WO2021100835A1 - フルオロポリマーの製造方法 - Google Patents

フルオロポリマーの製造方法 Download PDF

Info

Publication number
WO2021100835A1
WO2021100835A1 PCT/JP2020/043294 JP2020043294W WO2021100835A1 WO 2021100835 A1 WO2021100835 A1 WO 2021100835A1 JP 2020043294 W JP2020043294 W JP 2020043294W WO 2021100835 A1 WO2021100835 A1 WO 2021100835A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
monomer
polymer
fluorine
general formula
Prior art date
Application number
PCT/JP2020/043294
Other languages
English (en)
French (fr)
Inventor
拓 山中
昌弘 東
丈人 加藤
市川 賢治
陽平 藤本
正樹 入江
壮司 土屋
颯太 湯浅
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20888916.2A priority Critical patent/EP4063403A4/en
Priority to JP2021558461A priority patent/JP7360058B2/ja
Priority to CN202080078031.2A priority patent/CN114651019A/zh
Publication of WO2021100835A1 publication Critical patent/WO2021100835A1/ja
Priority to US17/747,547 priority patent/US20220282007A1/en
Priority to JP2023161585A priority patent/JP2023166629A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/04Fractionation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents

Definitions

  • This disclosure relates to a method for producing a fluoropolymer.
  • Patent Document 1 describes particles containing a bulk of a fluoropolymer and a nucleus of a fluorinated ionomer.
  • An object of the present disclosure is to provide a production method capable of producing a fluoropolymer that does not substantially contain a dimer and a trimmer of the monomer constituting the polymer used for the polymerization of the fluoromonomer.
  • the general formula (I) in the absence of substantially a fluorine-containing surfactant (however, excluding the monomer (I) represented by the general formula (I)), the general formula (I) is used in an aqueous medium.
  • the content of the dimer and trimmer of the monomer (I) is 1.0% by mass or less with respect to the polymer (I) (I).
  • a method for producing a fluoropolymer which comprises a step of obtaining a fluoropolymer by polymerizing a fluoromonomer in an aqueous medium in the presence of the polymer (I).
  • CX 1 X 3 CX 2 R (-CZ 1 Z 2- A 0 ) m (I) (In the formula, X 1 and X 3 are independently F, Cl, H or CF 3 , respectively; X 2 is an H, F, alkyl group or fluorine-containing alkyl group; A 0 is an anion. It is a sex group; R is a linking group; Z 1 and Z 2 are independently H, F, alkyl groups or fluorine-containing alkyl groups; m is an integer greater than or equal to 1.)
  • the molecular weight of the monomer (I) is preferably 500 or less.
  • a 0 is, -COOM, -SO 3 M, -OSO 3 M or -C (CF 3) 2 OM
  • M is, -H, a metal atom, -NR 7 4, a substituent It is preferably imidazolium which may have, pyridinium which may have a substituent or phosphonium which may have a substituent, and R 7 is H or an organic group). ..
  • a 0 is, -COOM (M is, -H, a metal atom, -NR 7 4, which may imidazolium substituted, which may have a substituent pyridinium Alternatively, it is a phosphonium which may have a substituent, and R 7 is preferably H or an organic group).
  • the monomer (I) is preferably a monomer represented by the general formula (1).
  • CX 2 CY (-CZ 2- O-Rf-A) (1)
  • X is the same or different, -H or F
  • Y is -H, -F, an alkyl group or a fluorine-containing alkyl group
  • Z is the same or different, -H, -F.
  • Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • A is -COOM, -SO.
  • the monomer (I) is preferably a monomer represented by the general formula (1A).
  • Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • A is -COOM, -SO 3 M, -OSO 3 M or -C (CF 3) 2 OM
  • M is, -H, a metal atom, -NR 7 4, which may imidazolium substituted, which may have a substituent pyridinium or substituent a good phosphonium optionally having, R 7 is H or an organic group.
  • A is, -COOM (M is, -H, a metal atom, -NR 7 4, good imidazolium be substituted, substituted it is also good phosphonium also have a good pyridinium or a substituent, R 7 is H or an organic group.) it in the manufacturing method of the preferably present disclosure is by ultrafiltration of the crude composition , It is preferable to remove the dimer and trimmer of the monomer (I) from the crude composition.
  • the fluororesin is a partially crystalline fluoropolymer and is fluoroplastics.
  • the fluororesin has a melting point and is thermoplastic, but may be melt-processable or non-melt-processable.
  • the melt processability means that the polymer can be melted and processed by using conventional processing equipment such as an extruder and an injection molding machine. Therefore, the melt-processable fluororesin usually has a melt flow rate of 0.01 to 500 g / 10 minutes as measured by a measuring method described later.
  • fluororubber is an amorphous fluoropolymer.
  • “Amorphous” means a melting peak ( ⁇ H) that appears in differential scanning calorimetry [DSC] (heating rate 10 ° C./min) or differential thermal analysis [DTA] (heating rate 10 ° C./min) of a fluoropolymer. ) Is 4.5 J / g or less.
  • Fluororubber exhibits elastomeric properties by cross-linking. Elastomer properties mean properties that allow the polymer to be stretched and retain its original length when the forces required to stretch the polymer are no longer applied.
  • the partially fluorinated rubber is a fluoropolymer containing a fluoromonomer unit and having a perfluoromonomer unit content of less than 90 mol% with respect to all polymerization units, and has a glass transition temperature of 20 ° C. or lower. , 4.5 J / g or less, which is a fluoropolymer having a melting peak ( ⁇ H) magnitude.
  • the perfluoro rubber is a fluoropolymer in which the content of the perfluoromonomer unit with respect to the total polymerization unit is 90 mol% or more, preferably 91 mol% or more, and the glass is 20 ° C. or less. It is a fluoropolymer having a transition temperature and a melting peak ( ⁇ H) of 4.5 J / g or less, and further, the concentration of fluorine atoms contained in the fluoropolymer is 71% by mass or more, preferably 71.5. It is a polymer having a mass% or more.
  • the concentration of fluorine atoms contained in the fluoropolymer is obtained by calculating the concentration (mass%) of the fluorine atoms contained in the fluoropolymer from the type and content of each monomer constituting the fluoropolymer.
  • the perfluoromonomer is a monomer that does not contain a carbon atom-hydrogen atom bond in the molecule.
  • the perfluoro monomer may be a monomer in which some of the fluorine atoms bonded to the carbon atom are replaced with chlorine atoms, and in addition to the carbon atom, a nitrogen atom and an oxygen atom. , Sulfur atom, phosphorus atom, boron atom or silicon atom.
  • the perfluoromonomer is preferably a monomer in which all hydrogen atoms are replaced with fluorine atoms.
  • the perfluoromonomer does not contain a monomer that provides a cross-linking site.
  • the monomer that gives a cross-linking site is a monomer (cure site monomer) having a cross-linking group that gives a cross-linking site to the fluoropolymer for forming a cross-link with a curing agent.
  • the polytetrafluoroethylene [PTFE] is preferably a fluoropolymer in which the content of tetrafluoroethylene with respect to all the polymerization units is 99 mol% or more.
  • both the fluororesin (excluding polytetrafluoroethylene) and the fluororubber are preferably fluoropolymers in which the content of tetrafluoroethylene with respect to the total polymerization unit is less than 99 mol%.
