WO2020130460A1 - 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매 - Google Patents

염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매 Download PDF

Info

Publication number
WO2020130460A1
WO2020130460A1 PCT/KR2019/017378 KR2019017378W WO2020130460A1 WO 2020130460 A1 WO2020130460 A1 WO 2020130460A1 KR 2019017378 W KR2019017378 W KR 2019017378W WO 2020130460 A1 WO2020130460 A1 WO 2020130460A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ruthenium oxide
supported catalyst
ruthenium
oxide supported
Prior art date
Application number
PCT/KR2019/017378
Other languages
English (en)
French (fr)
Inventor
이가람
김원용
우은지
전정환
조영진
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to US17/416,513 priority Critical patent/US20220072513A1/en
Priority to CN201980085164.XA priority patent/CN113242767A/zh
Priority to JP2021535987A priority patent/JP7269349B2/ja
Priority to EP19900748.5A priority patent/EP3900831A4/en
Publication of WO2020130460A1 publication Critical patent/WO2020130460A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/397
    • B01J35/40
    • B01J35/50
    • B01J35/612
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production

Definitions

  • the present invention relates to a method for preparing a ruthenium oxide-supported catalyst for producing chlorine, and more particularly, to provide a catalyst that significantly improves the degree of support of a ruthenium component on the outer surface of a titania carrier, and the production of chlorine using the catalyst At the same time, despite the low reaction temperature, it relates to a method for producing a catalyst that provides a high conversion rate of chlorine and a catalyst produced thereby.
  • the method for producing chlorine by catalytic oxidation of hydrogen chloride was derived from the Deacon Process, and examples of the catalyst include a ruthenium catalyst, a copper catalyst, and a cerium catalyst.
  • the ruthenium-based catalyst is characterized by high activity at a low catalyst and a small amount of catalyst than the copper-based catalyst and cerium-based catalyst.
  • the ruthenium oxide supported catalyst is useful as a catalyst for chlorine production by oxidizing hydrogen chloride with oxygen.
  • Korean Patent Registration No. 10-1561812 is a catalyst for supporting ruthenium compounds on a carrier as a method for producing chlorine, supported ruthenium oxide catalyst obtained by carrying out oxidation treatment after supporting them, and oxidation after oxidation treatment after supporting them.
  • a method of producing chlorine by oxidizing hydrogen chloride using a supported ruthenium oxide catalyst obtained by treatment or a catalyst that contains ruthenium oxide only in each layer of the outer surface of the carrier to increase the activity per unit weight of ruthenium contained in the catalyst has been proposed.
  • the above-described method has a disadvantage in that the method of preparing the catalyst is complicated in that it requires the treatment of an alkaline carrier to contain ruthenium oxide only on each layer of the outer surface of the carrier.
  • the reaction for producing chlorine by oxidation of hydrogen chloride is an equilibrium reaction, and the higher the reaction temperature, the more adversely the equilibrium becomes, the lower the equilibrium conversion rate becomes. Therefore, the more the catalyst having a lower reaction temperature, the more favorable the equilibrium in the reaction, so that a higher conversion rate of hydrogen chloride can be obtained.
  • Japanese Patent Publication No. 2014-105128 discloses a method for producing a ruthenium oxide catalyst used for a method for producing chlorine by oxidizing hydrogen chloride with oxygen, and discloses alcohol as a solvent used for supporting the catalyst, but titania There is a limitation in that there is no description of the composition and effect on the content that can carry the ruthenium component only on the outer surface of the carrier.
  • Japanese Patent Publication No. 2013-169516 also discloses a method for preparing a ruthenium oxide catalyst used in the oxidation method of hydrogen chloride, and discloses alcohol as a solvent used for supporting the catalyst, but has a high chlorine conversion rate even at low temperatures of 200 to 300°C. There is a limit in that it is impossible to disclose the specific contents to be derived.
  • Korean Patent Publication No. 2014-0102205 provides a method of manufacturing ruthenium oxide in which ruthenium oxide and silica are supported on a titania carrier.
  • this case is also somewhat limited in that there is no specific mention of the composition or effect that can carry the ruthenium component only on the outer surface of the titania carrier.
  • the ruthenium component is supported only on the outer surface of the carrier, and it is developed into a highly active catalyst having a high yield even at a low reaction temperature. Is urgently required.
  • Patent Document 1 Japanese Patent Publication No. 2014-105128 (2014.06.09)
  • Patent Document 2 Japanese Patent Publication No. 2013-169516 (2015.11.06)
  • Patent Document 3 Korean Patent Publication No. 2014-0102205 (2014.08.21)
  • the present invention aims to solve all the above-mentioned problems.
  • Another object of the present invention is to provide a method for producing a ruthenium oxide supported catalyst used in a process for producing chlorine by oxidizing hydrogen chloride,
  • an object of the present invention is to provide a catalyst having a VMS measurement value (S/R) close to 0 indicating the degree to which the ruthenium component is supported on the outer surface of the carrier.
  • the object of the present invention is to provide a method for preparing a high-dispersity ruthenium oxide-supported catalyst having a low activity temperature in the production process of chlorine, preferably a high conversion rate of hydrogen chloride even at about 250°C, and a ruthenium oxide-supported catalyst prepared thereby Is to do.
  • the characteristic configuration of the present invention is as follows.
  • ruthenium oxide support for chlorine production in the ruthenium oxide support for chlorine production, (a) dissolving a ruthenium compound in an organic solvent to prepare a solution to be supported on at least one carrier selected from titania and alumina; (b) drying; (c) calcining; a method of manufacturing a ruthenium oxide-supported catalyst is provided.
  • the ruthenium oxide supported catalyst is based on 100 parts by weight of the catalyst before drying, the carrier is 70 to 80 parts by weight, the ruthenium compound is 5 parts by weight or less, and the organic solvent is 15 to 25 parts by weight It may contain wealth.
  • the organic solvent of step (a) is characterized in that it is a monoalcohol, preferably C3 or higher primary alcohol, and may be 1-propanol. However, it is not limited thereto.
  • the titania carrier of step (a) is characterized in that the specific surface area is 5 to 300 m 2 /g. Preferably 5 to 100 m 2 /g is provided, but is not limited thereto.
  • the drying of the step (b) proceeds for 3 to 5 hours in an air condition of 80 to 120° C.
  • the catalyst may contain 5 parts by weight of ruthenium oxide or less. Can. Preferably 2 parts by weight may be included.
  • step (c) may be performed at 300 to 400°C for 2 to 4 hours.
  • the carrier is prepared by mixing a powder carrier mixture including at least one selected from titania and alumina, titania or alumina sol, organic binder, and distilled water; Extruding the mixture; Drying and cutting into a molded body; And it is provided a method for producing a ruthenium oxide supported catalyst comprising the step of firing.
  • the carrier relative to the total 100 parts by weight before drying, the powder carrier mixture contains 30 to 50 parts by weight, titania or alumina sol 1 to 9 parts by weight, organic binder 0.5 to 1.5 and distilled water 20 to 40 parts by weight can do.
  • a ruthenium oxide supported catalyst prepared by the above manufacturing method is provided.
  • the prepared catalyst can be used to produce chlorine by oxidizing hydrogen chloride.
  • the ruthenium oxide supported catalyst may be at least one selected from powder, particle, and pellet forms, and preferably a pellet form is provided.
  • the ruthenium oxide supported catalyst is characterized in that the VMS measurement value (S/R) is 0.5 or less.
  • a method for producing chlorine through oxidation of hydrogen chloride in the presence of the catalyst is provided.
  • the reaction temperature for the production of chlorine is 200 to 300°C, and preferably 250°C.
  • a catalyst containing ruthenium oxide only in each layer of the outer surface of the titania carrier can be prepared without alkali pretreatment, thereby providing a simplified process, thus providing an advantageous effect in terms of scale-up.
  • a ruthenium oxide catalyst for the production of chlorine (a) preparing a solution by dissolving a ruthenium compound in an organic solvent and supporting it on at least one carrier selected from titania and alumina (b) drying A method for producing a ruthenium oxide supported catalyst comprising the step (c) of firing is provided.
  • an alkali pretreatment is not required to contain the ruthenium oxide component only on each outer surface layer of the titania carrier. Therefore, it is provided that simple manufacturing is possible in three steps of loading, drying and baking. Therefore, it is possible to provide an advantage in terms of future scale-up through simplification of the manufacturing method while maintaining high activity of the catalyst. This can provide advantageous effects in terms of time and economy in the manufacturing process.
  • the ruthenium oxide supported catalyst is based on 100 parts by weight of the catalyst before drying, the carrier is 70 to 80 parts by weight, the ruthenium compound is 5 parts by weight or less, and the organic solvent is 15 to 25 parts by weight It may contain wealth.
  • the ruthenium oxide contains 5 parts by weight or less in the catalyst finally produced after the drying and firing steps. It may preferably contain 2 to 4 parts by weight, most preferably 2 parts by weight.
  • the titania carrier may be anatase-type titania or rutile-type titania, amorphous titania, or a mixture thereof.
  • the titania carrier may contain oxides such as alumina, zirconia or niobium oxide. According to an embodiment of the present invention, preferably, a rutile type titania is provided.
  • the specific surface area of the titania carrier can be measured by a commonly used BET method, and the specific surface area is 5 to 300 m 2 /g, preferably 5 to 100 m 2 /g. If the specific surface area exceeds the above range, it may be difficult to secure thermal stability of ruthenium oxide, and if it is less than the above range, high dispersion is difficult, and thus the activity of the catalyst is also lowered.
  • alpha-alumina is preferably provided. Since alpha-alumina has high thermal conductivity and helps to secure thermal stability during the reaction operation, and also has a low BET specific surface area, absorption of other impurities is preferable because it is difficult to occur.
  • the ruthenium compound may be present in the form of a complex salt, and may include metal salts such as halides, halogenates, oxoates, oxyhalides and chlorides.
  • metal salts such as halides, halogenates, oxoates, oxyhalides and chlorides.
  • RuCl 3 and RuBr 3 K 3 RuCl 6 , K 2 RuCl 6 , K 2 RuO 4 , Na 2 RuO 4 , Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6, etc. And is not limited thereto.
  • the ruthenium compound is preferably provided with a halide, most preferably a ruthenium chloride comprising chloride.
  • a ruthenium compound a hydrate of the ruthenium compound may be provided in some cases, and two or more kinds selected from the ruthenium compound may be provided.
  • Ruthenium chloride may be mixed in a solvent using a powder form, and a solid carrier may be suspended in the solvent to form a precipitate and deposited on the solid carrier.
  • the above support includes impregnation or immersion, in which case the temperature is usually 0 to 100°C, preferably 0 to 50°C, and the pressure is usually 0.1 to 1 MPa, preferably atmospheric pressure.
  • the supported air atmosphere can be carried out under an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide, and may include water vapor. Preferably, it is provided to perform under the inert gas atmosphere, but is not limited thereto.
  • the organic solvent of step (a) may be monoalcohol, and is provided as a primary alcohol of C3 or higher.
