WO2021142891A1 - 无钴层状正极材料及制备方法、锂离子电池 - Google Patents

无钴层状正极材料及制备方法、锂离子电池 Download PDF

Info

Publication number
WO2021142891A1
WO2021142891A1 PCT/CN2020/076991 CN2020076991W WO2021142891A1 WO 2021142891 A1 WO2021142891 A1 WO 2021142891A1 CN 2020076991 W CN2020076991 W CN 2020076991W WO 2021142891 A1 WO2021142891 A1 WO 2021142891A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
coating agent
cathode material
layered
free
Prior art date
Application number
PCT/CN2020/076991
Other languages
English (en)
French (fr)
Inventor
乔齐齐
江卫军
许鑫培
施泽涛
马加力
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to JP2022569285A priority Critical patent/JP7446486B2/ja
Priority to EP20913469.1A priority patent/EP4092787A4/en
Priority to KR1020227028400A priority patent/KR20220153580A/ko
Publication of WO2021142891A1 publication Critical patent/WO2021142891A1/zh
Priority to US17/865,526 priority patent/US20230046142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of lithium-ion batteries, in particular to a cobalt-free layered cathode material and preparation method, and lithium-ion batteries.
  • the cobalt-free layered cathode material does not contain cobalt element, and has the advantages of low cost and stable structure, which can reduce the cost of lithium-ion batteries, extend the service life of lithium-ion batteries, and improve the safety of lithium-ion batteries.
  • the cobalt-free layered cathode material has the problem of poor rate performance, which affects the performance of lithium-ion batteries.
  • the inventor found that this is mainly due to the absence of cobalt in the cobalt-free layered cathode material.
  • the cobalt-free layered cathode material does not contain cobalt element, resulting in poor conductivity of the cobalt-free layered cathode material, thereby affecting its rate performance.
  • This application aims to solve one of the technical problems in the related technology at least to some extent.
  • this application proposes a method for preparing a cobalt-free layered cathode material.
  • the method includes: preparing a layered lithium nickel manganese oxide base material; mixing the layered lithium nickel manganese oxide base material with a coating agent to obtain a first mixture material; and subjecting the first mixture material to a first sintering process , Forming a coating layer on the surface of the layered lithium nickel manganate base material to obtain the cobalt-free layered positive electrode material, wherein the coating agent includes a first coating agent and a second coating agent, and The first coating agent includes ceramic oxide, and the second coating agent includes at least one of phosphate and silicate.
  • the use of this method can effectively improve the conductivity of the cobalt-free layered cathode material, thereby improving its rate performance, so that the cobalt-free layered cathode material has the advantages of low cost, stable structure and excellent rate performance, so that the application of the non-cobalt layered cathode material has the advantages of low cost, stable structure and excellent rate performance.
  • the lithium ion battery of the cobalt layered cathode material has good performance and low cost.
  • the ceramic oxide includes at least one of zirconium oxide, titanium oxide, aluminum oxide, and boron oxide.
  • the above-mentioned ceramic oxide can be used to improve the electronic conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the second coating agent includes at least one of lithium phosphate and lithium silicate.
  • the above-mentioned coating agent can be used to improve the ion conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the percentage of the mass of the ceramic oxide to the mass of the layered lithium nickel manganate base material is 0.15-0.35%, and the mass of the second coating agent is compared with the mass of the layered nickel.
  • the mass percentage of the lithium manganate matrix material is 0.4-1.0%.
  • the molar ratio of the first coating agent to the second coating agent is 0.2-0.6.
  • the particle diameters of the first coating agent and the second coating agent are independently 50-300 nm.
  • the coating layer formed subsequently can obtain higher uniformity and compactness, and further improve the cycle performance of the cobalt-free layered cathode material.
  • the particle diameters of the first coating agent and the second coating agent are independently 50-100 nm.
  • the uniformity and compactness of the coating layer can be further improved, and the cycle performance of the cobalt-free layered positive electrode material can be further improved.
  • preparing the layered lithium nickel manganese oxide matrix material includes: mixing lithium source powder with nickel manganese hydroxide to obtain a second mixture material, and performing a second sintering on the second mixture material Processing to obtain the layered lithium nickel manganate matrix material.
  • a base material can be provided for the cobalt-free layered cathode material, and the cost of the cobalt-free layered cathode material can be reduced.
  • the rotation speed of the mixing of the lithium source powder and the nickel manganese hydroxide is 800-900 rpm, and the mixing time is 10-20 min.
  • the lithium source powder and the nickel manganese hydroxide can be mixed uniformly, and it is convenient to obtain a layered lithium nickel manganate matrix material through the subsequent second sintering process.
  • the second sintering treatment is performed in an atmosphere where the volume concentration of oxygen is greater than 90%, the temperature of the second sintering treatment is 800-970°C, and the time of the second sintering treatment It is 8-12h, and the heating rate of the second sintering treatment is 1-5°C/min.
  • the heating rate of the second sintering treatment is 1-5°C/min.
  • the rotation speed of the layered lithium nickel manganate matrix material and the coating agent is 800-900 rpm, and the mixing time is 10-20 min.
  • the layered lithium nickel manganate base material and the coating agent can be mixed uniformly, so that the coating agent is uniformly attached to the surface of the layered lithium nickel manganese oxide base material, which is convenient for the subsequent first sintering treatment to make the layered A coating layer is formed on the surface of the lithium nickel manganate base material to obtain a cobalt-free layered positive electrode material.
  • the first sintering treatment is performed in an atmosphere where the volume concentration of oxygen is 20-100%, the temperature of the first sintering treatment is 300-700°C, and the first sintering treatment The time is 4-10h, and the heating rate of the first sintering treatment is 3-5°C/min.
  • the coating agent attached to the surface of the layered lithium nickel manganate base material can form a coating layer to obtain a cobalt-free layered positive electrode material.
  • this application proposes a cobalt-free layered cathode material.
  • the cobalt-free layered cathode material includes: a layered lithium nickel manganate base material and a coating layer on the surface of the layered lithium nickel manganate base material, and the coating layer includes a first A coating agent and a second coating agent, the first coating agent includes a ceramic oxide, and the second coating agent includes at least one of a phosphate and a silicate. Therefore, the cobalt-free layered cathode material has the advantages of low cost, stable structure and excellent rate performance, so that the lithium ion battery using the cobalt-free layered cathode material has good performance and lower cost.
  • the ceramic oxide includes at least one of zirconium oxide, titanium oxide, aluminum oxide, and boron oxide. Therefore, the above ceramic oxide can improve the electronic conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the second coating agent includes at least one of lithium phosphate and lithium silicate. Therefore, the above-mentioned coating agent can improve the ion conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the percentage of the mass of the ceramic oxide to the mass of the layered lithium nickel manganate base material is 0.15-0.35%, and the mass of the second coating agent is compared with the mass of the layered nickel.
  • the mass percentage of the lithium manganate matrix material is 0.4-1.0%.
  • the molar ratio of the first coating agent to the second coating agent is 0.2-0.6.
  • this application proposes a lithium ion battery.
  • the lithium ion battery includes: a positive electrode sheet, and the positive electrode sheet includes the aforementioned cobalt-free layered positive electrode material. Therefore, the lithium ion battery has all the features and advantages of the aforementioned cobalt-free layered cathode material, which will not be repeated here. In general, the lithium ion battery has lower cost, excellent rate performance, longer service life and higher safety.
  • Fig. 1 shows a schematic flow chart of a method for preparing a cobalt-free layered cathode material according to an embodiment of the present application
  • Figure 2 shows a scanning electron micrograph of the cobalt-free layered cathode material in Example 1;
  • Figure 3 shows a scanning electron micrograph of the cobalt-free layered cathode material in Comparative Example 1.
  • this application proposes a method for preparing a cobalt-free layered cathode material.
  • the coating agent can be attached to the surface of the layered lithium nickel manganese oxide base material.
  • the coating can be A coating layer is formed on the surface of a lithium nickel manganate base material.
  • the coating agent used is a mixture of a first coating agent and a second coating agent.
