WO2021129139A1 - 二元富锂碳酸盐前驱体及其制备方法和应用 - Google Patents

二元富锂碳酸盐前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2021129139A1
WO2021129139A1 PCT/CN2020/125053 CN2020125053W WO2021129139A1 WO 2021129139 A1 WO2021129139 A1 WO 2021129139A1 CN 2020125053 W CN2020125053 W CN 2020125053W WO 2021129139 A1 WO2021129139 A1 WO 2021129139A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
salt
metal salt
mixed metal
lithium
Prior art date
Application number
PCT/CN2020/125053
Other languages
English (en)
French (fr)
Inventor
任海朋
万江涛
车金柱
张勇杰
张宁
陈婷婷
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to EP20904592.1A priority Critical patent/EP4040543A4/en
Publication of WO2021129139A1 publication Critical patent/WO2021129139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of lithium batteries, for example, to a binary lithium-rich carbonate precursor and a preparation method and application thereof.
  • lithium-ion batteries have become the main energy source for portable electronic equipment and household appliances, electric vehicles and energy storage systems due to their advantages of high energy density, high thermal stability and long battery life.
  • the current lithium-ion battery technology still cannot meet a wide range of consumer needs.
  • lithium-ion batteries are high cost and insufficient energy density, making the driving range of electric vehicles far lower than that of internal combustion engine vehicles.
  • it is necessary to increase the energy density of lithium-ion batteries, reduce costs, and extend the service life of existing lithium-ion batteries.
  • the overall performance of lithium-ion batteries is largely limited by the positive electrode.
  • the positive electrode In the composition of lithium-ion batteries, the positive electrode is the most expensive and heaviest. Therefore, increasing the energy density of the positive electrode will make electric vehicle batteries cheaper and more expensive. light.
  • related technologies increase the discharge capacity by increasing the Ni content in the NCA or NCM cathode material, for example, by making the Ni content far more than 80%, that is, x is far greater than 0.8, to provide greater than 200mAh /g of discharge capacity.
  • nickel-rich (x>0.8) will provide the required additional capacity, due to the rapid decay of capacity and the rich activity of Ni 4+ , a series of battery life and safety issues arise.
  • Lithium-rich manganese-based cathode materials have development potential due to their large discharge capacity, low price, and environmental friendliness. They are widely considered as the most suitable cathode materials for power batteries so far.
  • lithium-rich precursors used on the market are lithium-rich precursors of the hydroxide system, but the precursors of the hydroxide system require the use of ammonia in the preparation process, which has an extremely bad impact on the environment. .
  • the present disclosure provides a binary lithium-rich carbonate precursor and a preparation method and application thereof.
  • the binary lithium-rich carbonate precursor described in the present disclosure has a small particle size solid spherical structure, and has the advantages of controllable particle size, uniform particle size distribution, high sphericity, smooth spherical surface, excellent electrochemical performance and energy density. Both the ammonia system and the ammonia-free system can be produced stably, especially in the ammonia-free system, no ammonia-containing waste water is produced, which is environmentally friendly.
  • the binary lithium-rich carbonate precursor does not contain metal cobalt, which is better than the existing
  • the ternary nickel-cobalt-manganese precursor not only reduces the cost of raw materials, but also does not cause environmental pollution.
  • the positive electrode material prepared by using the precursor has higher specific capacity, excellent cycle performance and electrochemical discharge performance.
  • a binary lithium-rich carbonate precursor is provided, the chemical formula of the precursor is Ni (1-X) Mn X CO 3 , wherein X is 0.6-0.7.
  • the binary lithium-rich carbonate precursor provided by the present disclosure has a small particle size solid spherical structure, and has the advantages of controllable particle size, uniform particle size distribution, high sphericity, smooth spherical surface, excellent electrochemical performance and energy density. Both the ammonia system and the ammonia-free system can be produced stably, especially in the ammonia-free system, no ammonia-containing waste water is produced, which is environmentally friendly. At the same time, the binary lithium-rich carbonate precursor does not contain metal cobalt, which is better than the existing The ternary nickel-cobalt-manganese precursor not only reduces the cost of raw materials, but also does not cause environmental pollution. In addition, the positive electrode material prepared by using the precursor has higher specific capacity, excellent cycle performance and electrochemical discharge performance.
  • the particle size of the precursor is 1 to 2 microns.
  • a method for preparing the binary lithium-rich carbonate precursor includes:
  • the secondary dehydrated material is dried and then sieved to remove iron, so as to obtain a binary lithium-rich carbonate precursor.
  • the stirring in step (2) is ultrasound.
  • a mixed metal salt containing a soluble nickel salt and a soluble manganese salt and a precipitating agent are subjected to a co-precipitation reaction under an ultrasonic environment Under the action of ultrasound, the reaction system is more uniform, and the contact reaction between the metal salt and the precipitant is smoother, so that a reaction solution containing small-diameter nano-primary particles can be obtained, and then the reaction solution containing nano-primary particles is continuously added and mixed Metal salt and precipitating agent, that is, using small-sized nano-primary particles as seeds for co-precipitation reaction, and finally after aging and subsequent washing, dehydration, and drying, sieving and iron removal steps, the solid spherical structure can be prepared.
  • the binary lithium-rich carbonate precursor with controllable particle size, uniform particle size distribution, high sphericity, smooth spherical surface, excellent electrochemical performance and energy density, which can be stably produced in both ammonia and non-ammonia systems, especially Under the ammonia-free system, no ammonia-containing wastewater is produced, which is environmentally friendly.
  • the binary lithium-rich carbonate precursor does not contain metal cobalt. Compared with the existing ternary nickel-cobalt-manganese precursor, it not only reduces the raw material cost, but also In addition, no environmental pollution will be generated.
  • the positive electrode material prepared by the precursor obtained by the method has higher specific capacity, excellent cycle performance and electrochemical discharge performance.
  • step (1) the soluble nickel salt and the soluble manganese salt are (0.3-0.4): (0.6-0.7) according to the molar ratio of nickel element to manganese element.
  • the concentration of the soluble nickel salt and the soluble manganese salt are independently 0.5-3 mol/L.
  • the soluble nickel salt is at least one selected from nickel chloride and nickel sulfate.
  • the soluble manganese salt is at least one selected from manganese chloride and manganese sulfate.
  • step (2) the rotation speed of the stirring is 700-100 rpm.
  • step (2) the molar ratio of the mixed metal salt to the precipitating agent is 1:(2 ⁇ 4).
  • step (2) during the coprecipitation reaction process, the ultrasonic intensity is 30-50HZ, the temperature is 40-70 degrees Celsius, and the time is 60-180 minutes.
  • the particle size of the nano-primary particles in the reaction solution containing nano-primary particles is 50-500 nanometers.
  • the precipitating agent is at least one selected from sodium carbonate, ammonium carbonate, ammonium bicarbonate, and ammonia.
  • the concentration of the sodium carbonate is 1-5 mol/L.
  • the concentration of the ammonium carbonate is 1 to 4 mol/L.
  • the concentration of the ammonium bicarbonate is 1 to 4 mol/L.
  • the concentration of the ammonia water is 2-12 mol/L.
  • step (3) the adding rate of the mixed metal salt and the precipitating agent is 1 to 3 mL/min.
  • step (3) the pH of the co-precipitation reaction process is controlled to be 8.2-9, and the co-precipitation reaction time is 10 to 20 hours.
  • step (3) the aging time is 10-30 hours.
  • a cathode material is provided, and the cathode material is prepared by using the precursor or prepared by using the precursor prepared by the method.
  • the positive electrode material has high specific capacity, excellent cycle performance and electrochemical discharge performance.
  • a lithium battery is provided, and the lithium battery has the positive electrode material.
  • the lithium battery has a long cycle life on the basis of a high specific energy.
  • a car is provided, and the car has the lithium battery.
  • the vehicle loaded with the above-mentioned lithium battery with high specific energy and long cycle life has excellent endurance, thereby meeting the needs of consumers.
  • the particle size refers to the average particle size.
