WO2021169528A1 - 一种用于生产碳化硅晶体的原料及其制备方法与应用 - Google Patents

一种用于生产碳化硅晶体的原料及其制备方法与应用 Download PDF

Info

Publication number
WO2021169528A1
WO2021169528A1 PCT/CN2020/137901 CN2020137901W WO2021169528A1 WO 2021169528 A1 WO2021169528 A1 WO 2021169528A1 CN 2020137901 W CN2020137901 W CN 2020137901W WO 2021169528 A1 WO2021169528 A1 WO 2021169528A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
preparation
hollow spherical
raw material
hydrothermal reaction
Prior art date
Application number
PCT/CN2020/137901
Other languages
English (en)
French (fr)
Inventor
张九阳
王雅儒
张红岩
王秀平
黄长航
周国顺
Original Assignee
山东天岳先进科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东天岳先进科技股份有限公司 filed Critical 山东天岳先进科技股份有限公司
Publication of WO2021169528A1 publication Critical patent/WO2021169528A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0251Compounds of Si, Ge, Sn, Pb
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the invention relates to the field of material technology, in particular to a raw material for producing silicon carbide crystals and a preparation method and application thereof.
  • SiC materials have received widespread attention due to their excellent semi-insulating properties, especially for high-power semiconductor devices with special needs.
  • Silicon carbide has become a potential material for these devices due to its high temperature, high frequency, and high power characteristics.
  • the PVT method is mostly used for the preparation of silicon carbide crystals, that is, the silicon carbide powder is sublimated at a high temperature by the method of physical vapor transmission, and then the axial temperature gradient in the growth furnace is used to provide transmission power, so that the vapor phase of silicon carbide is transmitted upwards in the furnace. At the upper end, the condensation crystallizes to form silicon carbide crystals.
  • This crystal growth method has disadvantages such as uneven heating of the silicon carbide powder and different sublimation rates, which leads to the degradation of the synthesis quality of the silicon carbide crystal, and the insufficient utilization of the silicon carbide powder.
  • the purpose of the present invention is to provide a raw material for producing silicon carbide crystals and a preparation method and application thereof.
  • the inventor of the present application found that making the original silicon carbide powder material into a hollow spherical silicon carbide material can increase its specific surface area and porosity, thereby improving the uniformity of heating of the silicon carbide powder material and the consistency of the sublimation rate, and improving the carbonization The quality of silicon crystals and the utilization rate of silicon carbide powder.
  • the object of the present invention is to provide a raw material for producing silicon carbide crystals, the raw material being hollow spherical silicon carbide.
  • the hollow spherical silicon carbide has a particle size of 3000 nm or less, preferably, 1000 nm or less, and more preferably, 500 nm or less;
  • the wall thickness of the hollow spherical silicon carbide is 200 nm or less, preferably, 100 nm or less, more preferably, 50 nm or less;
  • the spherical wall of the hollow spherical silicon carbide contains at least one through hole.
  • the formation mechanism of the through hole is: the carbon nanosphere template is formed after glucose is carbonized, and the carbon nanosphere generates CO 2 during the calcination process and escapes to form the spherical wall channel, that is, the through hole.
  • the raw materials are obtained by any one of the following preparation methods of hollow spherical silicon carbide materials.
  • the existing hollow spherical silicon carbide materials in the prior art are mostly used for other purposes, and the preparation method is complicated, requires more reagents, and introduces more impurities into the silicon carbide raw materials, and cannot be directly used for the preparation of silicon carbide crystals.
  • the present invention also provides a method for preparing hollow spherical silicon carbide material, the method includes the following steps:
  • the reagent A includes any one or a combination of hexamethylenetetramine, urea, sulfonated polystyrene, and tartaric acid, preferably hexamethylenetetramine.
  • step S1 the carbon ball template is obtained by the first hydrothermal reaction of an aqueous solution of an organic carbon source
  • the concentration of the organic carbon source in the aqueous solution of the organic carbon source is 300-50 g/L, more preferably, 200-150 g/L; the initial solution concentration of the organic carbon source such as glucose and the carbon ball template There is a positive correlation between the diameters;
  • the average particle diameter of the carbon sphere template is 3000-500nm, more preferably, 1000-500nm;
  • the temperature of the first hydrothermal reaction is 150-250°C, more preferably, 160-200°C; the pressure of the first hydrothermal reaction is 10-30 MPa, more preferably, 20-25 MPa; The time for a hydrothermal reaction is 5-20h, more preferably, 10-14h;
  • the organic carbon source of the reactant is a series of chemical reactions carried out under high temperature and high pressure using water as a medium.
  • the pressure in the reactor increases, so that the water solvent reaches a supercritical state.
