WO2021128879A1 - 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法 - Google Patents

一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法 Download PDF

Info

Publication number
WO2021128879A1
WO2021128879A1 PCT/CN2020/109940 CN2020109940W WO2021128879A1 WO 2021128879 A1 WO2021128879 A1 WO 2021128879A1 CN 2020109940 W CN2020109940 W CN 2020109940W WO 2021128879 A1 WO2021128879 A1 WO 2021128879A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
modified
water
carbon nanotube
network
Prior art date
Application number
PCT/CN2020/109940
Other languages
English (en)
French (fr)
Inventor
钱涛
刘海龙
Original Assignee
杭州吉华高分子材料股份有限公司
钱涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州吉华高分子材料股份有限公司, 钱涛 filed Critical 杭州吉华高分子材料股份有限公司
Priority to AU2020411746A priority Critical patent/AU2020411746A1/en
Publication of WO2021128879A1 publication Critical patent/WO2021128879A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the invention relates to the field of coatings, in particular to a preparation method of a carbon nanotube composite ceramic network modified water-based non-stick coating.
  • iron cookware Due to its own structure, iron cookware is very easy to rust during transportation, storage and use.
  • the traditional method has been to coat the surface of the cookware with an oil layer.
  • the oil layer not only has limited anti-rust ability, but also the oil layer is very easy to hang when sold.
  • Ash absorption causes secondary pollution.
  • Anti-corrosion is the demand of every iron cookware consumer.
  • the most convenient and universal is the coating method, which effectively prevents or relieves the oxygen in the environment by forming a coating on the surface of the substrate. , Moisture and other contact with the substrate to achieve the purpose of anti-corrosion, coatings dedicated to the anti-corrosion of iron cookware have a huge market capacity.
  • iron cookware is non-sticky, to achieve a healthy cooking method with less oil, no oil smoke, and easy cleaning of the cookware. It has also become an urgent need to improve the anti-corrosion performance of non-stick coatings applied to iron cookware.
  • Carbon nanotubes are a type of metal protective material that has been studied more frequently. Because of its special structure, excellent chemical stability and electrical properties, it has applications in various fields. With the development of technology, it is improving the coating There are also applications in terms of performance. When carbon nanotubes are used in nano-polymer-based composite materials, the performance improvement is particularly obvious.
  • the structure of carbon nanotubes is very simple, which can be mainly divided into two-dimensional structure and three-dimensional structure.
  • the three-dimensional structure is relatively complex and belongs to single-molecule materials. Through multi-layer nesting, very complex anti-corrosion material structures can be realized to achieve more superiority. Performance.
  • carbon nanotubes can improve the performance of the coating.
  • the use of carbon nanotubes in coatings has certain problems. For example, adding carbon nanotubes directly to the coating has poor dispersion in the coating and is easy to agglomerate. Therefore, the modification of carbon nanotubes is very important in the preparation of metal anticorrosive coatings.
  • Silane coupling agent is a widely used coupling agent. Its molecular structure has groups that can be combined with inorganic materials. Therefore, in the prior art, the use of silane coupling agents to modify carbon nanotubes is beneficial to improve their Dispersibility in coatings.
  • the present invention provides a preparation method of carbon nanotube composite ceramic network modified water-based non-stick coating.
  • the present invention first modifies carbon nanotubes and then reacts with tetraethylorthosilicate to form inorganic ceramics. Network to realize the in-situ modification of carbon nanotubes.
  • the inorganic ceramic network After the inorganic ceramic network is obtained, it is mixed and reacted with tetraethyl orthosilicate and fluorine-containing emulsion to form an organic-inorganic interpenetrating network structure, so that the carbon nanotubes are locked in the pores of the network structure and form a conductive network channel , Compared with simple silane coupling agent modification, it has little effect on the performance of carbon nanotubes, and can improve the physical and mechanical properties and anti-corrosion effect of the coating.
  • a preparation method of carbon nanotube composite ceramic network modified water-based non-stick coating includes the following steps:
  • Pre-dispersion of carbon nanotubes The carbon nanotubes are dispersed in water through a pre-dispersion process to form a carbon nanotube slurry.
  • step 1) Blend the carbon nanotube slurry prepared in step 1) with the silane coupling agent, stir and react at room temperature, then add tetraethyl orthosilicate, adjust the pH to 1 to 4, and filter after heating and stirring to obtain Carbon nanotubes modified in situ by the ceramic network; the mass ratio of carbon nanotubes, silane coupling agent and tetraethylorthosilicate is 20 ⁇ 4:1:1.1 ⁇ 2.0;
  • Si(OR) 3 is partially hydrolyzed to form silanol, and then the silanol reacts with the hydroxyl groups on the surface of the carbon nanotubes to form -SiO-M-covalent bonds (M represents the surface of the carbon nanotubes), and then Continue to add tetraethylorthosilicate (TEOS) to the product, and a hydrolysis condensation reaction occurs to form an inorganic ceramic network (as shown in Figure 1).
  • TEOS tetraethylorthosilicate
  • the carbon nanotubes are wrapped in situ to obtain carbon nanotubes modified in situ by the ceramic network. .
  • the carbon nanotubes modified in situ by the ceramic network are mixed and reacted with tetraethylorthosilicate and fluorine-containing emulsion.
  • the overlapping parts can form a three-dimensional conductive network channel, so that the conductivity of the coating is improved, and the corrosion resistance of the coating is also improved. outstanding.
  • Metal cookware is often exposed to acid, salt and other media during use, especially iron cookware.
  • a layer of electrochemical corrosion electrolyte solution is formed, which forms countless tiny galvanic cells with the iron and a small amount of carbon in the iron substrate. In these galvanic cells, iron is the negative electrode and carbon is the positive electrode. Iron loses electrons and is oxidized.
  • Electrochemical corrosion is the main cause of iron corrosion.
  • the carbon nanotubes in the present invention are evenly dispersed in the non-stick coating, strengthen the tightness between the non-stick resins, effectively fill the gaps in the non-stick resin, constitute a good shielding effect, and effectively relieve The entry of the electrolyte solution improves the corrosion resistance of the non-stick coating.
  • the carbon nanotube conductive particles form a conductive network, which can lock electrons in the coating and destroy the corrosion effect of the galvanic cell, thus further improving the corrosion resistance of the coating. .
  • the technical principle of the selection 2.2) scheme lies in the fact that the number of hydroxyl groups on the surface of the carbon nanotube itself is limited and the reaction activity is low, so it is difficult to participate in the subsequent reaction. For this reason, the present invention first coats carbon nanotubes with a very thin layer of nano-scale amorphous alumina.
  • the difference between amorphous alumina and other shaped alumina is that it contains rich and highly active hydroxyl groups and is coated on carbon nanotubes. After the surface of the tube, the number of active hydroxyl groups can be increased, which can significantly increase its reactivity. Then it is mixed with tetraethylorthosilicate and hydrolyzed and condensed to form an inorganic ceramic network.
  • the subsequent process is the same as 2.1).
  • the tetraethyl orthosilicate must be added in two parts, the first time is to form an inorganic ceramic network, and the second time is to realize the formation of an inorganic-organic interpenetrating network.
  • the pre-dispersion process is ultrasonic or grinding or adding a dispersant or a combination thereof.
  • the concentration of the carbon nanotube slurry is 2-30 wt%.
  • the silane coupling agent is ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)-ethyltrimethoxysilane One or more of trisilane and 3-(2,3-glycidoxy)propylmethyldimethoxysilane.
  • the silane coupling agent self-condenses to produce multiple hydroxyl groups, in order to make the silane coupling agent react with the hydroxyl groups on the carbon nanotubes, while retaining other hydroxyl groups.
  • the silane coupling agent is not pre-hydrolyzed, and no catalyst is added, but it is directly mixed with the carbon nanotubes to increase the reaction time.