  • the first coating agent includes ceramic oxide
  • the second coating agent includes At least one of phosphate and silicate, where ceramic oxide can improve the electronic conductivity of the cobalt-free layered cathode material, and phosphate and silicate can improve the ionic conductivity of the cobalt-free layered cathode material, that is, form
  • the coating layer can improve the conductivity of the cobalt-free layered cathode material, thereby improving the rate performance of the cobalt-free layered cathode material, so that the cobalt-free layered cathode material has the advantages of low cost, stable structure and excellent rate performance.
  • the method includes:
  • a layered lithium nickel manganate matrix material is prepared.
  • preparing the layered lithium nickel manganese oxide matrix material may include: first, mixing the lithium source powder and the nickel manganese hydroxide to obtain a second mixture material, and then performing a second mixture on the second mixture material. Sintering treatment to obtain a layered lithium nickel manganate matrix material.
  • a base material can be provided for the cobalt-free layered cathode material, and the cost of the cobalt-free layered cathode material can be reduced.
  • the mixing of the lithium source powder and the nickel-manganese hydroxide can be carried out in a high-speed mixing equipment, and the filling efficiency of the materials in the equipment can be 50-70%.
  • the speed of mixing the lithium source powder and the nickel manganese hydroxide may be 800-900rpm, such as 800rpm, 850rpm, 900rpm, and the mixing time may be 10-20min, such as 10min, 12min, 15min, 18min, 20min.
  • the lithium source powder and the nickel manganese hydroxide can be mixed uniformly, and the second sintering process is convenient to obtain a layered lithium nickel manganate matrix material.
  • the second sintering treatment is performed in an atmosphere where the volume concentration of oxygen is greater than 90%, and the temperature of the second sintering treatment may be 800-970°C, such as 800°C, 830°C, 850°C, 880 °C, 900°C, 930°C, 950°C, 970°C, the time of the second sintering treatment can be 8-12h, such as 8h, 9h, 10h, 11h, 12h, the heating rate of the second sintering treatment can be 1-5°C /min, such as 1°C/min, 2°C/min, 3°C/min, 4°C/min, 5°C/min.
  • a layered lithium nickel manganate base material can be obtained.
  • the second mixture material needs to be cooled, crushed and sieved in sequence to obtain a layered lithium nickel manganese oxide matrix material, wherein the cooling can be natural cooling in the air
  • the crushing can be mechanical crushing, roller crushing or jet crushing, and the mesh number of the screen can be 300-400 mesh.
  • the specific material of the lithium source powder is not particularly limited, and those skilled in the art can design according to commonly used lithium source powders for cobalt-free layered cathode materials.
  • the lithium source powder may include at least one of lithium hydroxide and lithium carbonate.
  • the molecular formula of the nickel manganese hydroxide may be Ni x Mn y (OH) 2 , where 0.55 ⁇ x ⁇ 0.95 and 0.05 ⁇ y ⁇ 0.45.
  • a precursor can be provided for the layered lithium nickel manganate base material, so that the layered lithium nickel manganate base material has a higher nickel content, and the capacity of the final cobalt-free layered cathode material is improved.
  • the layered lithium nickel manganate base material and the coating agent are mixed to obtain the first mixed material.
  • the coating agent includes a first coating agent and a second coating agent, wherein the first coating agent includes a ceramic oxide, and the second coating agent includes at least one of a phosphate and a silicate. one.
  • ceramic oxide can improve the electronic conductivity of the final cobalt-free layered cathode material
  • phosphate and silicate can improve the ionic conductivity of the final cobalt-free layered cathode material, thereby increasing the rate of the cobalt-free layered cathode material performance.
  • the mixing of the layered lithium nickel manganese oxide matrix material and the coating agent can be carried out in a high-speed mixing device, and the filling efficiency of the material in the device can be 30-70%.
  • the rotation speed of the layered lithium nickel manganese oxide matrix material and the coating agent may be 800-900rpm, such as 800rpm, 850rpm, 900rpm, and the mixing time may be 10-20min, such as 10min, 12min, 15min , 18min, 20min.
  • the layered lithium nickel manganate base material and the coating agent can be mixed uniformly, so that the coating agent is uniformly attached to the surface of the layered lithium nickel manganese oxide base material, which is convenient for the subsequent first sintering treatment to make the layered A coating layer is formed on the surface of the lithium nickel manganate base material to obtain a cobalt-free layered positive electrode material.
  • the ceramic oxide may include at least one of zirconium oxide, titanium oxide, aluminum oxide, and boron oxide.
  • the above-mentioned ceramic oxide can be used to improve the electronic conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the second coating agent may include at least one of lithium phosphate and lithium silicate (Li 4 SiO 4 ).
  • the above-mentioned coating agent can be used to improve the ion conductivity of the cobalt-free layered positive electrode material to improve the rate performance of the cobalt-free layered positive electrode material.
  • the percentage of the mass of the ceramic oxide to the mass of the layered lithium nickel manganate base material may be 0.15-0.35%, such as 0.15%, 0.16%, 0.18%, 0.20%, 0.22%, 0.24% , 0.26%, 0.28%, 0.30%, 0.32%, 0.35%, and the percentage of the mass of the second coating agent to the mass of the layered lithium nickel manganate matrix material can be 0.4-1.0%, such as 0.4%, 0.5% , 0.6%, 0.7%, 0.8%, 0.9%, 1.0%.
  • the problem that the coating layer is too thick reduces the lithium ion migration speed, and to avoid the problem that the layered lithium nickel manganate matrix material cannot be completely coated and the cycle performance is reduced due to the too small amount of the coating agent, that is, the problem of reducing the cycle performance by adding the ceramic oxide
  • the content of and the content of the second coating agent are respectively set within the above ranges, which is beneficial to significantly improve the rate performance of the cobalt-free layered cathode material, and at the same time, can make the cobalt-free layered cathode material obtain good cycle performance.
  • the molar ratio of the first coating agent to the second coating agent may be 0.2-0.6, such as 0.2, 0.3, 0.4, 0.5, 0.6.
  • the rate performance of the cobalt-free layered cathode material can be significantly improved, the generation of impurity phases can be avoided, and the cobalt-free layered cathode material can be guaranteed to have a higher capacity.
  • the coating agent is a mixture of zirconium oxide and lithium phosphate.
  • the molar ratio of zirconium oxide and lithium phosphate is too large (such as greater than 0.6) or too small (such as less than 0.2), a certain amount of miscellaneous Zr 3 ( PO 4 ) 4 , reduce the capacity of the cobalt-free layered cathode material.
  • the molar ratio of the first coating agent to the second coating agent may be 0.5.
  • the particle diameters of the first coating agent and the second coating agent may be 50-300nm independently, such as 50nm, 80nm, 100nm, 150nm, 180nm, 200nm, 250nm, 280nm, 300nm.
  • the coating agent will form a coating layer after the subsequent first sintering treatment.
  • the inventor found that if the particle size of the first coating agent and the second coating agent is larger (for example, greater than 300nm), the coating layer will be reduced. Uniformity and compactness will further affect the coating effect of the coating layer and the cycle performance of the cobalt-free layered cathode material.
  • the particle size of the first coating agent and the second coating agent is small (for example, less than 50nm), It is easy to cause agglomeration of particles, which will also reduce the uniformity and compactness of the coating layer, and affect the cycle performance of the cobalt-free layered cathode material.
  • the coating layer formed subsequently can achieve higher uniformity and compactness, and further improve the cobalt-free layered positive electrode. The cycle performance of the material.
  • the particle size of the first coating agent and the second coating agent may be 50-100 nm independently.
  • the uniformity and compactness of the coating layer can be further improved, and the cycle performance of the cobalt-free layered positive electrode material can be further improved.
  • the first mixture material is subjected to a first sintering treatment to form a coating layer on the surface of the layered lithium nickel manganate base material to obtain a cobalt-free layered positive electrode material.
  • the first sintering treatment may be carried out in an atmosphere where the volume concentration of oxygen is 20-100%, and the temperature of the first sintering treatment may be 300-700°C, such as 300°C, 400°C, 500°C.