  • the water is in a supercritical state, chemical reactions that cannot normally be completed in water can be realized, and at this time, the water also has a certain degree of oxidizing properties to promote the progress of the reaction.
  • the first hydrothermal reaction is carried out in a closed autoclave; after the reaction is completed, the dark brown solid is collected, and the dark brown solid is washed and dried to obtain the carbon ball template powder; the washing is Wash several times with water and absolute ethanol.
  • the fineness of the silicon carbide powder material is 50-200 mesh; preferably, 100-150 mesh; more preferably, 120-160 mesh.
  • step S1 the molar ratio of the carbon ball template and the silicon carbide powder material is (5-20):1; preferably, (8-15):1; more preferably, (10-12 ): 1; the greater the molar ratio of the carbon ball template and the silicon carbide powder material, the thinner the spherical wall of the hollow spherical silicon carbide material formed;
  • the dosage ratio of the carbon ball template to the water is (2-10) g:1L; preferably, (4-6)g:1L; more preferably, 5g:1L.
  • step S2 In the above method, in step S2:
  • the molar ratio of the reagent A to the carbon ball template in the first mixture is (0.1-0.01):1; preferably, (0.1-0.05):1; more preferably, (0.08-0.06):1;
  • the reagent A such as hexamethylene tetramine mainly affects the morphology of the synthesized carbon nanospheres.
  • the hexamethylene tetramine used in the present invention is a buffering agent that can slowly release hydroxide radicals and avoid a large amount of SiC is adsorbed on the spherical surface together to reduce the agglomeration of nanoparticles, so that a SiC layer surrounding the carbon spherical template can be obtained. Therefore, hexamethylenetetramine plays a role in providing SiC weakly alkaline adsorption environmental conditions and avoiding nanoparticle agglomeration as a dispersant in the present invention.
  • step S2 the temperature of the second hydrothermal reaction is 150-350°C, preferably 180-220°C, more preferably 200°C; the time of the second hydrothermal reaction is 5-15h, preferably 10-14h, more preferably 12h;
  • the second hydrothermal reaction is carried out in a reaction kettle, and the inner lining of the reaction kettle is made of stainless steel or polytetrafluoroethylene.
  • the inner lining of the reaction kettle is made of polytetrafluoroethylene.
  • the hydrothermal resistance temperature of the reaction kettle is 280°C. It is lower than 230°C, so the more preferred 200°C is currently used.
  • the high-temperature calcination temperature is 300-800°C, preferably 350-600°C, more preferably 400-500°C;
  • the high-temperature calcination time is 2-15h, preferably 4-10h, More preferably 5-7h;
  • Calcining in the air at 400-500°C, such as 450°C can oxidize the coated carbon ball template into CO 2 and escape in the air. Because SiC has good chemical and thermal stability, calcination at 400-500°C, such as 450°C, will not have any effect on its structure, phase composition, crystallinity and crystal form. Therefore, the calcination causes the nanosphere particles to become hollow nanosphere particles, and the escape of CO 2 gas makes the nanospheres have good porosity. Therefore, the SiC powder with the microscopic morphology of the hollow spherical silicon carbide material can be made to have better heating uniformity in the subsequent SiC crystal growth, making it more uniform and stable than traditional powders for thermal sublimation.
  • the present invention protects any of the above-mentioned raw materials for the production of silicon carbide crystals or the hollow spherical silicon carbide material prepared by the method in the preparation of silicon carbide crystals, silicon carbide ceramic products, adsorbents, carriers such as compound carriers, and / Or application in drug delivery vehicles.
  • the present invention also provides a method for producing silicon carbide crystals, which includes the step of using the following materials as raw materials to grow silicon carbide crystals using the PVT method:
  • the present invention optimizes the silicon carbide powder material by hydrothermal method, using glucose as a template agent.
  • the hydrothermal reaction can further refine the silicon carbide particles, and then they are stacked and adsorbed on the carbon ball template, thereby reducing the powder particle size.
  • the formation of hollow nano-spherical particles increases their specific surface area, thereby increasing the heating area, and ensuring the powder's full sublimation and uniformity of sublimation.
  • the invention is beneficial to increase the utilization rate of the silicon carbide synthetic powder in the production of silicon carbide crystals and improve the synthesis quality of the silicon carbide crystals.
  • Figure 1 is a schematic diagram of the preparation process of the hollow spherical silicon carbide material.
  • Figure 2 is a Raman scattering diagram of a hollow spherical silicon carbide material.
  • Fig. 3 is a nano-spherical micro-topography diagram of a carbon ball template, in which the particle diameters of the carbon ball templates in Figures a, b, and c are different.
  • Figure 4 is a nano-spherical micro-topography of the hollow spherical silicon carbide material.
  • Fig. 5 is a cross-sectional view of the nanosphere of Fig. 4.