  • the content of each monomer constituting the fluoropolymer can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • organic group means a group containing one or more carbon atoms or a group formed by removing one hydrogen atom from an organic compound.
  • An example of the "organic group” is Alkyl groups, which may have one or more substituents, An alkenyl group which may have one or more substituents, An alkynyl group, which may have one or more substituents, A cycloalkyl group which may have one or more substituents, A cycloalkenyl group which may have one or more substituents, A cycloalkazienyl group, which may have one or more substituents, Aryl groups, which may have one or more substituents, An aralkyl group which may have one or more substituents, A non-aromatic heterocyclic group, which may have one or more substituents, Heteroaryl groups, which may have one or more substituents, Cyano group, Holmil group, RaO-, RaCO-, RaSO 2- , RaCOO-,
  • substituted group means a substitutable group.
  • substituted group include an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an acyloxy group, an acylamino group, an aliphatic oxy group, an aromatic oxy group, a heterocyclic oxy group, and an aliphatic oxycarbonyl group.
  • the aliphatic group may be saturated or unsaturated, and may be a hydroxy group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, an amino group, or an aliphatic amino group. , Acylamino group, carbamoylamino group and the like.
  • the aliphatic group include an alkyl group having a total carbon atom number of 1 to 8, preferably 1 to 4, such as a methyl group, an ethyl group, a vinyl group, a cyclohexyl group, and a carbamoylmethyl group.
  • the aromatic group includes, for example, a nitro group, a halogen atom, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, an amino group, an aliphatic amino group, an acylamino group, a carbamoylamino group and the like. You may be doing it.
  • the aromatic group include aryl groups having 6 to 12 carbon atoms, preferably 6 to 10 total carbon atoms, for example, a phenyl group, a 4-nitrophenyl group, a 4-acetylaminophenyl group, and a 4-methanesulfonylphenyl group. And so on.
  • the heterocyclic group has a halogen atom, a hydroxy group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, an amino group, an aliphatic amino group, an acylamino group, a carbamoylamino group and the like. You may.
  • Examples of the heterocyclic group include a 5- to 6-membered heterocycle having a total carbon number of 2 to 12, preferably 2 to 10, such as a 2-tetrahydrofuryl group and a 2-pyrimidyl group.
  • the acyl group includes an aliphatic carbonyl group, an arylcarbonyl group, a heterocyclic carbonyl group, a hydroxy group, a halogen atom, an aromatic group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, and an amino group. , It may have an aliphatic amino group, an acylamino group, a carbamoylamino group and the like.
  • acyl group examples include an acyl group having a total carbon atom number of 2 to 8, preferably 2 to 4, such as an acetyl group, a propanoyl group, a benzoyl group, and a 3-pyridinecarbonyl group.
  • the acylamino group may have an aliphatic group, an aromatic group, a heterocyclic group and the like, and has, for example, an acetylamino group, a benzoylamino group, a 2-pyridinecarbonylamino group, a propanoylamino group and the like. You may be.
  • Examples of the acylamino group include an acylamino group having a total carbon number of 2 to 12, preferably 2 to 8, and an alkylcarbonylamino group having a total carbon number of 2 to 8, such as an acetylamino group, a benzoylamino group, and a 2-pyridinecarbonylamino group.
  • Groups, propanoylamino groups and the like can be mentioned.
  • the aliphatic oxycarbonyl group may be saturated or unsaturated, and may be a hydroxy group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, an amino group, or an aliphatic group. It may have an amino group, an acylamino group, a carbamoylamino group and the like.
  • Examples of the aliphatic oxycarbonyl group include an alkoxycarbonyl group having a total carbon atom number of 2 to 8, preferably 2 to 4, such as a methoxycarbonyl group, an ethoxycarbonyl group, and a (t) -butoxycarbonyl group.
  • the carbamoyl group may have an aliphatic group, an aromatic group, a heterocyclic group and the like.
  • Examples of the carbamoyl group include an unsubstituted carbamoyl group, an alkylcarbamoyl group having a total carbon number of 2 to 9, preferably an unsubstituted carbamoyl group, and an alkylcarbamoyl group having a total carbon number of 2 to 5, for example, an N-methylcarbamoyl group. Examples thereof include N, N-dimethylcarbamoyl group and N-phenylcarbamoyl group.
  • the aliphatic sulfonyl group may be saturated or unsaturated, and may be a hydroxy group, an aromatic group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, or an amino group. , It may have an aliphatic amino group, an acylamino group, a carbamoylamino group and the like.
  • Examples of the aliphatic sulfonyl group include an alkylsulfonyl group having a total carbon number of 1 to 6, preferably a total carbon number of 1 to 4, such as a methanesulfonyl group.
  • the aromatic sulfonyl group includes a hydroxy group, an aliphatic group, an aliphatic oxy group, a carbamoyl group, an aliphatic oxycarbonyl group, an aliphatic thio group, an amino group, an aliphatic amino group, an acylamino group, a carbamoylamino group and the like. You may be doing it.
  • Examples of the aromatic sulfonyl group include an arylsulfonyl group having a total carbon atom number of 6 to 10, such as a benzenesulfonyl group.
  • the amino group may have an aliphatic group, an aromatic group, a heterocyclic group and the like.
  • the acylamino group may have, for example, an acetylamino group, a benzoylamino group, a 2-pyridinecarbonylamino group, a propanoylamino group, or the like.
  • the acylamino group includes an acylamino group having a total carbon atom number of 2 to 12, preferably an acylamino group having a total carbon atom number of 2 to 8, and more preferably an alkylcarbonylamino group having a total carbon atom number of 2 to 8, such as an acetylamino group and a benzoylamino group. Examples include a group, a 2-pyridinecarbonylamino group, a propanoylamino group and the like.
  • the aliphatic sulfonamide group, aromatic sulfonamide group, and heterocyclic sulfonamide group may be, for example, a methanesulfonamide group, a benzenesulfonamide group, a 2-pyridinesulfonamide group, or the like.
  • the sulfamoyl group may have an aliphatic group, an aromatic group, a heterocyclic group and the like.
  • the sulfamoyl group includes a sulfamoyl group, an alkylsulfamoyl group having a total carbon number of 1 to 9, a dialkylsulfamoyl group having a total carbon number of 2 to 10, and an arylsulfamoyl group having a total carbon number of 7 to 13.
  • Heterocyclic sulfamoyl group having 2 to 12 total carbon atoms more preferably sulfamoyl group, alkyl sulfamoyl group having 1 to 7 total carbon atoms, dialkyl sulfamoyl group having 3 to 6 total carbon atoms, total carbon
  • Groups, 4-pyridinesulfamoyl groups and the like can be mentioned.
  • the aliphatic oxy group may be saturated or unsaturated, and may have a methoxy group, an ethoxy group, an i-propyloxy group, a cyclohexyloxy group, a methoxyethoxy group, or the like.
  • Examples of the aliphatic oxy group include an alkoxy group having a total carbon atom number of 1 to 8, preferably 1 to 6, such as a methoxy group, an ethoxy group, an i-propyloxy group, a cyclohexyloxy group, and a methoxyethoxy group.
