル-1-ペンテン系共重合体(a)と有機化合物(b)のメルトフローレート(g/10min.)の比率が1:1.0~0.1である、組成物。
[2]
 昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、
 有機化合物(b)と、
を含み、
 前記4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部である、組成物であって、
 前記有機化合物(b)は、粘度(mPa・s)が65~120の範囲内、またはメルトフローレート(g/10min.)が6以下である、組成物。
[3]
 前記4-メチル-1-ペンテン系重合体(a)が4-メチル-1-ペンテン由来の構成単位と4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位とを含む、[1]または[2]に記載の組成物。
[4]
 前記4-メチル-1-ペンテン由来の構成単位と、前記4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位との合計を100モル%としたとき、前記4-メチル-1-ペンテン由来の構成単位の含有量が10モル%以上90モル%以下である、[3]に記載の組成物。
[5]
 前記α-オレフィンの前記炭素原子数が2~5である、[4]に記載の組成物。
[6]
 前記有機化合物(b)が、粘度(mPa・s)が65~120の範囲内かつ流動点が-10℃以下の飽和炭化水素化合物(b1)を含む、[1]乃至[5]いずれか一つに記載の組成物。
[7]
 前記飽和炭化水素化合物(b1)が、炭素数が20以上である、[6]に記載の組成物。
[8]
 前記組成物が、炭素原子数2~20のα-オレフィン重合体(b2)を含む、[1]乃至[7]いずれか一つに記載の組成物。
[9]
 前記α-オレフィン重合体(b2)が、スチレン類、ジエン類、環状化合物、含酸素化合物類の中から選ばれる重合性二重結合を有する化合物をコモノマーとして用いた共重合体を含む、[8]に記載の組成物。
[10]
 前記4-メチル-1-ペンテン系重合体(a)の動的粘弾性の損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上40℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.8以上3以下である、[1]乃至[9]いずれか一つに記載の組成物。
[11]
 当該組成物が発泡剤を含む、[1]乃至[10]いずれか一つに記載の組成物。
[12]
 前記発泡剤が、無機系または有機系の熱分解型化学発泡剤、あるいは物理発泡剤である、[11]に記載の組成物。
[13]
 [1]乃至[12]いずれか一つに記載の組成物から形成された成形体。
[14]
 前記成形体が、発泡体であり、かつ密度が0.10~1.0g/cmである、[13]に記載の成形体。
 本発明によれば、正接損失の極大値を示す温度を低温側にシフトし、なおかつ良好な成形性が保持できる組成物を提供することができる。
 以下、本発明の実施の形態について説明する。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
<組成物>
 本実施形態の組成物は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、有機化合物(b)と、を含み、4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部であり、前記有機化合物(b)の粘度(mPa・s)が65~120の範囲内である、または前記4-メチル-1-ペンテン系共重合体(a)と有機化合物(b)のメルトフローレート(g/10min.)の比率が1:1.0~0.1である。
 これにより、正接損失の極大値を示す温度を低温側にシフトし、なおかつ良好な成形性が保持できる。
 以下、各成分について詳述する。
[4-メチル-1-ペンテン系重合体(a)]
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)は、昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる、損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、上記損失正接の極大値が0.5以上3.5以下である。
 例えば、4-メチル-1-ペンテン系重合体(a)を縦30mm×幅10mmの試験片に切り出し、周波数1.59Hz、昇温速度4℃/分、測定温度範囲0℃~110℃、歪量0.1%、チャック間距離20mm、捻りモードの条件で、レオメータを用いて測定することができる。
 本発明者らは、特定の損失正接(tanδ)の極大値、当該極大値を示す特定の温度範囲を有する4-メチル-1-ペンテン系重合体(a)を、後述の有機化合物(b)とともに用いることで、正接損失の極大値を示す温度を低温側にシフトし、なおかつ良好な成形性が保持できることを見出した。
 かかる理由の詳細は明らかではないが、以下のように考えられる。
 まず、10℃以上100℃以下の範囲において損失正接の極大値が上記範囲内である4-メチル-1-ペンテン系重合体(a)は、変形する際に与えられる力学的エネルギーの多くを熱エネルギーに変換でき、エネルギーを多く吸収できるため、変形後の復元速度が緩やかになると考えられる。その結果、4-メチル-1-ペンテン系重合体(a)が有する柔軟性を維持しながら、変形に良好に追従できると考えられる。
 また、周波数1.59Hzという比較的低周波数領域での損失正接(tanδ)を制御することによって、時間をかけてかかる力(遅い力ともいう)に対する追従性が得られることを意図する。
 そこで、本発明者らは、かかる特定を有する4-メチル-1-ペンテン系重合体(a)に新たに特定の有機化合物(b)を組み合わせることで、4-メチル-1-ペンテン系重合体(a)の損失正接(tanδ)の極大値を示す温度(Tg)を低温側にシフトさせることができるとともに、得られる組成物において、良好な成形性が保持できることを初めて見出した。また、極大値を示す温度(Tg)を低温側にシフトさせることは、低温での衝撃吸収性が得られることを意図する。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)の上記損失正接は、例えば、(1)4-メチル-1-ペンテン系重合体(a)の種類や配合割合、(2)架橋の有無、(3)組成物の成形方法等を適切に調節することにより、上記範囲内に制御することが可能である。