  • Fig. 1 is a schematic flow chart of a method for preparing a binary lithium-rich carbonate precursor according to an embodiment of the present disclosure.
  • Fig. 2 is a scanning electron microscope image of a binary lithium-rich carbonate precursor according to an embodiment of the present disclosure.
  • FIG 3 is a plan view of a scanning electron microscope image of a binary lithium-rich carbonate precursor according to an embodiment of the present disclosure.
  • a binary lithium-rich carbonate precursor is provided, the chemical formula of the precursor is Ni (1-X) Mn X CO 3 , wherein X is 0.6-0.7.
  • the inventor found that the binary lithium-rich carbonate precursor has a small particle size solid spherical structure, and has the advantages of controllable particle size, uniform particle size distribution, high sphericity, smooth spherical surface, excellent electrochemical performance and energy density. It can be produced stably in both ammonia and non-ammonia systems. Especially in the non-ammonia system, no ammonia-containing wastewater is produced, which is environmentally friendly. At the same time, the binary lithium-rich carbonate precursor does not contain metal cobalt, which is more current.
  • Some ternary nickel-cobalt-manganese precursors not only reduce the cost of raw materials, but also do not cause environmental pollution.
  • the positive electrode material prepared by using the precursor has higher specific capacity, excellent cycle performance and electrochemical discharge performance.
  • the value of x in the foregoing precursor chemistry can be, for example, 0.6, 0.61, 0.69, or 0.7.
  • the inventor found that the composition with high manganese content is selected because the lithium-rich cathode material prepared by using this precursor is more stable. If the selected manganese content is too low, it will not be formed when mixed and calcined with lithium salt to form a lithium-rich cathode material.
  • the stable Li 2 MnO 3 structure will only form an unstable LiMO 2 structure, so the required lithium-rich cathode material cannot be prepared with too low manganese content.
  • the particle size of the precursor is 1 to 2 microns, for example, 1 micron, 1.1 microns...1.9 microns, 2 microns.
  • a method for preparing the binary lithium-rich carbonate precursor includes:
  • the soluble nickel salt and the soluble manganese salt are mixed to obtain a mixed metal salt.
  • the soluble nickel salt is at least one selected from nickel chloride and nickel sulfate; the soluble manganese salt is at least one selected from manganese chloride and manganese sulfate.
  • the concentrations of the soluble nickel salt and the soluble manganese salt are independently 0.5 to 3 mol/L, such as 0.5 mol/L, 0.6 mol/L, 2.9 mol/L, 3 mol/L.
  • L, and soluble nickel salt and soluble manganese salt are (0.3 ⁇ 0.4): (0.6 ⁇ 0.7) according to the molar ratio of nickel element and manganese element, for example (0.3, 0.31, 0.39, 0.4): (0.6, 0.61, 0.69, 0.7 ).
  • the present disclosure does not add metal cobalt in the process of preparing the precursor. Compared with the existing ternary nickel-cobalt-manganese precursor, it not only reduces the raw material cost, but also does not cause environmental pollution. At the same time, the precursor finally prepared by the present disclosure still has excellent Electrochemical performance and energy density.
  • the precipitating agent is at least one selected from sodium carbonate, ammonium carbonate, ammonium bicarbonate, and ammonia.
  • the precipitating agent is sodium carbonate, which is prepared in an ammonia-free system and is environmentally friendly.
  • the concentration of sodium carbonate is 1 to 5 mol/L, for example, 1 mol/L, 1.1 mol/L, 4.9 mol/L, 5 mol/L.
  • the concentration of ammonium carbonate is 1 to 4 mol/L, for example, 1 mol/L, 1.1 mol/L, 3.9 mol/L, 4 mol/L.
  • the concentration of ammonium bicarbonate is 1 to 4 mol/L, for example, 1 mol/L, 1.1 mol/L, 3.9 mol/L, 4 mol/L.
  • the concentration of ammonia water is 2-12 mol/L, for example, 2 mol/L, 2.1 mol/L, 11.9 mol/L, 12 mol/L.
  • the reaction kettle is first placed in an ultrasonic water bath, and then a stirrer, sealing device, liquid addition device, vent pipe, baffle, online pH meter, thermometer, etc. are prepared on the reaction kettle, and then the ultrasonic Nitrogen is continuously introduced into the water bath as a protective gas, a part of the mixed metal liquid and the precipitant are quickly (within 2 minutes) co-currently added to the reactor, and the ultrasonic is continued with rapid stirring.
  • the nitrogen flow rate in the process is 0.1 ⁇ 0.2L/min
  • the stirring speed is 700 ⁇ 100rpm, such as 700rpm, 710rpm, 990rpm, 1000rpm
  • the molar ratio of the mixed metal salt to the precipitant is 1:(2 ⁇ 4), such as 1:(2, 2.1, 3.9, 4)
  • the ultrasonic intensity is 30-50HZ, such as 30HZ, 31HZ, 49HZ, 50HZ.
  • the reaction time will be relatively shortened, resulting in the prepared precursor being loose and not compact, and the tap density will be very low; and if the ultrasonic intensity is too high, the particle size of the primary nanoparticles generated by the system will be too small, forming ultra-fine nanoparticles.
  • Such particles are difficult to grow and cannot be used to prepare micron-level materials. Therefore, the ultrasound should not exceed 50hz during the nucleation reaction. In addition, excessive ultrasound will cause serious noise pollution and a small increase in cost.
  • the temperature of the co-precipitation reaction process in this step is 40-70 degrees Celsius, such as 40 degrees Celsius, 41 degrees Celsius, 69 degrees Celsius, 70 degrees Celsius, and the time is 60-180 minutes, such as 60 minutes, 61 minutes, 179 minutes, and 180 minutes.
  • the particle size of the nano-primary particles in the reaction solution containing the nano-primary particles is 50-500 nm.
  • the nitrogen flow rate is 0.1 L/min.
  • this step continue to add another part of the mixed metal salt and the precipitating agent to the reaction solution containing the nano primary particles obtained in the above reaction kettle, so that the mixed metal salt and the precipitating agent are seeded with small-diameter nano-primary particles.
  • the obtained slurry overflows into the aging tank to continue stirring and aging, so that the precipitated particles continue to grow, and the aging material is obtained.
  • the adding rate of the mixed metal salt and the precipitant is 1 to 3 mL/min, for example, 1 mL/min, 1.1 mL/min, 2.9 mL/min, 3 mL/min.
  • the inventor found that if the feeding speed is too fast and the reaction is too fast, the resulting precursor will become less dense and the tapping will be low. If the feeding speed is too slow, the reaction time will be too long and the cost will increase. And control the pH of the co-precipitation reaction process to 8.2-9, such as 8.2, 8.3, 8.9, 9. The inventor found that if the pH is too high during the process, the precipitates cannot aggregate into spheres, but loose small particles aggregate.
  • the co-precipitation reaction time is 10-20 hours, such as 10 hours, 11 hours, 19 hours, 20 hours, and the aging time in the aging tank is 10-30 hours, such as 10 hours, 11 hours, 29 hours, 30 hour.
  • the precipitating agent and the mixed metal salt are the same as in the above step S200, and will not be repeated here.
  • the aged material obtained above is mixed with the detergent to obtain a washed material.
  • the stirring speed of this process is 500-700rpm, such as 500rpm, 510rpm, 690rpm, 700rpm, and the stirring time is 0.1-5 hours, such as 0.1 hour, 0.2 hour, 4.9 hours, 5 hours, and the detergent in this process is conventionally used in the field
  • the detergent can be, for example, an aqueous ammonia solution with a pH of 12, and it should be noted that those skilled in the art can choose the amount of detergent added according to actual needs, as long as it can achieve the removal of part of the sodium and sulfur in the reacted material. That's it.
  • the once-washed material obtained above is dehydrated once to obtain the once-dehydrated material.
  • the primary dehydration can be dehydrated by a centrifuge, and the moisture content of the obtained primary dehydration material is not higher than 10 wt%.