  • the aromatic amino group and the heterocyclic amino group are an aliphatic group, an aliphatic oxy group, a halogen atom, a carbamoyl group, a heterocyclic group fused with the aryl group, an aliphatic oxycarbonyl group, preferably the total number of carbon atoms.
  • the aliphatic thio group may be saturated or unsaturated, and an alkylthio group having a total carbon number of 1 to 8, more preferably a total carbon number of 1 to 6, for example, a methylthio group or an ethylthio group. , Carbamoylmethylthio group, t-butylthio group and the like.
  • the carbamoylamino group may have an aliphatic group, an aryl group, a heterocyclic group and the like.
  • Examples of the carbamoylamino group include a carbamoylamino group, an alkylcarbamoylamino group having a total carbon number of 2 to 9, a dialkylcarbamoylamino group having a total carbon number of 3 to 10, and an arylcarbamoylamino group having a total carbon number of 7 to 13.
  • Heterocyclic carbamoylamino group having 3 to 12 total carbon atoms preferably carbamoylamino group, alkylcarbamoylamino group having 2 to 7 total carbon atoms, dialkylcarbamoylamino group having 3 to 6 total carbon atoms, total number of carbon atoms 7-11 arylcarbamoylamino groups, heterocyclic carbamoylamino groups with 3-10 total carbon atoms, such as carbamoylamino groups, methylcarbamoylamino groups, N, N-dimethylcarbamoylamino groups, phenylcarbamoylamino groups, 4- Examples thereof include a pyridinecarbamoylamino group.
  • the range represented by the endpoints includes all numerical values included in the range (for example, 1 to 10 are 1.4, 1.9, 2.33, 5.75, 9). .98 etc. are included).
  • the description of "at least 1" includes all numbers greater than or equal to 1 (eg, at least 2, at least 4, at least 6, at least 8, at least 10, at least 25, at least 50, at least 100, etc.). ..
  • the production method of the present disclosure is carried out in an aqueous medium in the absence of a fluorine-containing surfactant (however, excluding the monomer (I) represented by the general formula (I)). ) To obtain a crude composition containing a polymer of the monomer (I) by polymerizing the monomer (I) represented by). By removing the dimer and trimmer of the monomer (I) contained in the crude composition from the crude composition, the content of the dimer and trimmer of the monomer (I) is reduced to the polymer (I).
  • the step of obtaining the polymer (I) of 1.0% by mass or less, and A step of obtaining a fluoropolymer by polymerizing a fluoromonomer in an aqueous medium in the presence of the polymer (I) is included.
  • the polymer (I) used in the production method of the present disclosure is a polymer of the monomer (I) represented by the general formula (I), and contains the dimer and trimmer of the monomer (I).
  • the amount of the polymer is 1.0% by mass or less with respect to the polymer (I).
  • CX 1 X 3 CX 2 R (-CZ 1 Z 2- A 0 ) m (I) (In the formula, X 1 and X 3 are independently F, Cl, H or CF 3 , respectively; X 2 is an H, F, alkyl group or fluorine-containing alkyl group; A 0 is an anion.
  • R is a linking group
  • Z 1 and Z 2 are independently H, F, alkyl groups or fluorine-containing alkyl groups
  • m is an integer greater than or equal to 1.
  • the polymer (I) used in the production method of the present disclosure does not substantially contain the dimer and trimmer of the monomer (I).
  • the dimer and trimmer of the monomer (I) usually occur when the monomer (I) is polymerized to obtain the polymer (I).
  • the content of the dimer and trimmer in the polymer (I) is 1.0% by mass or less, preferably 0.1% by mass or less, and more preferably 0.% by mass, based on the polymer (I). It is 01% by mass or less, more preferably 0.001% by mass or less, and particularly preferably 0.0001% by mass or less.
  • the content of the dimer and trimmer in the polymer (I) is determined by performing a gel permeation chromatography (GPC) analysis of the polymer (I) with respect to the total area of each peak of the chromatogram obtained by the GPC analysis. It can be specified by calculating the ratio of the total peak area (area percentage).
  • GPC gel permeation chromatography
  • liquid chromatography-mass spectrometry (LC / MS / MS) is performed. It can be identified by the measurement by. Specifically, an aqueous solution having a content of 5 levels or more of the monomer (I) was prepared, LC / MS / MS analysis of each content was performed, and the content and the area area (peak) with respect to the content were performed. The relationship with (integrated value of) is plotted to create a calibration curve of monomer (I). Further, a calibration curve of the dimer and the trimmer of the monomer (I) is prepared from the calibration curve of the monomer (I).
  • Methanol is added to the polymer (I) to prepare a mixture, and the extract (supernatant) is recovered from the mixture by centrifugation, and the obtained extract is subjected to LC / MS / MS analysis. Then, using the calibration curve, the area area (integral value of peaks) of the chromatogram of the dimer and trimmer of the monomer (I) can be converted into the content of the dimer and the trimmer.
  • a fluoropolymer that is substantially free of the dimer and trimmer of the monomer (I) by using the polymer (I) that is substantially free of the dimer and trimmer during the polymerization of the fluoromonomer in an aqueous medium. Can be manufactured. It has not been conventionally known that the dimer and trimmer of the monomer (I) constituting the polymer (I) are contained in the polymer (I). In the present disclosure, the presence of dimers and trimmers of the monomer (I) in the polymer (I) is clarified for the first time, and the present disclosure provides a method for removing these for the first time.
  • the polymer (I) is a polymer containing a polymerization unit (I) based on the monomer (I).
  • the polymer (I) used in the present disclosure includes a polymer (I) containing two or more polymerization units (I), a dimer (a polymer containing two polymerization units (I)), and a trimmer (three polymerization units (3). It is a polymer in which the polymer containing I) is substantially removed.
  • the molecular weight of the monomer (I) is preferably 500 or less, and preferably 400 or less. That is, the polymer (I) preferably contains substantially no dimer and trimmer having a molecular weight of 1500 or less, and more preferably substantially does not contain a dimer and trimmer having a molecular weight of 1200 or less. It has not been conventionally known that the dimer and trimmer of the low molecular weight monomer (I) are contained in the polymer (I). In the present disclosure, the presence of dimers and trimmers of the low molecular weight monomer (I) in the polymer (I) is clarified for the first time, and the present disclosure provides a method for removing these for the first time.
  • the anionic groups, sulfate groups, carboxylate in addition to anionic groups, such as groups, functional groups that impart an anionic group such as acid, acid-base such as -COONH 4, such as -COOH Is included.
  • one kind or two or more kinds of monomers can be used as the monomer (I) represented by the general formula (I).
  • the dimer and trimmer of the monomer (I) may be a polymer formed from one kind of monomer (I) as the monomer (I) represented by the general formula (I). , It may be a copolymer formed from two or more kinds of monomers (I) having different structures.
  • the polymer (I) may contain only the polymerization unit (I) based on one kind of monomer (I) represented by the general formula (I), or may be represented by the general formula (I). It may contain a polymerization unit (I) based on two or more kinds of monomers (I).
  • the presence of dimers and trimmers of the low molecular weight monomer (I) in the polymer (I) is first revealed, and the present disclosure provides a method for removing these for the first time.
  • R is a linking group.
  • the "linking group” is a (m + 1) valent linking group, and when m is 1, it is a divalent linking group.
