WO2021137400A1 - 염화수소 산화반응용 성형촉매 및 이의 제조방법 - Google Patents

염화수소 산화반응용 성형촉매 및 이의 제조방법 Download PDF

Info

Publication number
WO2021137400A1
WO2021137400A1 PCT/KR2020/014260 KR2020014260W WO2021137400A1 WO 2021137400 A1 WO2021137400 A1 WO 2021137400A1 KR 2020014260 W KR2020014260 W KR 2020014260W WO 2021137400 A1 WO2021137400 A1 WO 2021137400A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen chloride
molded
carrier
molding
Prior art date
Application number
PCT/KR2020/014260
Other languages
English (en)
French (fr)
Inventor
전정환
윤성호
조영진
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to CN202080085814.3A priority Critical patent/CN114786807A/zh
Priority to JP2022539367A priority patent/JP7520124B2/ja
Priority to US17/790,287 priority patent/US20230072554A1/en
Priority to EP20910301.9A priority patent/EP4085999A4/en
Publication of WO2021137400A1 publication Critical patent/WO2021137400A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8659Removing halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/26Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2042Hydrobromic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/47Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/821Ruthenium

Definitions

  • the present invention relates to a method for preparing a molding catalyst for obtaining chlorine (Cl 2 ) through the oxidation reaction of hydrogen chloride (HCl), and more particularly, to a ruthenium oxide (RuO 2 ) supported catalyst using titania (TiO 2 ) as a support. It relates to a method for producing a molded catalyst for oxidation reaction for producing chlorine (Cl 2 ) from hydrogen chloride (HCl) by adding a heterogeneous material to it, and molding it to be applicable to a fixed bed reactor.
  • hydrogen chloride is oxidized with oxygen to form chlorine in an exothermic equilibrium reaction.
  • Hydrogen chloride is formed in large quantities as a co-product in phosgenation reactions, for example in the production of isocyanates.
  • the hydrogen chloride formed during the preparation of isocyanates is mainly used in the oxychlorination reaction of ethylene to 1,2-dichloroethane, which is subsequently treated to form vinyl chloride and finally polyvinyl chloride (PVC).
  • Catalysts used in the hydrogen chloride oxidation reaction include a ruthenium-based catalyst, a copper-based catalyst, a cerium-based catalyst, and the like, and the ruthenium-based catalyst has a lower reaction temperature with a small amount of a catalyst than a copper-based catalyst or a cerium-based catalyst.
  • the reaction for producing chlorine by oxidation of hydrogen chloride is an equilibrium reaction, and the higher the reaction temperature is, the more disadvantageous the equilibrium is, and the lower the equilibrium conversion rate. Therefore, the catalyst having a lower reaction temperature becomes more advantageous in equilibrium in the reaction, so that a higher conversion rate of hydrogen chloride can be obtained.
  • most of the conventional catalysts mainly show high activity at high temperatures, and also exhibit a phenomenon in which catalyst performance decreases in a short period of several months during high-temperature operation.
  • Japanese Patent Application Laid-Open No. 2014-522797 relates to a method for producing chlorine using a cerium oxide catalyst in an isothermal reactor. It is possible to use a ruthenium and cerium oxide catalyst supported on titanium oxide to perform a gas phase oxidation reaction of hydrogen chloride. has been disclosed. In particular, it refers to a process using a ruthenium oxide catalyst and a cerium oxide catalyst charged in different layers.
  • Japanese Patent Application Laid-Open No. 2014-503341 relates to a catalyst for producing chlorine by oxidation of hydrogen chloride and a method for producing the same. Applied to oxidation reaction is disclosed.
  • Japanese Patent Laid-Open No. 2010-533113 discloses a technique for applying a hydrogen chloride oxidation reaction by supporting a cerium or ruthenium catalyst on a carrier such as titanium oxide. It is characterized in that the reaction efficiency is improved.
  • Korean Patent Application Laid-Open No. 10-2014-0102205 discloses a method for producing supported ruthenium oxide that can efficiently support silica on a titania carrier and has excellent thermal stability and catalyst life, and uses supported ruthenium oxide over a long period of time. It is characterized in that it provides a method for stably producing chlorine.
  • the present invention secures thermal stability and maintains the performance of the catalyst for a long time even at high temperatures, while at the same time not being limited by the shape of the reactor, operating conditions, etc. It was completed in order to provide the development of a catalyst for hydrogen chloride oxidation reaction that has no restrictions on use and is easy to handle.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-522797 (2014.09.08)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-503341 (2014.10.03)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-533113 (2010.10.21)
  • Patent Document 4 Korean Patent Publication No. 10-2014-0102205 (2014.08.21)
  • An object of the present invention is to solve all of the above problems.
  • the characteristic configuration of the present invention is as follows.
  • the catalyst in the catalyst used in a method for producing chlorine by oxidizing hydrogen chloride, is oxidized with 0.5 to 20 parts by weight of a heterogeneous material, an active ingredient with respect to 100 parts by weight of the catalyst
  • a molded catalyst for hydrogen chloride oxidation comprising 0.1 to 20 parts by weight of ruthenium and 60 to 99 parts by weight of a carrier.
  • the method comprising: preparing a molded carrier by mixing and molding an organic binder, an inorganic binder and water in a carrier; preparing a molded body after primary drying, firing and cooling the molded carrier; Supporting the molded body with at least one selected from heterogeneous materials and a solution in which a ruthenium precursor is dissolved: Secondary drying and calcining after the supporting step Preparation of a molding catalyst for hydrogen chloride oxidation, including A method is provided.
  • the method comprising: preparing a molded carrier by mixing an organic binder, an inorganic binder and water in a carrier; manufacturing a molded article by primary drying, sintering and cooling after the forming step; A first supporting step of supporting the molded body with a solution in which at least one or more precursors selected from heterogeneous materials are dissolved: obtaining a solid body by secondary drying, firing and cooling after the first supporting step; a second supporting step of supporting the molded body with a solution in which the ruthenium precursor is dissolved; And after the second supporting step, the step of tertiary drying and calcining; is provided a method for producing a molded catalyst for hydrogen chloride oxidation reaction comprising a.
  • the catalyst according to the present invention is not limited by the type of reactor, operating conditions, etc., so there is no restriction on use and it is possible to provide a catalyst that is easy to handle.
  • the molded catalyst prepared according to the present invention can be used without generating a differential pressure when applied to a fixed bed reactor, thereby increasing catalytic activity and enhancing thermal stability, thereby providing the effect of improving durability.
  • the molded catalyst prepared according to the present invention can be oxidized with anhydrous hydrochloric acid through a fixed bed reactor.
  • a precursor solution obtained by dissolving 2.6 g of cerium nitrate hydrate (Kanto) in 6.0 g of DIW was impregnated with 20.0 g of titania powder (SAKAI) and dried in an oven at 100° C. for 4 hours.
  • the dried powder was calcined in an electric furnace at 350° C. for 3 hours to obtain a TiO 2 _5.0 CeO 2 powder carrier having a ceria content of 5.0%.
  • the dried molded carrier was cut at intervals of 2 to 3 mm, and then calcined in an electric furnace at 600° C. for 3 hours to complete the TiO 2 _5.0 CeO 2 pellet carrier.
  • a precursor solution obtained by dissolving 0.8 g of ruthenium chloride hydrate (KOJIMA) in 6.0 g of DIW was mixed with TiO 2 _5.0 CeO 2 After impregnating in 20 g of the pellet carrier, it was dried in an oven at 100° C. for 4 hours. Finally, the dried pellets were calcined in an electric furnace at 350° C. for 3 hours to obtain a RuO 2 -CeO 2 /TiO 2 pellet catalyst having a ruthenium oxide content of 2.0% and a ceria content of 5.0%.
  • a precursor solution in which 2.6 g of cerium nitrate hydrate (Kanto) and 0.8 g of ruthenium chloride hydrate (KOJIMA) were simultaneously dissolved in 6.0 g of DIW was impregnated in TiO 2 pellet carrier and dried in an oven at 100° C. for 4 hours. The dried pellets were calcined in an electric furnace at 350° C. for 3 hours to obtain a RuO 2 -CeO 2 /TiO 2 pellet catalyst having a ruthenium oxide content of 2.0% and a ceria content of 5.0%.
  • CeO 2 /TiO 2 pellets having a ceria content of 5.0%.
  • the CeO 2 /TiO 2 pellet thus obtained was impregnated in a precursor solution in which 0.8 g of ruthenium chloride hydrate (KOJIMA) was dissolved in 6.0 g of DIW, and then dried in an oven at 100° C. for 4 hours. The dried pellets were calcined in an electric furnace at 350° C. for 3 hours to obtain a RuO 2 -CeO 2 /TiO 2 pellet catalyst having a ruthenium oxide content of 2.0% and a ceria content of 5.0%.
  • KJIMA ruthenium chloride hydrate
  • a solution prepared by dissolving 0.5 g of cerium nitrate hydrate (Kanto) in 5.0 g of DIW was impregnated with 10.0 g of titania powder (Sakai), and then dried in air at 100° C. for 4 hours.
  • the dried solid was calcined at 350° C. in an electric furnace under an air flow for 3 hours, and then slowly cooled to room temperature.
  • the solid content thus obtained was put into a solution prepared by dissolving 1.08 g of ruthenium nitrosyl nitrate (Alfa-Aesar) dissolved in nitric acid solution in 320.0 g of DIW, stirred at room temperature for 5 hours, and then dried using a rotary evaporator.
  • Alfa-Aesar ruthenium nitrosyl nitrate
  • Table 3 shows the catalyst BET specific surface area, total pore volume, and compressive strength measurement results of Examples and Comparative Examples.
  • the specific surface area was measured according to the Brunauer Emmett Teller (BET) measurement method, and the total pore volume was measured according to the mercury intrusion method.
  • BET Brunauer Emmett Teller
  • the compressive strength was measured as follows.
  • the compressive strength in the longitudinal direction was measured using Chatillon force gauge DFE2-025 (100N x 0.1). After flattening the upper and lower parts of the sample using sandpaper, the molded catalyst was placed on the measuring stand in the vertical direction. The force gauge was brought into contact with the molding catalyst at a descending speed of 5 mm/sec to measure the compressive strength at the moment the molding catalyst was destroyed. After measuring the compressive strength of 15 samples for each molding catalyst, the average value of the remaining values excluding the maximum and minimum values was recorded.
  • the catalyst when the catalyst is prepared according to the active material, the carrier, and the molding method according to Examples 1 to 3 according to the present invention, it can be confirmed that the catalytic activity and thermal stability can be controlled.
  • the molded catalyst has a specific surface area of 5 to 300 m 2 /g, a total pore volume of 0.1 to 2 ml/g, and a compressive strength It can be seen that (crushing strength) can be provided in a range of 3 to 200 N.
  • the molding catalyst may provide a specific surface area of 5 to 50 m 2 /g, a total pore volume of 0.2 to 1 ml/g, and a crushing strength of 3 to 150 N.
  • the catalyst according to the present invention can provide a catalyst that is easy to handle and has no restrictions on use, regardless of the type of reactor, operating conditions, etc.
  • the molded catalyst can be used because there is no pressure differential when applied to a fixed bed reactor, and it has the effect of improving durability by increasing catalytic activity and strengthening thermal stability. Therefore, anhydrous hydrochloric acid oxidation reaction through a fixed bed reactor became possible.
  • catalytic activity and thermal stability can be adjusted, thereby providing a catalyst having high activity and high durability, which can be utilized for various purposes.
  • a molding catalyst for the hydrogen chloride oxidation reaction used in a method for producing chlorine by oxidizing hydrogen chloride.
  • the catalyst is provided including 0.5 to 20 parts by weight of a heterogeneous material, 0.1 to 20 parts by weight of ruthenium oxide as an active ingredient, and 60 to 99 parts by weight of a carrier based on 100 parts by weight of the catalyst do.
  • the heterogeneous material may preferably contain 1 to 10 parts by weight, and in this range, it is possible to improve the yield of the product and secure thermal stability.
  • ruthenium oxide may preferably contain 0.3 to 10 parts by weight, and if it is less than 0.3 parts by weight, the activity as a catalyst may be insufficient, and if it exceeds 10 parts by weight, it is disadvantageous in terms of cost.
  • the heterogeneous material is provided including at least one selected from ceria, alumina and silica, and preferably includes ceria to provide improved thermal stability.
  • the carrier is provided including at least one selected from alumina, titania and zirconia.
  • titania may be provided.
  • the shaped catalyst is preferably provided in the form of pellets.
  • the pellets are provided including at least any one selected from a sphere, a cylinder, a hollow tube, a ring, and a trilobes, thereby providing a powder form
  • the disadvantage that there are many restrictions on the type of reactor, operating conditions, and the like can be solved.
  • the shaped catalyst is provided with a diameter of 1 to 10 mm. If the diameter of the molded body is too large, a problem may occur in packing when the catalyst is charged, and if the diameter is too small, a problem of weakening the strength of the catalyst may occur, so it is preferable to be provided in the range of 1 to 10 mm.
  • the molding catalyst is provided with a specific surface area of 5 to 300 m 2 /g.
  • the specific surface area of the carrier can be measured by a commonly used BET method, and according to this, preferably 5 to 50 m 2 /g is provided. If the specific surface area exceeds the above range, there may be difficulties in securing thermal stability of ruthenium oxide, and if the specific surface area is less than the above range, high dispersion is difficult, and the catalyst activity is also lowered, so the above range is preferable.
  • the molding catalyst has a total pore volume of 0.1 to 2 ml/g, preferably 0.2 to 1 ml/g.
  • the molding catalyst is provided with a compressive strength (crushing strength) of 3 to 200 N, preferably 3 to 150 N is provided. This can provide high activity or high durability.
  • the oxidation number of ruthenium is typically 4 in the molding catalyst, and preferably ruthenium dioxide (RuO 2 ) is provided, and is used to oxidize hydrogen chloride to produce chlorine.
  • RuO 2 ruthenium dioxide
  • the oxidation number and form are not limited thereto.
  • a method for preparing a molded catalyst for hydrogen chloride oxidation reaction according to Methods 1 to 3.
  • Methods 1 to 3 the same contents as those of the above-described molding catalyst may be applied, and descriptions thereof will be omitted within the overlapping range.
  • the order may be modified as necessary, which means that modifications can be made freely at the level of those skilled in the art.
  • the step of preparing a solution in which at least one or more precursors selected from cerium, aluminum and silica are dissolved in a solvent and supporting the heterogeneous material on a carrier is provided.
  • the precursor may be, for example, a cerium precursor in the form of a complex salt, and may include a cerium compound, particularly metal salts such as cerium nitrate, cerium acetate, or cerium chloride.
  • cerium nitrate is provided, but is not limited thereto.
  • the solvent used is provided including at least any one or more selected from water, alcohol, and nitrile.
  • the water provided is high purity water such as distilled water, ion-exchanged water or ultrapure water (DIW).
  • DIW ultrapure water
  • the organic solvent may be a monoalcohol, and a C3 or higher primary alcohol is provided.
  • a C3 alcohol-based organic solvent is provided, and preferably 1-propanol is provided to utilize the high wettability and hydrophobicity of the solution to form a titania carrier having a hydroxyl group (-OH). It is possible to support the ruthenium component only on the outer surface, and provides an effect of increasing the degree of dispersion of ruthenium supported on the surface of the titanium oxide molded carrier or the powder carrier.
  • the amount of the solvent provided is not limited, but if the amount of the solvent is too large, a long drying time is required.
  • the carrier includes at least one selected from alumina, titania and zirconia, and may preferably be supported on the titania carrier.
  • the supporting includes impregnation or immersion, in which case the temperature is usually applied 0°C to 100°C, preferably 0°C to 50°C, and the pressure is usually applied 0.1 to 1 MPa, preferably atmospheric pressure. .
  • the loading may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and in this case, water vapor may be included. Preferably, it is provided, but not limited thereto, to carry out under the inert gas atmosphere.
  • the titania carrier anatase-type titania or rutile-type titania, amorphous titania, or a mixture thereof can be used.
  • the titania carrier may contain an oxide such as alumina, zirconia or niobium oxide.
  • a rutile-type titania is provided, for example, titania manufactured by Sakai Corporation may be provided, but is not limited thereto.
  • the specific surface area of the titania carrier can be measured by a commonly used BET method, and a specific surface area of 5 to 300 m 2 /g, preferably 5 to 50 m 2 /g is provided.
  • alpha-alumina is preferably provided. Since it has a low BET specific surface area, it is preferable that absorption of other impurities is unlikely to occur. In this case, a specific surface area of 10 to 500 m 2 /g, preferably 20 to 350 m 2 /g, is provided.
  • the zirconia carrier in the case of the zirconia carrier, it has pores in the range of 0.05 to 10 ⁇ m, and the specific surface area is the same as above.
  • Drying can be done while rotating and stirring. It is possible to vibrate the drying container or use a stirrer provided in the container, but is not limited thereto.
  • drying temperature about 100° C. is provided at room temperature normally applied, and in the case of pressure, 0.1 to 1 MPa, preferably atmospheric pressure, which is usually applied, may be provided.
  • sintering is carried out at 300°C to 600°C for 2 hours to 6 hours, and then, by cooling to room temperature.
  • the calcination temperature is provided with a temperature normally applied, preferably 250° C. to 450° C.
  • the oxidizing gas provided for calcination includes, for example, a gas containing oxygen.
  • the oxygen concentration is provided on the order of 1 to 30% by volume, which is usually applied.
  • an oxygen source air or pure oxygen is generally provided, and an inert gas or water vapor may be included as needed.
  • the oxidizing gas may preferably be provided with air, and after calcining at about 350° C. for about 3 hours in an electric furnace under a flow of air, it is cooled to room temperature of 1° C. to 35° C.
  • cerium is oxidized to cerium oxide (ceria), and the cerium oxide can secure stability even at a relatively high temperature.
  • thermal stability is provided with an average temperature in the range of 250°C to 600°C, preferably 300°C to 550°C.
  • 600 ° C there is a disadvantage in chlorine conversion during chlorine production, and if it is less than 250 ° C, the catalytic activity of cerium is lowered, so it is preferable to secure thermal stability by controlling the reaction within the above range.
  • a step of preparing a molded carrier by mixing and molding an organic binder, an inorganic binder and water with the solid content in this case, the provided organic binder is methyl cellulose, hydroxyethyl cellulose, Sodium carboxymethyl cellulose, purified starch, dextrin, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyethylene glycol, paraffin, wax emulsion and characterized in that it contains at least one selected from microcrystalline wax.
  • the moldability improvement effect may be provided by including the organic binder.
  • the inorganic binder is characterized in that it comprises at least one selected from alumina sol, silica sol, titania sol, and zirconia sol.
  • An effect of improving mechanical properties may be provided by including the inorganic binder.
  • the step of preparing the molded carrier based on 100 parts by weight of the solid content, 30 to 150 parts by weight of water, 1 to 15 parts by weight of an organic binder, and 5 to 30 parts by weight of an inorganic binder. .
  • the carrier including the above range, it is possible to provide an effect of improving mechanical properties.
  • a step of preparing a molded article after secondary drying, sintering and cooling of the molded carrier In this case, the cases of drying, firing and cooling are the same as described above.
  • the ruthenium precursor may exist in the form of a complex salt, and may include metal salts such as halides, halogenates, oxoates, oxyhalides, and chlorides.
  • metal salts such as halides, halogenates, oxoates, oxyhalides, and chlorides.
  • RuCl 3 and RuBr 3 K 3 RuCl 6 , K 2 RuCl 6 , K 2 RuO 4 , Na 2 RuO 4 , Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6 , etc. and is not limited thereto.
  • the ruthenium precursor is preferably provided with a halide, and most preferably with ruthenium chloride comprising a chloride.
  • a hydrate of the ruthenium compound may be provided in some cases, and two or more selected from the ruthenium compound may be provided.
  • Ruthenium chloride may be used in powder form and mixed in a solvent, and a solid carrier may be suspended in the solvent to form a precipitate and deposited on the solid carrier.
  • the support includes impregnation or immersion, in which case the temperature is usually applied 0°C to 100°C, preferably 0°C to 50°C, and the pressure is preferably atmospheric pressure.
  • the loading may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and in this case, water vapor may be included. Preferably, it is provided, but not limited thereto, to carry out under the inert gas atmosphere.
  • a molded catalyst can be finally obtained through the steps of tertiary drying and calcination after the second supporting step.
  • the drying and firing are also the same as described above.
  • Method 2 mixing an organic binder, an inorganic binder and water to a carrier and molding to prepare a molded carrier; preparing a molded body after primary drying, firing and cooling the molded carrier; Supporting the molded body with at least one selected from heterogeneous materials and a solution in which a ruthenium precursor is dissolved: and secondary drying and calcining after the supporting step.
  • a molding catalyst for hydrogen chloride oxidation including A manufacturing method is provided.
  • method 3 mixing an organic binder, an inorganic binder and water to a carrier to prepare a molded carrier; manufacturing a molded article by primary drying, sintering and cooling after the forming step; A first supporting step of supporting the molded body with a solution in which at least one or more precursors selected from heterogeneous materials are dissolved: obtaining a solid body by secondary drying, firing and cooling after the first supporting step; a second supporting step of supporting the molded body with a solution in which the ruthenium precursor is dissolved; And after the second supporting step, the step of tertiary drying and calcining; is provided a method for producing a molded catalyst for hydrogen chloride oxidation reaction comprising a.
  • Method 1 As compared with Method 2 and Method 3, it is characterized in that a molded carrier is prepared by pre-adding a heterogeneous material, and a ruthenium precursor is added and supported afterward, whereas in Method 2 and Method 3 , characterized in that the molding carrier is pre-manufactured and the heterogeneous material and the ruthenium precursor are post-added.
  • a heterogeneous material and a ruthenium precursor are simultaneously added, and in the case of method 3, there is a difference in that the ruthenium precursor is added after pre-addition of the heterogeneous material.
  • the carrier, the organic binder, the inorganic binder, and the manufacturing method related to drying, firing and cooling may be applied in the same way.
  • the catalyst in the sense that in the method 2 and method 3, the catalyst is pre-manufactured, 30 to 150 parts by weight of water, 1 to 15 parts by weight of the organic binder, and 1 to 15 parts by weight of the inorganic binder based on 100 parts by weight of the carrier. It may be prepared including 5 to 30 parts by weight.
  • the molded catalyst is molded to be applicable to a fixed bed reactor.
  • the molded catalyst is not limited by the shape of the reactor, operating conditions, etc., and has no restrictions on use, so it can provide ease of handling.
  • it when applied to a fixed bed reactor, it can be used because there is no differential pressure, and improved durability can be provided by increasing catalytic activity and strengthening thermal stability. The result of this can be confirmed in the result value of Example which will be described later.
  • a method for producing chlorine through hydrogen chloride oxidation in the presence of the molding catalyst As the mode of the reaction, a fixed bed mode or a fluidized bed mode, a gas phase reaction, etc. are provided, preferably a gas phase reaction is provided. Since this oxidation reaction is an equilibrium reaction and the equilibrium conversion rate is lowered if carried out at too high a temperature, it is preferable to be carried out at a relatively low temperature, and the reaction temperature is usually 100°C to 500°C, preferably 200°C to 450°C, and most preferably 250°C. °C is provided. Further, the reaction pressure is usually about 0.1 to 5 MPa. As the oxygen source, air may be used or pure oxygen may be used.
  • the theoretical molar amount of oxygen relative to hydrogen chloride is 1/4 mole, but typically 0.1 to 10 times oxygen is provided.
  • the hydrogen chloride supply rate is expressed by the gas supply rate per 1 L of the catalyst (L/h; in terms of 0°C and 1 atm), that is, GHSV, and is usually about 10 to 20000 h ⁇ 1 .
  • the amount of the catalyst input may be slightly modified depending on the temperature, the amount of the catalyst, and the amount of the chlorine product to be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

본 발명은 염화수소(HCl)의 산화 반응을 통해 염소 (Cl2)를 얻기 위한 성형촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 티타니아(TiO2)를 담지체로한 산화루테늄(RuO2)담지 촉매에 이종(異種)물질을 첨가하고 고정층 반응기에 적용 가능하도록 성형하여 염화수소(HCl)로부터 염소(Cl2)를 제조하기 위한 산화 반응용 성형촉매의 제조방법에 관한 것이다.

Description

염화수소 산화반응용 성형촉매 및 이의 제조방법
본 발명은 염화수소(HCl)의 산화 반응을 통해 염소 (Cl2)를 얻기 위한 성형촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 티타니아(TiO2)를 담지체로한 산화루테늄(RuO2)담지 촉매에 이종(異種)물질을 첨가하고, 고정층 반응기에 적용 가능하도록 성형하여 염화수소(HCl)로부터 염소(Cl2 )를 제조하기 위한 산화 반응용 성형촉매의 제조방법에 관한 것이다.
1868년 Deacon이 개발한 염화수소의 촉매적 산화 방법에 따르면, 산소로 염화수소를 산화시켜 발열 평형 반응에서 염소를 형성한다. 염화수소는 예컨대 이소시아네이트 제조와 같은 포스겐화 반응에서 공동 생성물로서 다량 형성된다. 이소시아네이트의 제조 시 형성된 염화수소는 추후에 비닐 클로라이드 및 마지막으로 폴리염화비닐(PVC)을 형성하도록 처리되는 1,2-디클로로에탄으로의 에틸렌의 옥시염화 반응에서 주로 사용된다. 국내의 경우 OxyChlorination 반응기에서 염화수소를 에틸렌(Ethylene)과 반응시켜 VCM(Vinyl Chloride Monomer)을 제조하는 반응 외에는 대부분의 염산 및 염화수소를 수용액 상(20% 또는 35% 염산)으로 제조하여 판매하거나 중화 처리 후 폐기하고 있다.
염화수소 산화반응에 사용되는 촉매로는 루테늄계 촉매, 구리계 촉매, 세륨계 촉매 등이 있으며, 루테늄계 촉매는 구리계 촉매 또는 세륨계 촉매보다 소량의 촉매와 낮은 반응 온도를 가지는 것을 특징으로 한다.
통상적으로 염화수소의 산화로 염소를 제조하는 반응은 평형반응이며, 반응 온도가 높을수록 평형적으로 불리해져서 평형전환율이 낮아진다. 따라서, 낮은 반응온도를 가지는 촉매일수록 반응에 있어서 평형적으로 유리해져서 보다 높은 염화수소의 전환율을 얻을 수 있다. 그러나, 종래의 촉매들의 대부분은 주로 고온에서 높은 활성을 보이고 있으며 더불어 고온 운전 시 수개월의 단기간에 촉매의 성능이 감소하는 현상을 나타내고 있다.
즉, 담지 산화 루테늄은 열 안정성이나 촉매 수명을 두가지 조건을 동시에 만족하는 것에는 어려운 일이다. 나아가, 이러한 촉매의 대부분은 반응기 형태나 운전 조건 등이 까다로워서 사용에 많은 제약이 있다. 특히, 분말 형태의 경우, 고정층 반응기에 사용하는 경우 촉매층의 전단과 후단에 차압이 발생하여 운전이 불가능한 문제가 발생하기도 한다. 따라서, 상기 언급한 문제점을 해결하기 위하여 다양한 촉매에 대한 연구는 현재 진행 중에 있다.
예를 들어서, 일본 공개특허 제2014-522797호는 등온 반응기에서 산화세륨 촉매를 사용하는 염소의 제조방법에 관한 것으로 산화티탄에 담지된 루테늄 및 산화세륨 촉매를 이용하여 염화수소의 기상 산화반응이 가능함이 개시되어 있다. 특히, 산화루테늄 촉매와 산화세륨 촉매를 서로 다른 층에 충전하여 사용하는 공정에 관한 것을 언급하고 있다.
또한, 일본 공개특허 제2014-503341호는 염화수소의 산화에 의해 염소를 제조하는 촉매 및 그 제조방법에 관한 것으로 세륨, 루테늄, 구리 등의 복합 활성 성분을 이산화티탄에 담지시켜 제조된 촉매를 염화수소의 산화반응에 적용되는 것을 개시하고 있다.
또한, 일본 공개특허 제2010-533113호에서는 세륨 또는 루테늄 촉매를 산화티탄 등의 담체에 담지시켜 염화수소 산화반응을 적용하는 기술에 대하여 개시하고 있으며 특히, 반응기에 열 제거 수단을 생략하여 설비를 단순화시키면서 반응 효율을 향상시키는 것을 특징으로 한다.
마지막으로 한국 공개특허 제10-2014-0102205호에서는 티타니아 담체에 효율적으로 실리카를 담지시킬 수 있고 열 안정성 및 촉매 수명이 우수한 담지 산화루테늄의 제조방법을 개시하며, 담지 산화루테늄을 이용하여 장시간에 걸쳐 안정하게 염소를 제조하는 방법을 제공하는 것을 특징으로 한다.
전술한 바와 같이 염화수소 산화반응에 적용되는 촉매는 다양하게 연구 개발되고 있으며 이러한 일환으로 본 발명은 열적안정성을 확보하여 고온에서도 장시간 촉매의 성능을 유지하면서 동시에 반응기의 형태, 운전 조건 등에 구애를 받지 않고 사용에 제약이 없고 취급이 용이한 염화수소 산화반응용 촉매의 개발을 제공하기 위하여 완성하였다.
(특허문헌 1) 일본 공개특허 제 2014-522797호 (2014.09.08)
(특허문헌 2) 일본 공개특허 제 2014-503341호 (2014.10.03)
(특허문헌 3) 일본 공개특허 제 2010-533113 호 (2010.10.21)
(특허문헌 4) 한국 공개특허 제10-2014-0102205호 (2014.08.21)
본 발명은 상술한 문제점을 모두 해결하는 것을 목적으로 한다.
본 발명의 목적은 촉매는 반응기의 형태, 운전 조건 등에 구애를 받지 않고 사용에 제약이 없고 취급이 용이한 촉매 제공하는 것이다.
본 발명의 목적은 다양한 촉매 성형방법을 제공하여, 촉매 활성 및 열 안정성을 조절하여 강화하고 이를 다양한 용도에 적용 가능케 하는 것이다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명의 일 실시예에 따르면, 염화수소를 산화시켜 염소를 제조하는 방법에 사용되는 촉매에 있어서, 상기 촉매는 촉매 100 중량부에 대하여, 이종(異種)물질 0.5 내지 20 중량부, 활성성분으로 산화루테늄 0.1 내지 20 중량부 및 담체 60 내지 99 중량부를 포함하는 염화수소 산화반응용 성형 촉매가 제공된다.
본 발명의 일 실시예에 따르면, 이종(異種)물질에서 선택되는 적어도 어느 하나 이상이 용해된 용액을 담체에 담지하는 제 1담지단계; 제1담지단계 이후 1차 건조, 소성 및 냉각 후 고형분을 얻는 단계; 상기 고형분에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계; 상기 성형담체를 2차 건조, 소성 및 냉각 후 성형체를 제조하는 단계; 루테늄 전구체가 용해된 용액을 제조하여 상기 성형체를 담지하는 제2담지단계; 및 제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계; 상기 성형담체를 1차 건조, 소성 및 냉각 후 성형체를 제조하는 단계; 이종(異種)물질에서 선택되는 적어도 어느 하나 이상과 루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 단계: 상기 담지단계 이후 2차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형담체를 제조하는 단계; 상기 성형 단계 이후 1차 건조, 소성 및 냉각하여 성형체를 제조하는 단계; 이종(異種)물질에서 선택되는 적어도 어느 하나 이상의 전구체가 용해된 용액을 상기 성형체를 담지하는 제1담지단계: 상기 제1담지단계 이후 2차 건조, 소성 및 냉각하여 고형체를 얻는 단계; 루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 제2담지단계; 및 제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 상기 성형촉매의 존재 하에서 염화수소 산화를 통한 염소의 제조방법이 제공된다.
본 발명에 따른 촉매는 반응기의 형태, 운전 조건 등에 구애를 받지 않아 사용에 제약이 없고 취급이 용이한 촉매 제공할 수 있다.
본 발명에 따라 제조되는 성형촉매는 고정층 반응기에 적용함에 있어서 차압 발생이 없이 사용이 가능하며, 이에 촉매 활성을 높이고 열 안정성을 강화하여 내구성을 향상의 효과를 제공한다.
본 발명에 따라 제조되는 성형촉매는 고정층 반응기를 통한 무수염산 산화반응이 가능하다.
본 발명에 따르면, 다양한 촉매 성형 방법을 제공하여 다양한 용도로 활용할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
질산세륨 수화물(Kanto 社) 2.6g을 DIW 6.0g에 용해한 전구체 용액을 티타니아 분말(SAKAI 社) 20.0g에 함침시킨 후 100℃ 오븐에서 4시간 건조하였다. 건조된 분말을 350℃ 전기로에서 3시간 소성하여 세리아 함유량이 5.0% 인 TiO2_5.0 CeO2 분말 담체를 수득하였다. TiO2_5.0 CeO2 분말 20g, 셀룰로오스계 유기바인더(YUKEN 社) 0.4g, TiO2 졸(SAKAI 社) 2.5g, DIW 9.0g을 골고루 혼합하여 만든 반죽을 피스톤압출기에 넣고 압출한 성형담체를 100℃ 오븐에서 4시간 건조하였다. 건조된 성형담체를 2~3mm 간격으로 자른 후 600℃ 전기로에서 3시간 소성하여 TiO2_5.0 CeO2 펠릿 담체를 완성하였다. 염화루테늄 수화물(KOJIMA) 0.8g을 DIW 6.0g에 용해한 전구체 용액을 TiO2_5.0 CeO2 펠릿 담체 20g에 함침시킨 후 100℃ 오븐에서 4시간 건조하였다. 최종적으로, 건조된 펠릿을 350℃ 전기로에서 3시간 소성하여 루테늄산화물 함유량이 2.0%, 세리아 함유량이 5.0%인 RuO2-CeO2/TiO2 펠릿 촉매를 수득하였다.
실시예 2
티타니아 분말(SAKAI 社) 20g, 셀룰로오스계 유기바인더(YUKEN 社) 0.4g, TiO2 졸(SAKAI 社) 2.5g, DIW 9.0g을 골고루 혼합하여 만든 반죽을 피스톤압출기에 넣고 압출한 성형담체를 100℃ 오븐에서 4시간 건조하였다. 건조된 성형담체를 2~3mm 간격으로 자른 후 600℃ 전기로에서 3시간 소성하여 TiO2 펠릿 담체를 완성하였다. 질산세륨 수화물(Kanto 社) 2.6g과 염화루테늄 수화물(KOJIMA) 0.8g을 DIW 6.0g에 동시에 용해한 전구체 용액을 TiO2 펠릿 담체에 함침 시킨 후 100℃ 오븐에서 4시간 건조하였다. 건조된 펠릿을 350℃ 전기로에서 3시간 소성하여 루테늄산화물 함유량이 2.0%, 세리아 함유량이 5.0%인 RuO2-CeO2/TiO2 펠릿 촉매를 수득하였다.
실시예 3
티타니아 분말(SAKAI 社) 20g, 셀룰로오스계 유기바인더(YUKEN 社) 0.4g, TiO2 졸(SAKAI 社) 2.5g, DIW 9.0g을 골고루 혼합하여 만든 반죽을 피스톤압출기에 넣고 압출한 성형담체를 100℃ 오븐에서 4시간 건조하였다. 건조된 성형담체를 2~3mm 간격으로 자른 후 600℃ 전기로에서 3시간 소성하여 TiO2 펠릿 담체를 완성하였다. 질산세륨 수화물(Kanto 社) 2.6g이 용해한 전구체 용액을 TiO2 펠릿 담체에 함침 시킨 후 100℃ 오븐에서 4시간 건조하였다. 건조된 펠릿을 350℃ 전기로에서 3시간 소성하여 세리아 함유량이 5.0%인 CeO2/TiO2 펠릿을 수득하였다. 이렇게 수득한 CeO2/TiO2 펠릿을 염화루테늄 수화물(KOJIMA) 0.8g이 DIW 6.0g에 용해된 전구체 용액에 함침 시킨 후 100℃ 오븐에서 4시간 건조하였다. 건조된 펠릿을 350℃ 전기로에서 3시간 소성하여 루테늄산화물 함유량이 2.0%, 세리아 함유량이 5.0%인 RuO2-CeO2/TiO2 펠릿 촉매를 수득하였다.
비교예 1
질산 세륨 수화물(Kanto 社) 0.5g을 DIW 5.0g에 용해해 제조한 용액을 티타니아 분말 (사카이 社) 10.0g에 함침시킨 후, 100℃ 공기 중에서 4시간 동안 건조시켰다. 건조된 고체를 공기 흐름 하의 전기로에서 350℃ 소성(calcination)을 3시간 거친 후, 서서히 실온까지 냉각시켰다. 이렇게 얻어진 고형분을 질산용액에 녹아있는 루테늄나이트로실나이트레이트 (Alfa-Aesar 社) 1.08g을 DIW 320.0g에 용해해 제조한 용액에 넣고 상온에서 5시간동안 교반한 후 회전증발농축기를 이용하여 건조시켰다. 건조된 고체를 공기 흐름 하의 전기로에서 350℃ 소성(calcination)을 3시간 거친 후, 서서히 실온까지 냉각시켜 최종적으로 산화루테늄 함유량이 2.0%, 세리아 함량이 5.0% 인 RuO2-CeO2/TiO2 분말 촉매를 수득하였다. 촉매 활성 평가를 위한 실험예 1과 열적 안정성 평가를 위한 실험예 2를 하기와 같은 조건으로 실시하였다.
비교예 2
티타니아 분말(SAKAI 社) 20g, 셀룰로오스계 유기바인더(YUKEN 社) 0.4g, TiO2 졸(SAKAI 社) 2.5g, DIW 9.0g을 골고루 혼합하여 만든 반죽을 피스톤압출기에 넣고 압출한 성형담체를 100℃ 오븐에서 4시간 건조하였다. 건조된 성형담체를 2~3mm 간격으로 자른 후 600℃ 전기로에서 3시간 소성하여 TiO2 펠릿 담체를 완성하였다. 염화루테늄 수화물(KOJIMA) 0.8g을 DIW 6.0g에 용해한 전구체 용액을 TiO2 펠릿 담체에 함침 시킨 후 100℃ 오븐에서 4시간 건조하였다. 건조된 펠릿을 350℃ 전기로에서 3시간 소성하여 루테늄 산화물 함유량이 2.0%인 RuO2 /TiO2 펠릿 촉매를 수득하였다.
실험예 1 - 촉매의 활성 평가
실시예 및 비교예에서 제조된 촉매 1.35g 을 니켈 반응관(외경 1 inch 튜브)에 충전하였다. 상기 반응관에, 촉매층을 300℃의 온도로 가열하고 상압하에 염화수소 및 산소 기체를 각각 100 mL/min 의 속도로 공급하여 반응을 실행하였다. 반응 개시 2 시간 후의 시점에서, 반응관 출구의 기체를 15% 요오드화칼륨 수용액에 유통시킴으로써 샘플링을 10분간 실행하였다. 이어서 요오드 적정법으로 염소의 생성량을 측정하여 하기 수학식에 의해 염화수소의 전환율을 계산하였다. 이에 대한 결과는 [표 1]에 나타내었다.
[수학식 1]
Figure PCTKR2020014260-appb-I000001
실험예 2 - 열적 안정성 평가
실험예 1의 조건으로 24시간 반응을 실행한 후 염소생성량을 측정하여 염화수소 전환율 A 계산하였다. 이후 촉매층을 380℃의 온도로 가열하고 동일한 유량조건 하에 24시간 동안 반응을 실행하고 다시 촉매층의 온도를 300℃로 낮춘 후 동일한 유량조건하에서 2시간 반응 후 염소생성량을 측정하여 염화수소 전환율 B를 계산하였다. 전환율 A와 전환율 B의 비를 이용하여 하기 수식과 같이 열화도를 계산하여 촉매의 열적 안정성을 비교하였다. 결과를 [표 2]에 나타내었다.
[수학식 2]
Figure PCTKR2020014260-appb-I000002
실험예 3- 성형촉매의 물성 평가
실시예 및 비교예의 촉매 BET 비표면적, total pore volume, 압축강도 측정 결과를 [표 3]에 나타내었다. 비표면적의 경우, BET(Brunauer Emmett Teller) 측정법에 따르고, total pore volume의 경우, 수은 압입법에 따라 측정하였다. 또한, 압축강도는 다음과 같이 측정하였다.
성형촉매의 기계적 강도를 평가하기 위하여 Chatillon 포스게이지 DFE2-025 (100N x 0.1)를 이용하여 세로방향의 압축강도를 측정하였다. 사포를 이용하여 샘플의 상단부와 하단부를 평평하게 갈아준 후 측정용 스탠드에 해당 성형촉매를 수직방향으로 위치시켰다. 포스게이지를 5 mm/sec의 하강속도로 성형촉매와 접촉 시켜 성형촉매가 파괴되는 순간의 압축강도를 측정하였다. 각 성형촉매 당 15개 샘플의 압축강도를 측정 후 최대값과 최소값을 제외한 나머지 값들의 평균치를 기록하였다.
Figure PCTKR2020014260-appb-T000001
Figure PCTKR2020014260-appb-T000002
Figure PCTKR2020014260-appb-T000003
표 1의 결과에 비추어, 비교예 1에 따른 분말촉매의 경우 차압이 발생하여 고정층 반응기에 적용이 힘든 반면 실시예 1에 따른 성형촉매의 경우 차압 발생이 없고 촉매 활성(전환율)도 비교예의 분말 촉매 보다 높은 것을 확인할 수 있다.
표 2의 결과에 비추어, 산화세륨 첨가한 성형촉매인 실시예의 경우, 루테늄계 성형촉매인 비교예 2에 비하여 비교적 높은 열적 안정성을 제공할 수 있음을 확인할 수 있다.
즉, 본 발명의 따른 실시예 1 내지 3에 따른 활성물질, 담체 및 성형 방법에 따라 촉매를 제조하는 경우, 촉매 활성과 열 안정성 조절 가능함을 확인할 수 있다.
또한, 표 3의 결과에 비추어, 본 발명에 따른 성형촉매의 경우, 성형촉매는 비표면적이 5 내지 300 m2/g, 총 기공부피 (total pore volume)이 0.1 내지 2 ml/g, 압축강도 (crushing strength)가 3 내지 200 N으로 제공할 수 있음을 확인할 수 있다. 바람직하게는 성형촉매는 비표면적이 5 내지 50 m2/g, 총 기공부피 (total pore volume)이 0.2 내지 1 ml/g, 압축강도 (crushing strength)가 3 내지 150 N으로 제공할 수 있다.
따라서, 본 발명에 따른 촉매는 본 발명에 따른 촉매는 반응기의 형태, 운전 조건 등에 구애를 받지 않고 사용에 제약이 없고, 취급이 용이한 촉매 제공할 수 있다. 특히, 성형촉매는 고정층 반응기에 적용함에 있어서 차압 발생이 없어 사용이 가능하며, 촉매 활성을 높이고 열 안정성을 강화하여 내구성을 향상의 효과가 있다. 따라서, 고정층 반응기를 통한 무수염산 산화반응이 가능하게 되었다.
나아가, 본 발명에 따른 다양한 촉매 성형 방법을 적용하여 촉매 활성 및 열정 안정성을 조절할 수 있고, 이에 높은 활성 및 높은 내구성을 가지는 촉매를 제공하여 다양한 용도로 활용할 수 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
본 발명에 따르면, 염화수소를 산화시켜 염소를 제조하는 방법에 사용되는 염화수소 산화반응용 성형촉매가 제공된다.
본 발명의 일 실시예에 따르면, 상기 촉매는 촉매 100 중량부에 대하여, 이종(異種)물질 0.5 내지 20 중량부, 활성성분으로 산화루테늄 0.1 내지 20 중량부 및 담체 60 내지 99 중량부를 포함하여 제공된다. 상기 이종(異種)물질은 바람직하게 1 내지 10 중량부를 포함할 수 있고, 이 범위에서 생성물의 수율을 향상시키고, 열적 안정성을 확보할 수 있다. 활성 성분으로 산화루테늄은 바람직하게는 0.3 내지 10 중량부가 포함 될 수 있고, 0.3 중량부 범위 미만이면 촉매로서 활성이 부족할 수 있고, 10 중량부를 초과하면 비용적인 측면에서 불리하다.
본 발명의 일 실시예에 따르면, 상기 이종(異種)물질은 세리아, 알루미나 및 실리카에서 선택되는 적어도 어느 하나 이상을 포함하여 제공되며, 바람직하게는 세리아가 포함하여 향상된 열적 안정성을 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 담체는 알루미나, 티타니아 및 지르코니아에서 선택되는 적어도 어느 하나 이상을 포함하여 제공된다. 바람직하게는 티타니아가 제공될 수 있다.
본 발명의 일 실시예에 따르면, 상기 성형 촉매는 바람직하게는 펠릿의 형태가 제공된다. 이 경우, 펠릿은 구형(sphere), 원기둥형(cylinder), 중공형(hollow tube), 고리형(ring) 및 트라이로브형 (trilobes)에서 선택되는 적어도 어느 하나 이상을 포함하여 제공됨으로써 분말 형태의 촉매로서 고정층 반응기에 제공되는 경우, 반응기 형태, 운전 조건 등에 많은 제약이 존재하는 단점을 해결할 수 있다.
본 발명의 일 실시예에 따르면, 상기 성형 촉매는 직경이 1 내지 10 mm으로 제공된다. 성형체의 직경이 지나치게 크면, 촉매 충전 시 packing에 문제가 발생할 수 있고, 직경이 지나치게 작으면 촉매의 강도가 약해지는 문제가 발생할 수 있으므로 상기 범위 1 내지 10 mm로 제공되는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 성형촉매는 비표면적이 5 내지 300 m2/g 으로 제공된다. 담체의 비표면적은 통상적으로 사용되는 BET법에 의하여 측정될 수 있고 이에 따르면 바람직하게는 5 내지 50 m2/g가 제공된다. 비표면적이 상기 범위를 초과하면 산화루테늄의 열 안정성확보에 어려움이 있을 수 있고, 상기 범위 미만이면 고분산이 어려운 바, 촉매의 활성 또한 낮아지는 문제가 있으므로 상기 범위가 바람직하다.
본 발명의 일 실시예에 따르면, 상기 성형촉매는 총 기공 부피 (total pore volume)가 0.1 내지 2 ml/g으로 제공되고, 바람직하게는 0.2 내지 1 ml/g으로 제공된다. 상기 성형촉매는 압축강도 (crushing strength)가 3 내지 200 N으로 제공되고, 바람직하게는 3 내지 150 N으로 제공된다. 이에 고활성 또는 고내구성을 제공할 수 있다.
본 발명의 실시예에 따르면, 상기 성형촉매에서 통상적으로 루테늄의 산화수는 4이고, 바람직하게는 이산화루테늄(RuO2)이 제공되어, 염화수소를 산화시켜 염소를 제조하는 것에 이용된다. 다만 산화수 및 형태는 이에 제한되는 것은 아니다.
한편, 본 발명의 일 실시예에 따르면, 방법 1 내지 방법 3에 따른 염화수소 산화반응용 성형촉매의 제조방법이 제공된다. 이하에서는 전술한 성형촉매와 동일한 내용이 적용될 수 있고, 중복되는 범위 내에서 설명은 생략하도록 한다. 또한, 제조방법으로 그 순서는 필요에 따라 변형될 수 있으며, 이는 당업자 수준에서 자유롭게 변형 제조가 가능함을 의미한다.
본 발명의 일 실시예에 따르면, 방법 1에 따라, 이종(異種)물질에서 선택되는 적어도 어느 하나 이상이 용해된 용액을 담체에 담지하는 제 1담지단계; 제1담지단계 이후 1차 건조, 소성 및 냉각 후 고형분을 얻는 단계; 상기 고형분에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계; 상기 성형담체를 2차 건조, 소성 및 냉각 후 성형체를 제조하는 단계; 루테늄 전구체가 용해된 용액을 제조하여 상기 성형체를 담지하는 제2담지단계; 및 제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 상기 이종(異種)물질은 세륨, 알루미늄 및 실리카에서 선택되는 적어도 어느 하나 이상의 전구체가 용매에 용해된 용액을 제조하여 담체에 담지하는 단계가 제공된다. 이 경우, 전구체는 예를 들어서, 세륨전구체가 착염의 형태로 존재가 가능하며, 세륨 화합물, 특히 질산세륨, 아세트산세륨 또는 염화세륨 등과 같은 금속 염들을 포함할 수 있다. 바람직하게는 질산세륨이 제공이 되며, 이에 제한되지 않는다.
상기 이종(異種)물질에서 선택되는 적어도 어느 하나 이상이 용해된 용액을 제조하는 경우, 사용되는 용매는 물, 알코올 및 니트릴에서 선택되는 적어도 어느 하나 이상을 포함하여 제공된다. 제공되는 물은 증류수, 이온교환수 또는 초순수 (DIW)와 같은 고순도 물이 제공된다. 사용하는 물에 불순물을 함유하는 경우에는 불순물이 촉매에 부착하여 촉매의 활성을 저하시킬 수 있다. 알코올의 경우는 유기용매는 모노알코올일 수 있으며, C3 이상의 1차 알코올인 것이 제공된다. 바람직하게는C3 알코올계 유기용매를 제공하며, 바람직하게는 1-프로판올을 제공하여, 용액의 높은 젖음성(wettability)과 소수성(hydrophobicity)를 활용하여 하이드록시기(-OH)가 존재하는 티타니아 담체의 외표면에만 루테늄 성분을 담지할 수 있고, 산화티탄 성형 담체 또는 분말 담체 표면에 담지되는 루테늄의 분산도를 높여 줄 수 있는 효과를 제공한다. 더불어 제공되는 용매의 양에는 제한이 있는 것은 아니지만 용매량이 지나치게 많으면 건조시간이 많이 소요되므로, 용매의 양은 당업자 수준에서 자유롭게 조절할 수 있다.
본 발명의 일 실시예에 따르면, 상기 담체는 알루미나, 티타니아 및 지르코니아에서 선택되는 적어도 어느 하나 이상을 포함하며, 바람직하게는 티타니아 담체에 담지될 수 있다.
상기 담지는 함침 또는 침지를 포함하며, 이 경우 온도는 통상적으로 적용되는 0℃ 내지 100℃ 바람직하게는 0℃ 내지 50℃이며, 그 압력은 통상적으로 적용되는 0.1 내지 1 MPa, 바람직하게는 대기압이다. 담지는 공기 분위기 하나 질소, 헬륨, 아르곤, 이산화 산소와 같은 불활성 가스 분위기 하에서 수행할 수 있고 이 때 수증기를 포함할 수 있다. 바람직하게는 상기 불활성 가스 분위기 하에서 수행하는 것이 제공되지만 이에 한정되지는 않는다.
티타니아 담체는 아나타제형 티타니아 또는 루틸형 티타니아, 비정질 티타니아 또는 이들의 혼합물이 사용가능하다. 또한, 티타니아 담체는 알루미나, 지르코니아 또는 산화니오븀과 같은 산화물을 함유할 수 있다. 바람직하게는 루틸형 티타니아가 제공되며, 예를 들어 사카이社의 티타니아가 제공될 수 있으며, 이에 제한되지 않는다. 티타니아 담체의 비표면적은 통상적으로 사용되는 BET법에 의하여 측정될 수 있고, 비표면적은 5 내지 300 m2/g, 바람직하게는 5 내지 50 m2/g가 제공된다.
또한, 알루미늄 담체의 경우에는 바람직하게는 알파-알루미나가 제공된다. 이는 낮은 BET 비표면적을 가지기 때문에 다른 불순물들의 흡수는 일어나기 어려운 점에서 바람직하다. 이 경우 비표면적은 10 내지 500 m2/g, 바람직하게는 20 내지 350 m2/g이 제공된다.
또한, 지르코니아 담체의 경우에는 0.05 내지 10㎛ 범위의 세공을 가지는 것으로 비표면적은 상기와 동일하다.
본 발명의 일 실시예에 따르면, 제1담지단계 이후 1차 건조, 소성 및 냉각 후 고형분을 얻는 단계가 제공되며, 이 경우, 건조는 10℃ 내지 120℃에서 3시간 내지 5시간 동안 진행하는 것을 특징으로 한다.
건조는 회전 및 교반을 하면서 건조 시킬 수 있다. 건조 용기를 진동시키거나, 용기 안에 구비된 교반기를 이용하여서도 가능하며 이에 제한되지 않는다. 건조 온도의 경우 통상적으로 적용되는 실온에서 100℃ 정도가 제공되고, 압력의 경우 통상적으로 적용되는 0.1 내지 1 MPa, 바람직하게는 대기압이 제공될 수 있다.
또한, 소성은 300℃ 내지 600℃에서 2시간 내지 6시간 동안 진행하고 이후, 실온으로 냉각시켜서 진행된다. 소성 온도는 통상적으로 적용되는 온도가 제공되며 바람직하게는 250℃ 내지 450℃이 제공되고, 소성에 제공되는 산화성 기체로는 예를 들면 산소를 포함하는 기체를 들 수 있다. 그 산소 농도는 통상적으로 적용되는 1 내지 30 용량% 정도가 제공된다. 산소원으로 일반적으로 공기나 순수한 산소가 제공되고, 필요에 따라 불활성 가스나 수증기가 포함될 수 있다. 산화성 가스는 바람직하게 공기가 제공될 수 있고, 공기의 흐름 하의 전기로에서 약 350℃에서 소성을 약 3시간 정도 거친 후, 1℃ 내지 35℃의 실온으로 냉각한다.
상기 소성에 의하여 세륨은 산화세륨(세리아)으로 산화되고, 산화 세륨은 비교적 고온에서도 안정성을 확보할 수 있다. 산화 세륨 촉매를 포함한 반응의 경우 평균 온도는 250℃ 내지 600℃의 범위에서, 바람직하게는 300℃ 내지 550℃에서 열적 안정성이 제공된다. 다만, 600℃를 초과하는 경우는 염소 제조 시 염소 전환율에서 불리함이 있고, 250℃ 미만의 경우는 세륨의 촉매활성이 저하되므로 상기 범위에서 반응을 조절하여 열적 안정성을 확보하는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 고형분에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계가 제공되며, 이 경우, 제공되는 유기바인더는 메틸 셀룰로스, 히드록시에틸 셀룰로스, 소듐 카르복시메틸 셀룰로스, 정제 녹말, 덱스트린, 폴리비닐 알코올, 폴리비닐 부티랄, 폴리메틸메타크릴레이트, 폴리에틸렌 글리콜, 파라핀, 왁스 에멀전 및 미결정 왁스에서 선택되는 적어도 어느 하나 이상을 포함하는 것을 특징으로 한다. 상기 유기 바인더를 포함하여 성형성 향상 효과를 제공할 수 있다.
또한, 무기바인더는 알루미나 졸(alumina sol), 실리카 졸 (silica sol), 티타니아 졸 (titania sol) 및 지르코니아 졸(zirconia sol)에서 선택되는 적어도 어느 하나 이상을 포함하는 것을 특징으로 한다. 상기 무기 바인더를 포함하여 기계적 물성 향상 효과를 제공할 수 있다.
발명의 일 실시예에 따르면, 상기 성형담체를 제조하는 단계에서, 고형분 100 중량부에 대하여, 물 30 내지 150 중량부, 유기바인더 1 내지 15 중량부 및 무기바인더 5 내지 30 중량부를 포함하여 제조된다. 상기 범위를 포함하여 담체를 성형함으로써, 기계적 물성 향상 효과를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 상기 성형담체를 2차 건조, 소성 및 냉각 후 성형체를 제조하는 단계가 제공된다. 이 경우, 건조, 소성 및 냉각의 경우는 전술한 바와 동일하다.
발명의 일 실시예에 따르면, 루테늄 전구체가 용해된 용액을 제조하여 상기 성형체를 담지하는 제2담지단계가 제공된다. 상기 루테늄전구체는 착염의 형태로 존재가 가능하며, 할로겐화물, 할로게노산염, 옥소산염, 옥시할로겐화물, 염화물 등과 같은 금속 염들을 포함할 수 있다. 예를 들어서, RuCl3 및 RuBr3, K3RuCl6, K2RuCl6, K2RuO4, Na2RuO4, Ru2OCl4, Ru2OCl5, Ru2OCl6 , 등을 포함할 수 있으며, 이에 제한되지 않는다.
본 발명의 실시예에 따르면, 루테늄전구체는 바람직하게 할로겐화물이 제공되고, 가장 바람직하게는 염화물을 포함하는 염화루테늄이 제공된다. 루테늄 화합물로 경우에 따라 루테늄 화합물의 수화물이 제공될 수 있으며, 상기 루테늄 화합물에서 선택되는 2종 이상이 제공될 수 있다.
염화 루테늄은 분말형태로 이용하여 용매 중에 혼합될 수 있고, 용매에는 고체 담체가 현탁되어 침전체를 형성하여 고체 담체에 침적될 수 있다. 상기의 담지는 함침 또는 침지를 포함하며, 이 경우 온도는 통상적으로 적용되는 0℃ 내지 100℃ 바람직하게는 0℃ 내지 50℃ 이며 그 압력은 바람직하게는 대기압이 제공될 수 있다. 담지는 공기 분위기 하나 질소, 헬륨, 아르곤, 이산화 산소와 같은 불활성 가스 분위기 하에서 수행할 수 있고 이 때 수증기를 포함할 수 있다. 바람직하게는 상기 불활성 가스 분위기 하에서 수행하는 것이 제공되지만 이에 한정되지는 않는다.
본 발명의 실시예에 따르면, 제2담지단계 이후 3차 건조 및 소성하는 단계를 거쳐 최종적으로 성형 촉매를 수득할 수 있다. 이 경우, 건조 및 소성의 경우도 전술한 바와 동일하다.
본 발명의 일 실시예에 따르면, 방법 2에 따라, 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계; 상기 성형담체를 1차 건조, 소성 및 냉각 후 성형체를 제조하는 단계; 이종(異種)물질에서 선택되는 적어도 어느 하나 이상과 루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 단계: 및 상기 담지단계 이후 2차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
본 발명의 일 실시예에 따르면, 방법 3에 따라, 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형담체를 제조하는 단계; 상기 성형 단계 이후 1차 건조, 소성 및 냉각하여 성형체를 제조하는 단계; 이종(異種)물질에서 선택되는 적어도 어느 하나 이상의 전구체가 용해된 용액을 상기 성형체를 담지하는 제1담지단계: 상기 제1담지단계 이후 2차 건조, 소성 및 냉각하여 고형체를 얻는 단계; 루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 제2담지단계; 및 제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법이 제공된다.
상기 방법 2 및 방법 3과 비교하여 전술한 방법 1의 경우, 이종(異種)물질을 선첨가하여 성형담체를 제조하고 루테늄 전구체를 후첨가하여 담지하는 것을 특징으로 하는 반면 방법 2 및 방법 3의 경우, 성형담체를 선제조하고 이종(異種)물질과 루테늄 전구체를 후첨가하는 것을 특징으로 한다. 방법 2의 경우, 이종(異種)물질과 루테늄 전구체를 동시에 투입하며, 방법 3의 경우, 이종(異種)물질을 선첨가한 후 루테늄 전구체를 후첨가하는 점에서 차이가 있다. 그 외, 담체, 유기바인더, 무기바인더 및 건조, 소성 및 냉각 등에 관한 제조방법은 동일하게 적용하게 될 수 있음은 물론이다.
다만, 본 발명의 실시예에 따르면, 상기 방법 2 및 방법 3에서는 촉매의 성형가 선제조된다는 점에서, 담체 100 중량부에 대하여, 물 30 내지 150 중량부, 유기바인더 1 내지 15 중량부 및 무기바인더 5 내지 30 중량부를 포함하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 성형촉매는 고정층 반응기에 적용 가능하도록 성형하는 것을 특징으로 한다. 성형된 촉매는 반응기의 형태, 운전 조건 등에 구애를 받지 않고 사용에 제약이 없어 취급이 용이함을 제공할 수 있다. 특히, 고정층 반응기에 적용함에 있어서 차압 발생이 없어 사용이 가능하며, 촉매활성을 높이고 열적안정성을 강화하여 향상된 내구성을 제공할 수 있다. 이에 대한 결과는 후술할 실시예의 결과값에서 확인이 가능하다.
본 발명의 일 실시예에 따르면, 상기 성형촉매의 존재 하에서 염화수소 산화를 통한 염소의 제조방법이 제공된다. 반응의 방식은 고정상 방식 또는 유동상 방식, 기상 반응 등이 제공되며, 바람직하게는 기상 반응이 제공된다. 이 산화 반응은 평형 반응이며 너무 고온에서 수행하면 평형 전환율이 내리기 때문에, 비교적 저온에서 수행하는 것이 바람직하고 반응 온도는 통상 100℃ 내지 500℃ 바람직하게는 200℃ 내지 450℃ 이며, 가장 바람직하게는 250℃이 제공된다. 또한, 반응 압력은 통상 0.1 내지 5 MPa 정도이다. 산소원으로서는 공기를 사용하여도 좋고 순수한 산소를 사용하여도 좋다. 염화수소에 대한 산소의 이론적인 몰량은 1/4 몰이지만 통상적으로는 0.1 내지 10배의 산소가 제공된다. 또한 염화수소의 공급 속도는 촉매 1 L 당 가스 공급 속도(L/h; 0℃ 1 기압 환산), 즉 GHSV로 나타내고, 통상 10 내지 20000 h-1 정도이다. 다만, 이때 투입되는 촉매의 양은 주로 온도, 촉매의 양 및 제조되는 염소생성물의 양에 따라 약간은 변형은 가능하다.

Claims (22)

  1. 염화수소를 산화시켜 염소를 제조하는 방법에 사용되는 촉매에 있어서,
    상기 촉매는 촉매 100 중량부에 대하여, 이종(異種)물질 0.5 내지 20 중량부, 활성성분으로 산화루테늄 0.1 내지 20 중량부 및 담체 60 내지 99 중량부를 포함하는 염화수소 산화반응용 성형촉매.
  2. 제 1항에 있어서,
    상기 이종(異種)물질은 세리아, 알루미나 및 실리카에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매.
  3. 제 1항에 있어서,
    상기 담체는 알루미나, 티타니아 및 지르코니아에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매.
  4. 제 1항에 있어서,
    상기 성형 촉매는 구형(sphere), 원기둥형(cylinder), 중공형(hollow tube), 고리형(ring) 및 트라이로브형 (trilobes)에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매.
  5. 제 1항에 있어서,
    상기 성형 촉매는 직경이 1 내지 10 mm인 염화수소 산화반응용 성형촉매.
  6. 제 1항에 있어서,
    상기 성형촉매는 비표면적이 5 내지 300 m2/g 인 염화수소 산화반응용 성형촉매.
  7. 제 1항에 있어서,
    상기 성형촉매는 총 기공 부피(total pore volume)가 0.1 내지 2 ml/g 인 염화수소 산화반응용 성형촉매.
  8. 제 1항에 있어서,
    상기 성형촉매는 압축강도(crushing strength)가 3 내지 200 N인 염화수소 산화반응용 성형촉매.
  9. 이종(異種)물질에서 선택되는 적어도 어느 하나 이상이 용해된 용액을 담체에 담지하는 제 1담지단계;
    제1담지단계 이후 1차 건조, 소성 및 냉각 후 고형분을 얻는 단계;
    상기 고형분에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계;
    상기 성형담체를 2차 건조, 소성 및 냉각 후 성형체를 제조하는 단계;
    루테늄 전구체가 용해된 용액을 제조하여 상기 성형체를 담지하는 제2담지단계; 및
    제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  10. 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형하여 성형담체를 제조하는 단계;
    상기 성형담체를 1차 건조, 소성 및 냉각 후 성형체를 제조하는 단계;
    이종(異種)물질에서 선택되는 적어도 어느 하나 이상과 루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 단계: 및
    상기 담지단계 이후 2차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  11. 담체에 유기바인더, 무기바인더 및 물을 혼합하여 성형담체를 제조하는 단계;
    상기 성형 단계 이후 1차 건조, 소성 및 냉각하여 성형체를 제조하는 단계;
    이종(異種)물질에서 선택되는 적어도 어느 하나 이상의 전구체가 용해된 용액을 상기 성형체를 담지하는 제1담지단계:
    상기 제1담지단계 이후 2차 건조, 소성 및 냉각하여 고형체를 얻는 단계;
    루테늄 전구체가 용해된 용액을 상기 성형체를 담지하는 제2담지단계; 및
    제2담지단계 이후 3차 건조 및 소성하는 단계;를 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  12. 제 9항에 있어서,
    상기 성형담체를 제조하는 단계에서,
    고형분 100 중량부에 대하여, 물 30 내지 150 중량부, 유기바인더 1 내지 15 중량부 및 무기바인더 5 내지 30중량부를 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  13. 제 10항 및 제 11항 중 어느 한 항에 있어서,
    상기 성형담체를 제조하는 단계에서,
    담체 100 중량부에 대하여, 물 30 내지 150 중량부, 유기바인더 1 내지 15 중량부 및 무기바인더 5 내지 30중량부를 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  14. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 성형담체는 알루미나, 티타니아 및 지르코니아에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  15. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 유기바인더는 메틸 셀룰로스, 히드록시에틸 셀룰로스, 소듐 카르복시메틸 셀룰로스, 정제 녹말, 덱스트린, 폴리비닐 알코올, 폴리비닐 부티랄, 폴리메틸메타크릴레이트, 폴리에틸렌 글리콜, 파라핀, 왁스 에멀전 및 미결정 왁스에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  16. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 무기바인더는 알루미나 졸(alumina sol), 실리카 졸 (silica sol), 티타니아 졸 (titania sol) 및 지르코니아 졸(zirconia sol)에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  17. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 이종(異種)물질은 세륨, 알루미늄 및 실리카에서 선택되는 적어도 어느 하나 이상을 포함하는 염화수소 산화반응용 성형촉매의 제조방법.
  18. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 건조는 10℃ 내지 120℃에서 3시간 내지 12시간 동안 진행하는 것을 특징으로 하는 염화수소 산화반응용 성형촉매의 제조방법.
  19. 제 9항 내지 제 11항 중 어느 한 항에 있어서,
    상기 소성은 300℃ 내지 600℃에서 2시간 내지 6시간 동안 진행하는 것을 특징으로 하는 염화수소 산화반응용 성형촉매의 제조방법.
  20. 제 9항 내지 제11항 중 어느 한 항에 있어서,
    상기 냉각은 1℃ 내지 35℃의 실온에서 진행하는 것을 특징으로 하는 염화수소 산화반응용 성형촉매의 제조방법.
  21. 제 1항 내지 제 8항 중 어느 한 항에 따른 성형촉매의 존재 하에서 염화수소 산화를 통한 염소의 제조방법.
  22. 제 21항에 있어서,
    상기 염소의 제조는 200℃ 내지 450℃에서 진행하는 것을 특징으로 하는 염화수소 산화반응용 성형촉매의 제조방법.
PCT/KR2020/014260 2019-12-31 2020-10-19 염화수소 산화반응용 성형촉매 및 이의 제조방법 WO2021137400A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080085814.3A CN114786807A (zh) 2019-12-31 2020-10-19 用于氯化氢的氧化反应的成型催化剂及其制备方法
JP2022539367A JP7520124B2 (ja) 2019-12-31 2020-10-19 塩化水素酸化反応用成型触媒及びその製造方法
US17/790,287 US20230072554A1 (en) 2019-12-31 2020-10-19 Molding catalyst for hydrogen chloride oxidation reaction, and method for producing same
EP20910301.9A EP4085999A4 (en) 2019-12-31 2020-10-19 MOLDING CATALYST FOR HYDROGEN CHLORIDE OXIDATION REACTION, AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190179867A KR102709295B1 (ko) 2019-12-31 2019-12-31 염화수소 산화반응용 성형촉매 및 이의 제조방법
KR10-2019-0179867 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021137400A1 true WO2021137400A1 (ko) 2021-07-08

Family

ID=76686836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014260 WO2021137400A1 (ko) 2019-12-31 2020-10-19 염화수소 산화반응용 성형촉매 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20230072554A1 (ko)
EP (1) EP4085999A4 (ko)
JP (1) JP7520124B2 (ko)
KR (1) KR102709295B1 (ko)
CN (1) CN114786807A (ko)
WO (1) WO2021137400A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019127A (zh) * 2023-10-10 2023-11-10 山东东岳高分子材料有限公司 氯化氢氧化制氯气的催化剂载体、催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116899558B (zh) * 2023-05-22 2024-09-06 康纳新型材料(杭州)有限公司 一种热稳定性的高导热钌催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090084949A (ko) * 2006-11-27 2009-08-05 스미또모 가가꾸 가부시끼가이샤 산화루테늄 담지 물질의 제조 방법 및 염소의 제조 방법
JP2010533113A (ja) 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 多段階断熱的気相酸化による塩素の製造方法
JP2014503341A (ja) 2010-11-18 2014-02-13 ワンホア ケミカル グループ カンパニー リミテッド 塩化水素の酸化によって塩素を調製するための触媒およびその調製方法
KR20140102205A (ko) 2011-12-07 2014-08-21 스미또모 가가꾸 가부시키가이샤 실리카 변성 티타니아에 담지된 루테늄의 제조 방법 및 염소의 제조 방법
JP2014522797A (ja) 2011-07-05 2014-09-08 バイエル インテレクチュアル プロパティー ゲゼルシャフト ミット ベシュレンクテル ハフツング 等温反応器における酸化セリウム触媒を使用する塩素の製造方法
US20170001178A1 (en) * 2014-01-21 2017-01-05 Wanhua Chemical Group Co., Ltd. Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine
US20170081187A1 (en) * 2011-07-05 2017-03-23 Covestro Deutschland Ag Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069619B2 (ja) * 2001-01-29 2008-04-02 住友化学株式会社 担持酸化ルテニウム触媒および塩素の製造方法
AU2003249906A1 (en) * 2002-07-05 2004-01-23 Paul Scherrer Institut Method for preparing a catalyst for preferential oxidation and a process thereof
DE102007020143A1 (de) * 2007-04-26 2008-10-30 Bayer Materialscience Ag Verfahren zur Erhöhung der Langzeitstabilität und Aktivität von Ruthenium-Katalysatoren
DE102008039278A1 (de) * 2008-08-22 2010-02-25 Bayer Materialscience Ag Verfahren zur Gewinnung von metallischem Ruthenium oder Rutheniumverbindungen aus Ruthenium-haltigen Feststoffen
JP5642703B2 (ja) * 2008-12-30 2014-12-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 塩化水素酸化用の酸化ルテニウム含有触媒の再生方法
JP2011183238A (ja) * 2010-03-04 2011-09-22 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法および塩素の製造方法
JP5573237B2 (ja) * 2010-03-04 2014-08-20 住友化学株式会社 担持酸化ルテニウムの製造方法および塩素の製造方法
JP2013146720A (ja) * 2011-12-21 2013-08-01 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法及び塩素の製造方法
JP2013169517A (ja) * 2012-02-22 2013-09-02 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法及び塩素の製造方法
JP2013184083A (ja) * 2012-03-06 2013-09-19 Sumitomo Chemical Co Ltd 目的物質が担持された担体の製造方法および装置
JP2014105128A (ja) * 2012-11-28 2014-06-09 Sumitomo Chemical Co Ltd 塩素の製造方法
CN109806864B (zh) * 2019-03-15 2022-03-15 西安近代化学研究所 一种氯化氢氧化制氯气的高稳定性催化剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090084949A (ko) * 2006-11-27 2009-08-05 스미또모 가가꾸 가부시끼가이샤 산화루테늄 담지 물질의 제조 방법 및 염소의 제조 방법
JP2010533113A (ja) 2007-07-13 2010-10-21 バイエル・テクノロジー・サービシズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 多段階断熱的気相酸化による塩素の製造方法
JP2014503341A (ja) 2010-11-18 2014-02-13 ワンホア ケミカル グループ カンパニー リミテッド 塩化水素の酸化によって塩素を調製するための触媒およびその調製方法
JP2014522797A (ja) 2011-07-05 2014-09-08 バイエル インテレクチュアル プロパティー ゲゼルシャフト ミット ベシュレンクテル ハフツング 等温反応器における酸化セリウム触媒を使用する塩素の製造方法
US20170081187A1 (en) * 2011-07-05 2017-03-23 Covestro Deutschland Ag Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade
KR20140102205A (ko) 2011-12-07 2014-08-21 스미또모 가가꾸 가부시키가이샤 실리카 변성 티타니아에 담지된 루테늄의 제조 방법 및 염소의 제조 방법
US20170001178A1 (en) * 2014-01-21 2017-01-05 Wanhua Chemical Group Co., Ltd. Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4085999A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019127A (zh) * 2023-10-10 2023-11-10 山东东岳高分子材料有限公司 氯化氢氧化制氯气的催化剂载体、催化剂及其制备方法
CN117019127B (zh) * 2023-10-10 2024-01-02 山东东岳高分子材料有限公司 氯化氢氧化制氯气的催化剂载体、催化剂及其制备方法

Also Published As

Publication number Publication date
KR20210086140A (ko) 2021-07-08
CN114786807A (zh) 2022-07-22
EP4085999A4 (en) 2024-02-14
JP2023509887A (ja) 2023-03-10
EP4085999A1 (en) 2022-11-09
KR102709295B1 (ko) 2024-09-23
JP7520124B2 (ja) 2024-07-22
US20230072554A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6595022B2 (ja) 気相酸化により塩素を製造するための触媒および方法
US20070274897A1 (en) Processes for the preparation of chlorine by gas phase oxidation
WO2021137400A1 (ko) 염화수소 산화반응용 성형촉매 및 이의 제조방법
CN103167906A (zh) 用于通过气相氧化制备氯的催化剂和方法
TW200808655A (en) Process for the preparation of chlorine by gas phase oxidation
KR20120040701A (ko) 나노구조화된 루테늄 담체 촉매 상에서의 기상 산화에 의한 염소의 생성 방법
WO2020130460A1 (ko) 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매
WO2020130457A1 (ko) 염소 제조를 위한 염화수소 산화반응용 촉매 및 이의 제조방법
US20100098616A1 (en) Catalyst and process for preparing chlorine by gas phase oxidation
WO2021137399A1 (ko) 염화수소 산화반응 공정용 성형촉매 및 이의 제조방법
WO2022158741A1 (ko) 염화수소 산화반응을 통한 염소의 고수율 제조방법
JP4400042B2 (ja) 担持酸化ルテニウム触媒及び塩素の製造方法
KR20220109106A (ko) 무기물 첨가제를 포함하는 염화수소 산화반응 공정용 촉매 및 이의 제조방법
JP2004276012A (ja) 塩素製造用触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910301

Country of ref document: EP

Effective date: 20220801