  • the primary dehydrated material obtained above is subjected to secondary washing and then dehydrated, so as to obtain the secondary dehydrated material.
  • pure water is used to wash the material after the primary dehydration for a second time to further remove impurities such as sodium and sulfur in the material after the primary dehydration, and those skilled in the art can adjust the amount of pure water, the stirring speed and the time according to actual needs.
  • the dehydration process also adopts centrifuge dehydration, the water content of the obtained material after the second dehydration is not higher than 10wt%.
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a binary lithium-rich carbonate precursor.
  • drying and sieving iron removal process is a conventional operation in the art, and those skilled in the art can make selections according to actual needs, and will not be repeated here.
  • the stirring in step S200 is ultrasound.
  • a mixed metal salt containing a soluble nickel salt and a soluble manganese salt and a precipitating agent are subjected to a co-precipitation reaction under an ultrasonic environment, Under the action of ultrasound, the reaction system is more uniform, and the contact reaction between the metal salt and the precipitant is smoother, so that a reaction solution containing small-diameter nano-primary particles can be obtained, and then the mixed metal is continuously added to the reaction solution containing nano-primary particles Salt and precipitating agent, that is, using small-diameter nano-primary particles as seeds for co-precipitation reaction, and finally after aging and subsequent washing, dehydration, and drying, sieving and iron removal steps, the solid spherical structure can be prepared.
  • the binary lithium-rich carbonate precursor does not contain metal cobalt. Compared with the existing ternary nickel-cobalt-manganese precursor, it not only reduces the raw material cost, but also There is no environmental pollution.
  • the positive electrode material prepared by the precursor obtained by the method has higher specific capacity, excellent cycle performance and electrochemical discharge performance. It should be noted that the features and advantages described above for the binary lithium-rich carbonate precursor are also applicable to the method for preparing the binary lithium-rich carbonate precursor, and will not be repeated here.
  • a cathode material is provided.
  • the cathode material is prepared by using the precursor described above or prepared by using the precursor prepared by the method described above.
  • the positive electrode material has a higher specific capacity and excellent cycle performance and electrochemical discharge performance.
  • a lithium battery is provided, and the lithium battery has the above-mentioned positive electrode material. Therefore, the lithium battery has a long cycle life on the basis of a high specific energy.
  • a car is provided, and the car has the above-mentioned lithium battery.
  • the vehicle loaded with the above-mentioned lithium battery with high specific energy and long cycle life has excellent endurance, thereby meeting the needs of consumers.
  • Nickel sulfate and manganese sulfate are mixed according to the nickel-manganese element molar ratio of 0.30:0.70 to obtain a mixed metal salt, and the concentrations of nickel sulfate and manganese sulfate in the mixed metal salt are both 0.5 mol/L;
  • step (3) Continuously add the above-mentioned mixed metal salt and sodium bicarbonate (sodium bicarbonate concentration 1mol/L, the mixing ratio of mixed metal salt and sodium bicarbonate is the same as in step (2)) at a flow rate of 1 mL/min to the above reaction kettle, so that The mixed metal salt and sodium bicarbonate are co-precipitated with small-size nano-primary particles as seed crystals and continue to react for 10 hours.
  • the pH is controlled to 8.2.
  • the obtained slurry overflows into the aging tank, and continues to stir in the aging tank 20h, get the aged material;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a binary lithium-rich carbonate precursor with a particle size of 1.5 microns, the chemical formula of which is Ni 0.3 Mn 0.7 CO 3 .
  • Figures 2 and 3 are scanning electron micrographs and scanning electron micrographs of a binary lithium-rich carbonate precursor according to an embodiment of the present disclosure. According to Figures 2 and 3, it can be seen that the precursor obtained by this method has a spherical structure and a particle size. The distribution is even and the surface is smooth.
  • a laser particle size analyzer was used to detect the particle size distribution of the precursor, and it was found that the particle size distribution was uniform.
  • the precursor and lithium hydroxide were mixed according to a molar ratio of 1:1.06 and sintered at 500 degrees Celsius for 4 hours in an air atmosphere, and then crushed and sintered for 25 hours at 700 degrees Celsius to obtain a positive electrode material.
  • the positive electrode material and SP( Carbon black conductive agent) and PVDF (polyvinylidene fluoride) are mixed, and NMP (N-methylpyrrolidone) is used as a solvent to pulp and stir for several hours to prepare a lithium ion half-cell.
  • the blue battery tester is used to charge and discharge at 4.8V. According to the test, the product has a 0.1C discharge gram capacity of 314mAh and a 1.0C discharge capacity of 245mAh.
  • Nickel sulfate and manganese sulfate are mixed according to the nickel-manganese element molar ratio of 0.35:0.65 to obtain a mixed metal salt, and the concentrations of nickel sulfate and manganese sulfate in the mixed metal salt are both 1 mol/L;
  • step (3) Continuously add the above-mentioned mixed metal salt, sodium bicarbonate, and sodium carbonate (sodium bicarbonate concentration, sodium carbonate concentration, and the mixing ratio of mixed metal salt and precipitant) at a flow rate of 1 mL/min to the above-mentioned reaction kettle as in step (2) ), the mixed metal salt, sodium bicarbonate, and sodium carbonate are co-precipitated with small-diameter nano-primary particles as the seed crystal and continue to react for 20 hours.
  • the pH is controlled to 8.5, and the obtained slurry overflows into the aging kettle. Continue to stir in the aging kettle for 24 hours to obtain the aging material;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a binary lithium-rich carbonate precursor with a particle size of 2 microns, the chemical formula of which is Ni 0.35 Mn 0.65 CO 3 .
  • the precursor obtained by this method has a spherical structure, a uniform particle size distribution and a smooth surface.
  • a laser particle size analyzer was used to detect the particle size distribution of the precursor, and it was further found that the particle size distribution was uniform.
  • the precursor and lithium hydroxide were mixed according to a molar ratio of 1:1.06 and sintered at 500 degrees Celsius for 4 hours in an air atmosphere, and then crushed and sintered for 25 hours at 700 degrees Celsius to obtain a positive electrode material.
  • the positive electrode material and SP( Carbon black conductive agent) and PVDF (polyvinylidene fluoride) are mixed, and NMP (N-methylpyrrolidone) is used as a solvent to pulp and stir for several hours to prepare a lithium ion half-cell.
  • the blue battery tester is used to charge and discharge at 4.8V. According to the test, the product has a 0.1C discharge gram capacity of 312mAh, and a 1.0C discharge capacity of 240mAh.
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a binary lithium-rich carbonate precursor with a particle size of 1.2 microns, the chemical formula of which is Ni 0.4 Mn 0.6 CO 3 .
  • the precursor obtained by this method has a spherical structure, a uniform particle size distribution and a smooth surface.
  • a laser particle size analyzer was used to detect the particle size distribution of the precursor, and it was further found that the particle size distribution was uniform.
  • the precursor and lithium hydroxide were mixed according to a molar ratio of 1:1.06 and sintered at 500 degrees Celsius for 4 hours in an air atmosphere, and then crushed and sintered for 25 hours at 700 degrees Celsius to obtain a positive electrode material.
  • the positive electrode material and SP( Carbon black conductive agent) and PVDF (polyvinylidene fluoride) are mixed, and NMP (N-methylpyrrolidone) is used as a solvent to pulp and stir for several hours to prepare a lithium ion half-cell.
  • the blue battery tester is used to charge and discharge at 4.8V. According to the test, the product has a 0.1C discharge gram capacity of 310mAh, and a 1.0C discharge capacity of 242mAh.
  • step (3) Continuously add the above-mentioned mixed metal salt and sodium bicarbonate (sodium bicarbonate concentration 1mol/L, the mixing ratio of mixed metal salt and sodium bicarbonate is the same as step (2)) at a flow rate of 2mL/min to the above reaction kettle, so that The mixed metal salt and sodium bicarbonate are co-precipitated with small-size nano-primary particles as seeds and continue to react for 10 hours.