  • the time of the first sintering treatment can be 4-10h, such as 4h, 5h, 6h, 7h, 8h, 9h, 10h
  • the heating rate of the first sintering treatment can be 3-5°C/min , Such as 3°C/min, 4°C/min, 5°C/min.
  • the first mixture material is sieved after the first sintering treatment, and the mesh of the sieving screen may be 300-400 meshes to obtain the cobalt-free layered positive electrode material.
  • the cobalt-free layered cathode material may be a single crystal cathode material, or it may also be a polycrystalline cathode material, so that the cobalt-free layered cathode material obtains excellent rate performance, lower cost, and Stable structure.
  • the specific surface area of the cobalt-free layered cathode material obtained by the above method is 0.1-0.7 m 2 /g. Therefore, the cobalt-free layered cathode material has a suitable specific surface area, which can effectively alleviate the gas generation phenomenon caused by an excessively large specific surface area, and effectively alleviate the rate performance degradation caused by an excessively small specific surface area.
  • the median diameter (D50) of the cobalt-free layered cathode material obtained by the above method is 3-15 ⁇ m.
  • the pH of the cobalt-free layered cathode material obtained by the above method is less than or equal to 12.
  • the problem of uneven coating caused by excessive alkalinity of the cobalt-free layered positive electrode material can be effectively alleviated, so that the slurry containing the cobalt-free layered positive electrode material can be uniformly coated on the current collector.
  • the use of this method can effectively improve the conductivity of the cobalt-free layered cathode material, thereby improving its rate performance, so that the cobalt-free layered cathode material has the advantages of low cost, stable structure and excellent rate performance, making the application of the non-cobalt layered cathode material have the advantages of low cost, stable structure and excellent rate performance.
  • the lithium ion battery of the cobalt layered cathode material has good performance and low cost.
  • this application proposes a cobalt-free layered cathode material.
  • the cobalt-free layered cathode material includes: a layered lithium nickel manganate base material and a coating layer on the surface of the layered lithium nickel manganate base material, wherein the coating layer includes a first coating
  • the first coating agent includes ceramic oxide
  • the second coating agent includes at least one of phosphate and silicate. Therefore, the cobalt-free layered cathode material has the advantages of low cost, stable structure and excellent rate performance, so that the lithium ion battery using the cobalt-free layered cathode material has good performance and lower cost.
  • the cobalt-free layered cathode material can be prepared by the method described above, and thus, the cobalt-free layered cathode material has the same method as the cobalt-free layered cathode prepared by the method described above. The characteristics and advantages of the same materials will not be repeated here.
  • the ceramic oxide may include at least one of zirconium oxide, titanium oxide, aluminum oxide, and boron oxide. Therefore, the above ceramic oxide can improve the electronic conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the second coating agent may include at least one of lithium phosphate and lithium silicate. Therefore, the above-mentioned coating agent can improve the ion conductivity of the cobalt-free layered cathode material, so as to improve the rate performance of the cobalt-free layered cathode material.
  • the mass percentage of the ceramic oxide and the layered lithium nickel manganate base material may be 0.15-0.35%, and the mass percentage of the second coating agent is the mass percentage of the layered lithium nickel manganate base material It can be 0.4-1.0%.
  • the rate performance of the cobalt-free layered cathode material can be significantly improved, and at the same time, the cobalt-free layered cathode material can obtain good cycle performance.
  • the molar ratio of the first coating agent to the second coating agent is 0.2-0.6. Therefore, the conductivity of the cobalt-free layered cathode material can be significantly improved, thereby significantly improving the rate performance of the cobalt-free layered cathode material, and the generation of impurity phases can be avoided, ensuring that the cobalt-free layered cathode material has a higher capacity.
  • this application proposes a lithium ion battery.
  • the lithium ion battery includes: a positive electrode sheet, and the positive electrode sheet includes the aforementioned cobalt-free layered positive electrode material. Therefore, the lithium ion battery has all the features and advantages of the cobalt-free layered cathode material described above, and will not be repeated here. In general, the lithium ion battery has lower cost, excellent rate performance, longer service life and higher safety.
  • a lithium ion battery also includes a negative electrode sheet, a separator, an electrolyte, etc.
  • the separator is located between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet and the negative electrode sheet form an accommodation space between the positive electrode sheet and the negative electrode sheet, and the electrolyte is filled in the accommodation space. In the space.
  • the temperature of the first sintering treatment is 600°C
  • the time of the first sintering treatment is 5h
  • the temperature rise of the first sintering treatment The rate is 5°C/min
  • the material after the first sintering treatment is pulverized by jet mill, and the crushed material is passed through a 400-mesh sieve to obtain a cobalt-free layered cathode material.
  • the preparation process of the cobalt-free layered cathode material of this embodiment is basically the same as that of embodiment 1, except that in step (3), the layered lithium nickel manganate base material is used together with TiO 2 and Li 4 SiO 4 at high speed.
  • the mixing equipment is used to mix, the mass percentage of TiO 2 and the layered lithium nickel manganate base material is 0.15%, the mass percentage of Li 4 SiO 4 and the layered lithium nickel manganate base material is 0.4%, TiO 2 and
  • the particle size of Li 4 SiO 4 is 80 nm, and the molar ratio of TiO 2 to Li 4 SiO 4 is 0.56.
  • the preparation process of the cobalt-free layered cathode material of this embodiment is basically the same as that of embodiment 1, except that in step (3), the mass percentage of ZrO 2 and the mass percentage of the layered lithium nickel manganate base material is 0.4%. li 3 PO 4 and the mass percentage of the mass of a layered lithium nickel manganese oxide matrix material of 0.5%, molar ratio of ZrO 2 and li 3 PO 4 is 0.75.
  • the preparation process of the cobalt-free layered cathode material of this embodiment is basically the same as that of embodiment 1, except that in step (3), the percentage of the mass of ZrO 2 to the mass of the layered lithium nickel manganate base material is 0.1% , Li 3 PO 4 and the mass percentage of the mass of a layered lithium nickel manganese base material is 0.5%, ZrO 2 and Li 3 PO 4 molar ratio was 0.19.
  • the lithium-ion batteries assembled in Examples 1-4 and Comparative Example 1 were subjected to charge-discharge test and rate performance test.
  • the charge-discharge test results are shown in Table 1.
  • Rate performance test discharge specific capacity at different rates (mAh/ g)
  • the results are shown in Table 2. Among them, the charge and discharge test is to first test the battery capacity at a rate of 0.1C, and then continue to test the battery capacity at a rate of 1C.
  • Example 1 181.9 175.3 170.4 164.9 155.7 149.8
  • Example 2 180.2 174.1 169.2 162.8 153.9 147.5
  • Example 3 176.9 171.0 165.8 158.5 150.1 144.3
  • Example 4 175.8 169.8 161.7 156.4 148.2
  • Comparative example 1 173.3 162.7 154.5 149.0 140.6 132.0
  • the cobalt-free layered positive electrode material with the coating layer (such as Examples 1-4) has a higher rate performance Improvement, especially under high magnification, the magnification performance improvement is more significant.