  • a primary alcohol of C3 or higher Preferably 1-propanol is provided.
  • an alcohol solvent is provided in place of high-purity water such as distilled water, ion-exchanged water or ultrapure water as a solvent in comparison with a known technique.
  • a C3 alcohol-based organic solvent is provided, preferably 1-propanol, and the oxidation of the hydroxyl group by utilizing the high wettability and hydrophobicity of the solution
  • the ruthenium component can be supported only on the outer surface of the titanium molding carrier, and an effect of increasing the dispersion degree of ruthenium supported on the surface of the titanium oxide molding carrier or powder carrier is provided.
  • the catalyst supported using propanol, an alcohol solvent has a better degree of external surface loading and provides a higher initial activity compared to the catalyst surface performance and the degree of external surface loading of the catalyst supported using ultrapure water or ethanol.
  • the present invention provides derivation of results through the following VMS.
  • the degree to which the ruthenium component is supported on the outer surface of the carrier is expressed by the following equation.
  • the degree of loading of the outer surface of the ruthenium component was measured through a visual measurement system (VMS). The closer the number in the following equation is to 0, the higher the degree of being supported on the outer surface.
  • R The distance from the outermost arbitrary point (A) of the horizontal section (circle) of the cylindrical catalyst to the center of the same horizontal section
  • the solvent is prepared using ultrapure water.
  • the degree of external surface loading is close to zero. Therefore, the catalyst according to the present invention provides that the ruthenium component can be supported only on the outer surface of the titanium oxide carrier in which hydroxy is present.
  • the drying of step (b) may be performed for 3 to 5 hours in air conditions of 80 to 120°C. Drying can be performed while rotating and stirring. It is possible to vibrate the drying container or use a stirrer provided in the container, but is not limited thereto.
  • the drying temperature is usually provided at room temperature to about 100°C, and in the case of pressure, it can also be provided at 0.1 to 1 MPa, preferably atmospheric pressure, which is usually applied.
  • the catalyst may contain 5 parts by weight or less of ruthenium oxide with respect to 100 parts by weight of the catalyst. Preferably 2 parts by weight may be included.
  • the firing of step (c) may be performed at 300 to 400°C for 2 to 4 hours. Thereafter, cooling to room temperature is provided.
  • the firing temperature is a commonly applied temperature, preferably 250 to 450°C.
  • the oxidizing gas include a gas containing oxygen.
  • the oxygen concentration is usually about 1 to 30% by volume is provided.
  • the oxygen source is usually provided with air or pure oxygen, and may include an inert gas or water vapor if necessary.
  • the oxidizing gas may preferably be provided with air, and after being calcined at about 350° C. for about 3 hours in an electric furnace under a flow of air, cooled to room temperature to finally produce a ruthenium oxide catalyst.
  • supported ruthenium oxide in which ruthenium oxide is supported on at least one carrier selected from titania and alumina.
  • the ruthenium typically, has an oxidation number of 4, and ruthenium dioxide (RuO 2 ) is provided.
  • the number and form of oxidation are not limited thereto.
  • the carrier is prepared by the following method.
  • Preparing a mixture by mixing at least one powder carrier mixture selected from titania and alumina, titania or alumina sol, organic binder, and distilled water in the case of a carrier; Extruding the mixture; Drying and cutting into a molded body; And firing.
  • a powder carrier mixture selected from titania and alumina, titania or alumina sol, organic binder, and distilled water in the case of a carrier
  • the powder carrier mixture may contain 30 to 50 parts by weight, 1 to 9 parts by weight of titania or alumina sol, 0.5 to 1.5 of organic binder, and 20 to 40 parts by weight of distilled water Can.
  • the mixture is mixed, extruded into a noodle-shaped strand having a diameter of 2 to 3 mm ⁇ , dried and molded. At this time, drying is 50 to 70°C, and drying is performed for 1 to 3 hours. The cut is then provided in a molded body 2 to 4 mm long. In this case, firing is performed at 400 to 800° C. in air for 2 to 4 hours.
  • the detailed conditions of drying and calcination are omitted, as the conditions for drying and calcination of the above-described catalysts can be applied normally.
  • a carrier prepared by the above-described method of preparing a carrier satisfying a particle size, size distribution, surface area, pore structure, etc. suitable for a ruthenium catalyst composition By applying it, it is possible to provide the finally optimized ruthenium oxide supported catalyst.
  • the chlorine production may be characterized by producing chlorine by oxidizing hydrogen chloride.
  • a ruthenium oxide supported catalyst prepared by the above manufacturing method can be used.
  • the above-mentioned ruthenium oxide supported catalyst may be at least one selected from the form of powder, particles and pellets, preferably in the form of pellets or powder, most preferably in the form of pellets.
  • the diameter is preferably 5 mm or less. If the diameter of the molded body is too large, it may provide disadvantages in the activity of the catalyst.
  • the ruthenium oxide supported catalyst is characterized in that the VMS measurement value (S/R) is 0.5 or less. Therefore, it is possible to provide high activity even under temperature conditions in the chlorine production reaction described below.
  • a method for producing chlorine through oxidation of hydrogen chloride in the presence of a catalyst prepared by the method according to any one of the above is provided.
  • the method of the reaction is a fixed bed method or a fluid bed method, a gas phase reaction or the like is provided, preferably a gas phase reaction is provided. Since this oxidation reaction is an equilibrium reaction and the equilibrium conversion rate decreases when it is carried out at too high temperature, it is preferable to perform at a relatively low temperature, and the reaction temperature is usually 100 to 500°C, preferably 200 to 450°C, most preferably 250. °C is provided.
  • the reaction pressure is usually about 0.1 to 5 MPa.
  • the oxygen source air may be used or pure oxygen may be used.
  • the theoretical molar amount of oxygen to hydrogen chloride is 1/4 mole, but usually 0.1 to 10 times oxygen is provided.
  • the supply rate of hydrogen chloride is represented by the gas supply rate per L of catalyst (L/h; 0°C, equivalent to 1 atmosphere), that is, GHSV, and is usually about 10 to 20000 h -1 .
  • the amount of the catalyst to be input can be slightly modified depending mainly on the temperature, the amount of the catalyst, and the amount of the chlorine product produced.
  • Titania powder was mixed with 40.0 g , organic binder 0.8 g, ultrapure water heated to 60° C., 29.0 g , and titania sol 5.0 g .
  • the obtained mixture was extruded into a noodle-like strand having a diameter of 2.0 mm 2 mm ⁇ , dried in air at 60 mm 2° C. for 2 hours, and then cut into a molded body having a length of 2 to 4 mm.
  • the obtained molded body was calcined in air at 600°C for 3 hours.
  • the obtained titania carrier 5.0g was impregnated with a solution prepared by dissolving 0.2g of ruthenium chloride hydrate in 1.33g of 1-propanol, and then dried in air at 100 C for 4 hours.
  • the dried solid was subjected to calcination (calcination) at 350° C. for 3 hours in an electric furnace under air flow, and then slowly cooled to room temperature to finally obtain a ruthenium oxide catalyst having a ruthenium oxide content of 2.0 parts by weight.
  • the degree of carrying the outer surface of the ruthenium component measured through VMS was 0.32 .
  • the obtained ruthenium oxide supported catalyst 0.3g was diluted with ⁇ -alumina ball 1.5g with a diameter of 2mm and filled into a quartz reaction tube (inner diameter 8mm).
  • the reaction was performed by heating the catalyst layer to a temperature of 300° C. and supplying hydrogen chloride and oxygen gas at a rate of 22.5 mL/min under normal pressure. Sampling was performed for 10 minutes by flowing the gas at the outlet of the reaction tube into an aqueous solution of 15% potassium potassium iodide at a time 2 hours after the start of the reaction.
  • the conversion rate of hydrogen chloride was calculated by the following [Equation 2], and the results are shown in Table #1.
  • Example #1 For the catalyst obtained in Example #1, the initial activity evaluation was conducted in the same manner as in Example #1, except that the temperature of the catalyst layer was used at #283°C. The results are shown in [Table 1].
  • the solution prepared by dissolving 0.2 g of ruthenium chloride hydrate in 1.05 g of titania powder in 5.0 g was dissolved in 1.05 g of 1-propanol, and then dried in air at 100° C. for 4 hours. The dried solid was subjected to calcination at 350°C for 3 hours in an electric furnace in air, and then slowly cooled to room temperature to finally obtain a ruthenium oxide catalyst having a ruthenium oxide content of 2.0 parts by weight.
  • the obtained ruthenium oxide supported catalyst 0.3g was diluted with 0.6g of titania powder and filled in a reaction tube made of quartz (diameter 8mm).
  • the catalyst layer was heated to a temperature of 250° C. and hydrogen chloride and oxygen gas were respectively supplied at a rate of 22.5 mL/min under normal pressure to carry out the reaction.
  • Sampling was performed for 10 minutes by flowing the gas at the outlet of the reaction tube into an aqueous solution of 15% potassium potassium iodide at a time 2 hours after the start of the reaction.
  • the conversion of hydrogen chloride was calculated by measuring the amount of chlorine produced by the iodine titration method and shown in [Table 2].
  • a ruthenium oxide supported catalyst was prepared in the same manner as in Example 1, except that an aqueous solution prepared by dissolving 0.2 g of ruthenium chloride hydrate in 1.65 g of ultrapure water was used. The external surface carrying degree of the ruthenium component measured through VMS was 1 . The obtained ruthenium oxide supported catalyst was subjected to an initial activity evaluation in the same manner as in Example #1. The results are shown in [Table 1].
  • ruthenium oxide supported catalyst When preparing the ruthenium oxide supported catalyst, a ruthenium oxide supported catalyst was prepared in the same manner as in Example 4, except that an aqueous solution prepared by dissolving 0.2 g of ruthenium chloride hydrate in 1.3 g of ultrapure water was used. For the obtained ruthenium oxide supported catalyst, an initial activity evaluation was performed in the same manner as in Example #4. The results are shown in [Table 2].
  • a ruthenium oxide supported catalyst was prepared in the same manner as in Example 1 , except that a solution prepared by dissolving 0.2 g of ruthenium chloride hydrate in 1.3 g of ethanol was used. The external surface carrying degree of the ruthenium component measured through VMS was 0.41 .
  • an initial activity evaluation was performed in the same manner as in Example #1. The results are shown in [Table 1].
  • Example #1 menstruum Catalyst form S/R Catalyst bed temperature (°C) Hydrogen chloride conversion rate (%)
  • Example #1 1-propanol Pellet 0.32 300 37.0
  • Example #2 1-propanol Pellet 0.32 283 23.2
  • Example #3 1-propanol Pellet One 300 29.8 Comparative Example 1 Ultrapure water Pellet One 300 21.7 Comparative Example 3 ethanol Pellet 0.41 300 26.7
  • the catalyst according to the present invention is a ruthenium oxide supported catalyst prepared using an alcohol organic solvent such as 1-propanol, and can provide a catalyst containing ruthenium oxide only in each layer of the outer surface of the pelletized titania carrier in a simplified process.
  • it can be confirmed that it is possible to provide a catalyst having a high activity of high hydrogen chloride conversion even at a low reaction temperature, preferably around 250°C, in the production process of chlorine. This may provide an advantage in terms of scale-up in the manufacturing process of the catalyst in the future.