 具体的には、例えば、組成物中の4-メチル-1-ペンテン系重合体(a)の配合割合を高めること、4-メチル-1-ペンテン系重合体(a)に対し架橋処理をおこなわないこと等が挙げられる。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)は、追従性・柔軟性を良好にする観点から、未架橋であることが好ましい。すなわち、本実施形態に係る4-メチル-1-ペンテン系重合体(a)は、例えば、電子線やγ線を用いた電離性放射架橋等の架橋処理がなされていない未架橋であることが好ましい。これにより10℃以上100℃以下の範囲における損失正接の極大値を向上させることができ、成形性により一層優れる4-メチル-1-ペンテン系重合体(a)を得ることができる。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)において、動的粘弾性の損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上80℃以下の範囲に1つ以上あることが好ましく、10℃以上60℃以下の範囲に1つ以上あることがより好ましく、10℃以上50℃以下の範囲に1つ以上あることがさらに好ましく、10℃以上50℃以下の範囲に1つあることが特に好ましい。これにより、本実施形態の組成物が20℃以下の環境下で使用されたときに、より良好な成形性および低温での衝撃吸収性が得られるようになる。
 また、本実施形態に係る4-メチル-1-ペンテン系重合体(a)において、上記損失正接の極大値は0.8以上であることが好ましく、1.0以上であることがより好ましく、1.2以上であることがさらに好ましい。そして本実施形態に係る組成物において、上記損失正接の極大値は3.0以下であることが好ましく、2.8以下であることがより好ましい。
 これにより、本実施形態に係る組成物の柔軟性および形状追従性の性能バランスをより良好にすることができる。ここで、損失正接の極大値が大きいほど、組成物の粘性的な性質が強いことを意味する。粘性的な性質が強い組成物は、変形する際に与えられる力学的エネルギーのより多くを熱エネルギーに変換でき、エネルギーをより多く吸収できるため、変形後の復元速度がより一層緩やかになると考えられる。その結果、組成物が有する柔軟性を維持しながら、変形後の形状をより一層良好に保持できたり、変形により一層良好に追従できると考えられる。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)としては、例えば、4-メチル-1-ペンテン由来の構成単位(c1)と、4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位(c2)とを含む4-メチル-1-ペンテン・α-オレフィン共重合体(c)が挙げられる。
 ここで、本実施形態において、「炭素原子数2~20のα-オレフィン」は特に断らない限り4-メチル-1-ペンテンを含まないことを意味する。
 本実施形態に係る4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、組成物の柔軟性および成形性等をより向上させる観点から、構成単位(c1)と構成単位(c2)との合計を100モル%としたとき、構成単位(c1)の含有量が10モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上90モル%以下であることが好ましい。
 また、本実施形態に係る4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、組成物の柔軟性や機械的特性等をより良好にする観点から、構成単位(c1)と構成単位(c2)との合計を100モル%としたとき、構成単位(c1)の含有量が30モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上70モル%以下であることがより好ましく、構成単位(c1)の含有量が50モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上50モル%以下であることがさらに好ましく、構成単位(c1)の含有量が60モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上40モル%以下であることがさらにより好ましく、構成単位(c1)の含有量が65モル%以上90モル%以下であり、構成単位(c2)の含有量が10モル%以上35モル%以下であることが特に好ましい。
 本実施形態において、4-メチル-1-ペンテン・α-オレフィン共重合体(c)に用いられる炭素原子数2~20のα-オレフィンとしては、例えば、直鎖状又は分岐状のα-オレフィン、環状オレフィン、芳香族ビニル化合物、共役ジエン、官能基化ビニル化合物等が挙げられ、直鎖状のα-オレフィンが好ましい。
 直鎖状α-オレフィンの炭素原子数は、好ましくは2~10、より好ましくは2~5、さらに好ましくは2~3である。直鎖状α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン等が挙げられ、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンおよび1-デセンから選択される一種または二種以上が好ましく、エチレンおよびプロピレンから選択される少なくとも一種がより好ましい。
 分岐状のα-オレフィンの炭素原子数は、好ましくは5~20、より好ましくは5~15である。分岐状のα-オレフィンとしては、例えば、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン等が挙げられる。
 環状オレフィンの炭素原子数は、好ましくは5~15である。環状オレフィンとしては、例えば、シクロペンテン、シクロヘキセン、シクロへプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、ビニルシクロヘキサン等が挙げられる。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等のモノ又はポリアルキルスチレン等が挙げられる。
 共役ジエンの炭素原子数は、好ましくは4~20、より好ましくは4~10である。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン等が挙げられる。
 官能基化ビニル化合物としては、例えば、水酸基含有オレフィン、ハロゲン化オレフィン、(メタ)アクリル酸、プロピオン酸、3-ブテン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノネン酸、9-デセン酸、10-ウンデセン酸等の不飽和カルボン酸およびその酸無水物や酸ハライド、アリルアミン、5-ヘキセンアミン、6-ヘプテンアミン等の不飽和アミン、(2,7-オクタジエニル)コハク酸無水物、ペンタプロペニルコハク酸無水物、不飽和エポキシ化合物、エチレン性不飽和シラン化合物等が挙げられる。