  • the pH is controlled to 8.5, and the obtained slurry overflows into the aging tank, and continues to stir in the aging tank 15h, get the aged material;
  • the secondary dehydrated material obtained above is dried and then sieved to remove iron to obtain a binary lithium-rich carbonate precursor with a particle size of 1.5 microns, the chemical formula of which is Ni 0.30 Mn 0.70 CO 3 .
  • the precursor obtained by this method has a spherical structure, a uniform particle size distribution and a smooth surface.
  • a laser particle size analyzer was used to detect the particle size distribution of the precursor, and it was further found that the particle size distribution was uniform.
  • the precursor and lithium hydroxide were mixed according to a molar ratio of 1:1.06 and sintered at 500 degrees Celsius for 4 hours in an air atmosphere, and then crushed and sintered for 25 hours at 700 degrees Celsius to obtain a positive electrode material.
  • the positive electrode material and SP( Carbon black conductive agent) and PVDF (polyvinylidene fluoride) are mixed, and NMP (N-methylpyrrolidone) is used as a solvent to pulp and stir for several hours to prepare a lithium ion half-cell.
  • the blue battery tester is used to charge and discharge at 4.8V. According to the test, the product has a 0.1C discharge gram capacity of 311mAh and a 1.0C discharge capacity of 239mAh.

Abstract

一种二元富锂碳酸盐前驱体及其制备方法和应用,所述前驱体化学式为Ni (1-X)Mn XCO 3,其中,X为0.6~0.7。所述二元富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的优势。

Description

二元富锂碳酸盐前驱体及其制备方法和应用 技术领域
本公开涉及锂电池领域,例如涉及一种二元富锂碳酸盐前驱体及其制备方法和应用。
背景技术
近年来,锂离子电池因其具有能量密度高、热稳定性高和电池寿命长的优势,已成为便携式电子设备和家用电器、电动汽车和储能系统的主要能源。尽管这些被成功应用,但是目前的锂离子电池技术仍然不能满足广泛的消费者需求。
锂离子电池的主要缺点有成本高和能量密度不足,使得电动汽车的行驶里程远远低于内燃机汽车。为了使锂离子电动汽车与内燃机汽车竞争,必须提高锂离子电池的能量密度,降低成本,延长现有锂离子电池的使用寿命。
锂离子电池的整体性能在很大程度上受到正极的限制,在锂离子电池的组成中,正极是最昂贵的,也是最重的,因此,增加正极能量密度将使电动汽车电池更便宜和更轻。为了达到电动汽车所需的能量密度,相关技术通过提高NCA或NCM正极材料中的Ni含量以提高放电容量,例如通过使Ni含量远远超过80%,即x远远大于0.8,以提供大于200mAh/g的放电容量。虽然富镍(x>0.8)将提供所需额外的容量,但由于容量的快速衰减和Ni 4+丰富的活性,产生一系列电池寿命和安全的问题。富锂锰基正极材料因放电比容量大、价格低廉、环境友好等优点具有开发潜力,被广泛认为是迄今为止最适合动力电池的正极材料。
目前市场上所使用的富锂前驱体大多都是氢氧化物体系的富锂前驱体,但氢氧化物体系的前驱体在制备过程中需要使用氨,这一弊端对环境有着极其不好的影响。
发明内容
本公开提供一种二元富锂碳酸盐前驱体及其制备方法和应用。本公开所述二元富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的优势,其在有 氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时该二元富锂碳酸盐前驱体不含金属钴,较现有的三元镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,另外采用该前驱体制备得到的正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。
本公开在一实施例中提供一种二元富锂碳酸盐前驱体,所述前驱体化学式为Ni (1-X)Mn XCO 3,其中,X为0.6~0.7。
本公开提供的二元富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的优势,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时该二元富锂碳酸盐前驱体不含金属钴,较现有的三元镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,另外采用该前驱体制备得到的正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。
在一实施例中,所述前驱体粒径为1~2微米。
本公开在一实施例中提供一种制备所述二元富锂碳酸盐前驱体的方法,所述方法包括:
(1)将可溶性镍盐和可溶性锰盐进行混合,以便得到混合金属盐;
(2)在氮气存在下,伴随着搅拌,将所述混合金属盐的一部分与沉淀剂在超声环境下进行共沉淀反应,以便得到含有纳米一次颗粒的反应液;
(3)向所述含有纳米一次颗粒的反应液中持续加入所述混合金属盐的再一部分和所述沉淀剂继续进行共沉淀反应,然后进行陈化,以便得到陈化后料;
(4)伴随着搅拌,将所述反应后料与洗涤剂混合,以便得到一次洗涤后料;
(5)将所述一次洗涤后料进行一次脱水,以便得到一次脱水后料;
(6)伴随着搅拌,将所述一次脱水后料进行二次洗涤后脱水,以便得到二次脱水后料;
(7)将所述二次脱水后料干燥后筛分除铁,以便得到二元富锂碳酸盐前驱体。
在一实施例中,步骤(2)所述搅拌为超声。
本公开一实施例提供的二元富锂碳酸盐前驱体的方法中,首先在氮气存在下,将含有可溶性镍盐和可溶性锰盐的混合金属盐与沉淀剂在超声环境下进行共沉淀反应,超声作用下,使得反应体系更均一,并且金属盐与沉淀剂接触反应更顺畅,从而可以得到含有小粒径纳米一次颗粒的反应液,然后再向含有纳米一次颗粒的反应液中持续加入混合金属盐和沉淀剂,即以小粒径的纳米一次颗粒为晶种进行共沉淀反应,最后经陈化以及后续的洗涤、脱水以及干燥筛分除铁工序,即可制备得到上述具有实心球形结构、粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的二元富锂碳酸盐前驱体,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时该二元富锂碳酸盐前驱体不含金属钴,较现有的三元镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,另外采用该方法得到的前驱体制备得到的正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。
在一实施例中,在步骤(1)中,所述可溶性镍盐和所述可溶性锰盐按照镍元素和锰元素摩尔比为(0.3~0.4):(0.6~0.7)。
在一实施例中,在步骤(1)中,所述混合金属盐中,所述可溶性镍盐和所述可溶性锰盐的浓度分别独立地为0.5~3mol/L。