  • Example 3 and Example 4 Comparing Example 3 and Example 4 with Example 1, it can be seen that when the content of ZrO 2 is too high or too low, the rate performance of the lithium ion battery will be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提出了一种无钴层状正极材料及制备方法、锂离子电池。该方法包括:制备层状镍锰酸锂基体材料;将所述层状镍锰酸锂基体材料与包覆剂进行混合,获得第一混合物料;对所述第一混合物料进行第一烧结处理,在所述层状镍锰酸锂基体材料表面形成包覆层,以获得所述无钴层状正极材料,其中,所述包覆剂包括第一包覆剂和第二包覆剂,所述第一包覆剂包括陶瓷氧化物,所述第二包覆剂包括磷酸盐和硅酸盐的至少之一。

Description

无钴层状正极材料及制备方法、锂离子电池
优先权信息
本申请请求2020年01月17日向中国国家知识产权局提交的、专利申请号为202010054733.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及锂离子电池领域,具体地,涉及无钴层状正极材料及制备方法、锂离子电池。
背景技术
无钴层状正极材料中不含钴元素,具有成本低、结构稳定等优势,可降低锂离子电池的成本,延长锂离子电池的使用寿命以及提高锂离子电池的安全性。
然而,目前的无钴层状正极材料及制备方法、锂离子电池仍有待改进。
申请内容
本申请是基于发明人的以下发现而完成的:
目前,无钴层状正极材料存在倍率性能较差的问题,影响锂离子电池的使用性能。发明人发现,这主要是由于无钴层状正极材料中不含钴元素导致的。具体的,无钴层状正极材料中不含钴元素,导致无钴层状正极材料的导电性较差,进而影响其倍率性能。
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
有鉴于此,在本申请的一个方面,本申请提出了一种制备无钴层状正极材料的方法。该方法包括:制备层状镍锰酸锂基体材料;将所述层状镍锰酸锂基体材料与包覆剂进行混合,获得第一混合物料;对所述第一混合物料进行第一烧结处理,在所述层状镍锰酸锂基体材料表面形成包覆层,以获得所述无钴层状正极材料,其中,所述包覆剂包括第一包覆剂和第二包覆剂,所述第一包覆剂包括陶瓷氧化物,所述第二包覆剂包括磷酸盐和硅酸盐的至少之一。由此,利用该方法可有效提高无钴层状正极材料的导电性,进而提高其倍率性能,使得无钴层状正极材料同时具有成本低、结构稳定以及倍率性能优良的优点,使得应用该无钴层状正极材料的锂离子电池具有良好的使用性能以及较低的成本。
根据本申请的实施例,所述陶瓷氧化物包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。由此,可以利用上述陶瓷氧化物提高无钴层状正极材料的电子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,所述第二包覆剂包括磷酸锂和硅酸锂的至少之一。由此,可以利用上述包覆剂提高无钴层状正极材料的离子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,所述陶瓷氧化物的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.15-0.35%,所述第二包覆剂的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.4-1.0%。由此,可显著提升无钴层状正极材料的倍率性能,同时可以使无钴层状正极材料获得良好的循环性能。
根据本申请的实施例,所述第一包覆剂与所述第二包覆剂的摩尔比为0.2-0.6。由此,可显著提高无钴层状正极材料的倍率性能,且可避免杂相的产生,保证无钴层状正极材料具有较高的容量。
根据本申请的实施例,所述第一包覆剂和所述第二包覆剂的粒径分别独立的为50-300nm。由此,可以使后续形成的包覆层获得较高的均匀性和致密性,进一步提高无钴层状正极材料的循环性能。
根据本申请的实施例,所述第一包覆剂和所述第二包覆剂的粒径分别独立的为50-100nm。由此,可进一步提高包覆层的均匀性和致密性,进一步提高无钴层状正极材料的循环性能。
根据本申请的实施例,制备所述层状镍锰酸锂基体材料包括:将锂源粉末与镍锰氢氧化物进行混合,获得第二混合物料,对所述第二混合物料进行第二烧结处理,获得所述层状镍锰酸锂基体材料。由此,可为无钴层状正极材料提供基体材料,降低无钴层状正极材料的成本。
根据本申请的实施例,所述锂源粉末与所述镍锰氢氧化物混合的转速为800-900rpm,混合的时间为10-20min。由此,可使锂源粉末与镍锰氢氧化物混合均匀,便于经后续第二烧结处理,获得层状镍锰酸锂基体材料。
根据本申请的实施例,所述第二烧结处理是在氧气的体积浓度大于90%的气氛中进行的,所述第二烧结处理的温度为800-970℃,所述第二烧结处理的时间为8-12h,所述第二烧结处理的升温速率为1-5℃/min。由此,可获得层状镍锰酸锂基体材料。
根据本申请的实施例,所述层状镍锰酸锂基体材料与所述包覆剂混合的转速为800-900rpm,混合的时间为10-20min。由此,可使层状镍锰酸锂基体材料与包覆剂混合均匀,使得包覆剂均匀地附着在层状镍锰酸锂基体材料的表面,便于经后续第一烧结处理,在层状镍锰酸锂基体材料表面形成包覆层,以获得无钴层状正极材料。
根据本申请的实施例,所述第一烧结处理是在氧气的体积浓度为20-100%的气氛中进行的,所述第一烧结处理的温度为300-700℃,所述第一烧结处理的时间为4-10h, 所述第一烧结处理的升温速率为3-5℃/min。由此,可使附着在层状镍锰酸锂基体材料表面的包覆剂形成包覆层,以获得无钴层状正极材料。
在本申请的另一方面,本申请提出了一种无钴层状正极材料。根据本申请的实施例,该无钴层状正极材料包括:层状镍锰酸锂基体材料和位于所述层状镍锰酸锂基体材料表面的包覆层,所述包覆层包括第一包覆剂和第二包覆剂,所述第一包覆剂包括陶瓷氧化物,所述第二包覆剂包括磷酸盐和硅酸盐的至少之一。由此,该无钴层状正极材料同时具有成本低、结构稳定以及倍率性能优良的优点,使得应用该无钴层状正极材料的锂离子电池具有良好的使用性能以及较低的成本。
根据本申请的实施例,所述陶瓷氧化物包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。由此,上述陶瓷氧化物可提高无钴层状正极材料的电子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,所述第二包覆剂包括磷酸锂和硅酸锂的至少之一。由此,上述包覆剂可提高无钴层状正极材料的离子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,所述陶瓷氧化物的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.15-0.35%,所述第二包覆剂的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.4-1.0%。由此,可显著提升无钴层状正极材料的倍率性能,同时可以使无钴层状正极材料获得良好的循环性能。
根据本申请的实施例,所述第一包覆剂与所述第二包覆剂的摩尔比为0.2-0.6。由此,可显著提升无钴层状正极材料的倍率性能,且可避免杂相的产生,保证无钴层状正极材料具有较高的容量。
在本申请的另一方面,本申请提出了一种锂离子电池。根据本申请的实施例,该锂离子电池包括:正极片,所述正极片包括前面所述的无钴层状正极材料。由此,该锂离子电池具有前面所述的无钴层状正极材料的全部特征以及优点,在此不再赘述。总的来说,该锂离子电池具有较低的成本、优良的倍率性能、较长的使用寿命以及较高的安全性。
附图说明
图1显示了根据本申请一个实施例的制备无钴层状正极材料的方法的流程示意图;
图2显示了实施例1中的无钴层状正极材料的扫描电子显微镜照片;
图3显示了对比例1中的无钴层状正极材料的扫描电子显微镜照片。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的一个方面,本申请提出了一种制备无钴层状正极材料的方法。为了便于理解,下面首先对根据本申请实施例的方法进行简单说明:
根据本申请的实施例,通过将层状镍锰酸锂基体材料与包覆剂混合,可使得包覆剂附着在层状镍锰酸锂基体材料的表面,经第一烧结处理,可在层状镍锰酸锂基体材料表面形成包覆层,所使用的包覆剂为第一包覆剂和第二包覆剂的混合物,第一包覆剂包括陶瓷氧化物,第二包覆剂包括磷酸盐和硅酸盐的至少之一,其中,陶瓷氧化物可提高无钴层状正极材料的电子导电性,磷酸盐、硅酸盐可提高无钴层状正极材料的离子导电性,即形成的包覆层可提高无钴层状正极材料的导电性,进而可提高无钴层状正极材料的倍率性能,使得无钴层状正极材料同时具有成本低、结构稳定以及倍率性能优良的优点。
根据本申请的实施例,参考图1,该方法包括:
S100:制备层状镍锰酸锂基体材料