 上記水酸基含有オレフィンとしては、例えば、炭素原子数2~20、好ましくは2~15の直鎖状又は分岐状の末端水酸基化α-オレフィン等が挙げられる。
 上記ハロゲン化オレフィンとしては、例えば、炭素原子数が2~20、好ましくは2~15の直鎖状又は分岐状のハロゲン化α-オレフィン等が挙げられる。
 これらの炭素原子数2~20のα-オレフィンは、単独で又は2種以上を組み合わせて用いることができる。上記の中でもエチレン、プロピレンが好適であるが、プロピレンを使用すると、柔軟性等をより良好にできる点で特に好ましい。
 なお、4-メチル-1-ペンテン・α-オレフィン共重合体(c)は、本発明の目的を損なわない範囲で、構成単位(c1)と構成単位(c2)以外の構成単位を含んでいてもよい。その他の構成としては、非共役ポリエン由来の構成単位が挙げられる。
 非共役ポリエンとしては、炭素原子数が好ましくは5~20、より好ましくは5~10の直鎖状、分岐状又は環状のジエン、各種のノルボルネン、ノルボルナジエン等が挙げられる。これらの中でも、5-ビニリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネンが好ましい。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)の135℃のデカリン中での極限粘度[η]は、組成物の成形性、柔軟性や機械的強度をより良好にする観点から、0.01~5.0dL/gであることが好ましく、0.1~4.0dL/gであることがより好ましく、0.5~3.0dL/gであることがさらに好ましく、1.0~2.8dL/gであることが特に好ましい。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)のASTM D 1505(水中置換法)に従って測定された密度は、好ましくは0.810~0.850g/cm、より好ましくは0.820~0.850g/cm、さらに好ましくは0.830~0.850g/cmである。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)のメルトフローレートは、好ましくは0.1~100(g/10min.)、より好ましくは1~70(g/10min.)、さらに好ましくは1~20(g/10min.)である。
 本実施形態に係る4-メチル-1-ペンテン系重合体(a)は種々の方法により製造することができる。例えば、マグネシウム担持型チタン触媒;国際公開第01/53369号、国際公開第01/027124号、特開平3-193796号公報、および特開平02-41303号公報等に記載のメタロセン触媒;国際公開第2011/055803号に記載されるメタロセン化合物を含有するオレフィン重合触媒等の公知の触媒を用いて製造することができる。
 本実施形態に係る組成物中の4-メチル-1-ペンテン系重合体(a)の含有量は特に限定されないが、組成物の全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上、さらにより好ましくは70質量%以上、特に好ましくは75質量%以上であり、一方、好ましくは100質量%以下、より好ましくは99.5質量%以下、さらに好ましくは99質量%以下、さらにより好ましくは98質量%以下、特に好ましくは97質量%以下である。
 これにより、柔軟性、形状追従性、軽量性、機械的特性、取扱い性、外観、成形性、耐湿性等のバランスにより優れた組成物を得ることができる。
 本実施形態において、4-メチル-1-ペンテン系重合体(a)100質量部に対して、有機化合物(b)は5~250質量部であり、後述の有機化合物(b)に応じて調整されることが好ましい。
 当該質量比を上記数値範囲内とすることにより、成形性および低温での衝撃吸収性を両立できる。
[有機化合物(b)]
 本実施形態の有機化合物(b)は、粘度(mPa・s)が65~120の範囲内であることが好ましい。上記粘度(mPa・s)は、好ましくは70~100、より好ましくは75~90である。当該粘度を上記数値範囲内とすることにより、成形性および低温での衝撃吸収性を両立できる。
 本実施形態の有機化合物(b)の粘度は、JIS K2283に従って、40℃において測定された動粘度の値から換算して、算出できる。
 また、本実施形態の有機化合物(b)、メルトフローレート(g/10min.)の上限値は、好ましくは、18以下、16以下、14以下、12以下、10以下、8以下の順により好ましい。また、上記メルトフローレート(g/10min.)の上限値は、6以下であってもよく、好ましくは、5.5以下、より好ましくは5.0以下である。これにより、成形性および低温での衝撃吸収性を両立しやすくなる。一方、メルトフローレート(g/10min.)の下限値は、とくに限定されないが、良好な成形性を保持する観点から、例えば、1以上が好ましい。
 また、本実施形態の組成物においては、4-メチル-1-ペンテン系共重合体(a)と有機化合物(b)のメルトフローレート(g/10min.)の比率は、1:1.0~0.1であることが好ましく、より好ましくは1:0.8~0.1、さらに好ましくは、1:0.6~0.1である。上記数値範囲内とすることにより、成形性および低温での衝撃吸収性を両立できる。
 本実施形態において、各メルトフローレートは、JIS K7210に従って、230℃、試験荷重2.16kgfの条件で測定できる。
 また、本実施形態において有機化合物(b)が、粘度(mPa・s)が65~120の範囲内かつ流動点が-10℃以下の飽和炭化水素化合物(b1)、およびMFR(g/10min.)が20以下の範囲内の炭素原子数2~20のα-オレフィン重合体(b2)からなる群から選ばれる1種または2種であることが好ましい。
 飽和炭化水素化合物(b1)の流動点は-10℃以下であり、好ましくは-12℃以下である。流動点を上限値以下とすることにより、低温での追従性・柔軟性がより得られやすくなり、良好な成形性を保持しつつ、タック性を向上しやすくなる。
 当該流動点は、JIS K2269に従って測定される
 また、飽和炭化水素化合物(b1)の密度は、好ましくは0.70~1.00g/cm、より好ましくは0.75~0.95g/cm、さらに好ましくは0.80~0.90g/cmである。
 飽和炭化水素化合物(b1)としては、例えば、炭素数が20以上であることが好ましく、炭素数が20以上、40以下であることがより好ましく、なかでも流動パラフィン等が好適である。
 飽和炭化水素化合物(b1)の含有量は、4-メチル-1-ペンテン系重合体(a)100質量部に対して、好ましくは5~100質量部であり、より好ましくは5~80質量部であり、さらに好ましくは5~50質量部である。