在一实施例中,在步骤(1)中,所述可溶性镍盐为选自氯化镍和硫酸镍中的至少之一。
在一实施例中,在步骤(1)中,所述可溶性锰盐为选自氯化锰和硫酸锰中的至少之一。
在一实施例中,在步骤(2)中,所述搅拌的转速为700~100rpm。
在一实施例中,在步骤(2)中,所述混合金属盐与所述沉淀剂的摩尔比为1:(2~4)。
在一实施例中,在步骤(2)中,所述共沉淀反应过程中,所述超声强度为30~50HZ,温度为40~70摄氏度,时间为60~180分钟。
在一实施例中,在步骤(2)中,所述含有纳米一次颗粒的反应液中纳米一 次颗粒粒径为50~500纳米。
在一实施例中,在步骤(2)中,所述沉淀剂为选自碳酸钠、碳酸铵、碳酸氢铵和氨水中的至少之一。
在一实施例中,在步骤(2)中,所述碳酸钠的浓度为1~5mol/L。
在一实施例中,在步骤(2)中,所述碳酸铵的浓度为1~4mol/L。
在一实施例中,在步骤(2)中,所述碳酸氢铵的浓度为1~4mol/L。
在一实施例中,在步骤(2)中,所述氨水的浓度为2~12mol/L。
在一实施例中,在步骤(3),所述混合金属盐和所述沉淀剂的加入速度为1~3mL/min。
在一实施例中,在步骤(3),控制所述共沉淀反应过程的pH为8.2~9,所述共沉淀反应时间为10~20小时。
在一实施例中,在步骤(3),所述陈化时间为10~30小时。
本公开在一实施例中提供一种正极材料,所述正极材料采用所述前驱体制备得到或采用所述方法制备得到的前驱体制备得到。该正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。
本公开在一实施例中提供一种锂电池,所述锂电池具有所述的正极材料。该锂电池在具有高比能量的基础上具有长循环寿命。
本公开在一实施例中提供一种汽车,所述汽车具有所述的锂电池。由此,使得装载上述具有高比能量和长循环寿命锂电池的车辆具有优异的续航能力,从而满足消费者的使用需求。
本公开中所述粒径指平均粒径。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开一实施例制备二元富锂碳酸盐前驱体的方法流程示意图。
图2是本公开一实施例的二元富锂碳酸盐前驱体的扫描电镜图。
图3是本公开一实施例的二元富锂碳酸盐前驱体的扫描电镜图的平面图。
具体实施例
相关技术中,碳酸盐前驱体及其正极材料的研究相对较少或者没有,特别是富锂碳酸盐前驱体,然而已经报道出来的碳酸盐三前驱体材料很大一部分存在一些问题,如粒度分布不均、球形度差、无法连续生产等,由于碳酸盐前驱体在制备过程中生长过快,生长速度得不到控制,所以制备小粒径的碳酸盐前驱体有着极大的困难。
小粒径碳酸盐前驱体的研究有待探究。
本公开在一实施例中提供一种二元富锂碳酸盐前驱体,该前驱体化学式为Ni (1-X)Mn XCO 3,其中,X为0.6~0.7。发明人发现,该二元富锂碳酸盐前驱体为小粒径实心球形结构,并且具有粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的优势,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时该二元富锂碳酸盐前驱体不含金属钴,较现有的三元镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,另外采用该前驱体制备得到的正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。具体的,上述前驱体化学中x取值例如可以为0.6、0.61、0.69、0.7。发明人发现,选取锰含量高的组成是因为采用这种前驱体制备成的富锂正极材料更加稳定,如果选取的锰含量过低,则在与锂盐混合煅烧成富锂正极材料时不会形成稳定的Li 2MnO 3结构,只会形成不稳定的LiMO 2结构,所以锰含量过低制备不出所需的富锂正极材料。
在一实施例中,前驱体粒径为1~2微米,例如1微米、1.1微米……1.9微米、2微米。发明人发现,通过使用该粒径范围的前驱体制备的正极材料的电化学性能相对于使用的大颗粒前驱体制备的正极材料的电化学性能更优异,特别是倍率性能和首效。
本公开在一实施例中提供一种制备所述二元富锂碳酸盐前驱体的方法,参考图1,该方法包括:
S100:将可溶性镍盐和可溶性锰盐进行混合
该步骤中,将可溶性镍盐和可溶性锰盐混合,以便得到混合金属盐。
在一实施例中,可溶性镍盐为选自氯化镍和硫酸镍中的至少之一;可溶性 锰盐为选自氯化锰和硫酸锰中的至少之一。
在一实施例中,得到的混合金属盐中,可溶性镍盐和可溶性锰盐的浓度分别独立地为0.5~3mol/L,例如0.5mol/L、0.6mol/L、2.9mol/L、3mol/L,并且可溶性镍盐和可溶性锰盐按照镍元素和锰元素摩尔比为(0.3~0.4):(0.6~0.7),例如(0.3、0.31、0.39、0.4):(0.6、0.61、0.69、0.7)。
本公开在制备前驱体过程中不加入金属钴,较现有的三元镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,同时本公开最终制备得到的前驱体仍然具有优异的电化学性能和能量密度。
S200:在氮气存在下,伴随着搅拌,将混合金属盐的一部分与沉淀剂在超声环境下进行共沉淀反应
该步骤中,在氮气存在下,伴随着搅拌,将混合金属盐的一部分与沉淀剂在超声环境下进行共沉淀反应,超声作用下,使得反应体系更均一,并且金属盐与沉淀剂接触反应更顺畅,从而可以得到含有小粒径纳米一次颗粒的反应液。
在一实施例中,沉淀剂为选自碳酸钠、碳酸铵、碳酸氢铵和氨水中的至少之一。
在一实施例中,沉淀剂为碳酸钠,即在无氨体系中制备,对环境友好。
在一实施例中,碳酸钠的浓度为1~5mol/L,例如1mol/L、1.1mol/L、4.9mol/L、5mol/L。
在一实施例中,碳酸铵的浓度为1~4mol/L,例如1mol/L、1.1mol/L、3.9mol/L、4mol/L。
在一实施例中,碳酸氢铵的浓度为1~4mol/L,例如1mol/L、1.1mol/L、3.9mol/L、4mol/L。
在一实施例中,氨水的浓度为2~12mol/L,例如2mol/L、2.1mol/L、11.9mol/L、12mol/L。
在一实施例中,首先将反应釜置于超声水浴中,再将搅拌器、密封装置、加液装置、通气管、挡板、在线pH计、温度计等相应配制在反应釜上,然后向超声水浴中持续通入氮气作为保护气,将混合金属液的一部分和沉淀剂迅速(在2分钟内)并流加入该反应釜,持续超声并伴随着快速搅拌,其中,该过程中的氮气流量为0.1~0.2L/min,搅拌的转速为700~100rpm,例如700rpm、710rpm、990rpm、1000rpm,混合金属盐与沉淀剂的摩尔比为1:(2~4),例如1:(2、2.1、 3.9、4),并且超声强度为30~50HZ,例如30HZ、31HZ、49HZ、50HZ,发明人发现,若超声强度过低,则制备得到的纳米一次颗粒粒径过大,导致后期制备小颗粒前驱体时反应时间会相对缩短,造成所制备的前驱体疏松不密实,振实密度会很低;而若超声强度过高会导致体系生成的纳米一次颗粒粒度过小,形成超细纳米颗粒,这种颗粒很难再长大,不能用于制备微米级材料,故造核反应期间超声不宜大于50hz,另外过高的超声会导致噪音污染严重及成本小幅增加。同时该步骤的共沉淀反应过程温度为40~70摄氏度,例如40摄氏度、41摄氏度、69摄氏度、70摄氏度,时间为60~180分钟,例如60分钟、61分钟、179分钟、180分钟,另外得到的含有纳米一次颗粒的反应液中纳米一次颗粒的粒径为50~500nm。
在一实施例中,氮气流量为0.1L/min。
S300:向含有纳米一次颗粒的反应液中持续加入混合金属盐的再一部分和沉淀剂继续进行共沉淀反应,然后进行陈化
该步骤中,向上述反应釜中得到的含有纳米一次颗粒的反应液中持续加入混合金属盐的再一部分和沉淀剂,使得混合金属盐和沉淀剂以小粒径的纳米一次颗粒为晶种进行共沉淀反应,得到的浆料溢流进入陈化釜继续搅拌陈化,使得沉淀颗粒不断长大,得到陈化后料。
在一实施例中,该过程中,混合金属盐和沉淀剂的加入速度为1~3mL/min,例如1mL/min、1.1mL/min、2.9mL/min、3mL/min。发明人发现,若加料速度过快,反应过快,生成的前驱体变得不密实,振实偏低,而若加料速度过慢,反应时间过长,成本升高。并且控制共沉淀反应过程的pH为8.2~9,例如8.2、8.3、8.9、9,发明人发现,若该过程中pH过高时,沉淀物并不能团聚成球体,而为松散的小颗粒聚集体,而若pH过低时,沉淀物团聚严重,得到的颗粒聚集体形貌各异。同时共沉淀反应时间为10~20小时,例如10小时、11小时、19小时、20小时,另外,陈化釜中陈化时间为10~30小时,例如10小时、11小时、29小时、30小时。