根据本申请的实施例,在该步骤中,制备层状镍锰酸锂基体材料。根据本申请的实施例,制备层状镍锰酸锂基体材料可以包括:首先,将锂源粉末与镍锰氢氧化物进行混合,获得第二混合物料,随后,对第二混合物料进行第二烧结处理,以获得层状镍锰酸锂基体材料。由此,可为无钴层状正极材料提供基体材料,降低无钴层状正极材料的成本。
根据本申请的实施例,锂源粉末与镍锰氢氧化物的混合可以是在高速混合设备中进行的,设备中物料的填充效率可以为50-70%。根据本申请的实施例,锂源粉末与镍锰氢氧化物混合的转速可以为800-900rpm,如800rpm、850rpm、900rpm,混合的时间可以为10-20min,如10min、12min、15min、18min、20min。由此,可使锂源粉末与镍锰氢氧化物混合均匀,便于经第二烧结处理,获得层状镍锰酸锂基体材料。
根据本申请的实施例,第二烧结处理是在氧气的体积浓度大于90%的气氛中进行的,第二烧结处理的温度可以为800-970℃,如800℃、830℃、850℃、880℃、900℃、930℃、950℃、970℃,第二烧结处理的时间可以为8-12h,如8h、9h、10h、11h、12h,第二烧结处理的升温速率可以为1-5℃/min,如1℃/min、2℃/min、3℃/min、4℃/min、5℃/min。由此,可获得层状镍锰酸锂基体材料。
根据本申请的实施例,第二混合物料经第二烧结处理后,还需依次进行冷却、粉碎以及过筛,以获得层状镍锰酸锂基体材料,其中,冷却可以是在空气中自然冷却,粉碎可以为机械粉碎、对辊破碎或者气流粉碎,过筛的筛网目数可以为300-400目。
关于锂源粉末的具体材料不受特别限制,本领域技术人员可以根据无钴层状正极材料常用的锂源粉末进行设计。例如,根据本申请的实施例,锂源粉末可以包括氢氧化锂和碳酸锂的至少之一。
根据本申请的实施例,镍锰氢氧化物的分子式可以为Ni xMn y(OH) 2,其中,0.55≤x≤0.95、0.05≤y≤0.45。由此,可以为层状镍锰酸锂基体材料提供前驱体,使得层状镍锰酸锂基体材料具有较高的镍含量,提高最终无钴层状正极材料的容量。
S200:将层状镍锰酸锂基体材料与包覆剂进行混合,获得第一混合物料
根据本申请的实施例,在该步骤中,将层状镍锰酸锂基体材料与包覆剂进行混合,获得第一混合物料。根据本申请的实施例,包覆剂包括第一包覆剂和第二包覆剂,其中,第一包覆剂包括陶瓷氧化物,第二包覆剂包括磷酸盐和硅酸盐的至少之一。由此,陶瓷氧化物可提高最终无钴层状正极材料的电子导电性,磷酸盐、硅酸盐可提高最终无钴层状正极材料的离子导电性,从而提高无钴层状正极材料的倍率性能。
根据本申请的实施例,层状镍锰酸锂基体材料与包覆剂的混合可以是在高速混合设备中进行的,设备中物料的填充效率可以为30-70%。根据本申请的实施例,层状镍锰酸锂基体材料与包覆剂混合的转速可以为800-900rpm,如800rpm、850rpm、900rpm,混合的时间可以为10-20min,如10min、12min、15min、18min、20min。由此,可使层状镍锰酸锂基体材料与包覆剂混合均匀,使得包覆剂均匀地附着在层状镍锰酸锂基体材料的表面,便于经后续第一烧结处理,在层状镍锰酸锂基体材料表面形成包覆层,以获得无钴层状正极材料。
根据本申请的实施例,陶瓷氧化物可以包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。由此,可以利用上述陶瓷氧化物提高无钴层状正极材料的电子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,第二包覆剂可以包括磷酸锂和硅酸锂(Li 4SiO 4)的至少之一。由此,可以利用上述包覆剂提高无钴层状正极材料的离子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,陶瓷氧化物的质量与层状镍锰酸锂基体材料的质量的百分比可以为0.15-0.35%,如0.15%、0.16%、0.18%、0.20%、0.22%、0.24%、0.26%、0.28%、0.30%、0.32%、0.35%,且第二包覆剂的质量与层状镍锰酸锂基体材料的质量的百分比可以为0.4-1.0%,如0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%。发明人发现,将陶瓷氧化物的含量以及第二包覆剂的含量分别设置在上述范围内,可显著提高无钴层状正极材料的倍率性能,且还可避免包覆剂用量过多导致的包覆层过厚而降低锂离子迁移速度的问题,以及避免包覆剂用量过少导致的层状镍锰酸锂基体材料无法被完全包覆而 降低循环性能的问题,即通过将陶瓷氧化物的含量以及第二包覆剂的含量分别设置在上述范围内,有利于显著提升无钴层状正极材料的倍率性能,同时可以使无钴层状正极材料获得良好的循环性能。
根据本申请的实施例,第一包覆剂与第二包覆剂的摩尔比可以为0.2-0.6,如0.2、0.3、0.4、0.5、0.6。由此,可显著提高无钴层状正极材料的倍率性能,且可避免杂相的产生,保证无钴层状正极材料具有较高的容量。例如,包覆剂为氧化锆和磷酸锂的混合物,若氧化锆和磷酸锂的摩尔比过大(如大于0.6)或过小(如小于0.2)时,均会产生一定的杂相Zr 3(PO 4) 4,降低无钴层状正极材料的容量。根据本申请的一些优选实施例,包覆剂同时包括第一包覆剂和第二包覆剂时,第一包覆剂与第二包覆剂的摩尔比可以为0.5。
根据本申请的实施例,第一包覆剂和第二包覆剂的粒径可以分别独立的为50-300nm,如50nm、80nm、100nm、150nm、180nm、200nm、250nm、280nm、300nm。包覆剂经后续的第一烧结处理后会形成包覆层,发明人发现,若第一包覆剂和第二包覆剂的粒径较大(如大于300nm),会降低包覆层的均匀性和致密性,进而影响包覆层的包覆效果,影响无钴层状正极材料的循环性能,若第一包覆剂和第二包覆剂的粒径较小(如小于50nm),容易造成颗粒的团聚,同样会降低包覆层的均匀性和致密性,影响无钴层状正极材料的循环性能。本申请通过将第一包覆剂和第二包覆剂的粒径分别设置在上述范围内,可以使后续形成的包覆层获得较高的均匀性和致密性,进一步提高无钴层状正极材料的循环性能。
根据本申请的一些优选实施例,第一包覆剂和第二包覆剂的粒径可以分别独立的为50-100nm。由此,可进一步提高包覆层的均匀性和致密性,进一步提高无钴层状正极材料的循环性能。
S300:对第一混合物料进行第一烧结处理,在层状镍锰酸锂基体材料表面形成包覆层,以获得无钴层状正极材料
根据本申请的实施例,在该步骤中,对第一混合物料进行第一烧结处理,在层状镍锰酸锂基体材料表面形成包覆层,以获得无钴层状正极材料。根据本申请的实施例,第一烧结处理可以是在氧气的体积浓度为20-100%的气氛中进行的,第一烧结处理的温度可以为300-700℃,如300℃、400℃、500℃、600℃、700℃,第一烧结处理的时间可以为4-10h,如4h、5h、6h、7h、8h、9h、10h,第一烧结处理的升温速率可以为3-5℃/min,如3℃/min、4℃/min、5℃/min。由此,可使附着在层状镍锰酸锂基体材料表面的包覆剂形成包覆层,以获得无钴层状正极材料。
根据本申请的实施例,第一混合物料经第一烧结处理后,进行过筛,过筛的筛网目 数可以为300-400目,以获得无钴层状正极材料。
根据本申请的实施例,该无钴层状正极材料可以为单晶正极材料,或者,还可以为多晶正极材料,使得上述无钴层状正极材料获得优良的倍率性能、较低的成本以及稳定的结构。
根据本申请的实施例,利用上述方法获得的无钴层状正极材料的比表面积为0.1-0.7m 2/g。由此,无钴层状正极材料具有合适的比表面积,可有效缓解比表面积过大造成的产气现象,以及有效缓解比表面积过小造成的倍率性能下降。
根据本申请的实施例,利用上述方法获得的无钴层状正极材料的中值粒径(D50)为3-15μm。由此,有利于使无钴层状正极材料获得较高的倍率性能,在无钴层状正极材料应用于锂离子电池中时,还可有效缓解产气现象的发生。
根据本申请的实施例,利用上述方法获得的无钴层状正极材料的PH小于等于12。由此,可有效缓解无钴层状正极材料的碱性过大而造成的涂布不均匀的问题,使得含有该无钴层状正极材料的浆料能够均匀地涂布在集流体上。
综上,利用该方法可有效提高无钴层状正极材料的导电性,进而提高其倍率性能,使得无钴层状正极材料同时具有成本低、结构稳定以及倍率性能优良的优点,使得应用该无钴层状正极材料的锂离子电池具有良好的使用性能以及较低的成本。
在本申请的另一方面,本申请提出了一种无钴层状正极材料。根据本申请的实施例,该无钴层状正极材料包括:层状镍锰酸锂基体材料和位于层状镍锰酸锂基体材料表面的包覆层,其中,包覆层包括第一包覆剂和第二包覆剂,第一包覆剂包括陶瓷氧化物,第二包覆剂包括磷酸盐和硅酸盐的至少之一。由此,该无钴层状正极材料同时具有成本低、结构稳定以及倍率性能优良的优点,使得应用该无钴层状正极材料的锂离子电池具有良好的使用性能以及较低的成本。
根据本申请的实施例,该无钴层状正极材料可以是利用前面所描述的方法制备的,由此,该无钴层状正极材料具有与前面所述描述的方法制备的无钴层状正极材料相同的特征以及优点,在此不再赘述。