  • the linking group may be a single bond and preferably contains at least one carbon atom, and the number of carbon atoms may be 2 or more, 4 or more, or 8 or more. It may be 10 or more, and may be 20 or more.
  • the upper limit is not limited, but may be 100 or less, and may be 50 or less, for example.
  • the linking group may be chain or branched chain, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted, and optionally one or more selected from the group consisting of sulfur, oxygen, and nitrogen. It may contain a heteroatom and optionally contain one or more functional groups selected from the group consisting of esters, amides, sulfonamides, carbonyls, carbonates, urethanes, ureas and carbamates.
  • the linking group does not contain a carbon atom and may be a catenary heteroatom such as oxygen, sulfur or nitrogen.
  • n is an integer of 1 or more, preferably 1 or 2, and more preferably 1.
  • Z 1 , Z 2 and A 0 may be the same or different.
  • R is preferably, for example, a catenary heteroatom such as oxygen, sulfur, or nitrogen, or a divalent organic group.
  • R When R is a divalent organic group, the hydrogen atom bonded to the carbon atom may be replaced with a halogen other than fluorine, such as chlorine, and may or may not contain a double bond. Further, R may be either chain-shaped or branched-chain-shaped, and may be either cyclic or non-cyclic. Further, R may contain a functional group (for example, an ester, an ether, a ketone (keto group), an amine, a halide, etc.).
  • a functional group for example, an ester, an ether, a ketone (keto group), an amine, a halide, etc.
  • R may also be a non-fluorinated divalent organic group or a partially fluorinated or perfluorinated divalent organic group.
  • R for example, a hydrocarbon group in which a fluorine atom is not bonded to a carbon atom, a hydrocarbon group in which a part of a hydrogen atom bonded to a carbon atom is replaced with a fluorine atom, or a hydrogen atom bonded to a carbon atom. All of may be hydrocarbon groups substituted with fluorine atoms, which may contain oxygen atoms, double bonds or functional groups.
  • R is preferably a hydrocarbon group having 1 to 100 carbon atoms which may contain an ether bond or a keto group, and the hydrocarbon group is such that a part or all of the hydrogen atoms bonded to the carbon atom become fluorine. It may be replaced.
  • R preferably- (CH 2 ) a -,-(CF 2 ) a- , -O- (CF 2 ) a -,-(CF 2 ) a- O- (CF 2 ) b-, -O ( CF 2 ) a- O- (CF 2 ) b -,-(CF 2 ) a- [O- (CF 2 ) b ] c- , -O (CF 2 ) a- [O- (CF 2 ) b ] c -,-[(CF 2 ) a- O] b -[(CF 2 ) c- O] d- , -O [(CF 2 ) a- O] b -[(CF 2 ) c- O] d- , -O [(CF 2 ) a- O] b -[(CF 2 ) c- O] d -, -O [CF 2 ) a- O] b -
  • a, b, c and d are independently at least one or more.
  • a, b, c and d may be independently 2 or more, 3 or more, 4 or more, 10 or more, and 20 or more.
  • the upper limit of a, b, c and d is, for example, 100.
  • the general formula (r1) -CF 2 -O- (CX 6 2) e - ⁇ O-CF (CF 3) ⁇ f - (O) g - (r1)
  • X 6 is H, F or CF 3 independently, e is an integer of 0 to 3, f is an integer of 0 to 3, and g is 0 or 1).
  • the divalent group to be used is preferable, and the general formula (r2): -CF 2 -O- (CX 7 2) e - (O) g - (r2)
  • a divalent group represented by in the formula, X 7 is independently H, F or CF 3 , e is an integer of 0 to 3, and g is 0 or 1) is more preferred.
  • R represents may contain an oxygen atom, a perfluoroalkylene group is preferred, and specifically, -CF 2 -O -, - CF 2 -O-CF 2 -, - CF 2 -O-CF 2 CF 2 -, - CF 2 -O -CF (CF 3) -, - CF 2 -O-CF (CF 3) CF 2 -, or, -CF 2 -O-CF (CF 3) CF 2 -O- Is preferable.
  • -R-CZ 1 Z 2 - as the general formula (s2): -CF 2- O- (CX 7 2 ) e- (O) g -CZ 1 Z 2- (s2)
  • X 7 is independently H, F or CF 3
  • e is an integer from 0 to 3
  • g is 0 or 1
  • Z 1 and Z 2 are independent, respectively. It is preferably represented by H, F, an alkyl group or a fluorine-containing alkyl group)
  • Z 1 and Z 2 are more preferably F or CF 3 , one of which is F and the other of which is CF. It is more preferably 3.
  • the polymer (I) is highly fluorinated.
  • Polymers except for anionic groups (A 0 ) such as, for example, a phosphate group moiety (eg, CH 2 OP (O) (OM) 2 ) and a sulfate group moiety (eg, CH 2 OS (O) 2 OM). It is preferable that 80% or more, 90% or more, 95% or more, or 100% of the CH bond in (I) is substituted with the CF bond.
  • the monomer (I) and the polymer (I) have a CF bond and do not have a CH bond, except for the anionic group (A 0). That is, in the general formula (I), it is preferable that all of X 1 , X 2 , and X 3 are F, and R is a perfluoroalkylene group having 1 or more carbon atoms. It may be chained or branched chained, cyclic or acyclic, and may contain at least one catenary heteroatom. The number of carbon atoms of the perfluoroalkylene group may be 2 to 20, and may be 4 to 18.
  • the monomer (I) and the polymer (I) may be partially fluorinated. That is, the monomer (I) and the polymer (I) have at least one hydrogen atom bonded to a carbon atom except for the anionic group (A 0 ), and at least one fluorine bonded to the carbon atom. It is also preferable to have an atom.
  • the anionic group (A 0 ) is -SO 3 M, -OSO 3 M, -COOM, -SO 2 NR'CH 2 COOM, -CH 2 OP (O) (OM) 2 , [-CH 2 O] 2.
  • -SO 3 M, -OSO 3 M, -COOM, -P (O) (OM) 2 or -C (CF 3 ) 2 OM are preferable, and -COOM, -SO 3 M, -OSO 3 M or -C (CF 3 ) 2 OM is more preferred, -SO 3 M, -COOM or -P (O) (OM) 2 is even more preferred, -SO 3 M or -COOM is particularly preferred, and -COOM is most preferred.
  • M is, H, a metal atom, NR 7 4, which may imidazolium substituted, a good phosphonium also have a pyridinium which may have a substituent or substituents, R 7 Is an H or an organic group.
  • Examples of the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and Na, K, or Li is preferable.
  • the monomer (I) dimer and trimmer may have different anionic groups in the polymerization unit (I) or may have the same anionic group.
  • each polymerization unit (I) may have a different anionic group or may have the same anionic group.
  • the monomer (I) is also preferably a monomer represented by the general formula (Ia).
  • the polymer (I) is also preferably a polymer containing a polymerization unit (Ia) based on the monomer represented by the general formula (Ia).
  • CF 2 CF-O-Rf 0- A 0 (Ia) (In the formula, A 0 is an anionic group and Rf 0 is hyperfluorinated, even if it is chain or branched chain, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted. It is a perfluorinated divalent linking group that optionally contains one or more heteroatoms selected from the group consisting of sulfur, oxygen, and nitrogen.)
  • the monomer (I) is also preferably a monomer represented by the general formula (Ib).