在一实施例中,沉淀剂和混合金属盐同于上述步骤S200中,此处不再赘述。
S400:伴随着搅拌,将陈化后料与洗涤剂混合
该步骤中,伴随着搅拌,将上述得到的陈化后料与洗涤剂混合,得到一次洗涤后料。该过程搅拌转速为500~700rpm,例如500rpm、510rpm、690rpm、 700rpm,搅拌时间为0.1~5小时,例如0.1小时、0.2小时、4.9小时、5小时,并且该过程的洗涤剂为本领域常规使用的洗涤剂,例如可以为pH为12的氨水溶液,并且需要说明的是,本领域技术人员可以根据实际需要对洗涤剂的加入量进行选择,只要能够实现去除反应后料中部分的钠和硫即可。
S500:将一次洗涤后料进行一次脱水
该步骤中,将上述得到的一次洗涤后料进行一次脱水,得到一次脱水后料。具体的,该一次脱水可以采用离心机脱水,并且得到的一次脱水后料中含水率不高于10wt%。
S600:伴随着搅拌,将一次脱水后料进行二次洗涤后脱水
该步骤中,将上述得到的一次脱水后料进行二次洗涤后脱水,以便得到二次脱水后料。具体的,采用纯水对一次脱水后料进行二次洗涤,以进一步去除一次脱水后料中的钠和硫等杂质,并且本领域技术人员可以根据实际需要对纯水用量和搅拌转速以及时间进行选择,只要能够实现洗涤至钠和硫含量合格即可,并且该脱水过程也采用离心机脱水,得到的二次脱水后料中含水率不高于10wt%。
S700:将二次脱水后料干燥后筛分除铁
该步骤中,将上述得到的二脱水后料干燥后筛分除铁,得到二元富锂碳酸盐前驱体。需要说明的是,该干燥和筛分除铁过程为本领域的常规操作,本领域技术人员可以根据实际需要进行选择,此处不再赘述。
在一实施例中,步骤S200中的搅拌为超声。
本公开一实施例的制备二元富锂碳酸盐前驱体的方法,首先在氮气存在下,将含有可溶性镍盐和可溶性锰盐的混合金属盐与沉淀剂在超声环境下进行共沉淀反应,超声作用下,使得反应体系更均一,并且金属盐与沉淀剂接触反应更顺畅,从而可以得到含有小粒径纳米一次颗粒的反应液,然后再向含有纳米一次颗粒的反应液中持续加入混合金属盐和沉淀剂,即以小粒径的纳米一次颗粒为晶种进行共沉淀反应,最后经陈化以及后续的洗涤、脱水以及干燥筛分除铁工序,即可制备得到上述具有实心球形结构、粒度可控且粒度分布均匀、球形度高、球形表面光滑、电化学性能和能量密度优异的二元富锂碳酸盐前驱体,其在有氨体系和无氨体系均可稳定生产,特别是在无氨体系下,没有含氨废水产生,对环境友好,同时该二元富锂碳酸盐前驱体不含金属钴,较现有的三元 镍钴锰前驱体不仅降低了原料成本,而且不会产生环境污染,另外采用该方法得到的前驱体制备得到的正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。需要说明的是,上述针对二元富锂碳酸盐前驱体所描述的特征和优点同样适用于该制备二元富锂碳酸盐前躯体的方法,此处不再赘述。
本公开在一实施例中提供一种正极材料,该正极材料采用上述前驱体制备得到或采用上述方法制备得到的前驱体制备得到。由此,该正极材料具有较高的比容量以及优异的循环性能和电化学放电性能。
本公开在一实施例中提供一种锂电池,所述锂电池具有上述的正极材料。由此,该锂电池在具有高比能量的基础上具有长循环寿命。
本公开在一实施例中提供一种汽车,所述汽车具有上述的锂电池。由此,使得装载上述具有高比能量和长循环寿命锂电池的车辆具有优异的续航能力,从而满足消费者的使用需求。
下面详细描述本公开的实施例,需要说明的是下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。另外,如果没有明确说明,在下面的实施例中所采用的所有试剂均为市场上可以购得的,或者可以按照本文或已知的方法合成的,对于没有列出的反应条件,也均为本领域技术人员容易获得的。
实施例1
(1)将硫酸镍和硫酸锰按照镍锰元素摩尔比为0.30:0.70进行混合,得到混合金属盐,并且混合金属盐中硫酸镍和硫酸锰的浓度均为0.5mol/L;
(2)首先将反应釜置于超声水浴中,然后向超声水浴中以流速为0.1L/min持续通入氮气作为保护气,开启超声(超声强度为30HZ),将混合金属液和碳酸氢钠(浓度1mol/L)按照摩尔比为1:3迅速(在30秒内)并流加入该反应釜,并伴随着快速搅拌(搅拌转速为800rpm),反应釜温度稳定在45摄氏度,经60分钟后关闭超声,得到含有纳米一次颗粒的反应液,其中反应液中纳米一次颗粒的粒径为50~500nm;
(3)向上述反应釜以1mL/min流速持续加入上述混合金属盐和碳酸氢钠(碳酸氢钠浓度1mol/L,混合金属盐与碳酸氢钠混合配比同于步骤(2)),使得混合金属盐和碳酸氢钠以小粒径的纳米一次颗粒为晶种进行共沉淀反应继续反应10h,过程中控制pH为8.2,得到的浆料溢流进入陈化釜,在陈化釜继续搅拌20h, 得到陈化后料;
(4)在转速为600rpm下,将上述得到的陈化后料与pH为12的氨水溶液混合搅拌1小时,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径1.5微米的二元富锂碳酸盐前驱体,其化学式为Ni 0.3Mn 0.7CO 3
图2和图3是本公开一实施例的二元富锂碳酸盐前驱体的扫描电镜图以及扫描电镜的平面图,根据图2和图3可知,该方法得到的前驱体具有球形结构、粒度分布均匀且表面光滑。
使用激光粒度仪检测前驱体粒径分布,发现其粒度分布均匀。
该前驱体与氢氧化锂按照摩尔比为1:1.06混合在空气气氛下于500摄氏度进行一次烧结4小时,然后破碎后在700摄氏度进行二次烧结25小时,得到正极材料,正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数小时制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为314mAh,1.0C放电容量为245mAh。
实施例2
(1)将硫酸镍和硫酸锰按照镍锰元素摩尔比为0.35:0.65进行混合,得到混合金属盐,并且混合金属盐中硫酸镍和硫酸锰的浓度均为1mol/L;
(2)首先将反应釜置于超声水浴中,然后向超声水浴中以流速为0.1L/min持续通入氮气作为保护气,开启超声(超声强度为40HZ),将混合金属液和碳酸氢钠(浓度1.2mol/L)和碳酸钠(浓度为0.3mol/L)迅速(在60秒内)并流加入该反应釜,其中,混合金属盐和沉淀剂的摩尔比为1:2,并伴随着快速搅拌(搅拌转速为900rpm),反应釜温度稳定在50摄氏度,经120分钟后关闭超声,得到含有纳米一次颗粒的反应液,其中反应液中纳米一次颗粒的粒径为50~500nm;
(3)向上述反应釜以1mL/min流速持续加入上述混合金属盐和碳酸氢钠、碳酸钠(碳酸氢钠浓度、碳酸钠浓度以及混合金属盐与沉淀剂混合配比同于步骤(2)),使得混合金属盐和碳酸氢钠、碳酸钠以小粒径的纳米一次颗粒为晶种 进行共沉淀反应继续反应20h,过程中控制pH为8.5,得到的浆料溢流进入陈化釜,在陈化釜继续搅拌24h,得到陈化后料;
(4)在转速为600rpm下,将上述得到的陈化后料与pH为12的氨水溶液混合搅拌1小时,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径2微米的二元富锂碳酸盐前驱体,其化学式为Ni 0.35Mn 0.65CO 3
根据前驱体的扫描电镜图可知该方法得到的前驱体具有球形结构、粒度分布均匀且表面光滑。
使用激光粒度仪检测前驱体粒径分布,进一步发现其粒度分布均匀。
该前驱体与氢氧化锂按照摩尔比为1:1.06混合在空气气氛下于500摄氏度进行一次烧结4小时,然后破碎后在700摄氏度进行二次烧结25小时,得到正极材料,正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数小时制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为312mAh,1.0C放电容量为240mAh。
实施例3
(1)将氯化镍和氯化锰按照镍锰元素摩尔比为0.4:0.6进行混合,得到混合金属盐,并且混合金属盐中氯化镍和氯化锰的浓度均为1.5mol/L;
(2)首先将反应釜置于超声水浴中,然后向超声水浴中以流速为0.1L/min持续通入氮气作为保护气,开启超声(超声强度为50HZ),将混合金属液和碳酸氢钠(浓度2mol/L)和碳酸氢铵(浓度为1mol/L)迅速(在90秒内)并流加入该反应釜,其中,混合金属盐和沉淀剂的摩尔比为1:4,并伴随着快速搅拌(搅拌转速为1000rpm),反应釜温度稳定在40摄氏度,经180分钟后关闭超声,得到含有纳米一次颗粒的反应液,其中反应液中纳米一次颗粒的粒径为50~500nm;
(3)向上述反应釜以1mL/min流速持续加入上述混合金属盐和碳酸氢钠、碳酸氢铵(碳酸氢钠浓度、碳酸氢铵浓度以及混合金属盐与沉淀剂混合配比同于步骤(2)),使得混合金属盐和碳酸氢钠、碳酸氢铵以小粒径的纳米一次颗粒 为晶种进行共沉淀反应继续反应15h,过程中控制pH为9,得到的浆料溢流进入陈化釜,在陈化釜继续搅拌15h,得到陈化后料;