 α-オレフィン重合体(b2)のショアA硬度は、好ましくは20~100であり、より好ましくは25~90であり、さらに好ましくは30~80であり、ことさらに好ましくは35~68である。ショアA硬度を上記下限値以上とすることにより、ベタつき感を抑制し、適度な成形性が保持でき、ショアA硬度を上記上限値以下とすることにより、硬くなりすぎることで成形性が低下することを抑制できる。また、得られた成形体の柔軟性が維持できる。
 ショアA硬度は、JIS K6253に準拠して測定することができる。
 また、α-オレフィン重合体(b2)密度は、好ましくは0.75~1.15g/cm、より好ましくは0.80~0.10g/cm、さらに好ましくは0.85~0.95g/cmであり、ことさらに好ましくは0.86~0.90g/cmである。
 α-オレフィン重合体(b2)は、構成単位として少なくともα-オレフィンを含むものであればよい。より詳細には、以下の例が挙げられる。
 α-オレフィン重合体(b2)としては、α-オレフィンの単独重合又は二種類以上のα-オレフィンの共重合が挙げられる。α-オレフィン類としては、炭素数2~20、好ましくは炭素数2~8のものが挙げられ、具体的には、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、及び4-メチル-1-ペンテンなどが例示される。なかでも、エチレン、プロピレンが好適である。α-オレフィン類は、2種類以上のα-オレフィンを共重合させてもよい。共重合は、交互共重合、ランダム共重合、ブロック共重合のいずれであっても差し支えない。
 また、α-オレフィン重合体(b2)としては、構成単位として少なくともα-オレフィンを含めばよく、α-オレフィン以外のコモノマーを適用した共重合体でもよい。かかるコモノマーとしては、例えば、スチレン、4-メチルスチレン、および4-ジメチルアミノスチレンなどのスチレン類、1,4-ブタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、および1,7-オクタジエンなどのジエン類、ノルボルネン、およびシクロペンテンなどの環状化合物、ヘキセノール、ヘキセン酸、およびオクテン酸メチルなどの含酸素化合物類の重合性二重結合を有する化合物を挙げることができる。なかでも、α-オレフィン類とスチレン類とのブロック共重合体が好ましい。すなわち、α-オレフィン重合体(b2)は、スチレン系エラストマーであってもよい。
 α-オレフィン重合体(b2)の含有量は、4-メチル-1-ペンテン系重合体(a)100質量部に対して、好ましくは20~250質量部であり、より好ましくは30~240質量部であり、さらに好ましくは50~230質量部である。
[その他成分]
 本実施形態に係る組成物は、4-メチル-1-ペンテン系重合体(a)、有機化合物(b)以外の成分を含んでもよい。
[改質樹脂(a2)]
 本実施形態に係る組成物は、外観や肌触り等をより良好にする観点から、改質樹脂(a2)(ただし、本実施形態に係る4-メチル-1-ペンテン系重合体(a)、および有機化合物(b)を除く)を含有してもよい。本実施形態に係る改質樹脂(a2)は、例えば、熱可塑性樹脂、熱可塑性エラストマーおよびゴムから選択される1種または2種以上が挙げられる。
 上記の熱可塑性樹脂(ただし、本実施形態に係る4-メチル-1-ペンテン系重合体(a1)を除く)としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、ポリ3-メチル-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体、環状オレフィン共重合体、塩素化ポリオレフィン等の熱可塑性ポリオレフィン樹脂;脂肪族ポリアミド(ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン612)、ポリエーテルブロックアミド共重合体等の熱可塑性ポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル系樹脂;ポリスチレン、ABS樹脂、AS樹脂等の熱可塑性ビニル芳香族系樹脂;塩化ビニル樹脂;塩化ビニリデン樹脂;アクリル樹脂;エチレン・酢酸ビニル共重合体;エチレン・メタクリル酸アクリレート共重合体;アイオノマー;エチレン・ビニルアルコール共重合体;ポリビニルアルコール;ポリフッ化ビニル樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ETFE等のフッ素系樹脂;ポリカーボネート;ポリアセタール;ポリフェニレンオキシド;ポリフェニレンサルファイド;ポリイミド;ポリアリレート;ポリスルホン;ポリエーテルスルホン;ロジン系樹脂;テルペン系樹脂;石油樹脂等が挙げられる。
 ゴムとしては、例えば、エチレン・α-オレフィン・ジエン共重合体ゴム、プロピレン・α-オレフィン・ジエン共重合体ゴム等が挙げられる。
 さらに、熱可塑性エラストマーとしては、例えば、オレフィン系エラストマー、スチレン系エラストマー、酸変性スチレン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー、アミド系エラストマー等が挙げられる。
 また、これらの改質樹脂(a2)をアクリル酸やメタクリル酸、マレイン酸等により酸変性したものであってもよい。
 これらの改質樹脂(a2)は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらの改質樹脂(a2)の中でも、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、高圧法低密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、ポリ3-メチル-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体から選択される一種または二種以上が好ましく、ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、1-ブテン・α-オレフィン共重合体、エチレン・酢酸ビニル共重合体、ポリエーテルブロックアミド、アイオノマー、フッ素系樹脂、酸変性フッ素系樹脂、ロジン系樹脂、テルペン系樹脂、石油樹脂およびスチレン系エラストマーから選択される一種または二種以上で、添加により溶融張力を向上させるものがより好ましい。