根据本申请的实施例,陶瓷氧化物可以包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。由此,上述陶瓷氧化物可提高无钴层状正极材料的电子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,第二包覆剂可以包括磷酸锂和硅酸锂的至少之一。由此,上述包覆剂可提高无钴层状正极材料的离子导电性,以提升无钴层状正极材料的倍率性能。
根据本申请的实施例,陶瓷氧化物的质量与层状镍锰酸锂基体材料的质量百分比可 以为0.15-0.35%,第二包覆剂的质量与层状镍锰酸锂基体材料的质量百分比可以为0.4-1.0%。由此,可显著提升无钴层状正极材料的倍率性能,同时可以使无钴层状正极材料获得良好的循环性能。
根据本申请的实施例,第一包覆剂与第二包覆剂的摩尔比为0.2-0.6。由此,可显著提高无钴层状正极材料的导电性,从而显著提升无钴层状正极材料的倍率性能,且可避免杂相的产生,保证无钴层状正极材料具有较高的容量。
关于无钴层状正极材料的晶体类型、比表面积、中值粒径以及PH,前面已经进行了详细描述,在此不再赘述。
在本申请的另一方面,本申请提出了一种锂离子电池。根据本申请的实施例,该锂离子电池包括:正极片,正极片包括前面所描述的无钴层状正极材料。由此,该锂离子电池具有前面所描述的无钴层状正极材料的全部特征以及优点,在此不再赘述。总的来说,该锂离子电池具有较低的成本、优良的倍率性能、较长的使用寿命以及较高的安全性。
本领域技术人员能够理解的是,锂离子电池还包括负极片、隔膜以及电解液等,隔膜位于正极片和负极片之间,正极片和负极片之间构成容纳空间,电解液填充在上述容纳空间内。
下面通过具体的实施例对本申请的方案进行说明,需要说明的是,下面的实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1
无钴层状正极材料的制备过程如下:
(1)将LiOH和Ni 0.75Mn 0.25(OH) 2在高速混合设备中混合均匀,获得第二混合物料,混合的转速为850rpm,混合的时间为10min,设备中的物料填充效率为55%。
(2)对第二混合物料在氧气的体积浓度为95%的气氛中进行第二烧结处理,第二烧结处理的温度为930℃,第二烧结处理的时间为10h,第二烧结处理的升温速率为4℃/min,并对经第二烧结处理后的物料进行气流磨粉碎,将破碎后的物料过325目筛,得到层状镍锰酸锂基体材料。
(3)将层状镍锰酸锂基体材料与ZrO 2和Li 3PO 4一起采用高速混合设备进行混合,获得第一混合物料,混合的转速为850rpm,混合的时间为10min,设备中的物料填充效率为55%。ZrO 2的质量与层状镍锰酸锂基体材料的质量百分比为0.30%,Li 3PO 4的质量与层状镍锰酸锂基体材料的质量百分比为0.5%,ZrO 2和Li 3PO 4的粒径均为100nm,ZrO 2和Li 3PO 4的摩尔比为0.56。
(4)对第一混合物料在氧气的体积浓度为40%的气氛中进行第一烧结处理,第一烧结处理的温度为600℃,第一烧结处理的时间为5h,第一烧结处理的升温速率为5℃/min,并对经第一烧结处理后的物料进行气流磨粉碎,将破碎后的物料过400目筛,得到无钴层状正极材料。
实施例2
本实施例无钴层状正极材料的制备过程基本与实施例1相同,所不同的是,步骤(3)中,将层状镍锰酸锂基体材料与TiO 2和Li 4SiO 4一起采用高速混合设备进行混合,TiO 2的质量与层状镍锰酸锂基体材料的质量百分比为0.15%,Li 4SiO 4的质量与层状镍锰酸锂基体材料的质量百分比为0.4%,TiO 2和Li 4SiO 4的粒径均为80nm,TiO 2和Li 4SiO 4的摩尔比为0.56。
实施例3
本实施例无钴层状正极材料的制备过程基本与实施例1相同,所不同的是,步骤(3)中,ZrO 2的质量与层状镍锰酸锂基体材料的质量百分比为0.4%,Li 3PO 4的质量与层状镍锰酸锂基体材料的质量百分比为0.5%,ZrO 2和Li 3PO 4的摩尔比为0.75。
实施例4
本实施例无钴层状正极材料的制备过程基本与实施例1相同,所不同的是,步骤(3)中,ZrO 2的质量与层状镍锰酸锂基体材料的质量的百分比为0.1%,Li 3PO 4的质量与层状镍锰酸锂基体材料的质量百分比为0.5%,ZrO 2和Li 3PO 4的摩尔比为0.19。
对比例1
无钴层状正极材料的制备过程如下:
(1)将LiOH和Ni 0.75Mn 0.25(OH) 2在高速混合设备中混合均匀,获得第二混合物料,混合的转速为850rpm,混合的时间为10min,设备中的物料填充效率为55%。
(2)对第二混合物料在氧气浓度为95%的气氛中进行第二烧结处理,第二烧结处理的温度为930℃,第二烧结处理的时间为10h,第二烧结处理的升温速率为4℃/min,并对经第二烧结处理后的物料进行气流磨粉碎,将破碎后的物料过325目筛,得到层状镍锰酸锂基体材料,即最终的无钴层状正极材料。
性能测试
1、利用扫描电子显微镜分别对实施例1和对比例1获得的无钴层状正极材料进行观察,实施例1的无钴层状正极材料的电镜照片如图2(图2中的(a)为低倍电镜图,图2中的(b)为高倍电镜图)所示,对比例1的无钴层状正极材料的电镜照片如图3(图3中的(a)为低倍电镜图,图3中的(b)为高倍电镜图)所示。
2、分别将实施例1-4和对比例1获得的无钴层状正极材料与导电剂SP(炭黑)、 粘结剂PVDF(聚偏氟乙烯)以质量比为92:4:4进行混合形成正极浆料,涂布在铝箔上形成正极片,以金属锂为负极片,以Celgard2400微孔聚丙烯膜为隔膜,LiPF 6(六氟磷酸锂)/EC(碳酸乙烯酯)-DMC(碳酸二甲酯)为电解液,组装成锂离子电池。分别对实施例1-4和对比例1组装成的锂离子电池进行充放电测试以及倍率性能测试,充放电测试结果如表1所示,倍率性能测试(不同倍率下的放电比容量(mAh/g))结果如表2所示。其中,充放电测试为首先在0.1C倍率下测试电池的容量,然后继续在1C倍率下测试电池的容量。
表1
Figure PCTCN2020076991-appb-000001
表2
0.1C 0.3C 0.5C 1C 2C 4C
实施例1 181.9 175.3 170.4 164.9 155.7 149.8
实施例2 180.2 174.1 169.2 162.8 153.9 147.5
实施例3 176.9 171.0 165.8 158.5 150.1 144.3
实施例4 175.8 169.8 161.7 156.4 148.2 140.1
对比例1 173.3 162.7 154.5 149.0 140.6 132.0
由图2和图3可知,对比例1的无钴层状正极材料表面光滑,实施例1的无钴层状正极材料的表面具有一层均匀且致密的包覆层。
由表1可知,相较于无包覆层的无钴层状正极材料(如对比例1),具有包覆层的无钴层状正极材料(如实施例1-4)的放电比容量、首次效率以及循环性能均有较大提高。
由表2可知,相较于无包覆层的无钴层状正极材料(如对比例1),具有包覆层的无钴层状正极材料(如实施例1-4)的倍率性能均有提升,特别是在高倍率下,倍率性能提升更为显著。
由实施例3、实施例4与实施例1相比可知,当ZrO 2的含量过高或过低时,锂离子电池的倍率性能均会有所降低。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (28)

  1. 一种制备无钴层状正极材料的方法,其特征在于,包括:
    制备层状镍锰酸锂基体材料;
    将所述层状镍锰酸锂基体材料与包覆剂进行混合,获得第一混合物料;
    对所述第一混合物料进行第一烧结处理,在所述层状镍锰酸锂基体材料表面形成包覆层,以获得所述无钴层状正极材料,
    其中,所述包覆剂包括第一包覆剂和第二包覆剂,所述第一包覆剂包括陶瓷氧化物,所述第二包覆剂包括磷酸盐和硅酸盐的至少之一。
  2. 根据权利要求1所述的方法,其特征在于,所述陶瓷氧化物包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二包覆剂包括磷酸锂和硅酸锂的至少之一。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述陶瓷氧化物的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.15-0.35%,
    所述第二包覆剂的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.4-1.0%。
  5. 根据权利要求4所述的方法,其特征在于,所述第一包覆剂与所述第二包覆剂的摩尔比为0.2-0.6。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一包覆剂和所述第二包覆剂的粒径分别独立的为50-300nm。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一包覆剂和所述第二包覆剂的粒径分别独立的为50-100nm。
  8. 根据权利要求1所述的方法,其特征在于,制备所述层状镍锰酸锂基体材料包括:
    将锂源粉末与镍锰氢氧化物进行混合,获得第二混合物料,
    对所述第二混合物料进行第二烧结处理,获得所述层状镍锰酸锂基体材料。
  9. 根据权利要求8所述的方法,其特征在于,所述锂源粉末与所述镍锰氢氧化物混合的转速为800-900rpm,混合的时间为10-20min。
  10. 根据权利要求8所述的方法,其特征在于,所述第二烧结处理是在氧气的体积浓度大于90%的气氛中进行的,所述第二烧结处理的温度为800-970℃,所述第二烧结处理的时间为8-12h,所述第二烧结处理的升温速率为1-5℃/min。
  11. 根据权利要求8所述的方法,其特征在于,所述锂源粉末包括氢氧化锂和碳酸锂的至少之一。
  12. 根据权利要求8所述的方法,其特征在于,所述镍锰氢氧化物的分子式为Ni xMn y(OH) 2,其中,0.55≤x≤0.95、0.05≤y≤0.45。
  13. 根据权利要求1所述的方法,其特征在于,所述层状镍锰酸锂基体材料与所述包覆剂混合的转速为800-900rpm,混合的时间为10-20min。
  14. 根据权利要求1所述的方法,其特征在于,所述第一烧结处理是在氧气的体积浓度为20-100%的气氛中进行的,所述第一烧结处理的温度为300-700℃,所述第一烧结处理的时间为4-10h,所述第一烧结处理的升温速率为3-5℃/min。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,获得的所述无钴层状正极材料为单晶正极材料或者多晶正极材料。
  16. 根据权利要求1-14任一项所述的方法,其特征在于,获得的所述无钴层状正极材料的比表面积为0.1-0.7m 2/g。
  17. 根据权利要求1-14任一项所述的方法,其特征在于,获得的所述无钴层状正极材料的中值粒径为3-15μm。
  18. 根据权利要求1-14任一项所述的方法,其特征在于,获得的所述无钴层状正极材料的pH小于等于12。
  19. 一种无钴层状正极材料,其特征在于,包括:
    层状镍锰酸锂基体材料和位于所述层状镍锰酸锂基体材料表面的包覆层,
    所述包覆层包括第一包覆剂和第二包覆剂,所述第一包覆剂包括陶瓷氧化物,所述第二包覆剂包括磷酸盐和硅酸盐的至少之一。
  20. 根据权利要求19所述的无钴层状正极材料,其特征在于,所述陶瓷氧化物包括氧化锆、氧化钛、氧化铝和氧化硼的至少之一。
  21. 根据权利要求19或20所述的无钴层状正极材料,其特征在于,所述第二包覆剂包括磷酸锂和硅酸锂的至少之一。
  22. 根据权利要求19-21任一项所述的无钴层状正极材料,其特征在于,所述陶瓷氧化物的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.15-0.35%,所述第二包覆剂的质量与所述层状镍锰酸锂基体材料的质量的百分比为0.4-1.0%。
  23. 根据权利要求20-22任一项所述的无钴层状正极材料,其特征在于,所述第一包覆剂与所述第二包覆剂的摩尔比为0.2-0.6。
  24. 根据权利要求19-23任一项所述的无钴层状正极材料,其特征在于,所述无钴层状正极材料为单晶正极材料或者多晶正极材料。
  25. 根据权利要求19-24任一项所述的无钴层状正极材料,其特征在于,所述无钴层状正极材料的比表面积为0.1-0.7m 2/g。
  26. 根据权利要求19-25任一项所述的无钴层状正极材料,其特征在于,所述无钴层状正极材料的中值粒径为3-15μm。
  27. 根据权利要求19-26任一项所述的无钴层状正极材料,其特征在于,所述无钴层状正极材料的pH小于等于12。
  28. 一种锂离子电池,其特征在于,包括:
    正极片,所述正极片包括权利要求19-27任一项所述的无钴层状正极材料。
PCT/CN2020/076991 2020-01-17 2020-02-27 无钴层状正极材料及制备方法、锂离子电池 WO2021142891A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022569285A JP7446486B2 (ja) 2020-01-17 2020-02-27 コバルトフリーの層状正極材料及び調製方法、リチウムイオン電池
EP20913469.1A EP4092787A4 (en) 2020-01-17 2020-02-27 COBALT-FREE LAYERED POSITIVE ELECTRODE MATERIAL AND METHOD FOR PRODUCTION THEREOF AND LITHIUM-ION BATTERY
KR1020227028400A KR20220153580A (ko) 2020-01-17 2020-02-27 무코발트 층상 양극 재료 및 이의 제조 방법, 리튬 이온 전지
US17/865,526 US20230046142A1 (en) 2020-01-17 2022-07-15 Cobalt-free layered positive electrode material and method for preparing same, and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010054733.9 2020-01-17
CN202010054733.9A CN111434618B (zh) 2020-01-17 2020-01-17 无钴层状正极材料及制备方法、锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/865,526 Continuation US20230046142A1 (en) 2020-01-17 2022-07-15 Cobalt-free layered positive electrode material and method for preparing same, and lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2021142891A1 true WO2021142891A1 (zh) 2021-07-22

Family

ID=71581020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076991 WO2021142891A1 (zh) 2020-01-17 2020-02-27 无钴层状正极材料及制备方法、锂离子电池

Country Status (6)

Country Link
US (1) US20230046142A1 (zh)
EP (1) EP4092787A4 (zh)
JP (1) JP7446486B2 (zh)
KR (1) KR20220153580A (zh)
CN (1) CN111434618B (zh)
WO (1) WO2021142891A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603158A (zh) * 2021-08-06 2021-11-05 湖南杉杉能源科技有限公司 一种无钴正极材料前驱体及其制备方法
CN113666433A (zh) * 2021-08-12 2021-11-19 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN114335415A (zh) * 2021-11-23 2022-04-12 佛山(华南)新材料研究院 一种全固态锂离子电池复合型正极膜片及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133020B (zh) 2021-03-25 2023-11-07 宁德时代新能源科技股份有限公司 锰酸锂正极活性材料及包含其的正极极片、二次电池、电池模块、电池包和用电装置
CN113072101B (zh) * 2021-03-30 2023-04-07 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113060776B (zh) * 2021-03-31 2023-07-25 蜂巢能源科技有限公司 一种层状无钴正极材料、其制备方法和锂离子电池
CN113023794B (zh) * 2021-03-31 2023-05-23 蜂巢能源科技有限公司 无钴高镍正极材料及其制备方法、锂离子电池正极及锂离子电池
KR20240023133A (ko) * 2022-06-08 2024-02-20 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 캐소드 활물질 및 그의 제조 방법, 극판, 이차 전지 및 전기 장치
CN116332146A (zh) * 2023-03-10 2023-06-27 无锡晶石新型能源股份有限公司 一种熔融包覆法提升磷酸锰铁锂比表面的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416189A (zh) * 2001-11-02 2003-05-07 中国科学院物理研究所 以纳米表面包覆复合材料为正极活性物质的锂二次电池
CN102569775A (zh) * 2011-12-23 2012-07-11 东莞新能源科技有限公司 锂离子二次电池及其正极活性材料
JP2014022294A (ja) * 2012-07-20 2014-02-03 Sumitomo Metal Mining Co Ltd 非水電解質二次電池用正極活物質およびその製造方法
CN107910542A (zh) * 2017-12-11 2018-04-13 广东工业大学 一种富锂锰基复合正极材料及其制备方法
CN108598400A (zh) * 2018-04-11 2018-09-28 桑德集团有限公司 一种三层核壳结构正极材料,制备方法及锂离子电池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199844B2 (ja) * 2008-11-21 2013-05-15 株式会社日立製作所 リチウム二次電池
JP2010129470A (ja) * 2008-11-28 2010-06-10 Sony Corp 正極活物質の製造方法および正極活物質
CN102272984A (zh) * 2009-01-06 2011-12-07 株式会社Lg化学 锂二次电池用正极活性材料
CN102447106B (zh) * 2010-10-15 2014-03-26 清华大学 尖晶石锰酸锂复合材料及其制备方法以及锂离子电池
EP2763217A4 (en) * 2011-09-30 2015-04-01 Asahi Glass Co Ltd ACTIVE POSITIVE ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD OF MANUFACTURING THEREOF
CN102496710B (zh) * 2011-12-31 2014-01-08 湖南杉杉户田新材料有限公司 一种镍基多元正极材料及其制备方法
JP5958119B2 (ja) * 2012-06-27 2016-07-27 日亜化学工業株式会社 非水電解液二次電池用正極組成物
CN102956895B (zh) * 2012-11-15 2015-10-14 北大先行科技产业有限公司 表面复合包覆的正极材料及其制备方法和锂离子电池
CN103943862A (zh) * 2013-01-23 2014-07-23 江南大学 磷酸盐表面包覆的二元层状锂离子电池正极材料及其制备方法
KR102273772B1 (ko) * 2014-05-21 2021-07-06 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
CN108666534B (zh) * 2017-03-27 2021-03-19 天津国安盟固利新材料科技股份有限公司 一种双层包覆的锂离子电池正极材料及其制备方法
CN109921013B (zh) * 2017-12-13 2022-06-24 微宏动力系统(湖州)有限公司 一种改性的正极材料前驱体、其制备方法、改性的正极材料及锂电池
JP6988502B2 (ja) * 2018-01-17 2022-01-05 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法
CN108807949A (zh) * 2018-08-07 2018-11-13 浙江美都海创锂电科技有限公司 一种高镍锰酸锂正极材料的制备方法
CN109411733A (zh) * 2018-11-06 2019-03-01 烟台卓能锂电池有限公司 复合包覆改性的锂离子电池正极材料及其制备方法、正极和锂离子电池
CN109950498A (zh) * 2019-03-29 2019-06-28 宁波容百新能源科技股份有限公司 一种具有均匀包覆层的高镍正极材料及其制备方法
CN110611093A (zh) * 2019-10-25 2019-12-24 中南大学 一种表面包覆改性锂离子电池高镍三元正极材料的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416189A (zh) * 2001-11-02 2003-05-07 中国科学院物理研究所 以纳米表面包覆复合材料为正极活性物质的锂二次电池
CN102569775A (zh) * 2011-12-23 2012-07-11 东莞新能源科技有限公司 锂离子二次电池及其正极活性材料
JP2014022294A (ja) * 2012-07-20 2014-02-03 Sumitomo Metal Mining Co Ltd 非水電解質二次電池用正極活物質およびその製造方法
CN107910542A (zh) * 2017-12-11 2018-04-13 广东工业大学 一种富锂锰基复合正极材料及其制备方法
CN108598400A (zh) * 2018-04-11 2018-09-28 桑德集团有限公司 一种三层核壳结构正极材料,制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092787A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603158A (zh) * 2021-08-06 2021-11-05 湖南杉杉能源科技有限公司 一种无钴正极材料前驱体及其制备方法
CN113666433A (zh) * 2021-08-12 2021-11-19 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN114335415A (zh) * 2021-11-23 2022-04-12 佛山(华南)新材料研究院 一种全固态锂离子电池复合型正极膜片及其制造方法

Also Published As

Publication number Publication date
CN111434618B (zh) 2022-07-22
US20230046142A1 (en) 2023-02-16
CN111434618A (zh) 2020-07-21
KR20220153580A (ko) 2022-11-18
JP2023513389A (ja) 2023-03-30
JP7446486B2 (ja) 2024-03-08
EP4092787A1 (en) 2022-11-23
EP4092787A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021142891A1 (zh) 无钴层状正极材料及制备方法、锂离子电池
EP3296267B1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
CN109244365B (zh) 锂离子电池正极材料及其制备方法、正极和锂离子电池
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
US20190379044A1 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
WO2021258662A1 (zh) 一种正极材料、其制备方法和锂离子电池
WO2022206278A1 (zh) 一种单晶高镍正极材料及其制备方法和应用
WO2021143373A1 (zh) 无钴层状正极材料及其制备方法、锂离子电池
WO2021143374A1 (zh) 无钴层状正极材料及其制备方法、正极片和锂离子电池
WO2021209079A2 (zh) 具有超晶格结构的正极活性材料及制备方法、锂离子电池
CN111564612B (zh) 一种高导热导电性锂电正极材料及其制备方法
CN112751002B (zh) 正极片及锂离子电池
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
CN111682170B (zh) 一种单晶三元正极材料及其制备方法和应用
WO2023165130A1 (zh) 一种改性的单晶型高镍三元材料及其制备方法与应用
CN114335533B (zh) 一种负极材料及包括该负极材料的电池
CN113707870A (zh) 一种无钴正极材料及其制备方法和应用
CN116565180A (zh) 一种高振实密度磷酸铁锂正极材料及其制备方法和应用
CN114808127B (zh) 一种无钴单晶材料及其制备方法和应用
WO2021082314A1 (zh) 锂离子电池的正极材料及其制备方法
JP2001155728A (ja) 非水系リチウム二次電池用正極活物質及びその製造方法
CN116259738B (zh) 一种纳米硅碳复合负极材料、制备方法及锂离子电池
WO2023206593A1 (zh) 负极材料、负极极片及其制备方法和锂离子电池及其制备方法
CN114665072B (zh) 三元材料及其应用
CN116314776A (zh) 负极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913469

Country of ref document: EP

Effective date: 20220817