(4)在转速为600rpm下,将上述得到的陈化后料与pH为12的氨水溶液混合搅拌1小时,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径1.2微米的二元富锂碳酸盐前驱体,其化学式为Ni 0.4Mn 0.6CO 3
根据前驱体的扫描电镜图可知该方法得到的前驱体具有球形结构、粒度分布均匀且表面光滑。
使用激光粒度仪检测前驱体粒径分布,进一步发现其粒度分布均匀。
该前驱体与氢氧化锂按照摩尔比为1:1.06混合在空气气氛下于500摄氏度进行一次烧结4小时,然后破碎后在700摄氏度进行二次烧结25小时,得到正极材料,正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数小时制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为310mAh,1.0C放电容量为242mAh。
实施例4
(1)将硫酸镍和硫酸锰按照镍锰元素摩尔比为0.30:0.70进行混合,得到混合金属盐,并且混合金属盐中硫酸镍和硫酸锰的浓度均为0.5mol/L;
(2)首先将反应釜置于超声水浴中,然后向超声水浴中以流速为0.1L/min持续通入氮气作为保护气,开启超声(超声强度为50HZ),将混合金属液和碳酸氢钠(浓度1mol/L)按照摩尔比为1:3迅速(在30秒内)并流加入该反应釜,并伴随着快速搅拌(搅拌转速为850rpm),反应釜温度稳定在45摄氏度,经60分钟后关闭超声,得到含有纳米一次颗粒的反应液,其中反应液中纳米一次颗粒的粒径为50~500nm;
(3)向上述反应釜以2mL/min流速持续加入上述混合金属盐和碳酸氢钠(碳酸氢钠浓度1mol/L,混合金属盐与碳酸氢钠混合配比同于步骤(2)),使得混合金属盐和碳酸氢钠以小粒径的纳米一次颗粒为晶种进行共沉淀反应继续反应 10h,过程中控制pH为8.5,得到的浆料溢流进入陈化釜,在陈化釜继续搅拌15h,得到陈化后料;
(4)在转速为700rpm下,将上述得到的陈化后料与pH为12的氨水溶液混合搅拌1小时,得到一次洗涤后料;
(5)采用离心机对对上述得到的反应后料进行离心脱水,得到含水率不高于10wt%的一次脱水后料;
(6)采用纯水对上述得到的一次脱水后料进行洗涤和脱水,得到二次脱水后料,得到的二次脱水后料中含水率不高于10wt%;
(7)将上述得到的二次脱水后料干燥后筛分除铁,得到粒径1.5微米的二元富锂碳酸盐前驱体,其化学式为Ni 0.30Mn 0.70CO 3
根据前驱体的扫描电镜图可知该方法得到的前驱体具有球形结构、粒度分布均匀且表面光滑。
使用激光粒度仪检测前驱体粒径分布,进一步发现其粒度分布均匀。
该前驱体与氢氧化锂按照摩尔比为1:1.06混合在空气气氛下于500摄氏度进行一次烧结4小时,然后破碎后在700摄氏度进行二次烧结25小时,得到正极材料,正极材料与SP(炭黑导电剂)、PVDF(聚偏氟乙烯)混合,用NMP(N-甲基吡咯烷酮)为溶剂制浆搅拌数小时制得锂离子半电池,采用蓝电测试仪在4.8V下进行充放电测试,得到产品0.1C放电克容量为311mAh,1.0C放电容量为239mAh。

Claims (22)

  1. 一种二元富锂碳酸盐前驱体,其中,所述前驱体化学式为Ni (1-X)Mn XCO 3,其中,X为0.6~0.7。
  2. 根据权利要求1所述的前驱体,其中,所述前驱体粒径为1~2微米。
  3. 一种制备权利要求1或2所述前驱体的方法,其中,包括:
    (1)将可溶性镍盐和可溶性锰盐进行混合,以便得到混合金属盐;
    (2)在氮气存在下,伴随着搅拌,将所述混合金属盐的一部分与沉淀剂在超声环境下进行共沉淀反应,以便得到含有纳米一次颗粒的反应液;
    (3)向所述含有纳米一次颗粒的反应液中持续加入所述混合金属盐的再一部分和所述沉淀剂继续进行共沉淀反应,然后进行陈化,以便得到陈化后料;
    (4)伴随着搅拌,将所述反应后料与洗涤剂混合,以便得到一次洗涤后料;
    (5)将所述一次洗涤后料进行一次脱水,以便得到一次脱水后料;
    (6)伴随着搅拌,将所述一次脱水后料进行二次洗涤后脱水,以便得到二次脱水后料;
    (7)将所述二次脱水后料干燥后筛分除铁,以便得到二元富锂碳酸盐前驱体。
  4. 根据权利要求3所述的方法,其中,在步骤(1)中,所述可溶性镍盐和所述可溶性锰盐按照镍元素和锰元素摩尔比为(0.3~0.4):(0.6~0.7)。
  5. 根据权利要求3或4所述的方法,其中,在步骤(1)中,所述混合金属盐中,所述可溶性镍盐和所述可溶性锰盐的浓度分别独立地为0.5~3mol/L。
  6. 根据权利要求3-5任一项所述的方法,其中,在步骤(1)中,所述可溶性镍盐为选自氯化镍和硫酸镍中的至少之一。
  7. 根据权利要求3-6任一项所述的方法,其中,在步骤(1)中,所述可溶性锰盐为选自氯化锰和硫酸锰中的至少之一。
  8. 根据权利要求3-7任一项所述的方法,其中,在步骤(2)中,所述搅拌的转速为700~100rpm。
  9. 根据权利要求3-8任一项所述的方法,其中,在步骤(2)中,所述混合金属盐与所述沉淀剂的摩尔比为1:(2~4)。
  10. 根据权利要求3-9任一项所述的方法,其中,在步骤(2)中,所述共沉淀反应过程中,所述超声强度为30~50HZ,温度为40~70摄氏度,时间为60~180分钟。
  11. 根据权利要求3-10任一项所述的方法,其中,在步骤(2)中,所述含有纳米一次颗粒的反应液中纳米一次颗粒粒径为50~500纳米。
  12. 根据权利要求3-11任一项所述的方法,其中,在步骤(2)中,所述沉淀剂为选自碳酸钠、碳酸铵、碳酸氢铵和氨水中的至少之一。
  13. 根据权利要求12所述的方法,其中,在步骤(2)中,所述碳酸钠的浓度为1~5mol/L。
  14. 根据权利要求12或13所述的方法,其中,在步骤(2)中,所述碳酸铵的浓度为1~4mol/L。
  15. 根据权利要求12-14任一项所述的方法,其中,在步骤(2)中,所述碳酸氢铵的浓度为1~4mol/L。
  16. 根据权利要求12-15任一项所述的方法,其中,在步骤(2)中,所述氨水的浓度为2~12mol/L。
  17. 根据权利要求3-16任一项所述的方法,其中,在步骤(3)中,所述混合金属盐和所述沉淀剂的加入速度为1~3mL/min。
  18. 根据权利要求3-17任一项所述的方法,其中,在步骤(3)中,控制所述共沉淀反应过程的pH为8.2~9,所述共沉淀反应时间为10~20小时。
  19. 根据权利要求3-18任一项所述的方法,其中,在步骤(3)中,所述陈化时间为10~30小时。
  20. 一种正极材料,所述正极材料采用权利要求1或2所述的前驱体或权利要求3-19中任一项所述的方法得到的所述前驱体制备得到。
  21. 一种锂电池,所述锂电池具有权利要求20所述的正极材料。
  22. 一种汽车,所述汽车具有权利要求21所述的锂电池。
PCT/CN2020/125053 2019-12-26 2020-10-30 二元富锂碳酸盐前驱体及其制备方法和应用 WO2021129139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20904592.1A EP4040543A4 (en) 2019-12-26 2020-10-30 BINARY LITHIUM-RICH CARBONATE PRECURSOR, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911368620.X 2019-12-26
CN201911368620.XA CN111435745B (zh) 2019-12-26 2019-12-26 二元富锂碳酸盐前驱体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021129139A1 true WO2021129139A1 (zh) 2021-07-01

Family

ID=71580978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125053 WO2021129139A1 (zh) 2019-12-26 2020-10-30 二元富锂碳酸盐前驱体及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4040543A4 (zh)
CN (1) CN111435745B (zh)