 また、本実施形態に係る4-メチル-1-ペンテン系重合体(a)と適度な相容性があるものがさらに好ましい。さらに、スチレン系エラストマーの中で、クラレ社製のスチレン-イソプレンブロック共重合体(製品名:ハイブラー、銘柄:5127)、水添スチレン-イソプレンブロック共重合体(製品名:ハイブラー、銘柄:7125、および製品名:セプトン、銘柄:2004F)、水添スチレン-イソプレン-ブタジエンブロック共重合体(製品名:ハイブラー、銘柄:7311F)、およびクレイトンポリマージャパン社製の水添スチレン-ブタジエンブロック共重合体(製品名:クレイトンG、銘柄:G1651、およびG1657)、およびJSR製の水添スチレン-ブタジエンブロック共重合体(製品名:ダイナロン、銘柄:1320P)、および旭化成社製の水添スチレン-ブタジエンブロック共重合体、(製品名:タフテック、H1221、および製品名:S.O.E、銘柄:S1605、S1611、およびL609)等の市販品についても、相容性、損失正接の極大値を示す温度範囲、損失正接の極大値の大きさの観点から、好ましく用いることができる。
 本実施形態に係る組成物は、これらの改質樹脂(a2)の中から1種単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本実施形態に係る組成物中の改質樹脂(a2)の含有量は特に限定されないが、組成物全体を100質量%としたとき、好ましくは0.5質量%以上、より好ましくは1質量%以上、さらに好ましくは2質量%以上、さらにより好ましくは3質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは35質量%以下、さらにより好ましくは30質量%以下、特に好ましくは25質量%以下である。
 改質樹脂(a2)の含有量が上記下限値以上であると、本実施形態に係る組成物の外観や肌触り等をより良好にすることができる。改質樹脂(a2)の含有量が上記上限値以下であると、本実施形態に係る組成物の柔軟性等の性能バランスをより良好にすることができる。
[その他の成分]
 本実施形態に係る組成物は、必要に応じて、発泡剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、銅害防止剤、難燃剤、中和剤、可塑剤、造核剤、耐候安定剤、耐光安定剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、着色剤、滑剤、天然油、合成油、ワックス等の添加剤を配合してもよい。これらの中でも、可塑剤、軟化剤、天然油および合成油は、本実施形態に係る組成物の固体粘弾性の損失正接(tanδ)の極大値を示す温度および損失正接の極大値を調整するために、種類および添加量を制御して用いてもよい。
 上記の発泡剤としては、化学発泡剤、物理発泡剤が挙げられる。
 化学発泡剤としては、無機系もしくは有機系の熱分解型化学発泡剤が挙げられる。
 無機系の熱分解型化学発泡剤としては、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸アンモニウム等の無機炭酸塩、亜硝酸アンモニウム等の亜硝酸塩が挙げられる。
 有機系の熱分解型化学発泡剤としては、N,N’-ジメチル-N,N’-ジニトロソテレフタルアミド、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレ-ト等のアゾ化合物;ベンゼンスルホニルヒドラジド、トルエンスルホニルヒドラジド、p,p’-オキシビス(ベンゼンスルホニルヒドラジド)、ジフェニルスルホン-3,3’-ジスルホニルヒドラジド等のスルホニルヒドラジド化合物;カルシウムアジド、4,4’-ジフェニルジスルホニルアジド、p-トルエンスルホニルアジド等のアジド化合物などが挙げられる。
 熱分解型化学発泡剤は、単独で用いても、二種以上を併用してもよい。
 物理発泡剤としては、二酸化炭素、窒素、炭化水素類(プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなど)ハイドロフルオロオレフィン(HFО)、熱膨張性マイクロカプセル、または二酸化炭素と窒素の混合物等が挙げられる。いずれもガス状、液状または超臨界状態のいずれでも供給することが可能である。
[製造方法]
 本実施形態の組成物は、原料となる4-メチル-1-ペンテン系重合体(a)、有機化合物(b)、その他任意の各成分をドライブレンド、タンブラーミキサー、バンバリーミキサー、単軸押出機、二軸押出機、高速二軸押出機、熱ロール等により混合または溶融・混練することにより調製することができる。
<成形体>
 本実施形態の成形体は上述した組成物を用い、公知の方法で、成形して得られるものである。本実施形態に係る成形体が発泡体である場合、例えば、成形装置を用いて、発泡剤を含む樹脂組成物を特定の形状に発泡成形することにより得ることができる。ここで、従来の押出発泡成形においては、発泡成形される際に、配合材料中の相容性の乏しい成分が、ダイ出口に堆積するメヤニという現象が生じやすく、押出成形品に筋がつくなど、成形性が低下しやすいという問題があった。これに対し、本実施形態に係る発泡された成形体においては、上述した組成物を用いているため、メヤニの発生を効果的に抑制でき、良好な成形性が安定して得られる。
 また、化学発泡剤は押出成形機に投入する前に本実施形態の組成物と配合して均一に混合してもよく、マスターバッチに加工された化学発泡剤を用いてもよい。また、物理発泡剤として二酸化炭素を使用する場合は、本実施形態の組成物が押出成形機内で混練、可塑化された状態になった後、直接押出成形機内へ注入することが好ましい。
 発泡倍率は発泡前の組成物と発泡体の密度をASTM D 1505(水中置換法)に従って、ALFA MIRAGE社電子比重計MD-300Sを用い、水中と空気中で測定された各試料の重量から算出の上、組成物の密度を発泡体の密度で除することにより求めた値である。発泡倍率は特に限定されないが例えば1~50倍の範囲で、シート11の物性を考慮して適宜決定することができる。
[形状]
 本実施形態に係る成形体の形状は、特に限定されないが、シート状であることが好ましい。シート状である場合、厚みは、好ましくは0.1mm以上30mm以下の範囲であり、より好ましくは0.2mm以上20mm以下の範囲であり、さらに好ましくは0.3mm以上12mm以下の範囲である。当該厚みを、上記下限値以上とすることにより、形状追従性、機械的特性、成形性、および耐湿性等の良好なバランスが得られる。一方、当該厚みを、上記上限値以下とすることにより、軽量性、外観、および取扱い性を良好にできる。
 また、本実施形態の成形体が発泡体である場合、その密度は、0.10~1.0g/cmであることが好ましい。発泡体の密度のより好ましい上限値は、0.90g/cm以下、0.85g/cm以下、0.80g/cm以下の順である。一方、発泡体の密度のより好ましい下限値は、0.20g/cm以上、0.30g/cm以上、0.40g/cm以上である。
 発泡体の密度を、上記下限値以上とすることにより、形状追従性、機械的特性、成形性、および耐湿性等の良好なバランスが得られる。一方、発泡体の密度を、上記上限値以下とすることにより、軽量性、外観、および取扱い性を良好にできる。
 また、発泡体の密度は、有機化合物(b)の種類や含有量、発泡倍率、発泡条件等を制御することによって、調整される。