  • the silane coupling agents with long alkyl groups are used in the present invention to increase the steric hindrance effect and ensure that only part of the hydroxyl groups on the silane coupling agent react with the carbon nanotubes, while most of the hydroxyl groups remain.
  • step 2.1 the stirring speed at room temperature is 200-300 rpm, and the stirring reaction time at room temperature is 2 to 4 hours.
  • step 2.1 the temperature is raised to 40-80°C, and the reaction is stirred for 2-5 hours after the temperature is raised.
  • step 2.2 heating the carbon nanotube slurry prepared in step 1) to 50-80°C; and/or the mass ratio of aluminum sulfate to carbon nanotubes is 5-1.1:1.
  • the aging time is 2 to 4 hours.
  • step 2.2 the temperature is raised to 40-80°C, and the reaction is stirred for 2-5 hours after the temperature is raised.
  • step 3 Preferably, in step 3):
  • the fluorine-containing emulsion is one or more of PTFE, FEP, ECTFE, PCTFE and PFA.
  • the bonding resin is one or more of PES, PAI, PI and PPS.
  • the high temperature resistant pigments and fillers include high temperature resistant pigments and high temperature resistant fillers, the high temperature resistant pigments are inorganic high temperature resistant pigments or organic high temperature resistant pigments or a combination thereof, and the high temperature resistant filler is ceramic powder or silicon carbide or a combination thereof.
  • the auxiliary agent is one or more of dispersing agent, leveling agent, defoaming agent and thickening agent.
  • the water is distilled water, ultrapure water or deionized water.
  • step 3 the temperature is raised to 40-80°C, and the reaction is stirred for 2-5 hours after the temperature is raised.
  • the mass ratio of the fluorine-containing emulsion, the tetraethyl orthosilicate and the in-situ modified carbon nanotubes of the ceramic network is 40-60:1:15-30.
  • the carbon nanotubes are modified with a silane coupling agent first, and then reacted with tetraethylorthosilicate to form an inorganic ceramic network to realize the in-situ modification of the carbon nanotubes.
  • amorphous alumina is first connected to the surface of carbon nanotubes to increase the number of surface hydroxyl groups, and then reacts with tetraethylorthosilicate to form an inorganic ceramic network to realize in-situ modification of carbon nanotubes.
  • the present invention is mixed and reacted with tetraethyl orthosilicate and fluorine-containing emulsion to form an organic-inorganic interpenetrating network structure, so that the carbon nanotubes are locked in the pores of the network structure, and
  • the formation of conductive network channels has less impact on the performance of carbon nanotubes than pure silane coupling agent modification, and can improve the physical and mechanical properties and anti-corrosion effects of the coating.
  • the synthesis method of the present invention is simple, convenient, and easy to industrialize.
  • the obtained coating has good adhesion with the coating substrate after film formation. It is used on iron cookware and has the advantages of heat accumulation, corrosion resistance, good durability, and non-stickiness. Advantages such as cleaning.
  • Figure 1 is a schematic diagram of the reaction principle of step 2.1).
  • FIG. 2 is a schematic diagram of the reaction principle of step 3).
  • a preparation method of carbon nanotube composite ceramic network modified water-based non-stick coating includes the following steps:
  • Pre-dispersion of carbon nanotubes The carbon nanotubes are dispersed in water through a pre-dispersion process to form a carbon nanotube slurry with a concentration of 2-30 wt%.
  • the pre-dispersion process is ultrasonic or grinding or adding a dispersant or a combination thereof.
  • step 1) Blend the carbon nanotube slurry prepared in step 1) with a silane coupling agent, stir and react for 2 to 4 hours at 200 to 300 rpm at room temperature, then add tetraethyl orthosilicate, adjust the pH to 1 to 4, and increase the temperature After stirring and reacting at 40 ⁇ 80°C for 2 ⁇ 5h, it is filtered to obtain carbon nanotubes modified in situ by the ceramic network; the mass ratio of carbon nanotubes, silane coupling agent and tetraethylorthosilicate is 20 ⁇ 4:1:1.1 ⁇ 2.0;
  • the silane coupling agent is ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(3,4 epoxycyclohexyl)-ethyltrimethoxysilane and 3-(2, One or more of 3-glycidoxy)propylmethyldimethoxysilane.
  • the fluorine-containing emulsion is one or more of PTFE, FEP, ECTFE, PCTFE and PFA.
  • the bonding resin is one or more of PES, PAI, PI and PPS.
  • the high temperature resistant pigments and fillers include high temperature resistant pigments and high temperature resistant fillers, the high temperature resistant pigments are inorganic high temperature resistant pigments or organic high temperature resistant pigments or a combination thereof, and the high temperature resistant filler is ceramic powder or silicon carbide or a combination thereof.
  • the auxiliary agent is one or more of dispersing agent, leveling agent, defoaming agent and thickening agent.
  • the water is distilled water, ultrapure water or deionized water.
  • step 2) is different:
  • step 2) is different:
  • step 2) is different:
  • step 2) is different:
  • Example 2 The only difference from Example 1 is that the carbon nanotubes are modified with a conventional silane coupling agent.
  • the specific scheme is:
  • Example 2 The only difference from Example 1 is that only tetraethyl orthosilicate is added in step 2), but not in step 3).
  • the specific solution is:
  • the carbon nanotube composite ceramic network modified water-based non-stick coatings prepared in Examples 1-8 and Comparative Examples 1-3 were respectively coated on an iron pan (thickness of 25-30 ⁇ m), and then the hardness and anti-polymerization Heat resistance, solvent scrubbing resistance, acid resistance, salt water resistance and non-stick properties are tested.
  • the hardness test is carried out according to GB/T 6739.
  • the result is evaluated: paint film scratches; heat accumulation test according to induction cooker boiling water test Proceed with the result evaluation: after boiling water for 2 hours, observe with 4 times magnifying glass, the paint film has no cracks, wrinkles and peeling phenomenon; the solvent scrubbing resistance test is carried out according to the regulations of the instrument wipe method in GB/T 23989, the solvent is methyl ethyl ketone; acid resistance The test is carried out according to GB/T 9274 immersion method, the medium is 3% acetic acid solution; the salt water resistance test is carried out according to GB/T 9274 immersion method, and the medium is 10% NaCl solution; no The viscosity test was carried out in accordance with GB/T 32095.2-2015, and the result was evaluated: 10 fried eggs remained intact. The test results are shown in Table 1.
  • comparative example 1 did not add carbon nanotubes, it had low hardness, heat accumulation, and poor acid and salt water resistance; while comparative example 2 added carbon nanotubes directly modified by silane coupling agent, due to poor dispersibility, Although the hardness has been improved, due to the unevenness of the coating, there is still heat accumulation, poor acid and salt water resistance, and can not pass the non-stick test; in Comparative Example 3, although the carbon nanotubes are relatively well dispersed , But because it does not form an interpenetrating network structure with the organic resin, the compactness of the coating is not good, and corrosion will still occur in the acidic medium with strong corrosiveness.
  • the water-based non-stick coating modified by the carbon nanotube composite ceramic network of Examples 1-8 has excellent hardness, heat buildup resistance, solvent scrubbing resistance, acid resistance, salt water resistance, and non-stick properties.
  • Viscosity indicating that the carbon nanotubes modified by the silane coupling agent can be stably and uniformly dispersed in the organic phase, avoiding the agglomeration between the carbon nanoparticles, and the formation of the ceramic network makes the carbon nanoparticles and the fluorine-containing macromolecules
  • An organic-inorganic interpenetrating network structure is generated between the chains, which makes the combination between the two closer, and plays a synergistic effect of ceramic materials, carbon nanotubes, and non-stick resins.
  • raw materials and equipment used in the present invention are all commonly used raw materials and equipment in the field; the methods used in the present invention, unless otherwise specified, are all conventional methods in the field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明涉及涂料领域,公开了一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法,包括:1)碳纳米管的预分散;2.1)将碳纳米管浆体与硅烷偶联剂反应,再与正硅酸四乙酯反应,得到陶瓷网络原位改性的碳纳米管;2.2)在碳纳米管表面包覆无定型氧化铝,再与正硅酸四乙酯反应,得到陶瓷网络原位改性的碳纳米管;3)将含氟乳液和正硅酸四乙酯预混合,再加入陶瓷网络原位改性的碳纳米管,升温搅拌反应后,加入其他组分。本发明方法可形成有机-无机的互穿网络结构,使得碳纳米管被锁定在该网络结构的孔隙中,并形成导电网络通道,对碳纳米管的性能影响小,可提升涂层的物理机械性能和防腐效果。