Abstract

본 발명은 염소를 제조하기 위한 산화루테늄 담지 촉매의 제조방법에 관한 것으로, 보다 자세하게는 루테늄 성분이 담체의 외표면에 담지되는 정도를 현저하게 향상시킨 촉매를 제공하고, 이를 이용하여 염소의 제조 시, 낮은 반응 온도에도 불구하고, 높은 염소의 전환율을 제공하는 촉매의 제조방법 및 이에 의해 제조된 촉매에 관한 것이다. 본 발명의 실시예에 따르면, 염소 제조용의 산화루테늄 촉매로써, (a) 루테늄화합물을 유기용매에 용해하여 용액을 제조하여 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 담체에 담지시키는 단계 (b) 건조하는 단계 (c) 소성하는 단계를 포함하는 산화루테늄 담지 촉매의 제조방법이 제공된다. 본 발명의 실시예에 따르면, 특히, 티타니아 담체의 외표면 각층에만 산화루테늄을 함유시키는 촉매를 알칼리 전처리 없이 제조하여 간소화된 공정을 제공할 수 있고, 따라서 스케일업 측면에서 유리한 효과를 제공할 수 있다.

Description

염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매
본 발명은 염소를 제조하기 위한 산화루테늄 담지 촉매의 제조방법에 관한 것으로, 보다 자세하게는 루테늄 성분이 티타니아 담체의 외표면에 담지되는 정도를 현저하게 향상시킨 촉매를 제공하고, 이를 이용하여 염소의 제조 시, 낮은 반응 온도에도 불구하고, 높은 염소의 전환율을 제공하는 촉매의 제조방법 및 이에 의해 제조된 촉매에 관한 것이다.
염화수소를 촉매 산화법에 의해 염소를 제조하는 방법은 Deacon Process에서 파생되었으며, 촉매로는 대표적으로 루테늄계 촉매, 구리계 촉매, 세륨계 촉매가 있다. 특히, 루테늄계 촉매는 구리계 촉매, 세륨계 촉매보다 소량의 촉매와 낮은 반응온도에서 활성이 높은 것을 특징으로 한다.
상기 전술한 루테늄계 촉매 중 산화루테늄 담지 촉매는 염화수소를 산소로 산화시켜 염소를 제조하는 촉매로서 유용하다. 현재 상용화가 보고된 스미또모사의 대한민국 등록특허 제 10-1561812호는 염소의 제조방법으로 루테늄 화합물을 담체에 담지한 촉매, 이들을 담지 후 산화처리해 얻어진 담지 산화루테늄 촉매, 이들을 담지 후 환원처리 후 산화처리하여 얻어진 담지 산화루테늄 촉매 또는 담체의 외표면 각층에만 산화루테늄을 함유시켜 촉매에 함유되는 루테늄의 단위 중량당 활성을 높이는 촉매 등을 사용하여 염화수소를 산화시켜 염소를 제조하는 방법이 제안되어 있다.
하지만 상기의 개시된 방법에는 담체의 외표면 각층에만 산화루테늄을 함유시키기 위해서는 알칼리의 전담지 처리 등이 요구되는 점에서 촉매의 제조방법이 복잡해지는 단점이 있다.
염화수소의 산화로 염소를 제조하는 반응은 평형반응이며, 반응 온도가 높을수록 평형적으로 불리해져서 평형전환율이 낮아진다. 따라서, 낮은 반응온도를 가지는 촉매일수록 반응에 있어서 평형적으로 유리해져서 보다 높은 염화수소의 전환율을 얻을 수 있다.
그러나, 종래의 기술에서 언급된 촉매들의 대부분은 주로 고온에서 높은 활성을 보이고 있으며, 더불어 고온 운전 시 수개월의 단기간에 촉매의 성능이 감소하는 현상을 나타내고 있다. 즉, 담지 산화루테늄은 열안정성이나 촉매 수명을 두가지 조건을 동시에 만족하는 것에는 어려움이 있는 실정이다.
일본 공개특허 제 2014-105128호에서는 염화수소를 산소로 산화해 염소를 제조하는 방법에 관한 것에 사용되는 산화루테늄 촉매제조방법을 개시하고 있으며, 상기 촉매의 담지 사용되는 용매로 알코올을 개시하고 있으나, 티타니아 담체의 외표면에만 루테늄 성분을 담지할 수 내용에 대한 구성 및 효과에 대한 기재가 없는 점에서 한계가 있다.
일본 공개특허 제 2013-169516 호에서도 역시 염화수소의 산화법에 사용되는 산화루테늄 촉매제조방법을 개시하고 있으며, 촉매 담지에 사용되는 용매로 알코올을 개시하고 있으나, 200 내지 300℃의 저온에서도 높은 염소전환율을 도출해내는 구체적인 내용은 개시하지 못하는 점에서 한계가 있다.
한국 공개특허 제 2014-0102205호는 산화루테늄 및 실리카가 티타니아 담체에 담지 되어있는 산화루테늄의 제조 방법에 관한 것을 제공한다. 다만, 이 경우도 역시 티타니아담체의 외표면에만 루테늄 성분을 담지할 수 있는 구성이나 효과에 대한 구체적인 언급이 없는 점에서 다소 한계가 있다.
따라서, 상기 문제점을 극복하고 단순하게 용매를 알코올을 사용하는 점에서 나아가 반응공정을 간소화하게 하면서 동시에 담체의 외표면에만 루테늄성분을 담지하여, 낮은 반응 온도에서도 높은 수율을 갖는 고활성 촉매에 개발이 절실히 요구된다.
(특허문헌 1) 일본 공개특허 제 2014-105128호 (2014.06.09)
(특허문헌 2) 일본 공개특허 제 2013-169516호 (2015.11.06)
(특허문헌 3) 한국 공개특허 제 2014-0102205호 (2014.08.21)
본 발명은 상술한 문제점을 모두 해결하는 것을 목적으로 한다.
본 발명의 다른 목적은 염화수소를 산화시켜 염소를 생산하는 공정에 사용되는 산화루테늄 담지 촉매의 제조방법을 제공하는 목적이 있다,
특히, 담체의 외표면에만 산화루테늄을 함유시키는 촉매를 알칼리 전처리 없이 제조하여 간소화된 공정을 제공하는 데 목적이 있다.
따라서, 루테늄 성분이 담체의 외표면에 담지되는 정도를 나타내는 VMS측정값 (S/R)이 0에 가까운 촉매를 제공하는데 목적이 있다.
또한, 본 발명의 목적은 염소의 제조공정에서 낮은 반응 온도, 바람직하게 250℃ 내외에서도 높은 염화수소의 전환율 높은 활성을 가지는 고분산 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조되는 산화루테늄 담지 촉매를 제공하는 것이다.
상기한 바와 같은 본 발명의 목적을 달성하고, 후술하는 본 발명의 특징적인 효과를 실현하기 위한, 본 발명의 특징적인 구성은 하기와 같다.
본 발명의 실시예에 따르면, 염소 제조용의 산화루테늄 담지에 있어서, (a) 루테늄화합물을 유기용매에 용해하여 용액을 제조하여 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 담체에 담지시키는 단계; (b) 건조하는 단계; (c) 소성하는 단계;를 포함하는 산화루테늄 담지 촉매의 제조방법이 제공된다.
본 발명의 실시예에 따르면, 상기 산화루테늄 담지 촉매는 건조 전 촉매 전체 100중량부에 대하여, 상기 담체는 70 내지 80중량부, 상기 루테늄화합물은 5중량부 이하, 상기 유기용매는 15 내지 25중량부를 포함할 수 있다.
상기 (a) 단계의 유기용매는 모노알코올인 것을 특징으로 하며, 바람직하게는 C3이상의 1차 알코올이며, 1-프로판올일 수 있다. 다만 이에 제한되지 않는다.
본 발명의 실시예에 따르면, 상기 (a) 단계의 티타니아 담체는 비 표면적이 5 내지300 m2/g 인 것을 특징으로 한다. 바람직하게는 5 내지 100 m2/g이 제공되며, 다만 이에 제한되지 않는다.
또한, 상기 (b) 단계의 건조는 80 내지 120℃ 의 공기조건에서 3 내지 5시간 동안 진행되며, 건조하는 단계 이후, 건조 후 촉매 전체 100 중량부에 대하여, 산화루테늄 5 중량부 이하를 포함할 수 있다. 바람직하게는 2 중량부가 포함될 수 있다.
상기 (c) 단계의 소성은 300 내지 400℃ 에서 2 내지 4시간 동안 진행이 될 수 있다.
본 발명의 실시예에 따르면, 상기 담체는, 티타니아 및 알루미나에서 선택되는 적어도 하나 이상을 포함하는 분말 담체 혼합물, 티타니아 또는 알루미나 졸, 유기바인더 및 증류수를 혼합하여 혼합물을 제조 단계; 상기 혼합물을 압출하는 단계; 건조 및 성형체로 절단하는 단계; 및 소성하는 단계를 포함하는 산화루테늄 담지 촉매의 제조방법이 제공된다. 또한 이 경우, 상기 담체는 건조 전 전체 100중량부에 대하여, 상기 분말 담체 혼합물은 30 내지 50 중량부, 티타니아 또는 알루미나 졸 1 내지 9 중량부, 유기바인더 0.5 내지 1.5 및 증류수 20 내지 40 중량부를 포함할 수 있다.
본 발명의 실시예에 따르면, 상기의 제조방법으로 제조된 산화루테늄 담지 촉매가 제공된다. 제조된 촉매는 염화수소를 산화시켜 염소를 제조하는 것에 이용될 수 있다.
상기의 산화루테늄 담지 촉매는 분말, 입자 및 펠렛 형태에서 선택되는 적어도 하나 이상일 수 있고, 바람직하게는 펠렛의 형태가 제공된다. 또한, 산화루테늄 담지 촉매는 VMS 측정값인 (S/R)이 0.5 이하인 것을 특징으로 한다.
본 발명의 실시예에 따르면, 상기 촉매의 존재 하에서 염화수소의 산화를 통한 염소의 제조방법이 제공된다. 이 때 염소의 제조 반응온도는 200 내지 300℃가 제공되고, 바람직하게는 250℃가 제공될 수 있다.
본 발명에 따른 염화수소의 산화에 따른 염소제조에 사용되는 촉매를 제공하는 효과가 있다.