 ただし、本実施形態においては、発泡倍率は特に限定されず、得られる発泡体の諸物性を考慮して適宜決定することができる。
 本実施形態に係る成形体は、用途に応じて、通気性を高めるために通気孔を有してもよい。例えば、機械式パンチング、ニードル加工、レーザーパーフォレーション、ウォータージェット等の加工技術により、表裏に連通した多数の通気孔を設けることができる。
[用途]
 本実施形態に係る組成物および成形体は、分野を問わず、広く利用される。例えば、自動車部品、鉄道部品、航空機部品、船舶部品、自転車部品等のモビリティー用品;電子機器;家庭用電気機器;オーディオ機器;カメラ用品;精密機器;ゲーム機器;VR機器;土木部品、建築部品、建築材等の土木・建築用品;家具、寝具等の家財道具;台所用品、トイレタリー、文具等の日用品;アウトドア用品、リュック等のレジャー用品;園芸等の農業用品;アパレル用品(服、肌着、下着類(例えば、ブラジャー、肩パッド、補正用下着等)の芯材、帽子、ベルト、ランドセルのライニング、名刺入れ、メガネ等)、シューズ用品(各種インソール、靴の内張り材、各種機材、靴、靴ひも等)、アクセサリー・携帯用小物雑貨等の装飾製品;医療用品、ヘルスケア用品等の医療関係用品;スポーツ品等のスポーツ分野の用品;書籍、玩具等の教育・玩具用品;包装用品等の包装関係用品;洗顔・メイク用品等の化粧品関係の用品;LED照明等の電灯用品;水産用品等の養殖用品;チャイルドシート等の安全用品;音楽用品;ペット用品;釣用品等に用いることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、本実施形態を、実施例・参考例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
<測定方法>
(1)動的粘弾性測定1
 4-メチル-1-ペンテン系重合体(a)を、短冊状に縦30mm×幅10mmに切り出し、試験片とした。次いで、得られた試験片に対して、Anton Paar社製MCR301を用いて、チャック間距離20mm、周波数1.59Hz、歪量0.1%、昇温速度4℃/分、捻りモードの条件で温度範囲-60℃~240℃までの動的粘弾性の温度依存性を測定した。得られたグラフから、損失正接(tanδ)の極大値を示す温度(T)およびそのtanδの極大値をそれぞれ求めた。
(2)動的粘弾性測定2
 4-メチル-1-ペンテン系重合体(a)を、短冊状に縦30mm×幅10mmに切り出し、試験片とした。次いで、得られた試験片に対して、ティー・エイ・インスツルメント・ジャパン株式会社(TA Instruments Japan Inc.)製粘弾性測定装置RSA-III(商品名)を用いて、窒素雰囲気下で、チャック間距離20mm、周波数1.59Hz、歪量0.1%、昇温速度4℃/分、引張モードの条件で温度範囲-60℃~240℃までの動的粘弾性の温度依存性を測定した。得られたグラフから、損失正接(tanδ)の極大値を示す温度(T)およびそのtanδの極大値をそれぞれ求めた。
(3)4-メチル-1-ペンテン系重合体(a)の極限粘度[η]
 極限粘度[η]は、デカリン溶媒を用いて135℃で測定した。
(4)4-メチル-1-ペンテン系重合体(a)の組成
 4-メチル-1-ペンテン系重合体(a)中の4-メチル-1-ペンテンおよびα-オレフィンの含有量は13C-NMRにより定量した。
(5)4-メチル-1-ペンテン系重合体(a)の密度
 ASTM D 1505(水中置換法)に従って、ALFA MIRAGE社電子比重計MD-300Sを用い、水中と空気中で測定された各試料の重量から算出した。
(6)各メルトフローレート(MFR)
 JIS K7210に従って、230℃、試験荷重2.16kgfの条件で測定した。
(7)有機化合物(b)の粘度の測定
 JIS K2283に従って、40℃において測定された動粘度の値から換算して、粘度を得た。
(8)発泡体の密度
 ASTM D 1505(水中置換法)に従って、ALFA MIRAGE社電子比重計MD-300Sを用い、水中と空気中で測定された各試料の重量から算出した。
(9)発泡体の発泡倍率
 発泡倍率は発泡前の組成物と発泡体の密度をASTM D 1505(水中置換法)に従って、ALFA MIRAGE社電子比重計MD-300Sを用い、水中と空気中で測定された各試料の重量から算出の上、組成物の密度を発泡体の密度で除することにより求めた。
<材料>
 実施例および参考例で用いた原料について以下に示す。
(1)4-メチル-1-ペンテン系重合体(a):4-メチル-1-ペンテンとプロピレンとの共重合体(4-メチル-1-ペンテン由来の構成単位の含有量:72モル%、プロピレン由来の構成単位の含有量:28モル%)
・損失正接(tanδ)の極大値を示す温度T:28℃
・損失正接の極大値:2.6
・ガラス転移温度:28℃
・135℃のデカリン中での極限粘度[η]:1.5dL/g
・密度:0.84g/cm
・MFR:10g/10min.
(2)有機化合物(b)
(2-1)飽和炭化水素化合物(b1):流動パラフィン「No.530-SP」(三光化学工業株式会社製)
・密度:0.86g/cm
・粘度:87(mPa・s)
・流動点:-15℃
(2-2)α-オレフィン重合体(b2)1:水添スチレン-イソプレン-ブタジエンブロック共重合体「ハイブラー7311F」(株式会社クラレ社製)
・密度:0.89g/cm
・MFR:2g/10min.
・ショアA硬度:41
(2-3)α-オレフィン重合体(b2)2:水添スチレン-イソプレンブロック共重合体「セプトン2004F」(株式会社クラレ社製)
・密度:0.89g/cm
・MFR:5g/10min.
・ショアA硬度:67
(2-4)α-オレフィン重合体(b2)3:水添スチレン-イソプレンブロック共重合体「G1651」(クレイトンポリマージャパン株式会社製)
・密度:0.91g/cm
・MFR:1g/10min.未満
・ショアA硬度:70
(2-5)α-オレフィン重合体(b2)4:水添スチレン-ブタジエンブロック共重合体「H1221」(旭化成株式会社製)
・密度:0.89g/cm
・MFR:4.5g/10min.
・ショアA硬度:42
(2-6)α-オレフィン重合体(b2)5:水添スチレン-ブタジエンブロック共重合体「G1657」(クレイトンポリマージャパン株式会社製)
・密度:0.89g/cm
・MFR:9g/10min.
・ショアA硬度:47
(2-7)α-オレフィン重合体(b2)6:水添スチレン-ブタジエンブロック共重合体「1320P」(JSR株式会社製)
・密度:0.89g/cm
・MFR:3.5g/10min.
・ショアA硬度:42
(2-8)α-オレフィン重合体(b2)7:水添スチレン-ブタジエンブロック共重合体「S1605」(旭化成株式会社製)
・密度:1.00g/cm
・MFR:5g/10min.
・ショアA硬度:87
(2-9)化学発泡剤;重曹系化学発泡剤マスターバッチ「ポリスレンEE275F」(永和化成工業社製)
<実施例1~6および参考例1の組成物・成形体の作製>
 成形機としては、単軸押出成形機(シリンダー内径D:50mm、フルフライトスクリュー、スクリュー有効長をLとしたときL/D:32mm、二酸化炭素供給位置:スクリュー供給部側から17.5D)、Tダイ(ダイ幅:320mm、リップ開度:0.2~1.8mm)、冷却ロール(外径50mm、鏡面仕上げ硬質クロムメッキ表面処理付のスチール製、水冷式)、二酸化炭素供給装置、冷却ロール、および引取機、とからなる装置を用いた。まず、上記の原料を表1に示す割合で、押出成形機に投入し、シリンダー各部の温度100~250℃、スクリュー回転数10~36rpmの条件で(各成分原料を)溶融・混練し、シリンダーヘッド部の樹脂温度130~204℃で、押出量3.5~8.5kg/時間となるようにTダイからシート状に押出した。
 押し出されたシートは、冷却ロール(ロール内部通水温度30℃)で冷却して、引取機を用いて引き取り(引取速度0.4~2.3m/分)、シート幅約240~300mmの成形体を得た。
<実施例~14の組成物・成形体の作製>
 成形機としては、単軸押出成形機(シリンダー内径D:50mm、フルフライトスクリュー、スクリュー有効長をLとしたときL/D:32mm)、Tダイ(ダイ幅:320mm、リップ開度:0.2~0.3mm)、冷却ロール(外径50mm、鏡面仕上げ硬質クロムメッキ表面処理付のスチール製、水冷式)、冷却ロール、および引取機、とからなる装置を用いた。まず、表1に示す割合の上記の原料と、化学発泡剤(ポリスレンEE275F)を外部で1重量部と、を押出成形機に投入し、シリンダー各部の温度120~230℃、スクリュー回転数10~13rpmの条件で(各成分原料を)溶融・混練し、シリンダーヘッド部の樹脂温度190~204℃で、押出量3.5~4.4kg/時間となるようにTダイからシート状に押出した。
 押し出されたシートは、冷却ロール(ロール内部通水温度30℃)で冷却して、引取機を用いて引き取り(引取速度0.8~0.9m/分)、シート幅約240~270mmの成形体を得た。
 得られた組成物を用いた成形体に関し、以下の評価を行った。結果を表1に示す。
<評価>
(1)成形性(メヤニの有無)
 成形時の定常運転状態において目視検査により、以下の基準に従い評価した。
・基準
A:ダイからの押出時にメヤニの発生は殆ど確認されなかった。
B:ダイからの押出時にメヤニが少量発生したが、成形体への影響は殆ど確認されなかった。
C:ダイからの押出時にメヤニが発生し、成形体表面に荒れなどの微小な影響は確認されたが、成形体への付着等の大きな影響は殆ど確認されなかった。
D;ダイからの押出時にメヤニが発生し、成形体表面に荒れなどの影響は確認されたが、成形体への付着等の影響が確認されることがあった。
E:ダイからの押出時にメヤニが大量に発生し、成形体への付着などの大きな影響が確認された。
(2)成形性(タック性)
 成形時の定常運転状態において目視検査により、以下の基準に従い評価した。
・基準
A:タック性は小さく、成形体引取時に引取機ロールに対する付着は発生しなかった。
B:タック性は小さく、成形体引取時に引取機ロールに対する付着は稀に発生したが、成形体への影響は殆ど確認されなかった。
C:タック性があり、成形体引取時に引取機ロール等に対する付着が発生し、成形体表面のシワ等の微小な影響は確認されたが、成形トラブル等の大きな影響は確認されなかった。
D:タック性は大きく、成形体引取時に引取機ロール等に対する付着が頻繁に発生し、ロール巻きつき等の成形トラブル発生の可能性があった。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2020年3月31日に出願された日本出願特願2020-062417号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、
     有機化合物(b)と、
    を含み、
     前記4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部である、組成物であって、
     前記有機化合物(b)の粘度(mPa・s)が65~120の範囲内である、または前記4-メチル-1-ペンテン系共重合体(a)と有機化合物(b)のメルトフローレート(g/10min.)の比率が1:1.0~0.1である、組成物。
  2.  昇温速度4℃/min、周波数1.59Hz、歪量0.1%の条件での動的粘弾性測定により求められる損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上100℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.5以上3.5以下の4-メチル-1-ペンテン系重合体(a)と、
     有機化合物(b)と、
    を含み、
     前記4-メチル-1-ペンテン系重合体(a)100質量部に対して、前記有機化合物(b)が5~250質量部である、組成物であって、
     前記有機化合物(b)は、粘度(mPa・s)が65~120の範囲内、またはメルトフローレート(g/10min.)が6以下である、組成物。
  3.  前記4-メチル-1-ペンテン系重合体(a)が4-メチル-1-ペンテン由来の構成単位と4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位とを含む、請求項1または2に記載の組成物。
  4.  前記4-メチル-1-ペンテン由来の構成単位と、前記4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィン由来の構成単位との合計を100モル%としたとき、前記4-メチル-1-ペンテン由来の構成単位の含有量が10モル%以上90モル%以下である、請求項3に記載の組成物。
  5.  前記α-オレフィンの前記炭素原子数が2~5である、請求項4に記載の組成物。
  6.  前記有機化合物(b)が、粘度(mPa・s)が65~120の範囲内かつ流動点が-10℃以下の飽和炭化水素化合物(b1)を含む、請求項1乃至5いずれか一項に記載の組成物。
  7.  前記飽和炭化水素化合物(b1)が、炭素数が20以上である、請求項6に記載の組成物。
  8.  前記組成物が、炭素原子数2~20のα-オレフィン重合体(b2)を含む、請求項1乃至7いずれか一項に記載の組成物。
  9.  前記α-オレフィン重合体(b2)が、スチレン類、ジエン類、環状化合物、含酸素化合物類の中から選ばれる重合性二重結合を有する化合物をコモノマーとして用いた共重合体を含む、請求項8に記載の組成物。
  10.  前記4-メチル-1-ペンテン系重合体(a)の動的粘弾性の損失正接(tanδ)の極大値を示す温度が少なくとも10℃以上40℃以下の範囲に1つ以上あり、かつ、前記損失正接の極大値が0.8以上3以下である、請求項1乃至9いずれか一項に記載の組成物。
  11.  当該組成物が発泡剤を含む、請求項1乃至10いずれか一項に記載の組成物。
  12.  前記発泡剤が、無機系または有機系の熱分解型化学発泡剤、あるいは物理発泡剤である、請求項11に記載の組成物。
  13.  請求項1乃至12いずれか一項に記載の組成物から形成された成形体。
  14.  前記成形体が、発泡体であり、かつ密度が0.10~1.0g/cmである、請求項13に記載の成形体。
PCT/JP2021/013863 2020-03-31 2021-03-31 組成物および成形体 WO2021201112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180022975.2A CN115315479A (zh) 2020-03-31 2021-03-31 组合物和成型体
JP2022512630A JPWO2021201112A1 (ja) 2020-03-31 2021-03-31
US17/905,360 US20230120980A1 (en) 2020-03-31 2021-03-31 Composition and molded article
EP21779628.3A EP4130143A1 (en) 2020-03-31 2021-03-31 Composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020062417 2020-03-31
JP2020-062417 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201112A1 true WO2021201112A1 (ja) 2021-10-07

Family

ID=77928114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013863 WO2021201112A1 (ja) 2020-03-31 2021-03-31 組成物および成形体

Country Status (5)

Country Link
US (1) US20230120980A1 (ja)
EP (1) EP4130143A1 (ja)
JP (1) JPWO2021201112A1 (ja)
CN (1) CN115315479A (ja)
WO (1) WO2021201112A1 (ja)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
WO2004091931A1 (ja) * 2003-04-17 2004-10-28 Mitsubishi Pencil Kabushiki Kaisha 非水系ボールペン用フォロワーおよび非水系ボールペン
WO2011055803A1 (ja) 2009-11-06 2011-05-12 三井化学株式会社 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物
JP2017197682A (ja) * 2016-04-28 2017-11-02 三井化学株式会社 熱可塑性エラストマー樹脂組成物
JP2018042908A (ja) * 2016-09-16 2018-03-22 三井化学株式会社 靴インソールおよび靴
JP2018079583A (ja) * 2016-11-14 2018-05-24 フタムラ化学株式会社 ポリプロピレン系延伸シーラントフィルム及びこれを用いたフィルム積層体
JP2018118780A (ja) * 2017-01-27 2018-08-02 三井化学株式会社 液体またはゲル状物質用包装体
WO2018143411A1 (ja) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 発泡体、ポリオレフィン系発泡シートおよび複合体
JP2019033798A (ja) * 2017-08-10 2019-03-07 三井化学株式会社 月経カップ
JP2019130707A (ja) * 2018-01-30 2019-08-08 三井化学株式会社 制振材
JP2019137848A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその製造方法
JP2019138032A (ja) * 2018-02-08 2019-08-22 三井化学株式会社 ガラス板保持構造
JP2019156943A (ja) 2018-03-12 2019-09-19 三井化学株式会社 フィルム、合わせガラス用中間膜および合わせガラス
JP2019157032A (ja) * 2018-03-15 2019-09-19 Mcppイノベーション合同会社 動的架橋型熱可塑性エラストマー組成物およびその成形体
JP2019157003A (ja) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 樹脂加工機洗浄用組成物及び樹脂加工機の洗浄方法
JP2020062417A (ja) 2016-05-04 2020-04-23 ハーディ シュタインマン 携帯用飲料容器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6920084B2 (ja) * 2017-03-27 2021-08-18 三井化学株式会社 4−メチル−1−ペンテン共重合体組成物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
WO2004091931A1 (ja) * 2003-04-17 2004-10-28 Mitsubishi Pencil Kabushiki Kaisha 非水系ボールペン用フォロワーおよび非水系ボールペン
WO2011055803A1 (ja) 2009-11-06 2011-05-12 三井化学株式会社 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物
JP2017197682A (ja) * 2016-04-28 2017-11-02 三井化学株式会社 熱可塑性エラストマー樹脂組成物
JP2020062417A (ja) 2016-05-04 2020-04-23 ハーディ シュタインマン 携帯用飲料容器
JP2018042908A (ja) * 2016-09-16 2018-03-22 三井化学株式会社 靴インソールおよび靴
JP2018079583A (ja) * 2016-11-14 2018-05-24 フタムラ化学株式会社 ポリプロピレン系延伸シーラントフィルム及びこれを用いたフィルム積層体
JP2018118780A (ja) * 2017-01-27 2018-08-02 三井化学株式会社 液体またはゲル状物質用包装体
WO2018143411A1 (ja) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 発泡体、ポリオレフィン系発泡シートおよび複合体
JP2019033798A (ja) * 2017-08-10 2019-03-07 三井化学株式会社 月経カップ
JP2019130707A (ja) * 2018-01-30 2019-08-08 三井化学株式会社 制振材
JP2019138032A (ja) * 2018-02-08 2019-08-22 三井化学株式会社 ガラス板保持構造
JP2019137848A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその製造方法
JP2019156943A (ja) 2018-03-12 2019-09-19 三井化学株式会社 フィルム、合わせガラス用中間膜および合わせガラス
JP2019157003A (ja) * 2018-03-14 2019-09-19 Mcppイノベーション合同会社 樹脂加工機洗浄用組成物及び樹脂加工機の洗浄方法
JP2019157032A (ja) * 2018-03-15 2019-09-19 Mcppイノベーション合同会社 動的架橋型熱可塑性エラストマー組成物およびその成形体

Also Published As

Publication number Publication date
US20230120980A1 (en) 2023-04-20
JPWO2021201112A1 (ja) 2021-10-07
CN115315479A (zh) 2022-11-08
EP4130143A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP6702854B2 (ja) 架橋体とその製造方法および用途、ならびにエチレン系共重合体
US5844009A (en) Cross-linked low-density polymer foam
KR100632820B1 (ko) 올레핀계 수지 조성물 및 그 성형체
WO1999035183A1 (en) Polymer articles including maleic anhydride
JP3548632B2 (ja) ポリプロピレン系樹脂組成物、その発泡体および製造法
JP2004323842A (ja) 架橋ポリオレフィン系樹脂発泡シート及び粘着テープ
JP4248939B2 (ja) カレンダー成形性を改良したポリオレフィン組成物およびこれを用いた壁紙
JP2019059932A (ja) ポリオレフィン系樹脂発泡シート及びそれを用いた粘着テープ
WO2021201112A1 (ja) 組成物および成形体
US20060210804A1 (en) Resin composition, foamed molding and laminate
KR100840080B1 (ko) 에틸렌 비닐 아세테이트 공중합체 및 산 공중합체의가교결합된 발포체
BR112021005306B1 (pt) Processo para aderir uma estrutura de espuma a um substrato de borracha
JP5672531B2 (ja) 発泡用生分解性樹脂組成物および発泡成形品
JP3992926B2 (ja) 樹脂組成物を用いた壁紙
CN110475811A (zh) 发泡体及成型体
JP7144524B2 (ja) 衝撃吸収材および保護具
WO1999062992A1 (fr) Composition polymere pour moulage a partir de poudre, poudre ainsi realisee, objet mousse, et procede de production d'un objet mousse
JP2004027149A (ja) 樹脂組成物およびその用途
JP2005154519A (ja) 樹脂組成物およびその成形体
JP2011037922A (ja) 熱可塑性エラストマー用溶融張力向上剤及びそれを含んでなる熱可塑性エラストマー組成物
TW200848454A (en) Functionalized, crosslinked polyolefin foams and methods for making the same
JP7377047B2 (ja) ポリオレフィン系樹脂発泡体シート、及びその製造方法
WO2017164339A1 (ja) 積層発泡シート、及びそれを用いた成形体
WO2022270581A1 (ja) 組成物、および成形体
JP2005120487A (ja) エチレン・α−オレフィン共重合体を用いた壁紙およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779628

Country of ref document: EP

Effective date: 20221031