  • the polymer (I) is also preferably a polymer containing a polymerization unit (Ib) based on the monomer represented by the general formula (Ib).
  • CH 2 CH-O-Rf 0- A 0 (Ib) (In the formula, A 0 is an anionic group and Rf 0 is a perfluorinated divalent linking group as defined by formula Ia.)
  • a 0 is one of the preferable forms to be a sulfate group.
  • a 0 is, for example, -CH 2 OSO 3 M, -CH 2 CH 2 OSO 3 M, or -SO 2 NR'CH 2 CH 2 OSO 3 M, where R'is H or carbon number. It is an alkyl group of 1 to 4, and M is the same as above.
  • a 0 is a sulfonate group.
  • a 0 is, for example, -SO 3 M, and in the formula, M is the same as above.
  • M is the same as above.
  • a 0 is a carboxylate group.
  • a 0 is, for example, COOM or SO 2 NR'CH 2 COOM, in the formula, R'is H or an alkyl group having 1 to 4 carbon atoms, and M is the same as above.
  • a 0 is a phosphate group.
  • a 0 include -CH 2 OP (O) (OM) 2 , [-CH 2 O] 2 P (O) (OM), -CH 2 CH 2 OP (O) (OM) 2 , [-CH 2 O].
  • CH 2 CH 2 O] 2 P (O) (OM) [-SO 2 NR'CH 2 CH 2 O] 2 P (O) (OM) or SO 2 NR'CH 2 CH 2 OP (O) (OM) ) 2
  • R' is an alkyl group having 1 to 4 carbon atoms
  • M is the same as above.
  • a 0 is also one of preferred embodiments it is a phosphonate group.
  • CF 2 CF (OCF 2 CF 2 P (O) (OM) 2 )
  • CF 2 CF (O (O (O))
  • the monomer (I) is preferably the monomer (1) represented by the general formula (1).
  • the polymer (I) is preferably a polymer (1) containing a polymerization unit (1) based on the monomer represented by the general formula (1).
  • CX 2 CY (-CZ 2- O-Rf-A) (1) (In the formula, X is the same or different, -H or F, Y is -H, -F, an alkyl group or a fluorine-containing alkyl group, and Z is the same or different, -H, -F. , Alkyl group or fluoroalkyl group.
  • Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • A is -COOM, -SO. 3 M, -OSO 3 M or -C (CF 3) 2 OM ( M is, -H, a metal atom, -NR 7 4, good imidazolium be substituted, substituted It is also a pyridinium or a phosphonium which may have a substituent, R 7 is an H or an organic group), provided that at least one of X, Y and Z contains a fluorine atom.)
  • the monomer (1) represented by the general formula (1) may be copolymerized with another monomer.
  • the polymer (1) may be a homopolymer of the fluoroallyl ether compound represented by the general formula (1), or may be a copolymer with another monomer.
  • the fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms is an alkylene group that does not contain a structure in which an oxygen atom is a terminal and contains an ether bond between carbon carbons.
  • X is ⁇ H or F. Both of X may be -F, and at least one may be -H. For example, one may be -F and the other may be -H, or both may be -H.
  • Y is an —H, —F, an alkyl group or a fluorine-containing alkyl group.
  • the alkyl group may be an alkyl group containing no fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • Y, -H, -F or CF 3 is preferable, and -F is more preferable.
  • Z is the same or different, —H, —F, alkyl group or fluoroalkyl group.
  • the alkyl group may be an alkyl group containing no fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • -H, -F or CF 3 is preferable, and -F is more preferable.
  • At least one of the above X, Y and Z contains a fluorine atom.
  • X may be -H and Y and Z may be -F.
  • the Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • the fluorine-containing alkylene group preferably has 2 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group is preferably 30 or less, more preferably 20 or less, further preferably 10 or less, particularly preferably 6 or less, and most preferably 3 or less.
  • -CF 2 -, - CH 2 CF 2 -, - CF 2 CF 2 -, - CF 2 CH 2 -, - CF 2 CF 2 CF 2 -, - CF 2 CF 2 CH 2 -, -CF (CF 3 )-, -CF (CF 3 ) CF 2- , -CF (CF 3 ) CH 2-, etc. can be mentioned.
  • the fluorine-containing alkylene group is preferably a perfluoroalkylene group.
  • the fluorine-containing alkylene group having an ether bond preferably has 3 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group having an ether bond is preferably 60 or less, more preferably 30 or less, further preferably 12 or less, particularly preferably 9 or less, and most preferably 6 or less.
  • the fluorine-containing alkylene group having an ether bond is, for example, a general formula: (In the equation, Z 1 is F or CF 3 ; Z 2 and Z 3 are H or F, respectively; Z 4 is H, F or CF 3 ; p1 + q1 + r1 is an integer of 1 to 10; s1 is 0 or 1; t1 is 0. It is also preferable that it is a divalent group represented by (an integer of ⁇ 5).
  • n is an integer of 1 to 10
  • n is an integer of 1 to 10
  • A, -COOM, -SO 3 M, -OSO 3 M or -C (CF 3) 2 OM M is, H, a metal atom, NR 7 4, have a substituent It may be an imidazolium, a pyridinium which may have a substituent or a phosphonium which may have a substituent, and R 7 is H or an organic group).
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • Examples of the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and Na, K, or Li is preferable.
  • the M, H, a metal atom or NR 7 4 are preferable, H, an alkali metal (Group 1), alkaline earth metal (Group 2) or NR 7 4, more preferably, H, Na, K, Li or NH 4 Is even more preferred, H, Na, K or NH 4 is even more preferred, H, Na or NH 4 is particularly preferred, and H or NH 4 is most preferred.
  • -COOM or -SO 3 M is preferable, and -COOM is more preferable.
  • n5 is preferably 0 or an integer of 1 to 5, more preferably 0, 1 or 2, and 0 in that particles having a small primary particle diameter can be obtained. Or 1, it is more preferable.
  • the monomer represented by the general formula (1a) may be copolymerized with another monomer.
  • the polymer (1) may be a homopolymer of the fluoroallyl ether compound represented by the general formula (1a), or may be a copolymer with another monomer.
  • the monomer (1) is preferably a monomer represented by the general formula (1A).
  • the polymerization unit (1) is preferably a polymerization unit (1A) based on the monomer represented by the general formula (1A).
  • CH 2 CF (-CF 2- O-Rf-A) (1A) (In the formula, Rf and A are the same as above.)
  • the monomer represented by the general formula (1A) may be copolymerized with another monomer.
  • the polymer (1) may be a homopolymer of the monomer represented by the general formula (1A), or may be a copolymer with another monomer.
  • Z 1 is F or CF 3 ;
  • Z 2 and Z 3 are H or F, respectively;
  • Z 4 is H, F or CF 3 ;
  • p1 + q1 + r1 is an integer of 0 to 10;
  • s1 is 0 or 1;
  • t1 is 0.
  • Etc. are preferably mentioned, among them
  • examples of the monomer represented by the general formula (1) include a monomer represented by the following formula.
  • CF 2 CFCF 2 -ORf-A (In the formula, Rf and A are the same as above)
  • the monomer (I) is also preferably the monomer (2) represented by the general formula (2).
  • the polymer (I) is also preferably a polymer (2) containing a polymerization unit (2) based on the monomer represented by the general formula (2).
  • CX 2 CY (-O-Rf-A) (2) (In the formula, X is the same or different, —H or F, Y is —H, —F, an alkyl group or a fluorine-containing alkyl group, and Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms. Alternatively, it is a fluorine-containing alkylene group having an ether bond or a keto group having 2 to 100 carbon atoms. A is the same as described above.)
  • the monomer (2) represented by the general formula (2) may be copolymerized with another monomer.
  • the polymer (2) may be a homopolymer of the monomer represented by the general formula (2), or may be a copolymer with another monomer.
  • X is ⁇ H or F. Both of X may be -F, and at least one may be -H. For example, one may be -F and the other may be -H, or both may be -H.
  • Y is —H, —F, an alkyl group or a fluorine-containing alkyl group.
  • the alkyl group is an alkyl group that does not contain a fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • Y, -H, -F or CF 3 is preferable, and -F is more preferable.
  • X and Y contains a fluorine atom.
  • X may be -H and Y and Z may be -F.
  • the Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms, a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms, or a fluorine-containing alkylene group having a keto group having 2 to 100 carbon atoms. It is an alkylene group.
  • the fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms is an alkylene group that does not contain a structure in which an oxygen atom is a terminal and contains an ether bond between carbon carbons.
  • the fluorine-containing alkylene group of Rf preferably has 2 or more carbon atoms. Further, 30 or less is preferable, 20 or less is more preferable, 10 or less is further preferable, and 5 or less is particularly preferable. Examples of the fluorine-containing alkylene group, -CF 2 -, - CH 2 CF 2 -, - CF 2 CF 2 -, - CF 2 CH 2 -, - CF 2 CF 2 CH 2 -, - CF (CF 3) -, -CF (CF 3) CF 2 - , - CF (CF 3) CH 2 -, - CF 2 CF 2 CF 2 -, CF 2 CF 2 CF 2 - , and the like.
  • the fluorine-containing alkylene group is preferably a perfluoroalkylene group, and more preferably a non-branched linear perfluoroalkylene group.
  • the fluorine-containing alkylene group having an ether bond preferably has 3 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group having an ether bond is preferably 60 or less, more preferably 30 or less, further preferably 12 or less, and particularly preferably 5 or less.
  • the fluorine-containing alkylene group having an ether bond is, for example, a general formula: (In the equation, Z 1 is F or CF 3 ; Z 2 and Z 3 are H or F, respectively; Z 4 is H, F or CF 3 ; p1 + q1 + r1 is an integer of 1 to 10; s1 is 0 or 1; t1 is 0. It is also preferable that it is a divalent group represented by (an integer of ⁇ 5).
  • n is an integer of 1 to 10
  • n is an integer of 1 to 10
  • -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2 CF 2- , -CF 2 CF 2 CF 2 O-CF 2
  • the fluorine-containing alkylene group having a keto group preferably has 3 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group having a keto group is preferably 60 or less, more preferably 30 or less, further preferably 12 or less, and particularly preferably 5 or less.
  • fluorine-containing alkylene group having the keto group -CF 2 CF (CF 3) CO-CF 2 -, - CF 2 CF (CF 3) CO-CF 2 CF 2 -, - CF 2 CF (CF 3 ) CO-CF 2 CF 2 CF 2- , -CF 2 CF (CF 3 ) CO-CF 2 CF 2 CF 2 CF 2- and the like can be mentioned.
  • the fluorine-containing alkylene group having a keto group is preferably a perfluoroalkylene group.
  • the monomer represented by the general formula (2) is at least selected from the group consisting of the monomers represented by the general formulas (2a), (2b), (2c), (2d) and (2e).
  • One type is preferable.
  • CF 2 CF-O- (CF 2 ) n1- A (2a) (In the formula, n1 represents an integer from 1 to 10, and A is the same as above.)
  • CF 2 CF-O- (CF 2 C (CF 3 ) F) n2- A (2b) (In the formula, n2 represents an integer of 1 to 5, and A is the same as the above definition.)
  • CF 2 CF-O- (CFX 1 ) n3- A (2c) (In the formula, X 1 represents F or CF 3 , n 3 represents an integer of 1 to 10, and A is the same as the above definition.)
  • CF 2 CF-O- (CF 2 CFX 1 O) n4- (CF 2 ) n6- A (2d) (In the formula
  • n1 is preferably an integer of 5 or less, and more preferably an integer of 2 or less.
  • CF 2 CF (OCF 2 CF 2 SO 3 M) (in the formula, M is the same as the above definition).
  • n2 is preferably an integer of 3 or less in terms of dispersion stability of the obtained composition.
  • n3 is preferably 5 or less integer in terms of water-soluble, the A is preferably -COOM, the M is preferably H or NH 4 ..
  • X 1 is preferably ⁇ CF 3 in terms of dispersion stability of the composition
  • n4 is preferably an integer of 5 or less in terms of water solubility
  • A is , -COOM, where M is preferably H or NH 4 .
  • n5 is preferably an integer of 5 or less in terms of water-soluble, A is preferably a -COOM, M is preferably H or NH 4.
  • the monomer (I) is also preferably the monomer (3) represented by the general formula (3).
  • the polymer (I) is also preferably a polymer (3) containing a polymerization unit (3) based on the monomer represented by the general formula (3).
  • CX 2 CY (-Rf-A) (3) (In the formula, X is the same or different, -H or F, Y is an -H, -F, an alkyl group or a fluorine-containing alkyl group, and Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms. Alternatively, it is a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms. A is the same as described above.)
  • the monomer (3) represented by the general formula (3) may be copolymerized with another monomer.
  • the polymer (3) may be a homopolymer of the monomer represented by the general formula (3), or may be a copolymer with another monomer.
  • the fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms is an alkylene group that does not contain a structure in which an oxygen atom is a terminal and contains an ether bond between carbon carbons.
  • Rf is preferably a fluorine-containing alkylene group having 1 to 40 carbon atoms. In the general formula (3), it is preferable that at least one of X and Y contains a fluorine atom.
  • the monomer represented by the above definition, and the general formula (3b) :. CF 2 CF- (CF 2 C (CF 3 ) F) n2- A (3b) (In the formula, n2 represents an integer of 1 to 5, and A is the same as the above definition.) At least one selected from the group consisting of the monomers represented by the above is preferable.
  • A is, -SO 3 M or COOM is preferably, M, H, a metal atom, NR 7 4, good imidazolium be substituted, substituted Pyridineium which may have a group or phosphonium which may have a substituent is preferable.
  • R 7 represents H or an organic group.
  • n1 is preferably an integer of 5 or less, and more preferably an integer of 2 or less.
  • A is preferably -COOM, M is preferably H or NH 4.
  • n2 is preferably an integer of 3 or less, A is preferably ⁇ COOM, and M is H or NH 4 in terms of dispersion stability of the obtained composition. Is preferable.
  • the monomer (I) is at least one selected from the group consisting of the monomers represented by the general formula (4a) and the general formula (4b).
  • the polymer (I) is a polymer containing a polymerization unit (4) based on at least one monomer selected from the group consisting of the monomers represented by the general formula (4a) and the general formula (4b). It is also preferable that it is (4).
  • CF 2 CF-CF 2- O-Q F1 -CF (-Q F2- CZ 1 Z 2- A) 2 (4a) (In the formula, Z 1 , Z 2 and A are the same as the above definitions, and Q F1 and Q F 2 are the same or different, and may contain a single bond or an ether bond between carbon carbons.
  • CF 2 CF-O-Q F1 -CF (-Q F2- CZ 1 Z 2- A) 2 (4b) (In the formula, Z 1 , Z 2 , A, Q F1 and Q F 2 are the same as the above definitions)
  • the monomer (I) at least one selected from the group consisting of the monomer (1), the monomer (2) and the monomer (3) is preferable, and the monomer (1) is more preferable.
  • the monomer (1A) is even more preferred.
  • the polymer (I) is preferably at least one selected from the group consisting of the polymer (1), the polymer (2) and the polymer (3), and the polymer (1) is more preferable.
  • the monomer (I) may be copolymerized with another monomer.
  • the polymer (I) may be a homopolymer composed of only the polymerization unit (I), or may be copolymerized with the polymerization unit (I) and the monomer represented by the general formula (I). It may be a copolymer containing a polymerization unit based on the monomer of. From the viewpoint of solubility in an aqueous medium, a homopolymer consisting of only the polymerization unit (I) is preferable.
  • the polymerization unit (I) may be the same or different at each appearance, and the polymer (I) is a polymerization unit (I) based on two or more different monomers represented by the general formula (I). May include.
  • a fluorine-containing ethylenic monomer having 2 or 3 carbon atoms is preferable.
  • the polymerization unit based on the other monomer is preferably a polymerization unit based on tetrafluoroethylene.
  • the polymerization units based on the other monomers may be the same or different at each appearance, and the polymer (I) may contain polymerization units based on two or more different other monomers. Good.
  • Rf 3 are monomers represented by a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing alkyl group having an ether bond having 2 to 100 carbon atoms. ..
  • X 9 is H, F or CH 3 ;
  • Rf 4 is a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing alkyl group having an ether bond having 2 to 100 carbon atoms). Also mentioned is a monomer.
  • e6 is an integer of 1 to 10.
  • the polymer (I) usually has a terminal group.
  • the terminal group is a terminal group produced during polymerization, and a typical terminal group is independent of hydrogen, iodine, bromine, chain or branched alkyl group, and chain or branched fluoroalkyl group. May contain at least one additional catenary heteroatom.
  • the alkyl group or fluoroalkyl group preferably has 1 to 20 carbon atoms.
  • the content of the polymerization unit (I) is 1.0 mol% or more, 3.0 mol% or more, 5.0 mol% or more, and 10 in order of preference with respect to all the polymerization units. Mol% or more, 20 mol% or more, 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more.
  • the content of the polymerization unit (I) is particularly preferably 100 mol%, and the polymer (I) is most preferably composed of only the polymerization unit (I).
  • the content of the polymerization unit based on another monomer copolymerizable with the monomer represented by the general formula (I) is 99 in the order of preference with respect to all the polymerization units.
  • the content of the polymerization unit based on the other monomer copolymerizable with the monomer represented by the general formula (I) is particularly preferably 0 mol%, and the polymer (I) is Most preferably, it does not contain polymerization units based on other monomers.
  • the number average molecular weight of the polymer (I) is preferably 0.1 ⁇ 10 4 or more, more preferably 0.2 ⁇ 10 4 or more, more preferably 0.3 ⁇ 10 4 or more, 0.4 ⁇ 10 4 or more
  • There preferably still more preferably in especially is 0.5 ⁇ 10 4 or more, particularly preferably 1.0 ⁇ 10 4 or more, particularly preferably especially is 3.0 ⁇ 10 4 or more, and most preferably 3.1 ⁇ 10 4 or more .
  • preferably 75.0 ⁇ 10 4 or less, more preferably 50.0 ⁇ 10 4 or less, more preferably 40.0 ⁇ 10 4 or less, preferably in especially is 30.0 ⁇ 10 4 or less, 20.0 ⁇ 10 4 or less is particularly preferred.
  • the number average molecular weight and the weight average molecular weight are values for which the molecular weight is calculated by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard. If measurement by GPC is not possible, the number average molecular weight of the polymer (I) can be determined by the correlation between the number average molecular weight calculated from the number of terminal groups obtained by NMR, FT-IR, etc. and the melt flow rate. Can be sought. The melt flow rate can be measured according to JIS K 7210.
  • the lower limit of the weight average molecular weight of the polymer (I) is 0.2 ⁇ 10 4 or more, 0.4 ⁇ 10 4 or more, 0.6 ⁇ 10 4 or more, 0.8 ⁇ 10 4 or more, and 1 .0 ⁇ 10 4 or more, 2.0 ⁇ 10 4 or more, 5.0 ⁇ 10 4 or more, 10.0 ⁇ 10 4 or more, 15.0 ⁇ 10 4 or more, 20.0 ⁇ 10 4 or more, 25.0 ⁇ 10 4 or more.
  • the upper limit of the weight average molecular weight of the polymer (I), in order of preference, 150.0 ⁇ 10 4 or less, 100.0 ⁇ 10 4 or less, 60.0 ⁇ 10 4 or less, 50.0 ⁇ 10 4 or less is 40.0 ⁇ 10 4 or less.
  • the polymer (I) preferably has an ion exchange rate (IXR) of 53 or less.
  • IXR is defined as the number of carbon atoms in the polymer backbone with respect to the ionic group.
  • the ionic by hydrolysis precursor group e.g., -SO 2 F, in order to determine the IXR not considered ionic groups.
  • IXR is preferably 0.5 or more, more preferably 1 or more, further preferably 3 or more, further preferably 4 or more, particularly preferably 5 or more, and particularly preferably 8 or more. Further, the IXR is more preferably 43 or less, further preferably 33 or less, and particularly preferably 23 or less.
  • the ion exchange capacity of the polymer (I) is 0.80 meq / g or more, 1.50 meq / g or more, 1.75 meq / g or more, 2.00 meq / g or more, 2.50 meq / g or more, in the order of preference. 2.60 meq / g or more, 3.00 meq / g or more, 3.50 meq / g or more.
  • the ion exchange capacity is the content of the ionic group (anionic group) of the polymer (I), and is calculated from the composition of the polymer (I).
  • the ionic groups are typically distributed along the polymer main chain. It is preferable that the polymer (I) contains a polymer main chain together with a repeating side chain bonded to the main chain, and the side chain has an ionic group.
  • the polymer (I) preferably contains an ionic group having a pKa of less than 10, more preferably less than 7.
  • the ionic group of the polymer (I) is preferably selected from the group consisting of sulfonate, carboxylate, phosphonate, and phosphate.
  • sulfonate, carboxylate, phosphonate, and phosphate is intended to refer to each salt, or each acid that can form a salt.
  • a salt is preferably an alkali metal salt or an ammonium salt.
  • a preferred ionic group is a sulfonate group.
  • the polymer (I) is preferably water-soluble.
  • Water-soluble means the property of being easily dissolved or dispersed in an aqueous medium.
  • the particle size of the water-soluble polymer (I) cannot be measured by, for example, dynamic light scattering (DLS).
  • the particle size of the water-insoluble polymer (I) can be measured by, for example, a dynamic light scattering method (DLS).