  • the carbon ball template is prepared, SiC is coated on the outer layer of the carbon ball template by a hydrothermal method, and the carbon ball template is calcined at high temperature to remove the CO 2 generated by the carbon ball template, and finally a hollow spherical SiC material is obtained.
  • Embodiment 1 Hollow spherical silicon carbide material and preparation method thereof
  • step 3 pour the liquid after the reaction in step 2 into a centrifuge tube, purify it by centrifugation, collect the dark brown solid, and wash it several times alternately with water and absolute ethanol (the washing sequence is water-absolute ethanol-water-absolute ethanol ).
  • Raman scattering is performed on the hollow spherical silicon carbide material (powder) in step 2, and the result is shown in FIG. 2.
  • the results show that the Raman scattering pattern is the same as the 4H-SiC powder pattern before the hydrothermal reaction, and other impurity peak positions are not introduced, so other impurities are not introduced during the reaction.
  • the SEM microscopic morphology analysis of the carbon ball template in step one and the hollow spherical silicon carbide material in step two results: as shown in Figure 3a, b, and c, the average particle size of the carbon ball template is 1000, 2000, 3000nm; As shown in Figure 4, the hollow spherical silicon carbide material has a particle size of 300-1000nm, and has formed a hollow spherical carbonization with through holes on the surface. It is 50nm.
  • Table 1 shows the effect of the molar ratio of different HMT:carbon ball templates on the size of hollow spherical silicon carbide materials.
  • Example 2 Using hollow spherical silicon carbide material PVT method to produce silicon carbide single crystal
  • Treatment 1 The hollow spherical silicon carbide material (powder) prepared in Example 1 is used as a raw material, put into a silicon carbide growth crucible, and a silicon carbide single crystal is produced according to a conventional PVT method.
  • Treatment 2 Use the synthesized silicon carbide powder (non-hollow spherical silicon carbide) as a raw material (the amount is the same as that of Treatment 1), put it into a silicon carbide growth crucible, and produce silicon carbide single crystals in the same way as Treatment 1.