Description

一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法 技术领域
本发明涉及涂料领域,尤其涉及一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法。
背景技术
铁质炊具由于其自身结构,在运输,储存及使用过程中极易生锈,一直以来的传统方法是在炊具表面涂覆油层,该油层不仅防锈能力有限,而且油层在悬挂出售时极易吸灰造成二次污染。防腐是每一位铁质炊具消费者的需求,在众多的解决方案中,最便捷、通用的是涂层法,该方法通过在基材表面形成涂层,从而有效阻止或缓解环境中的氧、水分等与基材的接触从而达到防腐的目的,专用于铁质炊具防腐的涂料市场容量巨大。此外,铁质炊具的另一大发展趋势是不粘化,实现健康少油、无油烟、炊具易于清洗的烹饪方式。提升不粘涂料应用于铁质炊具上的防腐性能也成为了迫切的需要。
碳纳米管是目前研究比较多的一类金属防护材料,因其特殊的结构、优异的化学稳定性以及电学性能等,在各个领域中均有应用,随着技术的发展,其在提高涂层性能方面也有应用。碳纳米管用于纳米聚合物基复合材料时,对性能的提升尤为明显。碳纳米管的结构非常简单,主要可以分为二维结构和三维结构,三维结构相对比较复杂,属于单分子材料,并且通过多层的嵌套,可以实现非常复杂的防腐材料结构,达到更加优越的性能。
碳纳米管的使用可以提高涂层的性能,然而碳纳米管在涂料中的使用存在一定的问题,如直接在涂料中添加碳纳米管,其在涂料中分散性差、易团聚。因此,在金属防腐涂层制备过程中,碳纳米管的改性至关重要。硅烷偶联剂是一类应用广泛的偶联剂,其分子结构中具有能和无机材料结合的基团,因此在现有技术中使用硅烷偶联剂对碳纳米管进行改性有利于提高其在涂料中的分散性。
然而,用硅烷偶联剂对碳纳米管进行改性虽然一定程度上可以提高其分散性,但或多或少都会对碳纳米管的性能产生影响,市售的碳纳米管表面已经损失了大部分的羟基官能团,因此采用硅烷偶联剂改性之前,需要对其进行处理,一般采用浓硫酸和浓硝酸的混酸体系对其进行氧化处理,使碳纳米管表面重新产生较多的羟基官能团,便于改性,但该工艺会带来较大酸性污染,而如不加处理,则硅烷偶联剂对碳纳米管的改性,很难键接到碳纳米管上,呈现一种物理共混的状态,当加入到有机涂料中后,这种物理包覆的状态极易被破坏,进而失去了避免碳纳米管团聚的作用。
由上可知,利用硅烷偶联剂对碳纳米管进行改性这一传统方法,会影响防腐涂层的物 理机械性能和防腐效果。
发明内容
为了解决上述技术问题,本发明提供了一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法,本发明先对碳纳米管改性,然后与正硅酸四乙酯反应形成无机陶瓷网络,实现对碳纳米管的原位改性。在得到无机陶瓷网络后再与正硅酸四乙酯和含氟乳液混合反应,形成有机-无机的互穿网络结构,使得碳纳米管被锁定在该网络结构的孔隙中,并形成导电网络通道,与单纯的硅烷偶联剂改性相比对碳纳米管的性能影响小,可提升涂层的物理机械性能和防腐效果。
本发明的具体技术方案为:
一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法,包括以下步骤:
1)碳纳米管的预分散:将碳纳米管通过预分散工艺分散于水中,形成碳纳米管浆体。
2)碳纳米管的改性:分为方案2.1)或方案2.2):
2.1)将步骤1)制备的碳纳米管浆体与硅烷偶联剂共混,室温下搅拌反应后,再加入正硅酸四乙酯,调节pH为1~4,升温搅拌反应后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、硅烷偶联剂和正硅酸四乙酯的质量比为20~4∶1∶1.1~2.0;
2.2)将步骤1)制备的碳纳米管浆体加热并调节pH为8~10,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为5~6,然后搅拌陈化,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1~4,升温搅拌反应后过滤,得到陶瓷网络原位改性的碳纳米管;无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为10~2∶1。
3)碳纳米管复合陶瓷网络改性水性不粘涂料的制备:将含氟乳液和正硅酸四乙酯预混合,再加入步骤2)制备的陶瓷网络原位改性的碳纳米管,升温搅拌反应后,加入黏结树脂、耐高温颜填料、助剂和水,得到成品。
本发明的技术原理如下:
选择2.1)方案的技术原理:首先,通过碳纳米管的预分散,将原先可能团聚的纳米粒子分散,便于改性。接着本发明用硅烷偶联剂对碳纳米管改性处理,硅烷偶联剂的通式可以用Y(CH 2)nSi(OR) 3来表示。在该改性过程中,首先Si(OR) 3部分水解形成硅醇,硅醇再与碳纳米管表面的羟基发生反应形成-SiO-M-共价键(M表示碳纳米管表面),然后向该产物中继续添加正硅酸四乙酯(TEOS),发生水解缩合反应,形成无机陶瓷网络(如图1),原位包裹碳纳米管,即得到陶瓷网络原位改性的碳纳米管。最后将陶瓷网络原位改性的碳纳米管再 与正硅酸四乙酯和含氟乳液混合反应,在该过程中进一步发生水解缩合反应,形成无机网络(陶瓷网络)和有机网络(含氟乳液)相互穿插的互穿网络结构(如图2),在该结构中,碳纳米管被锁定在网络结构的孔隙中,与单纯的硅烷偶联剂改性相比,不需引入混酸体系对碳纳米管进行氧化处理,即使硅烷偶联剂对碳纳米管的改性是物理包裹,也可以被网络结构锚定,与有机涂料体系混合后,碳纳米管均匀分散的状态不会被改变,不会发生无机粒子再次团聚的问题,可以有效提升涂层的物理机械性能。
此外,在该涂层中,由于碳纳米管被锁定在网络结构的孔隙中,相互搭接的部分可形成三维导电网络通道,使得涂层的导电性得到提升,因而涂层的防腐性也更加出色。金属炊具在使用过程中,经常会接触到酸、盐等介质,特别是铁质炊具,除了发生常见的化学腐蚀之外,清洗之后如果表面未做好防腐阻隔,并且残留水分的话,会在表面形成一层电化学腐蚀电解质溶液,它跟铁基材中的铁和少量的碳形成无数微小的原电池,在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化,电化学腐蚀是造成铁腐蚀的主要原因。本发明中的碳纳米管均匀的分散在不粘涂料中,加强了不粘树脂之间的紧密性,有效的填补了不粘树脂中的空隙,构成了一个良好的屏蔽作用,有效地缓解了电解质溶液的进入,提高了不粘涂层的防腐蚀性,此外碳纳米管导电粒子形成导电网络,可以将电子锁定在涂层中,破坏原电池的腐蚀作用,因而可以进一步提高涂层防腐性。
选择2.2)方案的技术原理:方案2.2)与2.1)在原理上不同之处在于:由于碳纳米管自身表面上的羟基数量有限且反应活性较低,很难参与后续的反应。为此本发明先在碳纳米管包覆上一层极薄的纳米级无定型氧化铝,无定型氧化铝与其他定型的氧化铝不同的是其含有丰富的高活性羟基,包覆于碳纳米管表面后能够增加其活性羟基数量,可显著提高其反应活性。然后再与正硅酸四乙酯混合后发生水解缩合反应形成无机陶瓷网络,此后过程与2.1)相同。
在本发明方案中需要注意的是正硅酸四乙酯必须分为两次添加,第一次是为了形成无机陶瓷网络,第二次是为了实现无机-有机互穿网络的形成。
作为优选,步骤1)中,所述预分散工艺为超声或研磨或加入分散剂或其组合。
作为优选,步骤1)中,所述碳纳米管浆体的浓度为2~30wt%。
作为优选,步骤2.1)中,所述硅烷偶联剂为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、β-(3、4环氧环己基)-乙基三甲氧基硅烷和3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷中的一种或多种。
由于硅烷偶联剂会自缩合产生多个羟基,为了使硅烷偶联剂与碳纳米管上的羟基反应,同时又保留其他的羟基。在本发明中没有对硅烷偶联剂进行预水解,也没有加催化剂, 而是直接和碳纳米管混合,增加反应时间。同时本发明选用的都是长烷基的硅烷偶联剂来增加位阻效应,保证硅烷偶联剂上只有部分羟基和碳纳米管反应,而大部分羟基保留。
作为优选,步骤2.1)中:室温搅拌速度为200~300rpm,室温搅拌反应时间为2~4h。
作为优选,步骤2.1)中:升温至40~80℃,升温后搅拌反应2~5h。
作为优选,步骤2.2)中:将步骤1)制备的碳纳米管浆体加热至50~80℃;和/或硫酸铝与碳纳米管的质量比为5~1.1∶1。
作为优选,步骤2.2)中:陈化时间为2~4h。
作为优选,步骤2.2)中:升温至40~80℃,升温后搅拌反应2~5h。
作为优选,步骤3)中:
所述含氟乳液为PTFE、FEP、ECTFE、PCTFE和PFA中的一种或多种。
所述的黏结树脂为PES、PAI、PI和PPS中的一种或多种。
所述耐高温颜填料包括耐高温颜料与耐高温填料,所述耐高温颜料为无机耐高温颜料或有机耐高温颜料或其组合,所述耐高温填料为陶瓷粉或碳化硅或其组合。
所述助剂为分散剂、流平剂、消泡剂和增稠剂中的一种或多种。
所述水为蒸馏水、超纯水或去离子水。
作为优选,步骤3)中,升温至40~80℃,升温后搅拌反应2~5h。
作为优选,步骤3)中,所述含氟乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为40~60∶1∶15~30。
与现有技术对比,本发明的有益效果是:
1、本发明先用硅烷偶联剂对碳纳米管改性,然后与正硅酸四乙酯反应形成无机陶瓷网络,实现对碳纳米管的原位改性。
2、本发明先在碳纳米管表面接上无定型氧化铝以提高其表面羟基数量,然后与正硅酸四乙酯反应形成无机陶瓷网络,实现对碳纳米管的原位改性。
3、本发明在得到无机陶瓷网络后再与正硅酸四乙酯和含氟乳液混合反应,形成有机-无机的互穿网络结构,使得碳纳米管被锁定在该网络结构的孔隙中,并形成导电网络通道,与单纯的硅烷偶联剂改性相比对碳纳米管的性能影响小,可提升涂层的物理机械性能和防腐效果。
4、本发明的合成方法简单、方便、易于工业化,得到的涂料成膜后与涂覆基质附着力好,用于铁质炊具上,具有防聚热、防腐蚀、耐用性好、不粘易清洗等优点。
附图说明
图1为步骤2.1)的反应原理示意图;
图2为步骤3)的反应原理示意图。
具体实施方式
下面结合实施例对本发明作进一步的描述。
总实施例
一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法,包括以下步骤:
1)碳纳米管的预分散:将碳纳米管通过预分散工艺分散于水中,形成浓度为2~30wt%的碳纳米管浆体。所述预分散工艺为超声或研磨或加入分散剂或其组合。
2)碳纳米管的改性:分为方案2.1)或方案2.2):
2.1)将步骤1)制备的碳纳米管浆体与硅烷偶联剂共混,室温下200~300rpm搅拌反应2~4h后,再加入正硅酸四乙酯,调节pH为1~4,升温至40~80℃搅拌反应2~5h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、硅烷偶联剂和正硅酸四乙酯的质量比为20~4∶1∶1.1~2.0;
所述硅烷偶联剂为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、β-(3、4环氧环己基)-乙基三甲氧基硅烷和3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷中的一种或多种。
2.2)将步骤1)制备的碳纳米管浆体加热至50~80℃并调节pH为8~10,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为5~6,然后搅拌陈化2~4h,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1~4,升温至40~80℃搅拌反应2~5h后过滤,得到陶瓷网络原位改性的碳纳米管。硫酸铝与碳纳米管的质量比为5~1.1∶1无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为10~2∶1;
3)碳纳米管复合陶瓷网络改性水性不粘涂料的制备:将含氟乳液和正硅酸四乙酯预混合,再加入步骤2)制备的陶瓷网络原位改性的碳纳米管,升温至40~80℃搅拌反应2~5h后,加入黏结树脂、耐高温颜填料、助剂和水,得到成品。所述含氟乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为40~60∶1∶15~30。
所述含氟乳液为PTFE、FEP、ECTFE、PCTFE和PFA中的一种或多种。所述黏结树脂为PES、PAI、PI和PPS中的一种或多种。所述耐高温颜填料包括耐高温颜料与耐高温填料,所述耐高温颜料为无机耐高温颜料或有机耐高温颜料或其组合,所述耐高温填料为陶瓷粉或碳化硅或其组合。所述助剂为分散剂、流平剂、消泡剂和增稠剂中的一种或多种。所述水为蒸馏水、超纯水或去离子水。
实施例1
1)将碳纳米管通过超声分散工艺,分散于水中,形成质量分数为2%的碳纳米管浆体;
2)将碳纳米管浆体与γ-(2,3-环氧丙氧)丙基三甲氧基硅烷共混,在反应瓶中机械搅拌(200rpm)室温反应2h后,再加入正硅酸四乙酯,调节pH为4,在80℃,搅拌反应2h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷和正硅酸四乙酯的质量比为4∶1∶1.1;
3)将PTFE乳液和正硅酸四乙酯预混合,再加入陶瓷网络原位改性的碳纳米管,在80℃,搅拌反应2h后,加入PES、碳黑、陶瓷粉、分散剂、流平剂、消泡剂、增稠剂和水,得到复合改性水性不粘涂料;PTFE乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为40∶1∶15。
实施例2
1)将碳纳米管通过研磨分散工艺,分散于水中,形成质量分数为30%的碳纳米管浆体;
2)将碳纳米管浆体与β-(3、4环氧环己基)-乙基三甲氧基硅烷共混,在反应瓶中机械搅拌(300rpm)室温反应4h后,再加入正硅酸四乙酯,调节pH为1,在40℃,搅拌反应5h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、β-(3、4环氧环己基)-乙基三甲氧基硅烷和正硅酸四乙酯的质量比为20∶1∶2.0;
3)将PTFE乳液、PFA乳液和正硅酸四乙酯预混合,再加入陶瓷网络原位改性的碳纳米管,在40℃,搅拌反应5h后,加入PES、PAI、铁红、碳化硅、分散剂、流平剂、消泡剂、增稠剂和水,得到复合改性水性不粘涂料;PTFE乳液、PFA乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为30∶30∶1∶30。
实施例3
1)将碳纳米管加入分散剂,预分散于水中,形成质量分数为20%的碳纳米管浆体;
2)将碳纳米管浆体与γ-(2,3-环氧丙氧)丙基三甲氧基硅烷共混,在反应瓶中机械搅拌(300rpm)室温反应4h后,再加入正硅酸四乙酯,调节pH为1,在70℃,搅拌反应3h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷和正硅酸四乙酯的质量比为10∶1∶1.5;
3)将FEP乳液和正硅酸四乙酯预混合,再加入陶瓷网络原位改性的碳纳米管/碳纳米管,在70℃,搅拌反应2h后,加入PPS、PI、碳黑、碳化硅、分散剂、流平剂、消泡剂、增稠剂和水,得到复合改性水性不粘涂料;PCTFE乳液、FEP乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为20∶40∶1∶30。
实施例4
1)将碳纳米管通过研磨分散工艺,分散于水中,形成质量分数为10%的碳纳米管浆体;
2)将碳纳米管浆体与3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷共混,在反应瓶中机械搅拌(200rpm)室温反应3h后,再加入正硅酸四乙酯,调节pH为1,在60℃,搅拌反应5h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷和正硅酸四乙酯的质量比为8∶1∶1.1;
3)将PTFE乳液、ECTFE乳液和正硅酸四乙酯预混合,再加入陶瓷网络原位改性的碳纳米管,在70℃,搅拌反应4h后,加入PPS、PAI、铁红、陶瓷粉、分散剂、流平剂、消泡剂、增稠剂和水,得到复合改性水性不粘涂料;PTFE乳液、ECTFE乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为40∶10∶1∶20。
实施例5
与实施例1的不同之处在于步骤2)不同:
将步骤1)制备的碳纳米管浆体加热至55℃并调节pH为9,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为5.5,然后搅拌陈化3h,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为4,升温至80℃搅拌反应2h后过滤,得到陶瓷网络原位改性的碳纳米管。硫酸铝与碳纳米管的质量比为5∶1,无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为10∶1。
实施例6
与实施例1的不同之处在于步骤2)不同:
将步骤1)制备的碳纳米管浆体加热至50℃并调节pH为10,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为6,然后搅拌陈化4h,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1,升温至40℃搅拌反应5h后过滤,得到陶瓷网络原位改性的碳纳米管。硫酸铝与碳纳米管的质量比为1.1∶1,无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为2∶1。
实施例7
与实施例1的不同之处在于步骤2)不同:
将步骤1)制备的碳纳米管浆体加热至80℃并调节pH为8,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为5,然后搅拌陈化2h,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1,升温至70℃搅拌反应3h后过滤,得到陶瓷网络原位改性的碳纳米管。硫酸铝 与碳纳米管的质量比为4∶1,无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为5∶1。
实施例8
与实施例1的不同之处在于步骤2)不同:
将步骤1)制备的碳纳米管浆体加热至80℃并调节pH为8,逐滴滴加硫酸铝溶液并同时用稀硫酸调节pH为6,然后搅拌陈化4h,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1,升温至60℃搅拌反应5h后过滤,得到陶瓷网络原位改性的碳纳米管。硫酸铝与碳纳米管的质量比为3∶1,无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为10∶1。
对比例1
向PTFE乳液,加入PES、碳黑、陶瓷粉、分散剂、流平剂、消泡剂、增稠剂和水,得到水性不粘涂料,物料与组成与实施例1一致。
对比例2
与实施例1的区别仅在于,用常规的硅烷偶联剂对碳纳米管进行改性,具体方案为:
1)将碳纳米管通过超声分散工艺,分散于水中,形成质量分数为20%的碳纳米管浆体。将碳纳米管浆体与γ-(2,3-环氧丙氧)丙基三甲氧基硅烷共混,在反应瓶中机械搅拌(200rpm)室温反应2h后,得到硅烷偶联剂改性的碳纳米管;碳纳米管浆体和γ-(2,3-环氧丙氧)丙基三甲氧基硅烷的质量比为4∶1。
2)向PTFE乳液,加入硅烷偶联剂改性的碳纳米管,搅拌均匀后,再加入PES、碳黑、陶瓷粉、分散剂、流平剂、消泡剂、增稠剂和水,得到改性水性不粘涂料;PTFE乳液和硅烷偶联剂改性的碳纳米管的质量比为40∶15。
对比例3
与实施例1的区别仅在于,只在步骤2)中添加正硅酸四乙酯,而未在步骤3)中添加,具体方案为:
1)将碳纳米管通过超声分散工艺,分散于水中,形成质量分数为20%的碳纳米管浆体。将碳纳米管浆体与γ-(2,3-环氧丙氧)丙基三甲氧基硅烷共混,在反应瓶中机械搅拌(200rpm)室温反应2h后,再加入正硅酸四乙酯,调节pH为4,在80℃,搅拌反应2h后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管浆体、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷和正硅酸四乙酯的质量比为4∶1∶1.1。
2)向PTFE乳液,加入陶瓷网络原位改性的碳纳米管,搅拌均匀后,加入PES、碳黑、陶瓷粉、分散剂、流平剂、消泡剂、增稠剂和水,得到碳纳米管改性水性不粘涂料;PTFE乳 液和陶瓷网络原位改性的碳纳米管的质量比为40∶15。
将本实施例1-8及对比例1-3制得的碳纳米管复合陶瓷网络改性水性不粘涂料分别涂覆在铁锅上(厚度为25~30μm),然后对其硬度、防聚热性、耐溶剂擦洗性、耐酸性、耐盐水性及不粘性等性能进行检测,其中硬度测试按GB/T 6739规定进行,结果评定:漆膜擦伤;防聚热测试按电磁炉煮水实验进行,结果评定:煮水2小时后,4倍放大镜观察,漆膜无裂纹、皱纹及剥落现象;耐溶剂擦洗性测试按GB/T 23989中仪器擦拭法规定进行,溶剂为丁酮;耐酸性测试按GB/T 9274中浸泡法规定进行,介质为质量分数为3%的醋酸溶液;耐盐水性测试按GB/T 9274中浸泡法规定进行,介质为质量分数为10%的NaCl溶液;不粘性测试按GB/T 32095.2-2015规定进行,结果评定:煎蛋10个保持完整性,检测结果如表1。
表1实施例1-8以及对比例1-3产品性能测试结果:
Figure PCTCN2020109940-appb-000001
经检验,对比例1未加入碳纳米管,硬度低,有聚热,耐酸和耐盐水性较差;而对比例2加入硅烷偶联剂直接改性的碳纳米管,由于分散性不佳,虽然在硬度上有所提升,但由于涂层的不均匀性,仍然有聚热,耐酸和耐盐水性较差,且无法通过不粘性测试;对比例3中,虽然碳纳米管相对分散较好,但由于没有和有机树脂相形成互穿网络结构,涂层的致密性不佳,在腐蚀性较强的酸性介质下,仍然会产生腐蚀现象。该实施例1-8的碳纳米管复合陶瓷网络改性的水性不粘涂料相对于对比例而言,具有优异的硬度、防聚热性、耐溶剂擦洗性、耐酸性、耐盐水性及不粘性,说明通过硅烷偶联剂修饰后的碳纳米管可以稳定均匀的分散在有机相中,避免了碳纳米粒子之间的团聚现象,并且通过陶瓷网络的形成使得碳纳米粒子与含氟大分子链之间产生有机-无机的互穿网络结构,使两者之间的结合更为紧密,起到陶瓷材料、碳纳米管、不粘树脂的协同增效作用。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法,其特征在于包括以下步骤:
    1)碳纳米管的预分散:将碳纳米管通过预分散工艺分散于水中,形成碳纳米管浆体;
    2)碳纳米管的改性:分为方案2.1)或方案2.2):
    2.1)将步骤1)制备的碳纳米管浆体与硅烷偶联剂共混,室温下搅拌反应后,再加入正硅酸四乙酯,调节pH为1~4,升温搅拌反应后过滤,得到陶瓷网络原位改性的碳纳米管;碳纳米管、硅烷偶联剂和正硅酸四乙酯的质量比为20~4:1:1.1~2.0;
    2.2)将步骤1)制备的碳纳米管浆体加热并调节pH为8~10,逐滴滴加硫酸铝溶液并同时调节pH为5~6,然后搅拌陈化,将所得混合物洗涤至中性后烘干,得到无定型氧化铝包覆的碳纳米管;将无定型氧化铝包覆的碳纳米管重新分散于水中,再加入正硅酸四乙酯,调节pH为1~4,升温搅拌反应后过滤,得到陶瓷网络原位改性的碳纳米管;无定型氧化铝包覆的碳纳米管和正硅酸四乙酯的质量比为10~2:1;
    3)碳纳米管复合陶瓷网络改性水性不粘涂料的制备:将含氟乳液和正硅酸四乙酯预混合,再加入步骤2)制备的陶瓷网络原位改性的碳纳米管,升温搅拌反应后,加入黏结树脂、耐高温颜填料、助剂和水,得到成品。
  2. 如权利要求1所述的制备方法,其特征在于,步骤1)中,所述预分散工艺为超声或研磨或加入分散剂或其组合。
  3. 如权利要求1所述的制备方法,其特征在于,步骤1)中,所述碳纳米管浆体的浓度为2~30wt%。
  4. 如权利要求1所述的制备方法,其特征在于,步骤2.1)中,所述硅烷偶联剂为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、β-(3、4环氧环己基)-乙基三甲氧基硅烷和3-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷中的一种或多种。
  5. 如权利要求1或4所述的制备方法,其特征在于,步骤2.1)中:
    室温搅拌速度为200~300rpm,室温搅拌反应时间为2~4h;和/或
    升温至40~80℃,升温后搅拌反应2~5h。
  6. 如权利要求1所述的制备方法,其特征在于,步骤2.2)中:
    将步骤1)制备的碳纳米管浆体加热至50~80℃;和/或
    硫酸铝与碳纳米管的质量比为5~1.1:1;和/或
    陈化时间为2~4h;和/或
    升温至40~80℃,升温后搅拌反应2~5h。
  7. 如权利要求1所述的制备方法,其特征在于,步骤3)中:
    所述含氟乳液为PTFE、FEP、ECTFE、PCTFE和PFA中的一种或多种;
    所述黏结树脂为PES、PAI、PI和PPS中的一种或多种;
    所述耐高温颜填料包括耐高温颜料与耐高温填料,所述耐高温颜料为无机耐高温颜料或有机耐高温颜料或其组合,所述耐高温填料为陶瓷粉或碳化硅或其组合;
    所述助剂为分散剂、流平剂、消泡剂和增稠剂中的一种或多种;
    所述水为蒸馏水、超纯水或去离子水。
  8. 如权利要求1或7所述的制备方法,其特征在于,步骤3)中,升温至40~80℃,升温后搅拌反应2~5h。
  9. 如权利要求1或7所述的制备方法,其特征在于,步骤3)中,所述含氟乳液、正硅酸四乙酯和陶瓷网络原位改性的碳纳米管的质量比为40~60:1:15~30。
  10. 权利要求1-9任一项所述制备方法所得的碳纳米管复合陶瓷网络改性水性不粘涂料在金属炊具表面的应用。
PCT/CN2020/109940 2019-12-27 2020-08-19 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法 WO2021128879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020411746A AU2020411746A1 (en) 2019-12-27 2020-08-19 Method for preparing aqueous non-stick coating modified with carbon nanotube composite ceramic network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911399361.7A CN111100513B (zh) 2019-12-27 2019-12-27 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法
CN201911399361.7 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021128879A1 true WO2021128879A1 (zh) 2021-07-01

Family

ID=70425417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109940 WO2021128879A1 (zh) 2019-12-27 2020-08-19 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法

Country Status (3)

Country Link
CN (1) CN111100513B (zh)
AU (1) AU2020411746A1 (zh)
WO (1) WO2021128879A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059054A (zh) * 2021-11-11 2022-02-18 安徽工业大学 一种铜箔表面水溶性大分子硅烷化处理剂、制备方法及其应用
CN114159982A (zh) * 2021-12-10 2022-03-11 江苏巨之澜科技有限公司 一种污水减量用中空纤维编织管滤膜及其制备方法与应用
CN114456729A (zh) * 2022-02-09 2022-05-10 浙江荣泰电工器材股份有限公司 一种耐高温且可重复使用的云母胶带及其制备方法
CN115229201A (zh) * 2022-09-23 2022-10-25 西安稀有金属材料研究院有限公司 一种高分散纳米钨粉的制备方法
CN115226731A (zh) * 2022-07-27 2022-10-25 广西科技师范学院 一种环保、缓释型档案防腐防虫抑菌剂及其制备方法
CN115353400A (zh) * 2022-09-29 2022-11-18 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法
CN115849796A (zh) * 2022-12-16 2023-03-28 南京能娃新型材料科技有限公司 一种防水型保温砂浆及其制备工艺
CN116425496A (zh) * 2023-03-17 2023-07-14 泰山石膏(江阴)有限公司 一种高强度石膏基纤维板及其制备方法
CN116855106A (zh) * 2022-08-24 2023-10-10 哈尔滨工业大学 一种高吸高发、低可凝挥发物的无机超黑热控涂层及其制备方法
CN117624946A (zh) * 2023-11-21 2024-03-01 旭贞新能源科技(上海)股份有限公司 一种无机纳米碱性陶瓷纯净自洁涂料及其制备方法及使用方法
CN118125425A (zh) * 2024-05-07 2024-06-04 湖南金阳石墨烯研究院有限公司 一种去除碳纳米管金属杂质的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100513B (zh) * 2019-12-27 2021-08-03 杭州吉华高分子材料股份有限公司 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法
CN111424884B (zh) * 2020-05-08 2022-05-20 北京市建筑工程研究院有限责任公司 一种缓粘结预应力钢棒及其制备方法
CN113636846B (zh) * 2021-10-14 2022-02-22 季华实验室 一种陶瓷粉体改性方法
CN114456685B (zh) * 2021-12-30 2023-08-01 杭州吉华高分子材料股份有限公司 一种具有导磁功能的水性耐热防腐涂料及其制备方法
CN114507461B (zh) * 2022-01-04 2023-06-13 杭州吉华高分子材料股份有限公司 一种水性聚四氟乙烯防聚热导磁不粘涂料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800095A (zh) * 2005-12-09 2006-07-12 中国科学院上海硅酸盐研究所 莫来石前驱体原位包覆碳纳米管的复合粉体的制备方法
CN1994876A (zh) * 2006-12-22 2007-07-11 中国科学院上海硅酸盐研究所 一种纳米二氧化硅颗粒包覆碳纳米管复合粉体的制备方法
CN102002201A (zh) * 2009-09-28 2011-04-06 浙江鹏孚隆科技有限公司 一种提高聚四氟乙烯树脂乳液临界开裂膜厚的方法及改性聚四氟乙烯树脂乳液在不粘涂层上的应用
CN103764303A (zh) * 2011-08-26 2014-04-30 Seb公司 包含具有载体粘附性能改良的不粘涂层的用品
CN104030294A (zh) * 2014-06-05 2014-09-10 上海交通大学 一种介孔二氧化硅包覆单壁碳纳米管的制备方法
CN106189562A (zh) * 2016-07-28 2016-12-07 杭州吉华高分子材料股份有限公司 一种红外辐射散热水性耐磨不粘涂料及其制备方法
CN107602089A (zh) * 2017-09-07 2018-01-19 张家港市六福新材料科技有限公司 一种改性碳纳米管氧化铝复合材料的制备方法
CN109111822A (zh) * 2018-07-19 2019-01-01 佛山腾鲤新能源科技有限公司 一种导电耐腐蚀涂料
CN111100513A (zh) * 2019-12-27 2020-05-05 杭州吉华高分子材料股份有限公司 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311109B (zh) * 2007-05-25 2011-06-29 财团法人工业技术研究院 碳纳米管的表面改性方法
CN102604534A (zh) * 2012-03-15 2012-07-25 浙江大学 一种苯并噁嗪超疏水导电涂层的制备方法
KR20130106895A (ko) * 2012-03-15 2013-09-30 이성균 테프론이 코팅된 마그네슘
CN105585911B (zh) * 2016-01-19 2018-04-27 杭州吉华高分子材料股份有限公司 一种高导热高耐磨不粘涂料
US20190211177A1 (en) * 2016-04-29 2019-07-11 Dong Yang Piston Co., Ltd. Resin composition for coating engine piston and method of fabricating the same
CN108543505B (zh) * 2018-04-24 2020-04-28 中广核俊尔新材料有限公司 一种具有多重核壳结构的复合粒子及其制备方法
CN108753057A (zh) * 2018-05-24 2018-11-06 林荣铨 一种氟碳涂料
CN109106197B (zh) * 2018-09-29 2021-06-25 宁波百飞特厨具有限公司 一种炒锅

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800095A (zh) * 2005-12-09 2006-07-12 中国科学院上海硅酸盐研究所 莫来石前驱体原位包覆碳纳米管的复合粉体的制备方法
CN1994876A (zh) * 2006-12-22 2007-07-11 中国科学院上海硅酸盐研究所 一种纳米二氧化硅颗粒包覆碳纳米管复合粉体的制备方法
CN102002201A (zh) * 2009-09-28 2011-04-06 浙江鹏孚隆科技有限公司 一种提高聚四氟乙烯树脂乳液临界开裂膜厚的方法及改性聚四氟乙烯树脂乳液在不粘涂层上的应用
CN103764303A (zh) * 2011-08-26 2014-04-30 Seb公司 包含具有载体粘附性能改良的不粘涂层的用品
CN104030294A (zh) * 2014-06-05 2014-09-10 上海交通大学 一种介孔二氧化硅包覆单壁碳纳米管的制备方法
CN106189562A (zh) * 2016-07-28 2016-12-07 杭州吉华高分子材料股份有限公司 一种红外辐射散热水性耐磨不粘涂料及其制备方法
CN107602089A (zh) * 2017-09-07 2018-01-19 张家港市六福新材料科技有限公司 一种改性碳纳米管氧化铝复合材料的制备方法
CN109111822A (zh) * 2018-07-19 2019-01-01 佛山腾鲤新能源科技有限公司 一种导电耐腐蚀涂料
CN111100513A (zh) * 2019-12-27 2020-05-05 杭州吉华高分子材料股份有限公司 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059054A (zh) * 2021-11-11 2022-02-18 安徽工业大学 一种铜箔表面水溶性大分子硅烷化处理剂、制备方法及其应用
CN114059054B (zh) * 2021-11-11 2023-07-25 安徽工业大学 一种铜箔表面水溶性大分子硅烷化处理剂、制备方法及其应用
CN114159982A (zh) * 2021-12-10 2022-03-11 江苏巨之澜科技有限公司 一种污水减量用中空纤维编织管滤膜及其制备方法与应用
CN114159982B (zh) * 2021-12-10 2023-07-14 江苏巨之澜科技有限公司 一种污水减量用中空纤维编织管滤膜及其制备方法与应用
CN114456729A (zh) * 2022-02-09 2022-05-10 浙江荣泰电工器材股份有限公司 一种耐高温且可重复使用的云母胶带及其制备方法
CN114456729B (zh) * 2022-02-09 2023-05-30 浙江荣泰电工器材股份有限公司 一种耐高温且可重复使用的云母胶带及其制备方法
CN115226731A (zh) * 2022-07-27 2022-10-25 广西科技师范学院 一种环保、缓释型档案防腐防虫抑菌剂及其制备方法
CN116855106A (zh) * 2022-08-24 2023-10-10 哈尔滨工业大学 一种高吸高发、低可凝挥发物的无机超黑热控涂层及其制备方法
CN116855106B (zh) * 2022-08-24 2024-05-28 哈尔滨工业大学 一种高吸高发、低可凝挥发物的无机超黑热控涂层及其制备方法
CN115229201B (zh) * 2022-09-23 2022-12-09 西安稀有金属材料研究院有限公司 一种高分散纳米钨粉的制备方法
CN115229201A (zh) * 2022-09-23 2022-10-25 西安稀有金属材料研究院有限公司 一种高分散纳米钨粉的制备方法
CN115353400B (zh) * 2022-09-29 2023-06-06 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法
CN115353400A (zh) * 2022-09-29 2022-11-18 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法
CN115849796A (zh) * 2022-12-16 2023-03-28 南京能娃新型材料科技有限公司 一种防水型保温砂浆及其制备工艺
CN115849796B (zh) * 2022-12-16 2023-11-14 南京能娃新型材料科技有限公司 一种防水型保温砂浆及其制备工艺
CN116425496A (zh) * 2023-03-17 2023-07-14 泰山石膏(江阴)有限公司 一种高强度石膏基纤维板及其制备方法
CN116425496B (zh) * 2023-03-17 2024-04-19 泰山石膏(江阴)有限公司 一种高强度石膏基纤维板及其制备方法
CN117624946B (zh) * 2023-11-21 2024-04-30 旭贞新能源科技(上海)股份有限公司 一种无机纳米碱性陶瓷纯净自洁涂料及其制备方法及使用方法
CN117624946A (zh) * 2023-11-21 2024-03-01 旭贞新能源科技(上海)股份有限公司 一种无机纳米碱性陶瓷纯净自洁涂料及其制备方法及使用方法
CN118125425A (zh) * 2024-05-07 2024-06-04 湖南金阳石墨烯研究院有限公司 一种去除碳纳米管金属杂质的方法

Also Published As

Publication number Publication date
AU2020411746A8 (en) 2022-03-31
AU2020411746A1 (en) 2021-12-16
CN111100513B (zh) 2021-08-03
CN111100513A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021128879A1 (zh) 一种碳纳米管复合陶瓷网络改性水性不粘涂料的制备方法
CN107353773B (zh) 一种含有石墨烯的水性环氧防腐涂料及其制备方法及应用
KR102459441B1 (ko) 철제 취사도구에 사용이 가능한 그래핀 개질 수성 논스틱 코팅재의 제조 방법
CN107810245B (zh) 不粘涂层底漆组合物及其制备方法
WO1997035939A1 (fr) Fluide pour realiser un revetement de silice a permittivite basse et substrat portant ce revetement a permittivite basse
CN110330862A (zh) 一种低表面能水性环氧防腐涂料及其制备与应用
JP2004131542A (ja) アルミニウム顔料
CN109988440A (zh) 一种耐高温防腐耐磨涂层及其制备方法
CN113583543A (zh) 一种疏水性复合防腐蚀涂层的制备方法及应用
TWI579041B (zh) 塗料與塗膜的形成方法
KR101708795B1 (ko) 화력발전소 가스 열교환소자의 고온 내산성 코팅제 및 그의 제조방법
JP2900762B2 (ja) 有機複合被覆鋼板
CN117925102B (zh) 一种陶瓷涂料用硅溶胶及其制备方法
CN109988446A (zh) 一种有机涂料用防腐接枝石墨烯填料及其制备方法
JPH0126384B2 (zh)
CN108795109A (zh) 无机耐温防腐涂料、其形成的涂层及该涂料的应用
CN117777854A (zh) 一种石墨烯/聚苯胺掺杂的耐热防腐涂料及其制备方法
CN116463052A (zh) 一种有机硅防腐涂料
JP6092591B2 (ja) スプレー塗布表面処理用組成物、表面処理亜鉛めっき鋼板の製造方法、および表面処理亜鉛めっき鋼板
JP2688851B2 (ja) 耐食性塗料組成物
JPS63186778A (ja) 金属表面処理組成物
JP2000204283A (ja) アルミニウム製熱交換器フィン材の表面処理組成物及びその表面処理方法
JPH0352977A (ja) ポリシロキサン被覆組成物
CN115386296A (zh) 一种高强度水性陶瓷涂料及其制备方法
CN113122131A (zh) 水性涂料与其形成的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020411746

Country of ref document: AU

Date of ref document: 20200819

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908432

Country of ref document: EP

Kind code of ref document: A1