WO2021201055A1 - 電池廃棄物の熱処理方法及び、リチウム回収方法 - Google Patents
電池廃棄物の熱処理方法及び、リチウム回収方法 Download PDFInfo
- Publication number
- WO2021201055A1 WO2021201055A1 PCT/JP2021/013724 JP2021013724W WO2021201055A1 WO 2021201055 A1 WO2021201055 A1 WO 2021201055A1 JP 2021013724 W JP2021013724 W JP 2021013724W WO 2021201055 A1 WO2021201055 A1 WO 2021201055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- lithium
- heat treatment
- waste
- battery waste
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 78
- 238000010438 heat treatment Methods 0.000 title claims abstract description 71
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 66
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000011084 recovery Methods 0.000 title claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000001301 oxygen Substances 0.000 claims abstract description 45
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 23
- 238000002386 leaching Methods 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 10
- 239000012670 alkaline solution Substances 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 20
- 229910052808 lithium carbonate Inorganic materials 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 150000002739 metals Chemical class 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 11
- 229910017052 cobalt Inorganic materials 0.000 description 10
- 239000010941 cobalt Substances 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000007873 sieving Methods 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 239000011888 foil Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 6
- 239000003929 acidic solution Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- -1 lithium transition metal Chemical class 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010014357 Electric shock Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/005—Preliminary treatment of scrap
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/15—Electronic waste
- B09B2101/16—Batteries
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- This specification discloses a technique relating to a heat treatment method for battery waste containing lithium and a lithium recovery method.
- vehicles such as hybrid vehicles, fuel cell vehicles, and electric vehicles are equipped with a battery that supplies power to an electric motor as a drive source.
- a battery that supplies power to an electric motor as a drive source.
- the battery usually, as described in Patent Documents 1 to 5, etc., the battery, an ECU for controlling the battery, a cooling device for cooling the battery, and various types for measuring the battery state are used.
- An in-vehicle battery pack is used in which a large number of electrical components such as sensors are packaged in one package and these are housed inside the case.
- lithium-ion secondary batteries As the battery of such an in-vehicle battery pack, a secondary battery that can store electricity by charging and can be used repeatedly, especially a nickel hydrogen battery is generally used, but in recent years, a lithium transition metal composite oxide is used for the positive electrode. Lithium-ion secondary batteries using the above have been used. In particular, lithium-ion secondary batteries contain valuable metals such as cobalt, and when in-vehicle battery packs are discarded after use, they can be included in such waste from the viewpoint of effective use of resources. Since the valuable metal is reused, it is desired to easily recover it at a relatively low cost.
- the battery waste is heated in a heat treatment furnace to be heat-treated, and then crushed and sieved. It is conceivable that the lithium in the battery powder obtained by performing the above process is leached into water.
- lithium in a lithium compound such as a lithium composite oxide that can be contained in battery waste can be changed into a form of lithium carbonate that easily leaches into water.
- the heat treatment furnace is heat-treated with a high-concentration nitrogen atmosphere and the heat treatment furnace has almost no oxygen, the oxygen required for the production of lithium carbonate will be insufficient, and the battery waste will contain oxygen. Lithium may not be sufficiently converted to lithium carbonate. In this case, the leaching rate of lithium decreases during leaching with water, which also reduces the recovery rate of lithium.
- This specification discloses a heat treatment method for battery waste and a lithium recovery method capable of stably producing lithium carbonate.
- the method for heat-treating battery waste disclosed in this specification is a method for heat-treating battery waste containing lithium, in which oxygen, nitrogen, carbon dioxide and water vapor are used in a heat treatment furnace in which the battery waste is arranged.
- the purpose is to heat the battery waste while adjusting the oxygen partial pressure in the furnace by flowing an atmospheric gas containing at least one selected from the group consisting of.
- the lithium recovery method disclosed in this specification is a method of recovering lithium from a battery waste containing lithium, and is a heat treatment method for heat-treating the battery waste by any of the above-mentioned heat treatment methods for the battery waste. It includes a step and a lithium leaching step of leaching lithium in battery powder obtained from battery waste after a heat treatment step with either a weakly acidic solution, water or an alkaline solution.
- lithium carbonate can be stably produced.
- an atmospheric gas containing oxygen and at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor is flowed in a heat treatment furnace in which the battery waste is arranged. Then, while adjusting the partial pressure of oxygen in the furnace, a heat treatment step of heating the battery waste is performed.
- the battery waste it is preferable to target an in-vehicle battery pack waste including a case forming an exterior and a battery surrounded by the case, which contains lithium.
- a lithium leaching step can be carried out in which the lithium of the above is leached with water. As a result, the lithium contained in the vehicle-mounted battery pack waste can be recovered.
- the battery waste can be vehicle-mounted or consumer-use battery waste.
- the battery waste is, for example, the waste of an in-vehicle battery pack mounted on a vehicle such as a hybrid vehicle, a fuel cell vehicle, or an electric vehicle. More specifically, it is vehicle-mounted battery pack waste that is discarded due to vehicle scrapping, replacement of vehicle-mounted battery pack, manufacturing failure, or other reasons, and such vehicle-mounted battery pack waste is targeted. Therefore, effective utilization of resources can be achieved. However, the waste of batteries used in electronic devices or devices may be targeted.
- An in-vehicle battery pack generally includes a metal case that constitutes a housing around the case, and a battery and other components that are housed inside the case and have a plurality of battery cells.
- the components inside the case include a control device such as an ECU that controls the battery, a cooling device that circulates cooling air inside the case to suppress an increase in battery temperature during discharge or charging of the battery, and the state of the battery.
- There are various shapes of in-vehicle battery packs depending on the space limitation of the vehicle on which they are mounted. For example, a vertically long battery pack that is long in one direction, such as a rectangular parallelepiped that is almost rectangular in a plan view. Some have an outer shape.
- a nickel-cadmium secondary battery, a nickel-hydrogen secondary battery, a lithium ion secondary battery, etc. that can be charged and used repeatedly are used.
- the positive electrode active material composed of one or more single metal oxides of lithium, nickel, cobalt and manganese, or two or more composite metal oxides is usually an aluminum foil ( A positive electrode coated and fixed on a positive electrode substrate) with, for example, polyvinylidene fluoride (PVDF) or other organic binder, a negative electrode made of a carbon-based material, etc., and an organic electrolytic solution such as ethylene carbonate or diethyl carbonate.
- PVDF polyvinylidene fluoride
- organic binder such as ethylene carbonate or diethyl carbonate.
- the heat treatment process Since the vehicle-mounted battery pack waste as described above has a solid structure in which the surroundings are protected by a case made of metal or the like, it is not easy to disassemble the waste. If disassembled, there is a risk of electric shock due to residual voltage. Therefore, in the heat treatment step, the heat treatment step is performed in which the vehicle-mounted battery pack waste is not disassembled, and the battery or the like is heat-treated while maintaining the structure surrounded by the case. As a result, the time required for the dismantling work can be reduced. Further, even if the vehicle-mounted battery pack waste is not discharged by immersing it in a predetermined liquid, for example, there is no risk of electric shock in this heat treatment.
- an atmosphere gas containing oxygen and at least one selected from the group consisting of nitrogen, carbon dioxide and water vapor is contained in the heat treatment furnace.
- the inert gas containing a relatively small amount of oxygen mainly contains nitrogen because the properties of the battery powder after the heat treatment can be made uniform when the treatment scale is increased.
- the temperature can be controlled while the partial pressure of oxygen in the furnace is relatively low, the formation of powdered lithium aluminate due to the reaction between aluminum and lithium oxide can be suppressed.
- the formation of lithium aluminate which is promoted at high temperature and under high oxygen partial pressure, has a lower solubility in water than lithium carbonate, and therefore, the lithium leaching rate in the lithium leaching step described later. causes a decrease in.
- the aluminum foil that did not react with lithium aluminate can be easily separated in the sieving step. When lithium aluminate is produced, the aluminum foil becomes brittle and easily mixed with the battery powder in the subsequent sieving step, so it is important to heat-treat under conditions that do not generate lithium aluminate as much as possible.
- the low partial pressure of oxygen in the furnace during heat treatment suppresses the production of nickel oxide and cobalt oxide, and promotes the production of cobalt and nickel, which are metals that are more soluble in acids, thus reducing the recovery rate of valuable metals. It can be effectively suppressed.
- the production of lithium carbonate by heat treatment is not promoted. If lithium carbonate, which easily leaches into water, is not sufficiently produced, the leaching rate of lithium in the lithium leaching step decreases, and eventually the recovery rate of lithium decreases. It is presumed that the formation of lithium carbonate by the heat treatment is carried out by the reaction of oxygen, carbon contained in the negative electrode of the lithium ion secondary battery and the like, and lithium. Oxygen can also be contained in the oxide of the positive electrode, but its amount is small, and it cannot be said that it is sufficient to convert most of the lithium in the vehicle-mounted battery pack waste into lithium carbonate. On the other hand, in this embodiment, the production of lithium carbonate is promoted by adjusting the partial pressure of oxygen in the furnace by impregnating the atmospheric gas with a relatively small amount of oxygen.
- the partial pressure of oxygen in the furnace during heating is preferable to maintain within the range of 5 ⁇ 10 -4 atm to 4 ⁇ 10 ⁇ 2 atm by flowing an atmospheric gas in the heat treatment furnace. ..
- the partial pressure of oxygen in the furnace during heating can be at least greater than 0 atm.
- the partial pressure of oxygen in the furnace during heating is set to 1 ⁇ 10-2 atm or less, embrittlement of aluminum in the battery waste can be suppressed. If the aluminum becomes embrittled during the heat treatment, there is a concern that the separability of the aluminum will deteriorate during the sieving described later.
- the partial pressure of oxygen in the furnace can be measured with a zirconia oxygen concentration meter.
- the above-mentioned range of the partial pressure of oxygen in the furnace means that at least the measured value of the partial pressure of oxygen in the furnace measured at the time when the partial pressure of oxygen in the furnace can be measured should be within the range.
- the oxygen partial pressure may not be measurable, but the oxygen partial pressure in the furnace during such a non-measurable period is not particularly limited.
- the oxygen concentration of the inert gas when introduced into the heat treatment furnace is preferably 0.05% by volume to 4.00% by volume. %.
- the flow rate of the atmospheric gas in the heat treatment furnace is preferably 6 m 3 / hr to 60 m 3 / hr. If the flow rate of the inert gas is too large, the temperature distribution during the heat treatment becomes large, and there is a concern that the heat treatment cannot be performed at the optimum temperature. On the other hand, if the flow rate of the inert gas is too small, the oxygen partial pressure distribution during the heat treatment becomes large, and the heat treatment may not be possible with the optimum oxygen partial pressure. From this point of view, the flow rate of the atmospheric gas is preferably 6 m 3 / hr to 60 m 3 / hr.
- the maximum temperature reached for the vehicle-mounted battery pack waste is preferably 500 ° C. to 650 ° C. If the maximum temperature of the in-vehicle battery pack waste is too low, the decomposition of lithium metal oxide in the in-vehicle battery pack waste and the reduction of nickel oxide and cobalt oxide obtained after the decomposition will be insufficient. There are concerns that the production of lithium carbonate is not promoted as expected, the removal of the organic electrolyte and the decomposition of polyvinylidene fluoride or polypropylene / polyethylene are not sufficiently performed. On the other hand, if the maximum temperature of the vehicle-mounted battery pack waste is too high, there is a risk of melting aluminum and producing lithium aluminate.
- the rate of temperature rise until the maximum temperature reached is preferably 50 ° C./hr to 150 ° C./hr. If the temperature rise is too slow, the heat treatment requires a lot of time, the treatment does not proceed, and the equipment becomes large. On the other hand, if the temperature rise is too fast, it is expected that the gasification of the electrolytic solution and the pyrolysis gas of PE and PP, which are generally used as PVDF and separator, will be generated at once, causing the cell to burst. Further, the time for maintaining the above-mentioned maximum temperature reached is preferably 4 hours to 8 hours. Subsequent cooling may be natural cooling, but for example, when water cooling or a water cooling jacket is used, or when forced cooling is performed by flowing a large amount of inert gas, there is an advantage that the equipment can be miniaturized.
- an atmosphere type electric furnace or an atmosphere type muffle furnace can be used in the case of a batch type, or a roller harsher kiln or a mesh belt kiln in the case of a continuous type.
- the roller harskin is preferable because it is suitable for a large amount of processing.
- the flammable organic electrolyte solution evaporated and removed from the inside of the case of the in-vehicle battery pack waste is introduced into a secondary combustion furnace and burned there with a burner or the like to make it harmless.
- crushing process crushing / pulverization process, sieving process
- a crushing step a crushing / pulverization step, and a subsequent sieving step can be performed, if necessary.
- the crushing is performed in order to take out the battery from the case of the vehicle-mounted battery pack waste, destroy the housing of the battery, and selectively separate the positive electrode active material from the aluminum foil coated with the positive electrode active material.
- various known devices or devices can be used, and specific examples thereof include an in-vehicle battery pack waste or an impact type crusher capable of crushing by applying an impact while cutting the battery.
- a screen can be installed at the outlet of the crusher, whereby the battery is discharged from the crusher through the screen when it is crushed to a size that allows it to pass through the screen.
- the crushed battery After crushing, the crushed battery is lightly crushed into powder, and then sieved using a sieve with an appropriate opening.
- a sieve with an appropriate opening.
- the separability of the positive electrode active material adhering to the aluminum foil from the aluminum foil is improved.
- aluminum, copper and the like remain on the sieve, and a battery powder containing lithium, cobalt, nickel and the like from which aluminum, copper and the like have been removed to some extent can be obtained under the sieve.
- the preferred pH is 2 ⁇ pH ⁇ 13, more preferably 3 ⁇ pH ⁇ 12.
- the lithium contained in the vehicle-mounted battery pack waste is sufficiently changed to lithium carbonate. Therefore, in the lithium leaching step, lithium carbonate contained in the battery powder can be easily leached into either a weakly acidic solution, water or an alkaline solution.
- other metals that can be contained in the battery powder are almost insoluble in a weakly acidic solution and further insoluble in water or an alkaline solution. As a result, lithium contained in the battery powder can be effectively separated from other metals in the lithium leaching step.
- the type of acid is not limited as a weakly acidic solution to be brought into contact with the battery powder, but a sulfuric acid solution is common, and the alkaline solution to be brought into contact with the battery powder is not limited to any type of alkali, but sodium hydroxide or calcium hydroxide.
- lithium hydroxide may be used.
- the water that comes into contact with the battery powder is tap water, industrial water, distilled water, purified water, ion-exchanged water, pure water, ultrapure water, or the like.
- the pH of the lithium solution obtained after dissolving lithium increases due to the dissolution of lithium, and an acid such as sulfuric acid may be added to the above water so that the pH of the lithium solution becomes 7 to 10. can.
- the acid may be added at any time before, during and / or after the dissolution of lithium. It is preferable that the pH of the finally obtained lithium solution is 7 to 10. The reason is that if the pH of the lithium solution is less than 7, metals such as Co may be dissolved, and if it exceeds 10, aluminum may be dissolved.
- the liquid temperature at the time of contact between the battery powder and water can be 10 ° C to 60 ° C.
- the pulp concentration can be 50 g / L to 150 g / L. This pulp concentration means the ratio of the dry weight (g) of the battery powder to the amount (L) of water in contact with the battery powder.
- the leaching rate of lithium into water is preferably 30% to 70%, and even more preferably 45% to 55%.
- the lithium concentration of the lithium solution is preferably 1.0 g / L to 3.0 g / L, and even more preferably 1.5 g / L to 2.5 g / L.
- the lithium solution may contain sodium at 0 mg / L to 1000 mg / L and aluminum at 0 mg / L to 500 mg / L.
- the lithium solution obtained in the lithium leaching step can be recovered as lithium carbonate by performing treatments such as solvent extraction, neutralization, and carbonation.
- the lithium carbonate obtained thereby may be purified as necessary to lower the impurity grade.
- the residue remaining insoluble in water is taken out by solid-liquid separation, and then subjected to acid leaching, neutralization, solvent extraction and other treatments by a known method.
- Various metals such as cobalt and nickel contained in the solvent can be recovered.
- the battery powder obtained by crushing, crushing / pulverizing, and sieving was brought into contact with water, and two-stage lithium leaching was performed at a pulp concentration of 50 g / L to 90 g / L.
- the lithium leaching rate was as high as about 50% to 60%. From this, it is presumed that in Examples 1 to 3, the lithium in the vehicle-mounted battery pack waste was sufficiently converted to lithium carbonate by the heat treatment described above.
- Example 3 Since cobalt and nickel in the lithium ion secondary battery were sufficiently reduced from the oxide by the above heat treatment, all of Examples 1 to 3 had a relatively high extraction rate of cobalt and nickel. However, in Example 3, since the partial pressure of oxygen in the furnace was slightly high during the heat treatment, the aluminum in the lithium ion battery became brittle, which slightly deteriorated the separation of aluminum during sieving and removed it. However, the decrease in Co and Ni sampling rate was slight. As a result, in Table 1, the improvement in the Co and Ni sampling rate of Example 3 is set to " ⁇ ", and the more preferable oxygen concentration is 0.1% to 1.0%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
一の実施形態に係る電池廃棄物の熱処理方法では、電池廃棄物を配置した熱処理炉内で、酸素と、窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種とを含む雰囲気ガスを流して、炉内酸素分圧を調整しながら、電池廃棄物を加熱する熱処理工程を行う。ここでは、電池廃棄物として、外装をなすケースと、ケースにより周囲が取り囲まれたバッテリーとを備える車載用電池パック廃棄物であって、リチウムを含むものを対象とすることが好適である。
電池廃棄物としては、車載用もしくは民生用等の電池の廃棄物を対象とすることができる。この実施形態では、電池廃棄物は、一例として、ハイブリッド自動車や燃料電池自動車、電気自動車等の車両に搭載された車載用電池パックの廃棄物としている。より具体的には、車両の廃車や車載用電池パックの交換もしくは製造不良またはその他の理由によって廃棄された車載用電池パック廃棄物であり、このような車載用電池パック廃棄物を対象とすることにより、資源の有効活用を図ることができる。但し、電子機器もしくは装置等に用いられた電池の廃棄物を対象としてもよい。
車載用電池パックは、それを搭載する車両のスペース上の制約等に応じて様々な形状のものが存在するが、たとえば、平面視でほぼ長方形をなす直方体状等の、一方向に長い縦長の外形を有するものがある。
上述したような車載用電池パック廃棄物は、周囲が金属製等のケースにより保護された堅固な構造を有することから、これを解体することは容易ではない。また解体した場合、残留電圧による感電の危険性がある。
そのため、熱処理工程では、車載用電池パック廃棄物を解体せずに、バッテリー等がケースにより取り囲まれた構造を維持した状態で、これに加熱処理を施す熱処理工程を行う。それにより、解体作業に要する時間を削減することができる。また、たとえば所定の液体に浸漬すること等による車載用電池パック廃棄物の放電を行わなくても、この熱処理では感電のおそれがない。
なお、加熱時の炉内酸素分圧を1×10-2atm以下としたときは、電池廃棄物中のアルミニウムの脆化を抑制することができる。熱処理時にアルミニウムが脆化すると、後述する篩別の際にアルミニウムの分離性が悪化することが懸念される。
また、上記の最高到達温度を保持する時間は、4時間~8時間とすることが好ましい。その後の冷却は自然冷却でもよいが、たとえば、水冷もしくは水冷ジャケットを用いることや、不活性ガスを大量に流すこと等による強制冷却を行った場合は、設備を小型化できるという利点がある。
上述した熱処理工程の後、必要に応じて、破砕工程、解砕・粉化工程および、その後の篩別工程を行うことができる。
破砕は、車載用電池パック廃棄物のケースからバッテリーを取り出し、そのバッテリーの筐体を破壊するとともに、正極活物質が塗布されたアルミニウム箔から正極活物質を選択的に分離させるために行う。ここでは、種々の公知の装置ないし機器を用いることができるが、その具体例としては、車載用電池パック廃棄物ないしバッテリーを切断しながら衝撃を加えて破砕することのできる衝撃式の粉砕機、たとえば、サンプルミル、ハンマーミル、ピンミル、ウィングミル、トルネードミル、ハンマークラッシャ等を挙げることができる。なお、粉砕機の出口にはスクリーンを設置することができ、それにより、バッテリーは、スクリーンを通過できる程度の大きさにまで粉砕されると粉砕機よりスクリーンを通じて排出される。
上述した熱処理工程、必要に応じて破砕・篩別工程を経て得られた電池粉末は、リチウム溶解工程で弱酸性溶液、水又はアルカリ性溶液のいずれか、と接触させ、電池粉末に含まれるリチウムを溶液に溶解させる。好ましいpHは、2<pH<13、より好ましくは3<pH<12である。
その理由は、リチウム溶解液のpHが7未満になると、Co等の金属が溶けだすおそれがあり、10を超えると、アルミニウムが溶けだすおそれがあるからである。
リチウム溶解液のリチウム濃度は、1.0g/L~3.0g/Lであることが好ましく、特に1.5g/L~2.5g/Lであることがより一層好ましい。なお、リチウム溶解液には、ナトリウムが0mg/L~1000mg/L、アルミニウムが0mg/L~500mg/Lで含まれることがある。
Claims (6)
- リチウムが含まれる電池廃棄物を熱処理する方法であって、
前記電池廃棄物を配置した熱処理炉内で、酸素と、窒素、二酸化炭素及び水蒸気からなる群から選択される少なくとも一種とを含む雰囲気ガスを流して、炉内酸素分圧を調整しながら、前記電池廃棄物を加熱する、電池廃棄物の熱処理方法。 - 加熱時の炉内酸素分圧を、5×10-4atm~4×10-2atmの範囲内に維持する、請求項1に記載の電池廃棄物の熱処理方法。
- 前記熱処理炉内に導入する際の雰囲気ガスの酸素濃度を、0.05体積%~4.00体積%とする、請求項1又は2に記載の電池廃棄物の熱処理方法。
- 加熱時の前記電池廃棄物の最高到達温度を500℃~650℃とする、請求項1~3のいずれか一項に記載の電池廃棄物の熱処理方法。
- 前記電池廃棄物が、外装をなすケース及び、前記ケースにより周囲が取り囲まれたバッテリーを備える車載用電池パック廃棄物である、請求項1~4のいずれか一項に記載の電池廃棄物の熱処理方法。
- リチウムが含まれる電池廃棄物から、リチウムを回収する方法であって、
請求項1~5のいずれか一項に記載の電池廃棄物の熱処理方法により、電池廃棄物を熱処理する熱処理工程と、熱処理工程後の電池廃棄物から得られる電池粉末中のリチウムを、弱酸性溶液、水又はアルカリ性溶液のいずれかで浸出させるリチウム浸出工程とを含む、リチウム回収方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3172851A CA3172851A1 (en) | 2020-03-31 | 2021-03-30 | Heat treatment method for battery waste and lithium recovery method |
EP21779075.7A EP4129508A4 (en) | 2020-03-31 | 2021-03-30 | HEAT TREATMENT PROCESS FOR BATTERY WASTE AND LITHIUM RECOVERY PROCESS |
US17/907,917 US20230138120A1 (en) | 2020-03-31 | 2021-03-30 | Heat treatment method for battery waste and lithium recovery method |
KR1020227015785A KR20220078690A (ko) | 2020-03-31 | 2021-03-30 | 전지 폐기물의 열처리 방법, 및 리튬 회수 방법 |
CN202180006459.0A CN114845820B (zh) | 2020-03-31 | 2021-03-30 | 电池废弃物的热处理方法及锂回收方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-064927 | 2020-03-31 | ||
JP2020064927A JP7402733B2 (ja) | 2020-03-31 | 2020-03-31 | 電池廃棄物の熱処理方法及び、リチウム回収方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021201055A1 true WO2021201055A1 (ja) | 2021-10-07 |
Family
ID=77927633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/013724 WO2021201055A1 (ja) | 2020-03-31 | 2021-03-30 | 電池廃棄物の熱処理方法及び、リチウム回収方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230138120A1 (ja) |
EP (1) | EP4129508A4 (ja) |
JP (1) | JP7402733B2 (ja) |
KR (1) | KR20220078690A (ja) |
CN (1) | CN114845820B (ja) |
CA (1) | CA3172851A1 (ja) |
TW (1) | TWI757135B (ja) |
WO (1) | WO2021201055A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113909273A (zh) * | 2021-12-07 | 2022-01-11 | 中国科学院过程工程研究所 | 一种废旧锂电池极片回收方法及应用 |
CN114632788A (zh) * | 2022-02-10 | 2022-06-17 | 太和县大华能源科技有限公司 | 一种环保型废电池回收研磨装置 |
CN114850184A (zh) * | 2022-04-27 | 2022-08-05 | 娄底职业技术学院 | 一种安全的废旧动力电池环保回收用自动拆解系统及其拆解方法 |
WO2022209421A1 (ja) * | 2021-03-30 | 2022-10-06 | Jx金属株式会社 | 電池廃棄物の処理方法 |
WO2024094726A1 (en) | 2022-11-03 | 2024-05-10 | Basf Se | Aluminium composite material and process of preparing the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3641036B1 (de) * | 2018-10-18 | 2023-08-02 | BHS-Sonthofen GmbH | Anlage zum recyceln gebrauchter batterien |
KR20220136991A (ko) * | 2021-03-30 | 2022-10-11 | 제이엑스금속주식회사 | 전지 폐기물의 처리 방법 |
WO2023149017A1 (ja) * | 2022-02-01 | 2023-08-10 | Jx金属株式会社 | リチウムイオン電池廃棄物の熱処理方法 |
WO2024004356A1 (ja) * | 2022-06-30 | 2024-01-04 | Jx金属株式会社 | リチウムイオン電池廃棄物の熱処理方法 |
WO2024107207A1 (en) * | 2022-11-18 | 2024-05-23 | Ascend Elements, Inc. | Lithium recovery from lithium-ion batteries |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179190A (ja) | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | 車載用電池パック |
US20070141454A1 (en) | 2005-12-20 | 2007-06-21 | Panasonic Ev Energy Co., Ltd. | Battery pack |
JP4955995B2 (ja) | 2005-12-20 | 2012-06-20 | プライムアースEvエナジー株式会社 | 電池パック |
JP5464357B2 (ja) | 2010-03-23 | 2014-04-09 | 三菱自動車工業株式会社 | 車載用電池パック |
JP2016219402A (ja) * | 2015-05-15 | 2016-12-22 | Dowaエコシステム株式会社 | リチウムイオン二次電池からの有価物の回収方法 |
JP2019160429A (ja) * | 2018-03-07 | 2019-09-19 | Jx金属株式会社 | リチウム回収方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH492961A (de) | 1969-02-28 | 1970-06-30 | Wirth Gallo & Co | Elektrischer Massen- oder Kraftmesser |
DE19924707A1 (de) | 1999-05-28 | 2000-11-30 | Merck Patent Gmbh | Verfahren zum Recycling von Kathodenmassen gebrauchter Lithiumbatterien |
JP5535717B2 (ja) | 2009-09-30 | 2014-07-02 | Dowaエコシステム株式会社 | リチウムの回収方法 |
JP2012112027A (ja) | 2010-11-25 | 2012-06-14 | Kangen Yoyu Gijutsu Kenkyusho:Kk | リチウム並びにコバルトやその他メタルの回収方法 |
JP5697251B2 (ja) | 2011-07-04 | 2015-04-08 | 太平洋セメント株式会社 | 有価物回収装置 |
HUE041401T2 (hu) * | 2014-08-14 | 2019-05-28 | Umicore Nv | Lítium-ion akkumulátorok olvasztásos újrahasznosítási folyamata |
JP2017084681A (ja) | 2015-10-30 | 2017-05-18 | 住友金属鉱山株式会社 | 使用済みリチウムイオン二次電池の正極材料の回収方法 |
JP6840512B2 (ja) | 2016-11-09 | 2021-03-10 | Dowaエコシステム株式会社 | リチウムイオン二次電池からの有価物の回収方法 |
CN106684487B (zh) * | 2017-02-28 | 2019-07-02 | 中南大学 | 一种废旧锂离子电池电解液回收方法 |
JP2019034254A (ja) | 2017-08-10 | 2019-03-07 | 太平洋セメント株式会社 | 廃リチウムイオン電池の処理装置及び処理方法 |
JP7122093B2 (ja) * | 2017-08-23 | 2022-08-19 | 住友大阪セメント株式会社 | 使用済みリチウムイオン電池からの有価物回収方法 |
JP6948066B2 (ja) | 2018-01-31 | 2021-10-13 | 国立大学法人山口大学 | チタン酸リチウムを含む廃リチウムイオン電池から回収した再生負極活物質およびその回収方法 |
JP7040196B2 (ja) * | 2018-03-22 | 2022-03-23 | 三菱マテリアル株式会社 | コバルトとアルミニウムの分離方法 |
CN108666645B (zh) * | 2018-06-26 | 2023-05-26 | 中国科学院生态环境研究中心 | 一种废旧锂离子动力电池电极材料的绿色剥离方法 |
-
2020
- 2020-03-31 JP JP2020064927A patent/JP7402733B2/ja active Active
-
2021
- 2021-03-30 CN CN202180006459.0A patent/CN114845820B/zh active Active
- 2021-03-30 KR KR1020227015785A patent/KR20220078690A/ko unknown
- 2021-03-30 WO PCT/JP2021/013724 patent/WO2021201055A1/ja unknown
- 2021-03-30 TW TW110111592A patent/TWI757135B/zh active
- 2021-03-30 US US17/907,917 patent/US20230138120A1/en active Pending
- 2021-03-30 EP EP21779075.7A patent/EP4129508A4/en active Pending
- 2021-03-30 CA CA3172851A patent/CA3172851A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179190A (ja) | 2004-12-20 | 2006-07-06 | Toyota Motor Corp | 車載用電池パック |
US20070141454A1 (en) | 2005-12-20 | 2007-06-21 | Panasonic Ev Energy Co., Ltd. | Battery pack |
JP4917307B2 (ja) | 2005-12-20 | 2012-04-18 | プライムアースEvエナジー株式会社 | 電池パック |
JP4955995B2 (ja) | 2005-12-20 | 2012-06-20 | プライムアースEvエナジー株式会社 | 電池パック |
JP5464357B2 (ja) | 2010-03-23 | 2014-04-09 | 三菱自動車工業株式会社 | 車載用電池パック |
JP2016219402A (ja) * | 2015-05-15 | 2016-12-22 | Dowaエコシステム株式会社 | リチウムイオン二次電池からの有価物の回収方法 |
JP2019160429A (ja) * | 2018-03-07 | 2019-09-19 | Jx金属株式会社 | リチウム回収方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4129508A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022209421A1 (ja) * | 2021-03-30 | 2022-10-06 | Jx金属株式会社 | 電池廃棄物の処理方法 |
CN113909273A (zh) * | 2021-12-07 | 2022-01-11 | 中国科学院过程工程研究所 | 一种废旧锂电池极片回收方法及应用 |
CN113909273B (zh) * | 2021-12-07 | 2022-06-28 | 中国科学院过程工程研究所 | 一种废旧锂电池极片回收方法及应用 |
CN114632788A (zh) * | 2022-02-10 | 2022-06-17 | 太和县大华能源科技有限公司 | 一种环保型废电池回收研磨装置 |
CN114850184A (zh) * | 2022-04-27 | 2022-08-05 | 娄底职业技术学院 | 一种安全的废旧动力电池环保回收用自动拆解系统及其拆解方法 |
WO2024094726A1 (en) | 2022-11-03 | 2024-05-10 | Basf Se | Aluminium composite material and process of preparing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20220078690A (ko) | 2022-06-10 |
EP4129508A1 (en) | 2023-02-08 |
CA3172851A1 (en) | 2021-10-07 |
JP7402733B2 (ja) | 2023-12-21 |
CN114845820A (zh) | 2022-08-02 |
TW202142702A (zh) | 2021-11-16 |
CN114845820B (zh) | 2024-10-15 |
EP4129508A4 (en) | 2024-04-24 |
JP2021163645A (ja) | 2021-10-11 |
US20230138120A1 (en) | 2023-05-04 |
TWI757135B (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021201055A1 (ja) | 電池廃棄物の熱処理方法及び、リチウム回収方法 | |
JP2021512215A (ja) | リチウム電池をリサイクルする方法 | |
CN110719963B (zh) | 锂离子电池废料的处理方法 | |
JP7271833B2 (ja) | リチウムの回収方法 | |
US20220396852A1 (en) | Method for separating lithium | |
CN117561631A (zh) | 再循环全固态电池(assb)和阳极回收 | |
JP7286085B2 (ja) | リチウムイオン電池からのリチウムの回収方法 | |
EP4178006B1 (en) | Method for treating battery waste | |
WO2022209421A1 (ja) | 電池廃棄物の処理方法 | |
JP2023158012A (ja) | 廃リチウムイオン電池の処理方法 | |
EP4119245A1 (en) | Method for recovering lithium and method for processing lithium ion secondary battery | |
JP7349592B1 (ja) | 金属浸出方法及び金属回収方法 | |
WO2023188489A1 (ja) | 金属浸出方法及び金属回収方法 | |
WO2023105903A1 (ja) | 金属浸出方法 | |
WO2024048248A1 (ja) | 有価金属の回収方法 | |
JP7234485B2 (ja) | リチウムイオン電池のリサイクル方法 | |
Azizitorghabeh et al. | Methods and Technologies for Recycling Batteries | |
KR20240156391A (ko) | 금속을 침출하는 방법 및 금속을 회수하는 방법 | |
Bertin et al. | 10.1 Nickel–Cadmium (NiCd) Batteries | |
CN116194604A (zh) | 利用正极废料的活性材料再利用方法 | |
CN115668583A (zh) | 使用正极废料再利用活性材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21779075 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227015785 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3172851 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021779075 Country of ref document: EP Effective date: 20221031 |