WO (1) WO2021129139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031126A (zh) * 2021-11-11 2022-02-11 中物院成都科学技术发展中心 一种富锰碳酸盐前驱体及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435745B (zh) * 2019-12-26 2022-05-27 蜂巢能源科技有限公司 二元富锂碳酸盐前驱体及其制备方法和应用
CN112661204A (zh) * 2020-12-24 2021-04-16 中钢天源股份有限公司 一种包覆球形富锰前驱体及其制备方法
CN113860394B (zh) * 2021-09-30 2023-12-26 中伟新材料股份有限公司 一种富锰碳酸盐二元前驱体及其制备方法、正极材料和锂电池
CN114455648A (zh) * 2022-02-21 2022-05-10 浙江格派钴业新材料有限公司 一种双层复合低成本富锂锰基前驱体的制备方法
CN115745027A (zh) * 2022-12-07 2023-03-07 广东佳纳能源科技有限公司 一种碳酸盐二元前驱体及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413929A (zh) * 2013-07-30 2013-11-27 南京航空航天大学 一种球形N1/4Mn3/4CO3前驱体及镍锰酸锂的制备方法
CN104466108A (zh) * 2014-12-03 2015-03-25 上海交通大学 锂离子电池负极用中空多孔球形混合氧化物及其制备方法
CN104600285A (zh) * 2015-01-20 2015-05-06 河北工业大学 一种球形镍锰酸锂正极材料的制备方法
CN104953111A (zh) * 2011-03-28 2015-09-30 住友金属矿山株式会社 镍锰复合氢氧化物粒子及制造方法、正极活性物质及制造方法、和非水系电解质二次电池
CN105244501A (zh) * 2015-09-25 2016-01-13 湖北工程学院 一种锂离子电池电极活性物质前驱体碳酸锰镍
CN105390691A (zh) * 2015-10-23 2016-03-09 赣州市芯隆新能源材料有限公司 一种液相模板法制备球形镍钴锰酸锂的方法
CN106797016A (zh) * 2014-10-08 2017-05-31 尤米科尔公司 锂镍锰钴氧化物阴极材料的碳酸盐前驱物及其制造方法
JP2019021610A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN111435745A (zh) * 2019-12-26 2020-07-21 蜂巢能源科技有限公司 二元富锂碳酸盐前驱体及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482711B (zh) * 2013-09-06 2015-09-09 大连瑞源动力有限公司 一种超声辅助制备锂离子电池三元正极材料前驱体的方法
CN104201367B (zh) * 2014-04-18 2017-03-08 宁夏东方钽业股份有限公司 高密度小粒径镍钴锰氢氧化物及其制备方法
JP7313112B2 (ja) * 2017-06-14 2023-07-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN109704415A (zh) * 2018-12-26 2019-05-03 惠州亿纬锂能股份有限公司 一种富锂锰基前驱体、及其制备方法和富锂锰基正极材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953111A (zh) * 2011-03-28 2015-09-30 住友金属矿山株式会社 镍锰复合氢氧化物粒子及制造方法、正极活性物质及制造方法、和非水系电解质二次电池
CN103413929A (zh) * 2013-07-30 2013-11-27 南京航空航天大学 一种球形N1/4Mn3/4CO3前驱体及镍锰酸锂的制备方法
CN106797016A (zh) * 2014-10-08 2017-05-31 尤米科尔公司 锂镍锰钴氧化物阴极材料的碳酸盐前驱物及其制造方法
CN104466108A (zh) * 2014-12-03 2015-03-25 上海交通大学 锂离子电池负极用中空多孔球形混合氧化物及其制备方法
CN104600285A (zh) * 2015-01-20 2015-05-06 河北工业大学 一种球形镍锰酸锂正极材料的制备方法
CN105244501A (zh) * 2015-09-25 2016-01-13 湖北工程学院 一种锂离子电池电极活性物质前驱体碳酸锰镍
CN105390691A (zh) * 2015-10-23 2016-03-09 赣州市芯隆新能源材料有限公司 一种液相模板法制备球形镍钴锰酸锂的方法
JP2019021610A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN111435745A (zh) * 2019-12-26 2020-07-21 蜂巢能源科技有限公司 二元富锂碳酸盐前驱体及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031126A (zh) * 2021-11-11 2022-02-11 中物院成都科学技术发展中心 一种富锰碳酸盐前驱体及其制备方法

Also Published As

Publication number Publication date
EP4040543A4 (en) 2023-10-18
CN111435745B (zh) 2022-05-27
CN111435745A (zh) 2020-07-21
EP4040543A1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2021129139A1 (zh) 二元富锂碳酸盐前驱体及其制备方法和应用
CN110690416B (zh) 一种锂二次电池用高镍三元正极材料及其制备方法
JP5712544B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN110518220A (zh) 一种高镍梯度镍钴锰铝四元正极材料及制备方法
CN113023794B (zh) 无钴高镍正极材料及其制备方法、锂离子电池正极及锂离子电池
CN102013481A (zh) 一种球形梯度富锂正极材料的合成方法
CN107482213A (zh) 一种镍铝共掺杂四氧化三锰及其制备方法
CN108585065A (zh) 一种高镍三元正极材料前驱体及其制备方法
WO2021129108A1 (zh) 空心结构碳酸盐二元前驱体及其制备方法和应用
JP4620926B2 (ja) 非水電解質二次電池用正極活物質の製造法
CN108862406B (zh) 一种碳酸盐前驱体及其制备方法和应用
CN104649336B (zh) 一种球形镍钴铝氢氧化物前驱体的制备方法
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN113603153B (zh) 一种钨掺杂高镍无钴前驱体及其制备方法
CN115231627B (zh) 一种大单晶镍钴锰正极材料的制备法
JP2009123400A (ja) リチウム二次電池用活物質及びリチウム二次電池
CN113816430A (zh) 一种改性四氧化三锰的制备方法及制品和应用
CN106340642B (zh) 一种长循环高容量锂电池正极材料及制备方法
CN106477623B (zh) 一种制备绒球状钛酸锂的方法
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN107180965B (zh) 一种纳米级磷酸铁锂/石墨烯复合材料及其制备方法和应用
CN108695512A (zh) 酸洗铁红作为负极材料的用途
KR101170095B1 (ko) 상압 저온 공정을 이용한 나노 구조 감마 망간 산화물 분말의 합성방법과 이를 이용한 리튬망간 산화물의 제조방법
CN115490276B (zh) 一种表面改性的正极材料前驱体及其制备方法和应用
CN111422924A (zh) 钙掺杂富锂碳酸盐前驱体及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020904592

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE