WO2022206278A1 - 一种单晶高镍正极材料及其制备方法和应用 - Google Patents

一种单晶高镍正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022206278A1
WO2022206278A1 PCT/CN2022/079182 CN2022079182W WO2022206278A1 WO 2022206278 A1 WO2022206278 A1 WO 2022206278A1 CN 2022079182 W CN2022079182 W CN 2022079182W WO 2022206278 A1 WO2022206278 A1 WO 2022206278A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
cobalt
electrode material
heat treatment
preparation
Prior art date
Application number
PCT/CN2022/079182
Other languages
English (en)
French (fr)
Inventor
许鑫培
江卫军
陈思贤
郑晓醒
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Priority to EP22778462.6A priority Critical patent/EP4227268A1/en
Publication of WO2022206278A1 publication Critical patent/WO2022206278A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/02Elemental selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of lithium ion batteries, for example, to a cobalt-free positive electrode material and a preparation method and application thereof.
  • Lithium-ion batteries have the advantages of high energy density and good cycle performance, and have been widely used in all aspects of life.
  • the cathode material is at the core of the lithium-ion battery, and the development process of the cathode material directly affects the development prospect of the lithium-ion battery.
  • Ternary cathode materials such as NCM (Ni x Co y M z ), NCA (Ni x Co y Al z ) and other materials have high density and good cycle life, and are widely used in the automotive and electronic industries.
  • cobalt is not only expensive but also pollutes the environment. These unfavorable factors directly limit the development of ternary materials.
  • Cobalt-free layered cathode materials not only get rid of the constraints of cobalt elements, but also have the advantages of high reversible specific capacity and low price, and are increasingly favored by the energy industry. With the continuous improvement of energy demand in various industries, it has become a trend to increase the energy density of cathode materials. The most direct method is to increase the content of nickel. However, the increase of nickel content will lead to an increase in residual alkali on the surface of the material, and the gas production of the battery will increase. increase, which poses a risk to the safety of the battery.
  • the present disclosure provides a cobalt-free positive electrode material and a preparation method and application thereof.
  • the preparation method includes the following steps: (1) mixing a lithium source, a precursor Ni x M y (OH) 2 and a dopant, and performing a heat treatment Obtaining a matrix material; (2) mixing the matrix material obtained in step (1) with a coating agent, and obtaining the cobalt-free positive electrode material through secondary heat treatment.
  • doping a low-melting point material into the base material can improve the compactness of the cobalt-free positive electrode material, thereby achieving the purpose of reducing gas production and improving the cycle performance of the material.
  • a coating layer is arranged on the surface of the base material to improve the compactness of the material particles. , strengthens the structural stability of the material, reduces the direct contact between the matrix material and the electrolyte, and reduces the occurrence of side reactions, thereby improving the cycle performance of the material.
  • a method for preparing a cobalt-free positive electrode material includes the following steps:
  • step (2) the matrix material obtained in step (1) and the coating agent are mixed, and the cobalt-free positive electrode material is obtained through secondary heat treatment;
  • the dopant is a low melting point material.
  • the compactness of the positive electrode material is increased by coating and doping one or more than two kinds of low-melting point materials, so as to achieve the effect of suppressing gas production and thereby improving the cycle performance.
  • the lithium source includes lithium hydroxide and/or lithium carbonate.
  • the dopant in step (1) includes selenium and/or tin.
  • the mass of the low melting point material is 0.1-1% of the mass of the lithium source and the precursor NixMny ( OH) 2 , for example: 0.1%, 0.3%, 0.5%, 0.7% or 1% etc.
  • the mixing time in step (1) is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min, 18 min or 20 min, etc.
  • the mixing speed of step (1) is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm, etc.
  • the atmosphere of the first heat treatment in step (1) is oxygen.
  • the concentration of the oxygen is 90-100%, for example: 90%, 92%, 94%, 96%, 98% or 100%.
  • the flow rate of the oxygen is 2-20L/min, for example: 2L/min, 5L/min, 10L/min, 15L/min or 20L/min, etc.
  • the temperature of the first heat treatment in step (1) is 800-1000°C, for example: 800°C, 850°C, 900°C, 950°C or 1000°C, etc.
  • the time for one heat treatment in step (1) is 8-12 hours, for example: 8 hours, 9 hours, 10 hours, 11 hours, or 12 hours.
  • the coating agent in step (2) includes any one or a combination of at least two of tin, selenium, nano-metal aluminum powder, magnesium powder, antimony, gallium or indium.
  • the mass ratio of the coating agent to the base material is (0.1-2):100, for example: 0.1:100, 0.5:100, 0.8:100, 1:100, 1.5:100 or 2:100 et al.
  • the mixing time in step (2) is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min, 18 min or 20 min, etc.
  • the mixing speed in step (2) is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm, etc.
  • the atmosphere of the secondary heat treatment in step (2) is oxygen.
  • the concentration of the oxygen is 20-100%, for example: 20%, 40%, 50%, 60%, 80% or 100%.
  • the temperature of the secondary heat treatment in step (2) is 200-700°C, for example: 200°C, 300°C, 400°C, 600°C or 700°C, etc.
  • the time of the secondary heat treatment in step (2) is 4 to 8 hours, for example, 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours.
  • sieving is performed after the secondary heat treatment in step (2).
  • the mesh size of the sieved mesh is 300-400 mesh, for example: 300 mesh, 320 mesh, 350 mesh, 380 mesh or 400 mesh, etc.
  • the preparation method comprises the following steps:
  • step (2) mixing the base material obtained in step (1) and the coating agent, heat treatment at an oxygen concentration of 20-100% and 200-700° C. for 4-8 hours, and passing through a 300-400 mesh sieve to obtain the cobalt-free positive electrode Material.
  • a cobalt-free positive electrode material is provided, and the cobalt-free positive electrode material is prepared by the aforementioned method.
  • doping the low melting point material such as selenium and/or tin in the base material can improve the compactness of the cobalt-free cathode material, thereby achieving the purpose of reducing gas production and improving the cycle performance of the material, and a coating layer is arranged on the surface of the base material , which improves the density of material particles, strengthens the structural stability of the material, reduces the direct contact between the matrix material and the electrolyte, and reduces the occurrence of side reactions, thereby improving the cycle performance of the material.
  • the cobalt-free cathode material is a layered structure with a single crystal morphology.
  • the median particle size D50 of the cobalt-free positive electrode material is 1-5 ⁇ m, for example: 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the specific surface area of the cobalt-free positive electrode material is 0.2-0.9 m 2 /g, for example: 0.2 m 2 /g, 0.4 m 2 /g, 0.5 m 2 /g, 0.6 m 2 / g, 0.8m 2 /g or 0.9m 2 /g, etc.
  • the residual lithium content of the cobalt-free positive electrode material is less than 0.3 wt %, for example: 0.3 wt %, 0.25 wt %, 0.2 wt %, or 0.15 wt %.
  • the free water content of the cobalt-free positive electrode material is lower than 200 ppm, for example: 2000 ppm, 1800 ppm, 1500 ppm, 1200 ppm or 1000 ppm, etc.
  • the pH of the cobalt-free positive electrode material is less than 12, for example, 11.9, 11.8, 11.5, 11.2, or 11.
  • a positive electrode plate is provided, and the positive electrode plate includes the above-mentioned cobalt-free positive electrode material.
  • a lithium ion battery is provided, and the ion battery includes the above-mentioned positive electrode.
  • FIG. 1 is a SEM image of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • FIG. 2 is an enlarged SEM view of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • FIG. 3 is a SEM image of the cobalt-free cathode material described in Comparative Example 1 of the present disclosure.
  • FIG. 4 is an enlarged SEM view of the cobalt-free cathode material described in Example 1 of the present disclosure.
  • FIG. 5 is a comparison diagram of high-temperature cycle gas production of pouch batteries made from the cobalt-free cathode materials described in Example 1 and Comparative Example 1 of the present disclosure.
  • a method for preparing a cobalt-free positive electrode material includes the following steps:
  • step (2) mixing the matrix material obtained in step (1) and the coating agent, and obtaining the cobalt-free positive electrode material through secondary heat treatment;
  • the dopant is a low melting point material.
  • the present disclosure increases the density of the positive electrode material by coating and doping one or two or more low-melting point materials, thereby achieving the effect of suppressing gas generation and improving cycle performance.
  • the lithium source includes lithium hydroxide and/or lithium carbonate.
  • the dopant in step (1) includes selenium and/or tin.
  • the mass of the low melting point material is 0.1-1% of the mass of the lithium source and the precursor NixMny ( OH) 2 , for example: 0.1%, 0.3%, 0.5%, 0.7% or 1% etc.
  • the mixing time in step (1) is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min, 18 min or 20 min, etc.
  • the mixing speed of step (1) is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm, etc.
  • the atmosphere of the first heat treatment in step (1) is oxygen.
  • the concentration of the oxygen is 90-100%, for example: 90%, 92%, 94%, 96%, 98% or 100%.
  • the flow rate of the oxygen is 2-20L/min, for example: 2L/min, 5L/min, 10L/min, 15L/min or 20L/min, etc.
  • the temperature of the first heat treatment in step (1) is 800-1000°C, for example: 800°C, 850°C, 900°C, 950°C or 1000°C, etc.
  • the temperature of the heat treatment in step (1) will affect the performance of the prepared cobalt-free positive electrode material.
  • a cobalt-free material with good cycle performance and less gas production can be prepared positive electrode material.
  • the time for one heat treatment in step (1) is 8-12 hours, for example: 8 hours, 9 hours, 10 hours, 11 hours, or 12 hours.
  • the coating agent in step (2) includes any one or a combination of at least two of tin, selenium, nano-metal aluminum powder, magnesium powder, antimony, gallium or indium.
  • the mass ratio of the coating agent to the base material is (0.1-2):100, for example: 0.1:100, 0.5:100, 0.8:100, 1:100, 1.5:100 or 2:100 et al.
  • the coating amount of the coating agent will affect the performance of the prepared cobalt-free positive electrode material. By controlling the coating amount of the coating agent to 0.1-2%, a cobalt-free positive electrode material with better effect can be prepared.
  • the mixing time in step (2) is 10-20 min, for example: 10 min, 12 min, 14 min, 16 min, 18 min or 20 min, etc.
  • the mixing speed in step (2) is 2000-3000 rpm, for example: 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm or 3000 rpm, etc.
  • the atmosphere of the secondary heat treatment in step (2) is oxygen.
  • the concentration of the oxygen is 20-100%, for example: 20%, 40%, 50%, 60%, 80% or 100%.
  • the temperature of the secondary heat treatment in step (2) is 200-700°C, for example: 200°C, 300°C, 400°C, 600°C or 700°C, etc.
  • the temperature of the heat treatment in step (2) will affect the performance of the prepared cobalt-free cathode material.
  • a cobalt-free material with good cycle performance and less gas production can be prepared positive electrode material.
  • the time of the secondary heat treatment in step (2) is 4 to 8 hours, for example, 4 hours, 5 hours, 6 hours, 7 hours, or 8 hours.
  • sieving is performed after the secondary heat treatment in step (2).
  • the mesh size of the sieved mesh is 300-400 mesh, for example: 300 mesh, 320 mesh, 350 mesh, 380 mesh or 400 mesh, etc.
  • the preparation method comprises the following steps:
  • step (2) mixing the base material obtained in step (1) and the coating agent, heat treatment at an oxygen concentration of 20-100% and 200-700° C. for 4-8 hours, and passing through a 300-400 mesh sieve to obtain the cobalt-free positive electrode Material.
  • a cobalt-free positive electrode material is provided, and the cobalt-free positive electrode material is prepared by the aforementioned method.
  • doping the low melting point material such as selenium and/or tin in the base material can improve the compactness of the cobalt-free cathode material, thereby achieving the purpose of reducing gas production and improving the cycle performance of the material, and a coating layer is arranged on the surface of the base material , which improves the density of material particles, strengthens the structural stability of the material, reduces the direct contact between the matrix material and the electrolyte, and reduces the occurrence of side reactions, thereby improving the cycle performance of the material.
  • the cobalt-free cathode material is a layered structure with a single crystal morphology.
  • the median particle size D50 of the cobalt-free positive electrode material is 1-5 ⁇ m, for example: 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the specific surface area of the cobalt-free positive electrode material is 0.2-0.9 m 2 /g, for example: 0.2 m 2 /g, 0.4 m 2 /g, 0.5 m 2 /g, 0.6 m 2 / g, 0.8m 2 /g or 0.9m 2 /g, etc.
  • the residual lithium content of the cobalt-free positive electrode material is less than 0.3 wt %, for example: 0.3 wt %, 0.25 wt %, 0.2 wt %, or 0.15 wt %.
  • the free water content of the cobalt-free positive electrode material is lower than 200 ppm, for example: 2000 ppm, 1800 ppm, 1500 ppm, 1200 ppm or 1000 ppm, etc.
  • the pH of the cobalt-free positive electrode material is less than 12, for example, 11.9, 11.8, 11.5, 11.2, or 11.
  • a positive electrode plate is provided, and the positive electrode plate includes the above-mentioned cobalt-free positive electrode material.
  • a lithium ion battery is provided, and the ion battery includes the above-mentioned positive electrode.
  • This embodiment provides a cobalt-free positive electrode material, and the cobalt-free positive electrode material is prepared by the following method:
  • step (2) Mix 80.00 g of the base material obtained in step (1) with 0.800 g of coating agent selenium, heat treatment at 50% oxygen concentration and 400° C. for 6 hours, and pass through a 300-mesh sieve to obtain a coating amount of 1%. Cobalt cathode material.
  • This embodiment provides a cobalt-free positive electrode material, and the cobalt-free positive electrode material is prepared by the following method:
  • step (2) Mix 80.00g of the base material obtained in step (1) with 0.4000g of coating agent tin, heat treatment at an oxygen concentration of 40% and 500° C. for 7 hours, pass through a 400-mesh sieve, and obtain a coating amount of 0.5% without Cobalt cathode material.
  • Example 1 The only difference between this example and Example 1 is that the mass of selenium in step (3) is 0.08 g, and a cobalt-free material with a coating amount of 0.1% is obtained, and other conditions and parameters are exactly the same as in Example 1.
  • Example 1 The only difference between this example and Example 1 is that the mass of selenium in step (3) is 0.16 g, and a cobalt-free material with a coating amount of 2% is obtained, and other conditions and parameters are exactly the same as Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that the coating treatment described in step (2) is not performed, and other conditions and parameters are exactly the same as those of Example 1.
  • Example 1 The only difference between this comparative example and Example 1 is that selenium is not doped in step (1), and other conditions and parameters are exactly the same as those of Example 1.
  • the finally obtained positive electrode material is subjected to a button half-cell charge-discharge test, specifically, the positive electrode material: PVDF: SP conductive agent is mixed in a mass ratio of 92:4:4, and NMP is added to adjust the solid content of the slurry to 50%;
  • the slurry was evenly coated on aluminum foil, dried at 100°C for 12 hours, and a whole pole piece was obtained; then the pole piece was cut into original pieces with a diameter of 12 mm, and the battery was assembled in a glove box.
  • the negative electrode was a lithium piece, The test results are shown in Table 1:
  • Example 1 From the comparison between Example 1 and Examples 3-4, it can be seen that the temperature of the heat treatment in step (1) will affect the performance of the prepared cobalt-free positive electrode material, and the temperature of the heat treatment in step (1) is controlled at 800 ⁇ 1000 °C , a cobalt-free cathode material with good cycle performance and less gas production can be prepared.
  • Example 1 From the comparison between Example 1 and Examples 5-6, it can be seen that the temperature of the heat treatment in step (2) will affect the performance of the prepared cobalt-free positive electrode material, and the temperature of the heat treatment in step (2) is controlled at 200 ⁇ 700 °C , a cobalt-free cathode material with good cycle performance and less gas production can be prepared.
  • Example 1 From the comparison between Example 1 and Examples 7-8, it can be seen that the amount of selenium coating will affect the performance of the prepared cobalt-free positive electrode material. By controlling the amount of selenium coating to 0.1-2%, a cobalt-free cathode material with better effect can be obtained. positive electrode material.
  • Figure 5 shows the comparison chart of high temperature cycle gas production of pouch batteries made from the cobalt-free cathode materials described in Example 1 and Comparative Example 1. It can be seen from Table 1 and Figure 5 that the coating of selenium improves the density of material particles It enhances the structural stability of the material, reduces the direct contact between the matrix material and the electrolyte, and reduces the occurrence of side reactions, thereby improving the cycle performance of the material.
  • Example 1 From the comparison of Example 1 and Comparative Example 2, it can be seen that the present disclosure can improve the compactness of the cobalt-free cathode material by doping the low-melting point material in the matrix material, thereby achieving the purpose of reducing gas production and improving the cycle performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种无钴正极材料的制备方法,包括以下步骤:(1)将锂源、前驱体Ni xMn y(OH) 2和掺杂剂混合,经一次热处理得到基体材料;(2)将步骤(1)得到的基体材料和包覆剂混合,经二次热处理得到无钴正极材料;掺杂剂为低熔点材料。还提供该制备方法制得的无钴正极材料、包含该无钴正极材料的正极极片以及包含该正极极片的锂离子电池。在基体材料中掺杂低熔点材料,可以提高无钴正极材料的致密性,从而降低产气、提高材料循环性能。

Description

一种单晶高镍正极材料及其制备方法和应用 技术领域
本公开涉及锂离子电池领域,例如涉及一种无钴正极材料及其制备方法和应用。
背景技术
锂离子电池具有高能量密度、较好的循环性能等优点,已经广泛地应用到生活中的方方面面。正极材料处于锂离子电池的核心,正极材料的开发进程直接影响了锂离子电池的发展前景。三元正极材料例如NCM(Ni xCo yMn z),NCA(Ni xCo yAl z)等材料具有高密度,较好的循环寿命,被广泛应用于汽车、电子行业。但是钴元素作为战略性资源,不但价格高昂而且对环境造成污染,这些不利因素直接限制了三元材料的发展。
无钴层状正极材料不但摆脱了钴元素的制约,而且具有较高的可逆比容量、价格低廉等优势,越来越受到能源行业的青睐。随着各个行业对能源需求的不断提高,增加正极材料的能量密度成为一种趋势,最直接的方法就是增加镍元素含量,但是镍含量的提高会导致材料表面残余碱的增加,电池产气的增加,这就对电池的安全性带来了风险。
发明内容
本公开提供一种无钴正极材料及其制备方法和应用,所述制备方法包括以下步骤:(1)将锂源、前驱体Ni xMn y(OH) 2和掺杂剂混合,经一次热处理得到基体材料;(2)将步骤(1)得到的基体材料和包覆剂混合,经二次热处理得到所述无钴正极材料。本公开在基体材料中掺杂低熔点材料,可以提高无钴正极材料的致密性,进而达到降低产气、提高材料循环性能的目的,在基体材料表面设置包覆层,提高了材料颗粒致密性,加强了材料的结构稳定性,降低了基体材料直接和电解液的接触,减少了副反应的发生,从而提高材料的循环性能。
本公开在一实施例中提供一种无钴正极材料的制备方法,所述制备方法包括以下步骤:
(1)将锂源、前驱体Ni xMn y(OH) 2和掺杂剂混合,经一次热处理得到基体材料;
(2)将步骤(1)得到的基体材料和包覆剂混合,经二次热处理得到所述 无钴正极材料;
其中,所述掺杂剂为低熔点材料。
本公开通过包覆和掺杂一种或两种以上的低熔点材料来增加正极材料的致密性,从而达到抑制产气,进而提高循环性能的效果。
在一实施例中,所述锂源包括氢氧化锂和/或碳酸锂。
在一实施例中,步骤(1)所述掺杂剂包括硒和/或锡。
在一实施例中,所述低熔点材料的质量为所述锂源和前驱体Ni xMn y(OH) 2的质量的0.1~1%,例如:0.1%、0.3%、0.5%、0.7%或1%等。
在一实施例中,步骤(1)所述混合的时间为10~20min,例如:10min、12min、14min、16min、18min或20min等。
在一实施例中,步骤(1)所述混合的速度为2000~3000rpm,例如:2000rpm、2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,步骤(1)所述一次热处理的气氛为氧气。
在一实施例中,所述氧气的浓度为90~100%,例如:90%、92%、94%、96%、98%或100%等。
在一实施例中,所述氧气的流量为2~20L/min,例如:2L/min、5L/min、10L/min、15L/min或20L/min等。
在一实施例中,步骤(1)所述一次热处理的温度为800~1000℃,例如:800℃、850℃、900℃、950℃或1000℃等。
在一实施例中,步骤(1)所述一次热处理的时间为8~12h,例如:8h、9h、10h、11h或12h等。
在一实施例中,步骤(2)所述包覆剂包括锡、硒、纳米金属铝粉、镁粉、锑、镓或铟中的任意一种或至少两种的组合。
在一实施例中,所述包覆剂与所述基体材料的质量比为(0.1~2):100,例如:0.1:100、0.5:100、0.8:100、1:100、1.5:100或2:100等。
在一实施例中,步骤(2)所述混合的时间为10~20min,例如:10min、12min、14min、16min、18min或20min等。
在一实施例中,步骤(2)所述混合的速度为2000~3000rpm,例如:2000rpm、 2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,步骤(2)所述二次热处理的气氛为氧气。
在一实施例中,所述氧气的浓度为20~100%,例如:20%、40%、50%、60%、80%或100%等。
在一实施例中,步骤(2)所述二次热处理的温度为200~700℃,例如:200℃、300℃、400℃、600℃或700℃等。
在一实施例中,步骤(2)所述二次热处理的时间为4~8h,例如:4h、5h、6h、7h或8h等。
在一实施例中,步骤(2)所述二次热处理后进行过筛。
在一实施例中,所述过筛的筛网孔径为300~400目,例如:300目、320目、350目、380目或400目等。
在一实施例中,所述制备方法包括以下步骤:
(1)将LiOH、前驱体Ni xMn y(OH) 2和掺杂剂混合,在氧气浓度为90~100%、氧气流量为2~20L/min及800~1000℃下热处理8~12h,得到基体材料;
(2)将步骤(1)得到的基体材料和包覆剂混合,在氧气浓度为20~100%及200~700℃下热处理4~8h,过300~400目筛,得到所述无钴正极材料。
本公开在一实施例中提供了一种无钴正极材料,所述无钴正极材料通过前面所述方法制得。
本公开在基体材料中掺杂硒和/或锡这种低熔点材料,可以提高无钴正极材料的致密性,进而达到降低产气、提高材料循环性能的目的,在基体材料表面设置包覆层,提高了材料颗粒致密性,加强了材料的结构稳定性,降低了基体材料直接和电解液的接触,减少了副反应的发生,从而提高材料的循环性能。
在一实施例中,所述无钴正极材料为单晶形貌的层状结构。
在一实施例中,所述无钴正极材料的中值粒径D50为1~5μm,例如:1μm、2μm、3μm、4μm或5μm等。
在一实施例中,所述无钴正极材料的比表面积为0.2~0.9m 2/g,例如:0.2m 2/g、0.4m 2/g、0.5m 2/g、0.6m 2/g、0.8m 2/g或0.9m 2/g等。
在一实施例中,所述无钴正极材料的残锂量小于0.3wt%,例如:0.3wt%、 0.25wt%、0.2wt%或0.15wt%等。
在一实施例中,所述无钴正极材料的游离水含量低于200ppm,例如:2000ppm、1800ppm、1500ppm、1200ppm或1000ppm等。
在一实施例中,所述无钴正极材料的pH小于12,例如:11.9、11.8、11.5、11.2或11等。
本公开在一实施例中提供一种正极极片,所述的正极极片包含上述无钴正极材料。
本公开在一实施例中提供一种锂离子电池,所述的离子电池包含上述正极极片。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本公开实施例1所述无钴正极材料的SEM图。
图2是本公开实施例1所述无钴正极材料的SEM放大图。
图3是本公开对比例1所述无钴正极材料的SEM图。
图4是本公开实施例1所述无钴正极材料的SEM放大图。
图5是本公开实施例1和对比例1所述无钴正极材料制得的软包电池高温循环产气对比图。
具体实施方式
本公开在一实施例中提供一种无钴正极材料的制备方法,所述制备方法包括以下步骤:
(1)将锂源、前驱体Ni xMn y(OH) 2和掺杂剂混合,经一次热处理得到基体材料;
(2)将步骤(1)得到的基体材料和包覆剂混合,经二次热处理得到所述无钴正极材料;
其中,所述掺杂剂为低熔点材料。
本公开通过包覆和掺杂一种或两种以上的低熔点材料来增加正极材料的致 密性,从而达到抑制产气,进而提高循环性能的效果。
在一实施例中,所述锂源包括氢氧化锂和/或碳酸锂。
在一实施例中,步骤(1)所述掺杂剂包括硒和/或锡。
在一实施例中,所述低熔点材料的质量为所述锂源和前驱体Ni xMn y(OH) 2的质量的0.1~1%,例如:0.1%、0.3%、0.5%、0.7%或1%等。
在一实施例中,步骤(1)所述混合的时间为10~20min,例如:10min、12min、14min、16min、18min或20min等。
在一实施例中,步骤(1)所述混合的速度为2000~3000rpm,例如:2000rpm、2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,步骤(1)所述一次热处理的气氛为氧气。
在一实施例中,所述氧气的浓度为90~100%,例如:90%、92%、94%、96%、98%或100%等。
在一实施例中,所述氧气的流量为2~20L/min,例如:2L/min、5L/min、10L/min、15L/min或20L/min等。
在一实施例中,步骤(1)所述一次热处理的温度为800~1000℃,例如:800℃、850℃、900℃、950℃或1000℃等。
步骤(1)所述热处理的温度会影响制得无钴正极材料的性能,将骤(1)所述热处理的温度控制在800~1000℃,可以制得循环性能好且产气少的无钴正极材料。
在一实施例中,步骤(1)所述一次热处理的时间为8~12h,例如:8h、9h、10h、11h或12h等。
在一实施例中,步骤(2)所述包覆剂包括锡、硒、纳米金属铝粉、镁粉、锑、镓或铟中的任意一种或至少两种的组合。
在一实施例中,所述包覆剂与所述基体材料的质量比为(0.1~2):100,例如:0.1:100、0.5:100、0.8:100、1:100、1.5:100或2:100等。
包覆剂包覆量会影响制得无钴正极材料的性能,将包覆剂的包覆量控制在0.1~2%,可以制得效果较好的无钴正极材料。
在一实施例中,步骤(2)所述混合的时间为10~20min,例如:10min、12min、14min、16min、18min或20min等。
在一实施例中,步骤(2)所述混合的速度为2000~3000rpm,例如:2000rpm、2200rpm、2400rpm、2600rpm、2800rpm或3000rpm等。
在一实施例中,步骤(2)所述二次热处理的气氛为氧气。
在一实施例中,所述氧气的浓度为20~100%,例如:20%、40%、50%、60%、80%或100%等。
在一实施例中,步骤(2)所述二次热处理的温度为200~700℃,例如:200℃、300℃、400℃、600℃或700℃等。
步骤(2)所述热处理的温度会影响制得无钴正极材料的性能,将骤(2)所述热处理的温度控制在200~700℃,可以制得循环性能好且产气少的无钴正极材料。
在一实施例中,步骤(2)所述二次热处理的时间为4~8h,例如:4h、5h、6h、7h或8h等。
在一实施例中,步骤(2)所述二次热处理后进行过筛。
在一实施例中,所述过筛的筛网孔径为300~400目,例如:300目、320目、350目、380目或400目等。
在一实施例中,所述制备方法包括以下步骤:
(1)将LiOH、前驱体Ni xMn y(OH) 2和掺杂剂混合,在氧气浓度为90~100%、氧气流量为2~20L/min及800~1000℃下热处理8~12h,得到基体材料;
(2)将步骤(1)得到的基体材料和包覆剂混合,在氧气浓度为20~100%及200~700℃下热处理4~8h,过300~400目筛,得到所述无钴正极材料。
本公开在一实施例中提供了一种无钴正极材料,所述无钴正极材料通过前面所述方法制得。
本公开在基体材料中掺杂硒和/或锡这种低熔点材料,可以提高无钴正极材料的致密性,进而达到降低产气、提高材料循环性能的目的,在基体材料表面设置包覆层,提高了材料颗粒致密性,加强了材料的结构稳定性,降低了基体 材料直接和电解液的接触,减少了副反应的发生,从而提高材料的循环性能。
在一实施例中,所述无钴正极材料为单晶形貌的层状结构。
在一实施例中,所述无钴正极材料的中值粒径D50为1~5μm,例如:1μm、2μm、3μm、4μm或5μm等。
在一实施例中,所述无钴正极材料的比表面积为0.2~0.9m 2/g,例如:0.2m 2/g、0.4m 2/g、0.5m 2/g、0.6m 2/g、0.8m 2/g或0.9m 2/g等。
在一实施例中,所述无钴正极材料的残锂量小于0.3wt%,例如:0.3wt%、0.25wt%、0.2wt%或0.15wt%等。
在一实施例中,所述无钴正极材料的游离水含量低于200ppm,例如:2000ppm、1800ppm、1500ppm、1200ppm或1000ppm等。
在一实施例中,所述无钴正极材料的pH小于12,例如:11.9、11.8、11.5、11.2或11等。
本公开在一实施例中提供一种正极极片,所述的正极极片包含上述无钴正极材料。
本公开在一实施例中提供一种锂离子电池,所述的离子电池包含上述正极极片。
实施例1
本实施例提供了一种无钴正极材料,所述无钴正极材料通过如下方法制得:
(1)取48.00g LiOH、100.00g Ni 0.75Mn 0.25(OH) 2和0.2115g掺杂剂硒粉末混合,在氧气浓度为95%、氧气流量为5L/min及900℃下热处理10h,得到基体材料;
(2)取80.00g步骤(1)得到的基体材料和0.800g包覆剂硒混合,在氧气浓度为50%及400℃下热处理6h,过300目筛,得到包覆量为1%的无钴正极材料。
所述无钴正极材料的SEM图如图1-2所示。
实施例2
本实施例提供了一种无钴正极材料,所述无钴正极材料通过如下方法制得:
(1)取42.1874g碳酸锂、100.00g Ni 0.8Mn 0.2(OH) 2和0.2115g掺杂剂锡粉末混合,在氧气浓度为90%、氧气流量为8L/min及950℃下热处理9h,得到基体材料;
(2)取80.00g步骤(1)得到的基体材料和0.4000g包覆剂锡混合,在氧气浓度为40%及500℃下热处理7h,过400目筛,得到包覆量为0.5%的无钴正极材料。
实施例3
本实施例与实施例1区别仅在于,步骤(1)所述热处理的温度为800℃,其他条件与参数与实施例1完全相同。
实施例4
本实施例与实施例1区别仅在于,步骤(1)所述热处理的温度为1000℃,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,步骤(2)所述热处理的温度为200℃,其他条件与参数与实施例1完全相同。
实施例6
本实施例与实施例1区别仅在于,步骤(1)所述热处理的温度为700℃,其他条件与参数与实施例1完全相同。
实施例7
本实施例与实施例1区别仅在于,步骤(3)所述硒的质量为0.08g,得到包覆量为0.1%的无钴材料,其他条件与参数与实施例1完全相同。
实施例8
本实施例与实施例1区别仅在于,步骤(3)所述硒的质量为0.16g,得到包覆量为2%的无钴材料,其他条件与参数与实施例1完全相同。
对比例1
本对比例与实施例1区别仅在于,不进行步骤(2)所述包覆处理,其他条件与参数与实施例1完全相同。
制得无钴正极材料的SEM图如图3-4所示。
对比例2
本对比例与实施例1区别仅在于,步骤(1)中不掺杂硒,其他条件与参数与实施例1完全相同。
性能测试:
将最终得到的正极材料进行纽扣半电池充放电测试,具体为将正极材料:PVDF:SP导电剂按照92:4:4的质量比例进行混合,加入NMP调节浆料固含量为50%;然后将浆料均匀涂覆在铝箔上,100℃下烘干12h,制得一整张极片;然后将极片裁成直径为12mm的原片,在手套箱中进行电池组装,负极为锂片,测试结果如表1所示:
表1
Figure PCTCN2022079182-appb-000001
由表1可知,由实施例1-8对比可得,使用本公开在一实施例中提供的所述 无钴正极材料制得电池的400周循环产气量可达0.73mL/Ah以下,800周循环产气量可达3.61mL/Ah以下,50周容量保持率可达88.92%以上。
由实施例1和实施例3-4对比可得,步骤(1)所述热处理的温度会影响制得无钴正极材料的性能,将骤(1)所述热处理的温度控制在800~1000℃,可以制得循环性能好且产气少的无钴正极材料。
由实施例1和实施例5-6对比可得,步骤(2)所述热处理的温度会影响制得无钴正极材料的性能,将骤(2)所述热处理的温度控制在200~700℃,可以制得循环性能好且产气少的无钴正极材料。
由实施例1和实施例7-8对比可得,硒包覆量会影响制得无钴正极材料的性能,将硒包覆量控制在0.1~2%,可以制得效果较好的无钴正极材料。
实施例1和对比例1所述无钴正极材料制得的软包电池高温循环产气对比图如图5所示,由表1和图5可以看出,硒的包覆提高了材料颗粒致密性,加强了材料的结构稳定性,降低了基体材料直接和电解液的接触,减少了副反应的发生,从而提高材料的循环性能。
由实施例1和对比例2对比可得,本公开通过在基体材料中掺杂低熔点材料可以提高无钴正极材料的致密性,进而达到降低产气、提高材料循环性能的目的。

Claims (15)

  1. 一种无钴正极材料的制备方法,所述制备方法包括以下步骤:
    (1)将锂源、前驱体Ni xMn y(OH) 2和掺杂剂混合,经一次热处理得到基体材料;
    (2)将步骤(1)得到的基体材料和包覆剂混合,经二次热处理得到所述无钴正极材料;
    其中,所述掺杂剂为低熔点材料。
  2. 如权利要求1所述的制备方法,其中,步骤(1)所述低熔点材料包括硒和/或锡,所述低熔点材料的质量为所述锂源和前驱体Ni xMn y(OH) 2的质量的0.1~1%,所述锂源包括氢氧化锂和/或碳酸锂。
  3. 如权利要求1或2所述的制备方法,其中,步骤(1)所述混合的时间为10~20min,所述混合的速度为2000~3000rpm。
  4. 如权利要求1-3任一项所述的制备方法,其中,步骤(1)所述一次热处理的气氛为氧气,所述氧气的浓度为90~100%,所述氧气的流量为2~20L/min。
  5. 如权利要求1-4任一项所述的制备方法,其中,步骤(1)所述一次热处理的温度为800~1000℃,所述一次热处理的时间为8~12h。
  6. 如权利要求1-5任一项所述的制备方法,其中,步骤(2)所述包覆剂包括锡、硒、纳米金属铝粉、镁粉、锑、镓或铟中的任意一种或至少两种的组合。
  7. 如权利要求1-6任一项所述的制备方法,其中,所述包覆剂与所述基体材料的质量比为(0.1~2):100。
  8. 如权利要求1-7任一项所述的制备方法,其中,步骤(2)所述混合的时间为10~20min,所述混合的速度为2000~3000rpm。
  9. 如权利要求1-8任一项所述的制备方法,其中,步骤(2)所述二次热处 理的气氛为氧气,所述氧气的浓度为20~100%。
  10. 如权利要求1-9任一项所述的制备方法,其中,步骤(2)所述二次热处理的温度为200~700℃,所述二次热处理的时间为4~8h,所述二次热处理后进行过筛,所述过筛的筛网孔径为300~400目。
  11. 如权利要求1-10任一项所述的制备方法,其中,所述制备方法包括以下步骤:
    (1)将LiOH、前驱体Ni xMn y(OH) 2和掺杂剂混合,在氧气浓度为90~100%、氧气流量为2~20L/min及800~1000℃下热处理8~12h,得到基体材料;
    (2)将步骤(1)得到的基体材料和包覆剂混合,在氧气浓度为20~100%及200~700℃下热处理4~8h,过300~400目筛,得到所述无钴正极材料。
  12. 一种无钴正极材料,所述无钴正极材料通过如权利要求1-11任一项所述制备方法制得。
  13. 如权利要求12所述的无钴正极材料,其中,所述无钴正极材料为单晶形貌的层状结构,所述无钴正极材料的中值粒径D50为1~5μm,所述无钴正极材料的比表面积为0.2~0.9m 2/g,所述无钴正极材料的残锂量小于0.3wt%,所述无钴正极材料的游离水含量低于200ppm,所述无钴正极材料的pH小于12。
  14. 一种正极极片,所述正极极片包含如权利要求12或13所述的无钴正极材料。
  15. 一种锂离子电池,所述锂离子电池包含如权利要求14所述的正极极片。
PCT/CN2022/079182 2021-03-30 2022-03-04 一种单晶高镍正极材料及其制备方法和应用 WO2022206278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22778462.6A EP4227268A1 (en) 2021-03-30 2022-03-04 Single-crystal high-nickel positive electrode material, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110341692.6A CN113072101B (zh) 2021-03-30 2021-03-30 一种无钴正极材料及其制备方法和应用
CN202110341692.6 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206278A1 true WO2022206278A1 (zh) 2022-10-06

Family

ID=76611684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079182 WO2022206278A1 (zh) 2021-03-30 2022-03-04 一种单晶高镍正极材料及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4227268A1 (zh)
CN (1) CN113072101B (zh)
WO (1) WO2022206278A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072101B (zh) * 2021-03-30 2023-04-07 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113666433A (zh) * 2021-08-12 2021-11-19 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113851622A (zh) * 2021-09-14 2021-12-28 厦门大学 一种电池体系的保护层及电化学装置
CN113998745B (zh) * 2021-12-27 2022-04-01 蜂巢能源科技股份有限公司 一种无钴正极材料及其制备方法和应用
CN117117109A (zh) * 2023-01-03 2023-11-24 宁夏汉尧富锂科技有限责任公司 一种无钴类单晶正极材料及其制备方法,以及锂离子电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204177A (ja) * 2011-03-25 2012-10-22 Kawasaki Heavy Ind Ltd コバルトフリーのアルカリ二次電池
CN110416550A (zh) * 2019-08-21 2019-11-05 中国科学院宁波材料技术与工程研究所 一种包覆型锂离子电池电极材料及其制备方法以及锂离子电池
CN111422920A (zh) * 2019-12-26 2020-07-17 蜂巢能源科技有限公司 锂离子电池的无钴正极材料及其制备方法和锂离子电池
CN111434618A (zh) * 2020-01-17 2020-07-21 蜂巢能源科技有限公司 无钴层状正极材料及制备方法、锂离子电池