  • the utilization rate of silicon carbide raw materials can be significantly improved and significantly reduced Defects of silicon carbide single crystals such as the number of microtubes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于生产碳化硅晶体的原料及其制备方法与应用,所述原料为中空球状碳化硅粉料,所述方法通过水热法,利用有机碳源作为模板剂对碳化硅粉料进行优化,水热反应可以使碳化硅颗粒进一步细化,随后堆叠吸附在碳球模板上,从而减小粉料颗粒尺寸,通过形成中空纳米球状颗粒增大其比表面积,进而增大受热面积,保证粉体充分升华和升华的均匀性。有利于提高生产碳化硅晶体中碳化硅合成粉料的利用率,提高碳化硅晶体的合成质量。

Description

一种用于生产碳化硅晶体的原料及其制备方法与应用 技术领域
本发明涉及材料工艺领域,具体涉及一种用于生产碳化硅晶体的原料及其制备方法与应用。
背景技术
SiC材料由于具有优良的半绝缘特性而受到广泛关注,特别是对于具有特殊需求的大功率半导体器件,碳化硅因所具有的高温、高频、大功率等特点成为这些器件选择的潜力材料。
目前,碳化硅晶体制备多采用PVT法,即通过物理气相传输的方法将碳化硅粉料进行高温升华,随后利用生长炉中的轴向温度梯度提供传输动力,使碳化硅气相向上传输,在炉膛上端冷凝处凝华结晶形成碳化硅晶体。该晶体生长方式存在碳化硅粉料受热不均、升华速率不同等弊端,导致碳化硅晶体的合成质量降低,碳化硅粉料的利用不充分等问题。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于生产碳化硅晶体的原料及其制备方法与应用。
本申请发明人发现,将原有的碳化硅粉料制成中空球状碳化硅材料,可以提高其比表面积和孔隙率,从而可以提高碳化硅粉料受热均匀性和升华速率的一致性,提高碳化硅晶体的质量及碳化硅粉料的利用率。
一方面,本发明的目的是提供一种用于生产碳化硅晶体的原料,所述原料为中空球状碳化硅。
在上述原料中,所述中空球状碳化硅的粒径为3000nm以下,优选,1000nm以下,更优选,500nm以下;
和/或,所述中空球状碳化硅的球壁厚度为200nm以下,优选,100nm以下,更优选,50nm以下;
和/或,所述中空球状碳化硅的球壁上含有至少一个通孔。该通孔的形成机理为:葡萄糖碳化后形成碳纳米球模板剂,碳纳米球在煅烧过程中生成CO 2逸出形成球壁通道即所述通孔。
在上述原料中,一种优选的实施方式是,所述原料由以下任一所述中空球状碳化硅材料的制备方法得到。
现有技术已有的中空球状碳化硅材料多用于其它用途,且制备方法复杂,需要用到的试剂较多,对碳化硅原料引入的杂质也较多,无法直接用于碳化硅晶体制备。
另一方面,本发明还提供了一种中空球状碳化硅材料的制备方法,所述方法包括如下步骤:
S1、将碳球模板和碳化硅粉料分散于水中,得到第一混合物;
S2、向所述第一混合物中加入试剂A混合均匀后进行第二水热反应,使所述碳球模板的外表面形成碳化硅粉料层,得到第二混合物;
S3、收集所述第二混合物中的沉积物;
S4、将所述沉积物进行高温煅烧以去除所述碳球模板,得到所述中空球状碳化硅材料;
所述试剂A包括六亚甲基四胺、尿素、磺化聚苯乙烯、酒石酸中的任一种或几种的组合,优选六亚甲基四胺。
在上述方法中,一种优选的实施方式为,步骤S1中,所述碳球模板为将有机碳源的水溶液通过第一水热反应得到;
优选的,所述有机碳源的水溶液中所述有机碳源的浓度为300-50g/L,更优选,200-150g/L;有机碳源如葡萄糖的起始溶液浓度与所述碳球模板的直径之间成正相关关系;
优选的,所述有机碳源包括葡萄糖、蔗糖、麦芽糖、果糖、淀粉、环糊精、树脂中的一种或几种组合;更优选的,所述有机碳源包括葡萄糖;有机碳源如葡萄糖水热形成的碳球模板表面存在-OH和-C=O键,使碳球模板表面不需要其它修饰就可以很好地与金属离子或其他含碳化合物成键;
优选的,所述碳球模板的平均粒径为3000-500nm,更优选,1000-500nm;
优选的,所述第一水热反应的温度为150-250℃,更优选,160-200℃;所述第一水热反应的压力为10-30MPa,更优选,20-25MPa;所述第一水热反应的时间为5-20h,更优选,10-14h;
所述第一水热反应使反应物有机碳源以水为媒介在高温高压下进行的一系列化学反应。在密闭的反应釜中,随着反应温度的升高,反应釜中压力随之增大,从而使水溶剂达到超临界状态。当水处于超临界状态时,正常在水中无法完成的化学反应得以实现,且此时水亦具有一定的氧化性从而促进反应的进行。
具体实施时,所述第一水热反应在密闭的高压釜中进行;反应完成后收集黑褐色固体,对所述黑褐色固体进行洗涤和干燥即得到所述碳球模板粉末;所述洗涤为用水和无水乙醇洗涤数次。
在上述方法中,步骤S1中,所述碳化硅粉料的细度为50-200目;优选,100-150目;更优选,120-160目。
在上述方法中,步骤S1中,所述碳球模板和所述碳化硅粉料的摩尔比为(5-20):1;优选,(8-15):1;更优选,(10-12):1;所述 碳球模板和所述碳化硅粉料的摩尔比越大,形成的所述中空球状碳化硅材料的球壁越薄;
所述碳球模板与所述水的用量比为(2-10)g:1L;优选,(4-6)g:1L;更优选,5g:1L。
在上述方法中,步骤S2中:
所述试剂A与所述第一混合物中所述碳球模板的摩尔比为(0.1-0.01):1;优选,(0.1-0.05):1;更优选,(0.08-0.06):1;
所述试剂A如六亚甲基四胺主要对合成碳纳米球的形貌有所影响,本发明采用的六亚甲基四胺是一种缓冲剂,可以缓慢的释放氢氧根,避免大量SiC一起吸附到球面上,减少纳米颗粒的团聚现象,从而可以获得围绕碳球模板的SiC层。因此,六亚甲基四胺在本发明中起到了提供SiC弱碱性吸附环境条件与避免纳米颗粒团聚分散剂的作用。
在上述方法中,步骤S2中,所述第二水热反应的温度为150-350℃,优选180-220℃,更优选200℃;所述第二水热反应的时间为5-15h,优选10-14h,更优选12h;
所述第二水热反应在反应釜中进行,反应釜内衬采用不锈钢或聚四氟乙烯进行,其中,反应釜内衬为聚四氟乙烯的水热耐受温度为280℃,其安全温度为低于230℃,因此目前采用更优选的200℃。
在上述方法中,步骤S4中,所述高温煅烧的温度为300-800℃,优选350-600℃,更优选400-500℃;所述高温煅烧的时间为2-15h,优选4-10h,更优选5-7h;
在空气中进行400-500℃如450℃的煅烧,可使被包裹的碳球模板在空气中被氧化成CO 2逸出。SiC由于其具有良好的化学稳定性和热稳定性,在400-500℃如450℃下煅烧不会对其结构及相成分、结 晶性及晶型产生任何影响。因此,通过煅烧使纳米球颗粒变成中空纳米球颗粒,且CO 2气体的逸出使得纳米球具有良好的孔隙率。因此,可使得具有中空球状碳化硅材料微观形态的SiC粉料在后续SiC晶体生长中具有较好的受热均匀性,使其较传统粉体受热升华更加均匀稳定。
本发明保护以上任一所述用于生产碳化硅晶体的原料或所述方法制备得到的所述中空球状碳化硅材料在制备碳化硅晶体、碳化硅陶瓷制品、吸附剂、载体如化合物载体、和/或药物输送载体中的应用。
本发明还提供了一种碳化硅晶体的生产方法,包括以如下物质为原料利用PVT法进行碳化硅长晶的步骤:
以上任一所述用于生产碳化硅晶体的原料、或所述方法制备得到的所述中空球状碳化硅材料。
有益效果:
本发明通过水热法,利用葡萄糖作为模板剂对碳化硅粉料进行优化,水热反应可以使碳化硅颗粒进一步细化,随后堆叠吸附在碳球模板上,从而减小粉料颗粒尺寸,通过形成中空纳米球状颗粒增大其比表面积,进而增大受热面积,保证粉体充分升华和升华的均匀性。本发明有利于生产碳化硅晶体中提高碳化硅合成粉料的利用率,提高碳化硅晶体的合成质量。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为中空球状碳化硅材料的制备工艺原理图。
图2为中空球状碳化硅材料的拉曼散射图。
图3为碳球模板的纳米球状微观形貌图,其中图a、b、c中碳球模板的粒径不同。
图4为中空球状碳化硅材料的纳米球状微观形貌图。
图5为图4纳米球的剖面图。
具体实施方式
如图1所示,本申请中空球状碳化硅材料的制备工艺原理为:
制备碳球模板,通过水热法将SiC包覆于碳球模板外层,高温煅烧使碳球模板生成CO 2被去除,最后得到中空球状SiC材料。
具体的制备工艺及效果如下:
实施例1、中空球状碳化硅材料及其制备方法
一、碳球模板的制备:
1、将10g葡萄糖放入60mL高纯水中,采用磁力搅拌使葡萄糖充分溶解,形成透明溶液。
2、将透明溶液转移至高压釜中,将高压釜放入电热恒温干燥箱中,在180℃、常压条件下进行第一水热反应12h。
3、将经过步骤2反应后的液体倒入离心管,通过离心分离提纯,收集黑褐色固体,分别用水和无水乙醇交替洗涤数次(洗涤顺序为水-无水乙醇-水-无水乙醇)。
4、将洗涤后的褐色固体放入恒温干燥箱,在80℃下烘干8小时,得到黑色固体,研磨后得到葡萄糖水热碳化后的碳球模板粉末。
二、粉料优化工艺:
1、将合成的碳化硅粉料进行研磨,研磨过程保证粉料研磨中不引入其他杂质元素。通过研磨将碳化硅粉料进行颗粒细化,从而便于后续进行水热优化。研磨后,碳化硅粉料的细度为150目。
2、随后将碳球模板粉体0.4g与研磨后的碳化硅粉料0.14g(摩尔比10:1)进行机械搅拌,待其混合均匀后置于一定量(80ml)的高纯水中进行磁力搅拌和超声分散。随后按表1所示不同的HMT:碳球模板的摩尔比加入HMT继续搅拌一定时间使其溶解分散。
3、将分散均匀的悬浊液转入反应釜中进行水热反应,反应釜内衬选用聚四氟乙烯以保证水热过程中不引入其他杂质元素。将反应釜放入恒温箱中进行200℃,12h水热反应。
4、水热结束后将沉积物进行离心收集,分别用蒸馏水和乙醇进行交替洗涤。
5、将离心后的黑褐色固体放入恒温干燥箱中,80℃下干燥5h,随后进行机械研磨。
6、将研磨后的粉体置于空气中进行450℃煅烧6h,得到淡黄色粉末,即中空球状碳化硅材料(粉料)。
三、表征:
对步骤二中的中空球状碳化硅材料(粉料)进行拉曼散射,结果如图2所示。结果表明:该拉曼散射图谱与水热反应前4H-SiC粉体图谱相同,并未引入其他杂峰峰位,因此该反应过程中未引入其他杂质。
对步骤一中的碳球模板、和步骤二中的中空球状碳化硅材料进行SEM微观形貌分析,结果:如图3a、b、c所示,碳球模板的平均粒径为1000、2000、3000nm;如图4所示,中空球状碳化硅材料的粒径为300-1000nm,且已形成中空球状碳化,表面具有通孔,其切面如图5所示,中空球状碳化硅材料的球壁厚度为50nm。
不同HMT:碳球模板的摩尔比对中空球状碳化硅材料尺寸的影响结果如表1所示。
表1
Figure PCTCN2020137901-appb-000001
表1结果表明:HMT的添加量影响中空球状碳化硅材料的粒径,HMT:碳球模板的摩尔比越大,中空球状碳化硅材料的粒径越大,球壁厚度越大。
实施例2、利用中空球状碳化硅材料PVT法生产碳化硅单晶
处理1:将实施例1制备得到的中空球状碳化硅材料(粉料)做为原料,放入碳化硅长晶坩埚内,按常规PVT法生产碳化硅单晶。
处理2:将合成的碳化硅粉料(非中空球状碳化硅)做为原料(用量与处理1相同),放入碳化硅长晶坩埚内,按与处理1相同的方法生产碳化硅单晶。
对碳化硅单晶缺陷-微管数量及碳化硅原料利用率进行检测,结果如表2所示。
表2、不同碳化硅原料对碳化硅单晶生长的影响
Figure PCTCN2020137901-appb-000002
Figure PCTCN2020137901-appb-000003
表2结果表明:与碳化硅粉料(非中空球状碳化硅)作为PVT法生产碳化硅单晶的原料相比,使用中空球状碳化硅材料作为原料,随着中空球状碳化硅粒径的减小,其体积减小,数量增加,从而使其作为原料用于生长碳化硅单晶时利用率更高。当使用粒径3000nm以下,尤其是粒径1000nm以下、甚至球壁厚度为50nm以下的中空球状碳化硅材料作为PVT法生产碳化硅单晶的原料,可以明显提高碳化硅原料利用率,且明显降低碳化硅单晶的缺陷如微管数量。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种用于生产碳化硅晶体的原料,其特征在于,所述原料为中空球状碳化硅粉料。
  2. 根据权利要求1所述的用于生产碳化硅晶体的原料,其特征在于,所述中空球状碳化硅的平均粒径为3000nm以下,
    和/或,所述中空球状碳化硅的球壁厚度为200nm以下,
    和/或,所述中空球状碳化硅的球壁上含有至少一个通孔。
  3. 根据权利要求2所述的用于生产碳化硅晶体的原料,其特征在于,所述中空球状碳化硅的平均粒径为1000nm以下,
    和/或,所述中空球状碳化硅的球壁厚度为100nm以下。
  4. 根据权利要求3所述的用于生产碳化硅晶体的原料,其特征在于,所述中空球状碳化硅的平均粒径为500nm以下,
    和/或,所述中空球状碳化硅的球壁厚度为50nm以下。
  5. 根据权利要求1所述的用于生产碳化硅晶体的原料,其特征在于,所述原料由如下权利要求6-16中任一所述的中空球状碳化硅材料的制备方法得到。
  6. 一种中空球状碳化硅材料的制备方法,其特征在于,所述方法包括如下步骤:
    S1、将碳球模板和碳化硅粉料分散于水中,得到第一混合物;
    S2、向所述第一混合物中加入试剂A混合均匀后进行第二水热反应,使所述碳球模板的外表面形成碳化硅粉料层,得到第二混合物;
    S3、收集所述第二混合物中的沉积物;
    S4、将所述沉积物进行高温煅烧以去除所述碳球模板,得到所述 中空球状碳化硅材料;
    所述试剂A包括六亚甲基四胺、尿素、磺化聚苯乙烯、酒石酸中的任一种或几种的组合。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤S1中,所述碳球模板为将有机碳源的水溶液通过第一水热反应得到。
  8. 根据权利要求7所述的制备方法,其特征在于,所述有机碳源的水溶液中所述有机碳源的浓度为300-50g/L。
  9. 根据权利要求7所述的制备方法,其特征在于,所述有机碳源包括葡萄糖、蔗糖、麦芽糖、果糖、淀粉、环糊精、树脂中的一种或几种组合。
  10. 根据权利要求9所述的制备方法,其特征在于,所述有机碳源包括葡萄糖。
  11. 根据权利要求7所述的制备方法,其特征在于,所述碳球模板的平均粒径为3000-500nm。
  12. 根据权利要求7所述的制备方法,其特征在于,所述第一水热反应的温度为150-250℃;所述第一水热反应的压力为10-30MPa;所述第一水热反应的时间为5-20h。
  13. 根据权利要求6所述的制备方法,其特征在于,所述碳化硅粉料的细度为50-200目。
  14. 根据权利要求6所述的制备方法,其特征在于:步骤S1中,所述碳球模板和所述碳化硅粉料的摩尔比为(5-20):1;所述碳球模板与所述水的用量比为(2-10)g:1L。
  15. 根据权利要求6所述的制备方法,其特征在于:步骤S2中,所述试剂A为六亚甲基四胺;所述试剂A与所述第一混合物中所述碳球模板的摩尔比为(0.1-0.01):1;
    和/或,所述第二水热反应的温度为150-350℃;
    和/或,所述第二水热反应的时间为5-15h。
  16. 根据权利要求6所述的制备方法,其特征在于:步骤S4中,所述高温煅烧的温度为300-800℃;所述高温煅烧的时间为2-15h。
  17. 权利要求1-5中任一所述的用于生产碳化硅晶体的原料、或权利要求6-16中任一所述的方法得到的中空球状碳化硅材料在制备碳化硅晶体、碳化硅陶瓷制品、吸附剂、载体如化合物载体、和/或药物输送载体中的应用。
  18. 一种碳化硅晶体的生产方法,其特征在于:所述方法包括以如下物质为原料利用PVT法进行碳化硅长晶的步骤:
    权利要求1-5中任一所述的用于生产碳化硅晶体的原料、或权利要求6-16中任一所述的方法制备得到的所述中空球状碳化硅材料。
PCT/CN2020/137901 2020-02-28 2020-12-21 一种用于生产碳化硅晶体的原料及其制备方法与应用 WO2021169528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010129133.4A CN111392728B (zh) 2020-02-28 2020-02-28 一种用于生产碳化硅晶体的原料及其制备方法与应用
CN202010129133.4 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021169528A1 true WO2021169528A1 (zh) 2021-09-02

Family

ID=71427131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137901 WO2021169528A1 (zh) 2020-02-28 2020-12-21 一种用于生产碳化硅晶体的原料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN111392728B (zh)
WO (1) WO2021169528A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666375A (zh) * 2021-09-06 2021-11-19 常州大学 一种绿色制备高比表面积β-碳化硅的方法
CN114956828A (zh) * 2022-05-17 2022-08-30 合肥商德应用材料有限公司 碳化硅陶瓷及其制备方法和应用
CN116516484A (zh) * 2023-05-04 2023-08-01 江苏超芯星半导体有限公司 碳化硅粉料的装料方法、碳化硅晶体及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111392728B (zh) * 2020-02-28 2022-04-08 山东天岳先进科技股份有限公司 一种用于生产碳化硅晶体的原料及其制备方法与应用
CN113479888A (zh) * 2021-06-01 2021-10-08 中科汇通(内蒙古)投资控股有限公司 一种用于SiC单晶生长的核壳结构粉料及其制备工艺
CN117228746B (zh) * 2023-11-10 2024-02-02 泾河新城陕煤技术研究院新能源材料有限公司 高球形度富锰前驱体的制备方法
CN117511501A (zh) * 2023-11-30 2024-02-06 中南大学 一种核壳结构复合吸波材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224435A1 (en) * 2008-03-07 2009-09-10 Drexel University Method for Making Carbon Nanotubes with Embedded Nanoparticles
CN104512893A (zh) * 2013-10-07 2015-04-15 信浓电气制錬株式会社 球状碳化硅粉及其制造方法
CN105016341A (zh) * 2015-07-15 2015-11-04 浙江大学 一种高比表面积的碳化物纳米空心球及其制备方法
CN105236411A (zh) * 2015-10-12 2016-01-13 湖北朗驰新型材料有限公司 一种高比表面积纳米介孔碳化硅空心球及其制备方法
CN107602127A (zh) * 2017-09-14 2018-01-19 中国人民解放军国防科技大学 SiC空心球及其制备方法
CN108483447A (zh) * 2018-04-28 2018-09-04 北京科技大学 一种微纳米级球形碳化硅材料的制备方法
CN111392728A (zh) * 2020-02-28 2020-07-10 山东天岳先进材料科技有限公司 一种用于生产碳化硅晶体的原料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891956B1 (ko) * 2006-09-18 2009-04-07 주식회사 칸세라 뮬라이트계 중공구를 포함하는 탄화규소 소결용 페이스트조성물 및 이를 사용한 다공성 탄화규소 필터의 제조방법
CN101747044B (zh) * 2009-12-16 2012-07-04 西安交通大学 以中间相炭微球为炭源的反应烧结碳化硅陶瓷的制备方法
JP5630333B2 (ja) * 2011-03-08 2014-11-26 信越化学工業株式会社 易焼結性炭化ケイ素粉末及び炭化ケイ素セラミックス焼結体
JP2015071519A (ja) * 2013-10-04 2015-04-16 グンゼ株式会社 多孔質SiC焼結体及び多孔質SiC焼結体の製造方法
CN105000562B (zh) * 2015-07-31 2018-02-13 中国计量学院 一种碳化硅空心球的制备方法
CN107970878B (zh) * 2017-11-09 2021-01-05 南华大学 一种磷酸基团官能化中空介孔二氧化硅微球的制备方法
CN108043437B (zh) * 2017-11-09 2023-09-22 国家电网公司 一种空心SiC载体型Ir-Ru催化剂的制备方法
CN109796019B (zh) * 2019-02-21 2020-12-15 华中科技大学 一种空心二氧化硅纳米球及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090224435A1 (en) * 2008-03-07 2009-09-10 Drexel University Method for Making Carbon Nanotubes with Embedded Nanoparticles
CN104512893A (zh) * 2013-10-07 2015-04-15 信浓电气制錬株式会社 球状碳化硅粉及其制造方法
CN105016341A (zh) * 2015-07-15 2015-11-04 浙江大学 一种高比表面积的碳化物纳米空心球及其制备方法
CN105236411A (zh) * 2015-10-12 2016-01-13 湖北朗驰新型材料有限公司 一种高比表面积纳米介孔碳化硅空心球及其制备方法
CN107602127A (zh) * 2017-09-14 2018-01-19 中国人民解放军国防科技大学 SiC空心球及其制备方法
CN108483447A (zh) * 2018-04-28 2018-09-04 北京科技大学 一种微纳米级球形碳化硅材料的制备方法
CN111392728A (zh) * 2020-02-28 2020-07-10 山东天岳先进材料科技有限公司 一种用于生产碳化硅晶体的原料及其制备方法与应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666375A (zh) * 2021-09-06 2021-11-19 常州大学 一种绿色制备高比表面积β-碳化硅的方法
CN113666375B (zh) * 2021-09-06 2023-10-27 常州大学 一种绿色制备高比表面积β-碳化硅的方法
CN114956828A (zh) * 2022-05-17 2022-08-30 合肥商德应用材料有限公司 碳化硅陶瓷及其制备方法和应用
CN114956828B (zh) * 2022-05-17 2023-08-15 合肥商德应用材料有限公司 碳化硅陶瓷及其制备方法和应用
CN116516484A (zh) * 2023-05-04 2023-08-01 江苏超芯星半导体有限公司 碳化硅粉料的装料方法、碳化硅晶体及其制备方法和应用
CN116516484B (zh) * 2023-05-04 2024-02-20 江苏超芯星半导体有限公司 碳化硅粉料的装料方法、碳化硅晶体及其制备方法和应用

Also Published As

Publication number Publication date
CN111392728A (zh) 2020-07-10
CN111392728B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2021169528A1 (zh) 一种用于生产碳化硅晶体的原料及其制备方法与应用
CN110283288B (zh) 一种可大量生产的杂原子掺杂的具有空腔结构聚合物纳米微球及其制备方法
CN108855095B (zh) 甲烷重整多核壳空心型催化剂镍-镍硅酸盐-SiO2的制备方法
CN109395763B (zh) 一种硫掺杂g-C3N4/C-dot多孔复合光催化剂及其制备方法与应用
CN102531009A (zh) 纳米级高纯氧化铝的制备方法
CN103693667A (zh) 一种棒状轻质碳酸钙及其制备方法
CN105543598A (zh) 一种增强镁基复合材料的制备方法
CN109809428A (zh) 一种无机载体表面负载碳层的复合材料及其制备方法
CN105948128A (zh) 一种由氧气调节氧化钨纳米棒长度的方法
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
WO2019232765A1 (zh) 一种超薄氮化硼纳米片的制备方法
CN112705053B (zh) 一种耐酸性沸石分子筛膜的制备方法及应用
CN105967239B (zh) 一种多孔立方型Mn2O3亚微米粉体及其制备方法
CN109161023A (zh) 聚磷腈微球为碳源的二硫化钼复合材料的制备方法
CN109485093B (zh) 一种球形完好的锐钛矿型二氧化钛空心球壳及其制备方法
CN106276843A (zh) 一种制备单分散空心炭微球的方法
CN107892289A (zh) 一种制备单分散介孔碳微球的方法
WO2019019866A1 (zh) 一种高效处理有机污染的木质素还原纳米金颗粒修饰氮化碳的制备方法
CN108219194A (zh) 一种螺旋纳米碳纤维表面修饰纳米SiO2粒子的方法
CN113697794B (zh) 一种慢速控温法制备树枝状超细水热碳的方法及制成的水热碳吸附球和应用
CN110078104A (zh) 一种勃姆石纳米粉的制备方法
CN112938964A (zh) 一种采用一锅法制备氮掺杂多孔石墨化碳气凝胶微球的方法
CN110845242A (zh) 一种多孔氮化硅陶瓷材料的制备方法
CN108671771A (zh) 一种高透气性分子筛膜的制备方法
CN111217352A (zh) 一种环糊精衍生微米碳球基质的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922405

Country of ref document: EP

Kind code of ref document: A1