본 발명의 실시예에 따르면, 특히, 티타니아 담체의 외표면 각층에만 산화루테늄을 함유시키는 촉매를 알칼리 전처리 없이 제조하여 간소화된 공정을 제공할 수 있고, 따라서 스케일업 측면에서 유리한 효과를 제공할 수 있다.
특히, 루테늄 성분이 담체의 외표면에 담지되는 정도를 나타내는 VMS를 통해 측정하여, S/R값이 0에 가까운 촉매를 제공하는 효과가 있다.
본 발명의 실시예에 따르면, 염소의 제조공정에서 낮은 반응 온도, 바람직하게 250℃ 내외에서도 높은 염화수소의 전환율 높은 활성을 가지는 고분산 산화루테늄 담지 촉매의 제조방법을 제공하는 효과가 있다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
본 발명의 실시예에 따르면, 염소 제조용의 산화루테늄 촉매로써, (a) 루테늄화합물을 유기용매에 용해하여 용액을 제조하여 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 담체에 담지시키는 단계 (b) 건조하는 단계 (c) 소성하는 단계를 포함하는 산화루테늄 담지 촉매의 제조방법이 제공된다.
공지된 기술과 달리 본 발명에 따른 촉매의 경우, 산화루테늄 성분을 티타니아 담체의 외표면 각층에만 함유시키기 위한 알칼리 전처리가 불필요하다. 따라서, 담지, 건조, 소성의 3단계로 간단한 제조가 가능함을 제공한다. 따라서, 촉매의 고활성은 유지하면서 동시에 제조방법 간소화를 통한 향후 스케일 업 측면에서 유리함을 제공할 수 있다. 이것은 제조공정에 있어서 시간 및 경제적 측면에서 유리한 효과를 제공할 수 있다.
본 발명의 실시예에 따르면, 상기 산화루테늄 담지 촉매는 건조 전 촉매 전체 100중량부에 대하여, 상기 담체는 70 내지 80중량부, 상기 루테늄화합물은 5중량부 이하, 상기 유기용매는 15 내지 25중량부를 포함할 수 있다.
특히, 상기 산화루테늄은 건조 및 소성단계 이후 최종적으로 생성되는 촉매 에서 5중량부 이하를 포함한다. 바람직하게는 2 내지 4 중량부를 포함할 수 있고, 가장 바람직하게는 2 중량부가 제공된다.
상기 담체로써 티타니아 담체는 아나타제형 티타니아 또는 루틸형 티타니아, 비정질 티타니아 또는 이들의 혼합물이 사용가능하다.
또한, 티타니아 담체는 알루미나, 지르코니아 또는 산화니오븀과 같은 산화물을 함유할 수 있다. 본 발명의 실시예에 따르면, 바람직하게는 루틸형 티타니아가 제공된다.
티타니아 담체의 비표면적은 통상적으로 사용되는BET법에 의하여 측정될 수 있고, 비표면적은 5 내지300 m2/g, 바람직하게는 5 내지 100 m2/g가 제공된다. 비표면적이 상기 범위를 초과하면 산화루테늄의 열안정성확보에 어려움이 있을 수 있고, 상기 범위 미만이면 고분산이 어려운 바, 촉매의 활성 또한 낮아지는 문제가 있다.
알루미나 담체의 경우에는 바람직하게는 알파-알루미나가 제공된다. 알파-알루미나는 높은 열전도성을 가져 반응 운전 시 열안정성 확보에 도움이 되고 또한 낮은 BET 비표면적을 가지기 때문에, 다른 불순물들의 흡수는 일어나기 어려운 점에서 바람직하다.
본 발명의 실시예에 따르면, 상기 루테늄 화합물은 착염의 형태로 존재가 가능하며, 할로겐화물, 할로게노산염, 옥소산염, 옥시할로겐화물, 염화물 등과 같은 금속 염들을 포함할 수 있다. 예를 들어서, RuCl3 및 RuBr3, K3RuCl6, K2RuCl6, K2RuO4, Na2RuO4, Ru2OCl4, Ru2OCl5, Ru2OCl6, 등을 포함할 수 있으며, 이에 제한되지 않는다.
본 발명의 실시예에 따르면, 루테늄 화합물은 바람직하게는 할로겐화물이 제공되고, 가장 바람직하게는 염화물을 포함하는 염화루테늄이 제공된다. 루테늄 화합물로 경우에 따라 루테늄 화합물의 수화물이 제공될 수 있으며, 상기 루테늄 화합물에서 선택되는 2종 이상이 제공될 수 있다.
염화 루테늄은 분말형태로 이용하여 용매 중에 혼합될 수 있고, 용매에는 고체 담체가 현탁되어 침전체를 형성하여 고체 담체에 침적될 수 있다. 상기의 담지는 함침 또는 침지를 포함하며, 이 경우 온도는 통상적으로 적용되는0 내지100℃, 바람직하게는0 내지 50℃이며 그 압력은 통상적으로 적용되는 0.1 내지1 MPa, 바람직하게는 대기압이다. 담지는 공기 분위기 하나 질소, 헬륨, 아르곤, 이산화 산소와 같은 불활성 가스 분위기 하에서 수행할 수 있고 이 때 수증기를 포함할 수 있다. 바람직하게는 상기 불활성 가스 분위기 하에서 수행하는 것이 제공되지만 이에 한정되지는 않는다.
상기 (a) 단계의 유기용매는 모노알코올일 수 있으며, C3이상의 1차 알코올인 것이 제공된다. 바람직하게는 1-프로판올이 제공된다. 본 발명에 따르면, 공지된 기술과 대비하여 용매로써 증류수, 이온교환수 또는 초순수와 같은 고순도 물을 대신하여 알코올용매를 제공한다.
본 발명의 실시예에 따르면, 바람직하게는 C3 알코올계 유기용매를 제공하며, 바람직하게는 1-프로판올을 제공하여, 용액의 높은 젖음성(wettability)과 소수성(hydrophobicity)를 활용하여 히드록시기가 존재하는 산화티탄 성형 담체의 외표면에만 루테늄 성분을 담지할 수 있고, 산화티탄 성형 담체 또는 분말 담체 표면에 담지되는 루테늄의 분산도를 높여 줄 수 있는 효과를 제공한다.
즉, C3 알코올계의 소수성 및 젖음성을 이용하여 고활성 촉매를 제공할 수 있다. 특히, 초순수 또는 에탄올을 사용하여 담지한 촉매의 외표면 담지 정도와 촉매 성능 대비 하여 알코올 용매인 프로판올을 사용하여 담지한 촉매가 외표면 담지 정도가 더 우수하고, 높은 초기 활성을 제공한다.
이러한 효과를 제공하기 위하여 본 발명은 하기와 같은 VMS를 통한 결과의 도출을 제공한다.
루테늄 성분이 담체의 외표면에 담지되는 정도는 아래의 수학식으로 표현하였다. 루테늄 성분의 외표면 담지 정도를 VMS (visual measurement system)를 통해 측정하였다. 하기 수학식의 숫자가 0에 가까울수록 외표면에 담지되는 정도가 높은 것을 의미한다.
[수학식 1]
Figure PCTKR2019017378-appb-I000001
R : 원기둥형 촉매의 수평단면(원) 최외곽 임의의 한 점(A) 으로부터 동일한 수평단면의 중심까지의 거리
S: 상기 점 (A)로부터 동일 수평단면의 중심까지의 직선상에 측정되는 거리로, 점 (A)에서 산화루테늄 성분이 없어지는 점 (B)까지의 거리
본 발명의 실시예에 따르면, [표 3]의 외표면 담지 정도 (S/R) 결과값에 비추어, 본 발명에 따른 촉매제조방법 및 이에 의해 제조된 촉매에 따르면 용매를 초순수를 사용함에 대비하여 1-프로판올을 사용한 경우, 외표면 담지정도가 0에 가까움을 알 수 있다. 따라서, 본 발명에 따른 촉매의 경우에는 히드록시가 존재하는 산화티탄담체의 외표면에만 루테늄 성분을 담지 할 수 있음을 제공한다.
나아가 담지, 건조, 소성의 3단계로 제조가 가능한 점에서 간단한 제조방법을 제공하여, 스케일업 효과 또한 제공이 가능하다.
상기 (b) 단계의 건조는 80 내지 120℃ 의 공기조건에서 3 내지 5시간 동안 진행 될 수 있다. 건조는 회전 및 교반을 하면서 건조 시킬 수 있다. 건조 용기를 진동시키거나, 용기 안에 구비된 교반기를 이용하여서도 가능하며 이에 제한되지 않는다. 건조 온도는 통상적으로 적용되는 실온 내지 100 ℃ 정도가 제공되고, 압력의 경우 또한 통상적으로 적용되는 0.1 내지1 MPa, 바람직하게는 대기압이 제공될 수 있다.
건조하는 단계 이후, 건조 후 촉매 전체 100 중량부에 대하여, 산화루테늄 5 중량부 이하를 포함할 수 있다. 바람직하게는 2 중량부가 포함될 수 있다.
상기 (c) 단계의 소성은 300 내지 400℃ 에서 2 내지 4시간 동안 진행이 될 수 있다. 그 후, 실온까지 냉각시키는 것이 제공된다. 소성온도는 통상적으로 적용되는 온도로써, 바람직하게는 250 내지 450℃이 제공된다. 산화성 기체로 예를 들면 산소를 포함하는 기체를 들 수 있다. 그 산소 농도는 통상적으로 적용되는 1 내지30용량% 정도가 제공된다. 산소원으로는 일반적으로 공기나 순수한 산소가 제공되고, 필요에 따라 불활성 가스나 수증기가 포함될 수 있다. 산화성 가스는 바람직하게 공기가 제공될 수 있고, 공기의 흐름 하의 전기로에서 약 350℃에서 소성을 약 3시간 정도 거친 후, 실온으로 냉각하여 최종적으로 산화루테늄 촉매의 제조가 가능하다.
상기 전술한 바와 같이, 본 발명의 실시예에 따르면, 산화루테늄이 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 담체에 담지되어 있는 담지 산화루테늄의 제조가 가능하다. 이 경우, 통상적으로 루테늄의 산화수는 4이고, 이산화루테늄(RuO2)가 제공된다. 다만 산화수 및 형태는 이에 제한되지 않는다.
본 발명의 실시예에 따르면, 상기 담체는 하기와 같은 방법으로 제조가 된다.
담체의 경우 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 분말 담체 혼합물, 티타니아 또는 알루미나 졸, 유기바인더 및 증류수를 혼합하여 혼합물을 제조 단계; 상기 혼합물을 압출하는 단계; 건조 및 성형체로 절단하는 단계; 및 소성하는 단계를 포함하여 제조되는 것을 특징으로 한다.
이 때, 담체의 건조 전 담체 전체 100중량부에 대하여, 상기 분말 담체 혼합물은 30 내지 50 중량부, 티타니아 또는 알루미나 졸 1 내지 9 중량부, 유기바인더 0.5 내지 1.5 및 증류수 20 내지 40 중량부를 포함할 수 있다.
이를 혼합하여, 직경 2 내지 3의 ㎜φ의 누들상의 스트랜드로 압출을 하여, 이를 건조하여 성형을 한다. 이 때 건조는 50 내지 70℃이며, 1 내지3시간 건조시키는 것이 제공된다. 이후 2 내지 4 mm 길이의 성형체로 절단을 제공한다. 이 경우 400 내지 800℃에서 공기조건에서 2 내지 4시간 소성함을 제공한다. 건조 및 소성의 상세한 조건은, 상기 전술한 촉매의 건조 및 소성의 조건이 통상적으로 적용이 가능한 바, 생략한다.
본 발명의 실시예에 따르면, 최종적인 산화루테늄 담지 촉매를 제조하기 위하여, 루테늄 촉매조성물에 적합한 입자 크기, 크기 분포, 표면적, 기공구조 등을 만족하는 상기의 전술한 담체의 제조방법으로 제조된 담체를 적용하여 최종적으로 최적화된 산화루테늄 담지촉매를 제공할 수 있다.
본 발명의 실시예에 따르면, 상기 염소제조용은 염화수소를 산화시켜 염소를 제조하는 것을 특징으로 할 수 있다. 이 경우 상기의 제조방법으로 제조된 산화루테늄 담지 촉매를 이용할 수 있다.
상기의 산화루테늄 담지 촉매는 분말, 입자 및 펠렛 형태에서 선택되는 적어도 하나 이상일 수 있고, 바람직하게는 펠렛 또는 분말의 형태이고, 가장 바람직하게는 펠렛의 형태가 제공된다. 직경은 바람직하게는 5 mm 이하이다. 성형체의 직경이 지나치게 크면, 촉매의 활성도에서 불리함을 제공할 수 있다.
본 발명의 실시예에 따르면, 산화루테늄 담지 촉매는 VMS 측정값인 (S/R)이 0.5 이하인 것을 특징으로 한다. 따라서, 하기 후술하는 염소 제조반응에서의 온도조건에서도 높은 활성을 제공할 수 있다.
본 발명의 실시예에 따르면, 상기 중 어느 한 항에 따른 제조방법으로 제조된 촉매의 존재 하에서 염화수소의 산화를 통한 염소의 제조방법이 제공된다. 반응의 방식은 고정상 방식 또는 유동상 방식, 기상 반응 등이 제공되며, 바람직하게는 기상 반응이 제공된다. 이 산화 반응은 평형 반응이며 너무 고온에서 수행하면 평형 전환율이 내려가기 때문에, 비교적 저온에서 수행하는 것이 바람직하고 반응 온도는 통상100 내지 500℃, 바람직하게는200 내지450℃이며, 가장 바람직하게는 250℃이 제공된다. 또한 반응 압력은 통상 0.1 내지 5 MPa 정도이다. 산소원으로서는 공기를 사용하여도 좋고 순수한 산소를 사용하여도 좋다. 염화수소에 대한 산소의 이론적인 몰 량은1/4몰이지만 통상적으로는 0.1 내지10배의 산소가 제공된다. 또한 염화수소의 공급 속도는 촉매 1 L 당 가스 공급 속도(L/h;0℃, 1 기압 환산), 즉 GHSV로 나타내고, 통상 10 내지 20000 h-1 정도이다. 다만, 이때 투입되는 촉매의 양은 주로 온도, 촉매의 양 및 제조되는 염소생성물의 양에 따라 약간은 변형은 가능하다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
<담체의 제조>
티타니아 분말 40.0g 과 유기 바인더0.8g, 60 ℃로 가열한 초순수 29.0g 및 티타니아 졸 5.0g 과 혼합시켰다. 수득된 혼합물을 직경 2.0 ㎜φ 의 누들상 스트랜드로 압출하고, 60 ℃ 공기 중에서 2시간 건조시킨 후, 2 내지 4 ㎜ 길이의 성형체로 절단하였다. 수득된 성형체를 600 ℃ 공기 중에서 3 시간 동안 소성시켰다.
<산화루테늄 담지 촉매의 제조>
상기 수득한 티타니아 담체 5.0g 에 염화루테늄 수화물0.2g 을 1-프로판올1.33g 에 용해해 제조한 용액을 함침시킨 후, 100 ℃ 공기 중에서 4시간 동안 건조시켰다. 건조된 고체를 공기 흐름하의 전기로에서 350 ℃ 소성(calcination)을 3시간 거친 후, 서서히 실온까지 냉각시켜 최종적으로 산화루테늄 함유량이 2.0중량부 인 산화루테늄 촉매를 수득하였다. 또한 VMS를 통해 측정한 루테늄 성분의 외표면 담지 정도는 0.32 였다.
<산화루테늄 담지 촉매의 초기 활성 평가>
상기 수득한 산화루테늄 담지 촉매 0.3g 을 직경 2 mm 의 α-알루미나 볼1.5g 으로 희석시켜 석영제 반응관(내경 8 mm)에 충전하였다. 상기 반응관에 촉매층을 300 ℃ 의 온도로 가열하고 상압하에 염화수소 및 산소 기체를 각각 22.5 mL/min 의 속도로 공급하여 반응을 실행하였다. 반응 개시 2 시간후의 시점에서, 반응관 출구의 기체를 15% 요오드화칼륨 수용액에 유통시킴으로써 샘플링을 10분간 실행하였다. 이어서 요오드 적정법으로 염소의 생성량을 측정하여, 하기 [수학식 2] 에 의해 염화수소의 전환율을 계산하고, 결과를 표 1에 나타내었다.
[수학식 2]
Figure PCTKR2019017378-appb-I000002
실시예 2
실시예 1에서 수득한 촉매에 대해서 촉매층의 온도를 283 ℃로 사용한 것을 제외하고는 실시예 1과 동일한 방식으로, 초기 활성 평가를 실행하였다. 결과를 [표 1]에 나타내었다.
실시예 3
실시예 1에서 수득한 담체 5.0g 에 염화루테늄 수화물0.067g 을 1-프로판올 0.44g 에 용해해 제조한 용액을 함침시킨 후, 100 ℃ 공기 중에서 4시간 동안 건조시켰다. 상기 담지 방법을 3회 반복하였다. 건조된 고체를 공기 흐름하의 전기로에서 350 ℃ 소성(calcination)을 3시간 거친 후, 서서히 실온까지 냉각시켜 최종적으로 산화루테늄 함유량이 2.0중량부 인 산화루테늄 촉매를 수득하였다. 또한 VMS를 통해 측정한 루테늄 성분의 외표면 담지 정도는 1 이였다.
실시예 1과 동일한 방식으로, 초기 활성 평가를 실행하였다. 결과를 표 1에 나타내었다.
실시예 4
<산화루테늄 담지 촉매의 제조>
티타니아 분말 5.0g 에 염화루테늄 수화물 0.2g 을 1-프로판올 1.05g 에 용해해 제조한 용액을 함침시킨 후, 100 ℃ 공기 중에서 4시간 동안 건조시켰다. 건조된 고체를 공기중 전기로에서 350 ℃ 소성(calcination)을 3시간 거친 후, 서서히 실온까지 냉각시켜 최종적으로 산화루테늄 함유량이 2.0중량부 인 산화루테늄 촉매를 수득하였다.
<산화루테늄 담지 촉매의 초기 활성 평가>
상기 수득한 산화루테늄 담지 촉매 0.3g 을 티타니아 분말 0.6g 으로 희석시켜 석영제 반응관(내경 8 mm)에 충전하였다. 상기 반응관에, 촉매층을 250 ℃ 의 온도로 가열하고 상압하에 염화수소 및 산소 기체를 각각 22.5 mL/min 의 속도로 공급하여 반응을 실행하였다. 반응 개시 2 시간후의 시점에서, 반응관 출구의 기체를 15% 요오드화칼륨 수용액에 유통시킴으로써 샘플링을 10분간 실행하였다. 이어서 요오드 적정법으로 염소의 생성량을 측정하여 염화수소의 전환율을 계산하고 [표 2]에 나타내었다.
비교예 1
산화루테늄 담지 촉매 제조 시 염화루테늄 수화물 0.2g 을 초순수 1.65g 에 용해하여 제조한 수용액을 사용한 것을 제외하고, 실시예 1 과 동일한 방식으로 산화루테늄 담지 촉매를 제조하였다. VMS를 통해 측정한 루테늄 성분의 외표면 담지 정도는 1 이였다. 수득된 산화루테늄 담지 촉매에 대해서, 실시예 1과 동일한 방식으로, 초기 활성 평가를 실행하였다. 결과를 [표 1]에 나타내었다.
비교예 2
산화루테늄 담지 촉매 제조 시 염화루테늄 수화물 0.2g 을 초순수 1.3g 에 용해해 제조한 수용액을 사용한 것을 제외하고, 실시예 4 와 동일한 방식으로 산화루테늄 담지 촉매를 제조하였다. 수득된 산화루테늄 담지 촉매에 대해서, 실시예 4 와 동일한 방식으로, 초기 활성 평가를 실행하였다. 결과를 [표 2]에 나타내었다.
비교예 3
산화루테늄 담지 촉매 제조 시 염화루테늄 수화물 0.2g 을 에탄올 1.3g 에 용해해 제조한 용액을 사용한 것을 제외하고, 실시예 1 과 동일한 방식으로 산화루테늄 담지 촉매를 제조하였다. VMS를 통해 측정한 루테늄 성분의 외표면 담지 정도는 0.41 이였다. 수득된 산화루테늄 담지 촉매에 대해서, 실시예 1과 동일한 방식으로, 초기 활성 평가를 실행하였다. 결과를 [표 1]에 나타내었다.
  용매 촉매 형태 S/R 촉매층 온도(℃) 염화수소 전환율(%)
실시예 1 1-프로판올 펠렛 0.32 300 37.0
실시예 2 1-프로판올 펠렛 0.32 283 23.2
실시예 3 1-프로판올 펠렛 1 300 29.8
비교예 1 초순수 펠렛 1 300 21.7
비교예 3 에탄올 펠렛 0.41 300 26.7
  용매 촉매 형태 S/R 촉매층 온도(℃) 염화수소 전환율(%)
실시예 4 1-프로판올 분말 - 250 16.4
비교예 2 초순수 분말 - 250 8.9
사용 용매 초순수(비교예 1) 에탄올(비교예 3) 1-프로판올 (실시예 1,2)
 
Figure PCTKR2019017378-appb-I000003
Figure PCTKR2019017378-appb-I000004
Figure PCTKR2019017378-appb-I000005
외표면 담지 정도 (S/R) 1 0.41 0.32
담지방법을 변화하여 용매를 프로판올을 사용하여 담지한 실시예 1 내지 4의 경우 초순수 또는 에탄올을 사용하여 담지한 비교예 1 내지 3 촉매와 비교하여, 외표면 담지 정도 (S/R)값이 현저하게 낮아 0에 더 가까워지는 것을 확인할 수 있다. 또한, 외표면 담지 정도 (S/R)값이 낮아짐에 따라 전환율 또한 향상되는 것을 확인이 가능하다.
따라서, 본 발명에 따른 촉매는 1-프로판올 등 알코올 유기 용매를 사용하여 제조한 산화루테늄 담지 촉매로, 펠렛 형태의 티타니아 담체의 외표면 각층에만 산화루테늄을 함유시키는 촉매를 간소화된 공정으로 제공할 수 있고, 나아가 염소의 제조공정에서 낮은 반응 온도, 바람직하게 250℃ 내외에서도 높은 염화수소 전환율의 높은 활성을 가지는 촉매를 제공할 수 있음을 확인할 수 있다. 이는 향후 촉매의 제조공정에서 스케일업 측면에서 유리함을 제공할 수 있다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (14)

  1. 염소 제조용의 산화루테늄 촉매에 있어서,
    (a) 루테늄화합물을 유기용매에 용해하여 용액을 제조하여 티타니아 및 알루미나에서 선택되는 적어도 하나 이상의 담체에 담지시키는 단계;
    (b) 상기 담지하는 단계 이후 건조하는 단계; 및
    (c) 상기 건조하는 단계 이후 소성하는 단계를 포함하는 산화루테늄 담지 촉매의 제조방법.
  2. 제 1항에 있어서,
    상기 (a) 단계의 유기용매는 모노알코올인 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  3. 제 2항에 있어서,
    상기 모노알코올은 C3이상의 1차 알코올인 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  4. 제 1항에 있어서,
    상기 (a) 단계의 티타이나 담체는 비표면적이 5 내지 300 m2/g 인 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  5. 제 1항에 있어서,
    상기 (b) 단계의 건조는 80 내지 120℃ 의 공기조건에서 3 내지 5시간 진행되는 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  6. 제 1항에 있어서,
    상기 (c) 단계 이후 완성된 촉매 전체 100 중량부에 대하여, 산화루테늄 5중량부 이하를 포함하는 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  7. 제 1항에 있어서,
    상기 (c) 단계의 소성은 300 내지 400℃ 에서 2 내지 4시간 동안 진행 한 후, 실온까지 냉각시키는 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  8. 제 1항에 있어서,
    상기 염소제조용은 염화수소를 산화시켜 염소를 제조하는 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  9. 제 1항에 있어서,
    상기 산화루테늄 담지 촉매는 담지하는 단계 이후 건조 전 촉매 전체 100중량부에 대하여, 상기 담체는 70 내지 80 중량부, 상기 루테늄화합물은 5중량부 이하, 상기 유기용매는 15 내지 25 중량부인 것을 특징으로 하는 산화루테늄 담지 촉매의 제조방법.
  10. 제 1항 내지 제 9항 중 어느 한 항에 따른 제조방법으로 제조된 산화루테늄 담지 촉매.
  11. 제 10항에 있어서,
    상기 산화루테늄 담지 촉매는 분말, 입자 및 펠렛형태에서 선택되는 적어도 하나 이상인 것을 특징으로 하는 산화루테늄 담지 촉매.
  12. 제 10항에 있어서,
    상기 산화루테늄 담지 촉매는 VMS 측정값인 (S/R)이 0.5 이하인 것을 특징으로 하는 산화루테늄 담지 촉매.
  13. 상기 제 1항 내지 제 9항 중 어느 한 항에 따른 제조방법으로 제조된 촉매의 존재 하에서 염화수소의 산화를 통한 염소의 제조방법.
  14. 제 13항에 있어서,
    상기 염소의 제조방법에서, 반응온도는 200 내지 300℃인 것을 특징으로 하는 염화수소의 산화를 통한 염소의 제조방법.
PCT/KR2019/017378 2018-12-21 2019-12-10 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매 WO2020130460A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/416,513 US20220072513A1 (en) 2018-12-21 2019-12-10 Method for manufacturing ruthenium oxide-supported catalyst for preparing chlorine and catalyst manufactured thereby
CN201980085164.XA CN113242767A (zh) 2018-12-21 2019-12-10 制氯用氧化钌负载型催化剂的制备方法及由其制备的催化剂
JP2021535987A JP7269349B2 (ja) 2018-12-21 2019-12-10 塩素製造用酸化ルテニウム担持触媒の製造方法及びそれにより製造された触媒
EP19900748.5A EP3900831A4 (en) 2018-12-21 2019-12-10 METHOD FOR MANUFACTURING A RUTHENIUM OXIDE SUPPORTED CATALYST FOR THE PREPARATION OF CHLORINE AND CATALYST SO MANUFACTURED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0167842 2018-12-21
KR1020180167842A KR102262496B1 (ko) 2018-12-21 2018-12-21 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매

Publications (1)

Publication Number Publication Date
WO2020130460A1 true WO2020130460A1 (ko) 2020-06-25

Family

ID=71101567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017378 WO2020130460A1 (ko) 2018-12-21 2019-12-10 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매

Country Status (6)

Country Link
US (1) US20220072513A1 (ko)
EP (1) EP3900831A4 (ko)
JP (1) JP7269349B2 (ko)
KR (1) KR102262496B1 (ko)
CN (1) CN113242767A (ko)
WO (1) WO2020130460A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929058B (zh) * 2021-09-28 2023-08-22 浙江师范大学 含氟HCl气体催化氧化制氯气的催化剂载体及其制备方法和应用
CN116899558A (zh) * 2023-05-22 2023-10-20 康纳新型材料(杭州)有限公司 一种热稳定性的高导热钌催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990072651A (ko) * 1998-02-16 1999-09-27 고사이 아끼오 염소의제조방법
JP2002292279A (ja) * 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒および塩素の製造方法
KR20060015311A (ko) * 2003-05-27 2006-02-16 데 노라 엘레트로디 에스.피.에이. 산소 환원용 촉매
JP5067942B2 (ja) * 2005-09-28 2012-11-07 Jx日鉱日石エネルギー株式会社 触媒及びその製造方法
JP2013169516A (ja) 2012-02-22 2013-09-02 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法及び塩素の製造方法
KR20130100281A (ko) * 2010-08-25 2013-09-10 바이엘 인텔렉쳐 프로퍼티 게엠베하 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법
JP2014105128A (ja) 2012-11-28 2014-06-09 Sumitomo Chemical Co Ltd 塩素の製造方法
KR20140102205A (ko) 2011-12-07 2014-08-21 스미또모 가가꾸 가부시키가이샤 실리카 변성 티타니아에 담지된 루테늄의 제조 방법 및 염소의 제조 방법
KR101561812B1 (ko) 2007-09-11 2015-10-21 와이-랜, 인코포레이티드 지속 자원 할당

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543550B2 (ja) * 1996-08-08 2004-07-14 住友化学工業株式会社 塩素の製造方法
JP2000254502A (ja) * 1998-03-05 2000-09-19 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒の製造方法
US20090274612A1 (en) * 2005-04-08 2009-11-05 Sumitomo Chemical Company, Limited. Process for producing supported ruthenium oxide and process for producing chlorine
US7740827B2 (en) * 2005-09-23 2010-06-22 Mecs, Inc. Ruthenium oxide catalysts for conversion of sulfur dioxide to sulfur trioxide
DE102005061954A1 (de) * 2005-12-23 2007-07-05 Basf Ag Verfahren zur Wiedergewinnung von Ruthenium aus gebrauchten Rutheniumoxid-haltigen Katalysatoren
JP4935604B2 (ja) * 2006-11-27 2012-05-23 住友化学株式会社 担持酸化ルテニウムの製造方法
DE102008015406A1 (de) * 2008-03-22 2009-09-24 Bayer Materialscience Ag Verfahren zur Regeneration eines mit Schwefel in Form von Schwefelverbindungen vergifteten, Ruthenium oder Rutheniumverbindungen enthaltenden Katalysators
JP5062060B2 (ja) * 2008-06-26 2012-10-31 株式会社豊田中央研究所 自動車排ガス浄化用触媒及びその製造方法
JP5143667B2 (ja) * 2008-08-22 2013-02-13 住友化学株式会社 塩素の製造方法および触媒
GB0817109D0 (en) * 2008-09-18 2008-10-29 Johnson Matthey Plc Catalyst and process
DE102008060259A1 (de) * 2008-12-03 2010-06-10 Bayer Technology Services Gmbh Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung
WO2010076296A1 (de) * 2008-12-30 2010-07-08 Basf Se Verfahren zur regenerierung eines rutheniumoxid enthaltenden katalysators für die chlorwasserstoff-oxidation
PL2401072T3 (pl) * 2009-02-26 2013-10-31 Basf Se Katalizator do utleniania chlorowodoru zawierający ruten i srebro i/lub wapń
BRPI1011010A2 (pt) * 2009-06-10 2019-09-24 Basf Se processo para oxidação catalítica de cloreto de hidrog~enio.
DE102009034773A1 (de) * 2009-07-25 2011-01-27 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation an nanostrukturierten Rutheniumträgerkatalysatoren
IN2014CN02995A (ko) * 2011-10-24 2015-07-03 Bayer Ip Gmbh
DE102013202144A1 (de) * 2013-02-08 2014-08-14 Bayer Materialscience Ag Elektrokatalysator, Elektrodenbeschichtung und Elektrode zur Herstellung von Chlor
CN105618034A (zh) * 2014-11-24 2016-06-01 北京大学 一种负载型钌金属纳米簇基催化剂及其制备与应用
CN107617437B (zh) * 2017-08-25 2019-12-31 浙江工业大学 一种钌负载二氧化钛空心球内嵌二氧化硅纳米粒子催化剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990072651A (ko) * 1998-02-16 1999-09-27 고사이 아끼오 염소의제조방법
JP2002292279A (ja) * 2001-01-29 2002-10-08 Sumitomo Chem Co Ltd 担持酸化ルテニウム触媒および塩素の製造方法
KR20060015311A (ko) * 2003-05-27 2006-02-16 데 노라 엘레트로디 에스.피.에이. 산소 환원용 촉매
JP5067942B2 (ja) * 2005-09-28 2012-11-07 Jx日鉱日石エネルギー株式会社 触媒及びその製造方法
KR101561812B1 (ko) 2007-09-11 2015-10-21 와이-랜, 인코포레이티드 지속 자원 할당
KR20130100281A (ko) * 2010-08-25 2013-09-10 바이엘 인텔렉쳐 프로퍼티 게엠베하 기체상 산화에 의한 염소 제조를 위한 촉매 및 방법
KR20140102205A (ko) 2011-12-07 2014-08-21 스미또모 가가꾸 가부시키가이샤 실리카 변성 티타니아에 담지된 루테늄의 제조 방법 및 염소의 제조 방법
JP2013169516A (ja) 2012-02-22 2013-09-02 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法及び塩素の製造方法
JP2014105128A (ja) 2012-11-28 2014-06-09 Sumitomo Chemical Co Ltd 塩素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3900831A4

Also Published As

Publication number Publication date
EP3900831A1 (en) 2021-10-27
EP3900831A4 (en) 2022-09-07
US20220072513A1 (en) 2022-03-10
JP7269349B2 (ja) 2023-05-08
KR20200078187A (ko) 2020-07-01
CN113242767A (zh) 2021-08-10
JP2022515180A (ja) 2022-02-17
KR102262496B1 (ko) 2021-06-07

Similar Documents

Publication Publication Date Title
US5908607A (en) Process for producing chlorine
US20020172640A1 (en) Process for producing chlorine
WO2020130460A1 (ko) 염소 제조용 산화루테늄 담지 촉매의 제조방법 및 이에 의해 제조된 촉매
EP2075228B1 (en) Process for producing chlorine
WO2021241841A1 (ko) 암모니아 분해 촉매, 및 이를 이용한 암모니아 분해 및 수소 생산 방법
KR101161958B1 (ko) 촉매 및 그의 제법, 및 상기 촉매를 이용한 염소의 제조방법
CN101541423B (zh) 担载氧化钌的制造方法及氯的制造方法
US20070274897A1 (en) Processes for the preparation of chlorine by gas phase oxidation
JP3284879B2 (ja) 塩素の製造方法
WO2020130457A1 (ko) 염소 제조를 위한 염화수소 산화반응용 촉매 및 이의 제조방법
WO2021137400A1 (ko) 염화수소 산화반응용 성형촉매 및 이의 제조방법
EP2366661A1 (en) Process for producing chlorine
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
JPH10194705A (ja) 塩素の製造方法
WO2022158741A1 (ko) 염화수소 산화반응을 통한 염소의 고수율 제조방법
WO2021137399A1 (ko) 염화수소 산화반응 공정용 성형촉매 및 이의 제조방법
CN102626623A (zh) 氧化钌担载物的制造方法及氯的制造方法
WO2016126132A1 (ko) 부정형 알파-알루미나를 함유하는 카본나노튜브 합성용 촉매 및 이를 이용한 카본나노튜브의 제조방법
JP4400042B2 (ja) 担持酸化ルテニウム触媒及び塩素の製造方法
WO2024096507A1 (ko) 메탄 개질용 촉매 및 이의 제조방법
CN102626624A (zh) 氧化钌担载物的制造方法及氯的制造方法
WO2023191257A1 (ko) 다공성 지지체에 함입된 금 나노입자를 포함하는 복합체 촉매
WO2023224341A1 (ko) 산화아연을 포함하는 메조 세공 실리카 및 이의 제조 방법
WO2014112660A1 (ko) 무기 결합제를 포함한 입상화 메조공극 실리카 및 그 제조방법
KR20220109106A (ko) 무기물 첨가제를 포함하는 염화수소 산화반응 공정용 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900748

Country of ref document: EP

Effective date: 20210721