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN111599999A (zh) * 2020-05-25 2020-08-28 蜂巢能源科技有限公司 无钴正极材料、其制备方法及锂离子电池
CN111697221A (zh) * 2020-07-07 2020-09-22 蜂巢能源科技有限公司 掺杂包覆的单晶正极材料及掺杂包覆单晶正极材料的方法
CN111916697A (zh) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
CN113072101A (zh) * 2021-03-30 2021-07-06 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509214B (zh) * 2020-05-14 2021-08-17 华鼎国联四川电池材料有限公司 一种高镍层状复合材料及其制备的锂离子电池正极材料
CN111900364B (zh) * 2020-08-28 2022-08-30 蜂巢能源科技有限公司 一种包覆型三元正极材料及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204177A (ja) * 2011-03-25 2012-10-22 Kawasaki Heavy Ind Ltd コバルトフリーのアルカリ二次電池
CN111463411A (zh) * 2019-01-18 2020-07-28 天津国安盟固利新材料科技股份有限公司 一种单晶形貌的高镍三元正极材料及其制备方法
CN110416550A (zh) * 2019-08-21 2019-11-05 中国科学院宁波材料技术与工程研究所 一种包覆型锂离子电池电极材料及其制备方法以及锂离子电池
CN111422920A (zh) * 2019-12-26 2020-07-17 蜂巢能源科技有限公司 锂离子电池的无钴正极材料及其制备方法和锂离子电池
CN111434618A (zh) * 2020-01-17 2020-07-21 蜂巢能源科技有限公司 无钴层状正极材料及制备方法、锂离子电池
CN111599999A (zh) * 2020-05-25 2020-08-28 蜂巢能源科技有限公司 无钴正极材料、其制备方法及锂离子电池
CN111697221A (zh) * 2020-07-07 2020-09-22 蜂巢能源科技有限公司 掺杂包覆的单晶正极材料及掺杂包覆单晶正极材料的方法
CN111916697A (zh) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
CN113072101A (zh) * 2021-03-30 2021-07-06 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113072101B (zh) 2023-04-07
EP4227268A1 (en) 2023-08-16
CN113072101A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022206278A1 (zh) 一种单晶高镍正极材料及其制备方法和应用
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
CN109244365B (zh) 锂离子电池正极材料及其制备方法、正极和锂离子电池
WO2021142891A1 (zh) 无钴层状正极材料及制备方法、锂离子电池
CN106532005B (zh) 球形或类球形锂电池正极材料、电池及制法和应用
US20200403218A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
WO2021238152A1 (zh) 一种锂离子电池用复合正极材料、其制备方法及用途
WO2021258662A1 (zh) 一种正极材料、其制备方法和锂离子电池
US20180047977A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
WO2021129109A1 (zh) 一种锂离子电池的无钴正极材料及其制备方法和锂离子电池
US20220359866A1 (en) Cobalt-free lamellar cathode material and method for preparing cobalt-free lamellar cathode material, and lithium ion battery
CN111916723B (zh) 梯度掺杂的无钴正极材料及其制备方法以及锂离子电池正极和锂电池
CN113060775B (zh) 一种无钴正极材料及其制备方法和应用
CN113903918B (zh) 一种正极材料及其制备方法和锂离子电池
WO2022227494A1 (zh) 一种单晶高镍正极材料及其制备方法和应用
CN112219298A (zh) 非水系电解质二次电池用正极活性物质和非水系电解质二次电池
CN112751002A (zh) 正极片及锂离子电池
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
CN110676455A (zh) 一种镍钴锰酸锂正极材料匀浆工艺
US11329274B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
JP6730777B2 (ja) 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池
CN115196683B (zh) 一种正极材料、二次电池及用电设备
TWI822958B (zh) 鋰離子二次電池用正極活性物質之製造方法
WO2024109205A1 (zh) 单晶三元正极材料及其制造方法、锂离子电池
JP2020047383A (ja) 正極活物質、及び、その製造方法、並びに、正極、及びリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022778462

Country of ref document: EP

Effective date: 20230512

NENP Non-entry into the national phase

Ref country code: DE