  • the polymer (I) is a polymer (11) of the monomer (11) represented by the general formula (11), and the content of the polymerization unit (11) based on the monomer (11) is the total polymerized units constituting the polymer (11), not less than 50 mol%, weight average molecular weight (Mw), can also be used polymer is 38.0 ⁇ 10 4 or more than (11) ..
  • the polymer (11) is a novel polymer.
  • General formula (11): CX 2 CY-CF 2 -ORf-A (In the formula, X and Y are independently H, F, CH 3 or CF 3 , and at least one of X and Y is F.
  • Rf is a fluorine-containing alkylene having 1 to 40 carbon atoms.
  • A is -COOM, -SO 3 M, -OSO 3 M or -C (CF 3 ) 2 OM (M is H).
  • X and Y are independently H, F, CH 3 or CF 3 , and at least one of X and Y is F.
  • X H or F is preferable, and H is more preferable.
  • Y H or F is preferable, and F is more preferable.
  • Rf and A in the general formula (11) are the same as Rf and A in the general formula (1) representing the monomers constituting the polymer (1).
  • the polymer (11) may be a homopolymer composed of only the polymerization unit (11) based on the monomer (11), or can be copolymerized with the polymerization unit (11) and the monomer (11). It may be a copolymer containing a polymerization unit based on other monomers. The other monomers are as described above.
  • the polymerization unit (11) may be the same or different at each appearance, and the polymer (11) is a polymerization unit (11) based on two or more different monomers represented by the general formula (11). May include.
  • the content of the polymerization unit (11) in the polymer (11) is 50 mol% or more, 60 mol% or more, 70 mol% or more, in a preferable order with respect to all the polymerization units constituting the polymer (11). It is 80 mol% or more, 90 mol% or more, 99 mol% or more.
  • the content of the polymerization unit (11) is particularly preferably 100 mol%, and the polymer (11) is most preferably composed of only the polymerization unit (11).
  • the content of the polymerization unit based on the other monomer copolymerizable with the monomer (11) in the polymer (11) is in the order of preference with respect to all the polymerization units constituting the polymer (11). , 99.0 mol% or less, 97.0 mol% or less, 95.0 mol% or less, 90 mol% or less, 80 mol% or less, 70 mol% or less, 60 mol% or less, 50 mol% or less.
  • the content of the polymerization unit based on the other monomer copolymerizable with the monomer (11) is particularly preferably 0 mol%, and the polymer (11) is the other monomer. Most preferably, it does not contain a polymerization unit based on.
  • the polymer (I) is a polymer (12) of the monomer (12) represented by the general formula (12), and the content of the polymerization unit (12) based on the monomer (12) is the total polymerized units constituting the polymer (12), not less than 50 mol%, weight average molecular weight (Mw) can also be used polymer is 1.4 ⁇ 10 4 or more (12).
  • the polymer (12) is a novel polymer.
  • General formula (12): CX 2 CX-O-Rf-A (In the formula, X is independently F or CF 3 , and Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond or keto group having 2 to 100 carbon atoms.
  • A is, -COOM, -SO 3 M, -OSO 3 M or -C (CF 3) 2 OM
  • M is, -H, a metal atom, -NR 7 4, which may have a substituent
  • X is independently F or CF 3 . It is preferable that at least one or more X is F, and it is more preferable that all X are F.
  • Rf and A in the general formula (12) are the same as Rf and A in the general formula (2) representing the monomers constituting the polymer (2).
  • the polymer (12) may be a homopolymer consisting of only the polymerization unit (12) based on the monomer (12), or may be copolymerized with the polymerization unit (12) and the monomer (12). It may be a copolymer containing a polymerization unit based on other monomers. The other monomers are as described above.
  • the polymerization unit (12) may be the same or different at each appearance, and the polymer (12) is a polymerization unit (12) based on two or more different monomers represented by the general formula (12). May include.
  • the content of the polymerization unit (12) in the polymer (12) is 50 mol% or more, 60 mol% or more, 70 mol% or more, in a preferable order with respect to all the polymerization units constituting the polymer (12). It is 80 mol% or more, 90 mol% or more, 99 mol% or more.
  • the content of the polymerization unit (12) is particularly preferably 100 mol%, and the polymer (12) is most preferably composed of only the polymerization unit (12).
  • the content of the polymerization unit based on the other monomer copolymerizable with the monomer (12) is in the order of preference with respect to all the polymerization units constituting the polymer (12). , 50 mol% or less, 40 mol% or less, 30 mol% or less, 20 mol% or less, 10 mol% or less, 1 mol% or less.
  • the content of the polymerization unit based on the other monomer copolymerizable with the monomer (12) is particularly preferably 0 mol%, and the polymer (12) is the other monomer. Most preferably, it does not contain a polymerization unit based on.
  • the lower limit of the weight average molecular weight (Mw) of the polymer (12) is 1.4 ⁇ 10 4 or more, 1.7 ⁇ 10 4 or more, 1.9 ⁇ 10 4 or more, 2.1 ⁇ 10 4 in the preferred order. 2.3 ⁇ 10 4 or more, 2.7 ⁇ 10 4 or more, 3.1 ⁇ 10 4 or more, 3.5 ⁇ 10 4 or more, 3.9 ⁇ 10 4 or more, 4.3 ⁇ 10 4 or more, 4.7 ⁇ 10 4 or more, 5.1 ⁇ 10 4 or more.
  • the upper limit of the weight average molecular weight (Mw) of the polymer (12) is 150.0 ⁇ 10 4 or less, 100.0 ⁇ 10 4 or less, 60.0 ⁇ 10 4 or less, 50.0 ⁇ 10 4 in the preferred order. or less, and 40.0 ⁇ 10 4 or less.
  • the lower limit of the number average molecular weight (Mn) of the polymer (12) is 0.7 ⁇ 10 4 or more, 0.9 ⁇ 10 4 or more, 1.0 ⁇ 10 4 or more, 1.2 ⁇ 10 4 in the preferred order. above, 1.4 ⁇ 10 4 or more, 1.6 ⁇ 10 4 or more and 1.8 ⁇ 10 4 or more.
  • the upper limit of the number average molecular weight (Mn) of the polymer (12) is 75.0 ⁇ 10 4 or less, 50.0 ⁇ 10 4 or less, 40.0 ⁇ 10 4 or less, 30.0 ⁇ 10 4 or less in the preferred order. or less, and 20.0 ⁇ 10 4 or less.
  • the molecular weight distribution (Mw / Mn) of the polymer (12) is preferably 3.0 or less, more preferably 2.4 or less, still more preferably 2.2 or less, and particularly preferably 2.0. It is less than or equal to 1.9 or less, most preferably 1.9 or less.
  • the production method of the present disclosure is carried out in an aqueous medium in the absence of a fluorine-containing surfactant (however, excluding the monomer (I) represented by the general formula (I)).
  • a fluorine-containing surfactant (however, excluding the monomer (I) represented by the general formula (I)).
  • ) To obtain a crude composition containing a polymer of the monomer (I) by polymerizing the monomer (I), and By removing the dimer and trimmer of the monomer (I) contained in the crude composition from the crude composition, the content of the dimer and trimmer of the monomer (I) is reduced to the polymer (I).
  • the step of obtaining the polymer (I) which is 1.0% by mass or less is included.
  • substantially in the absence of a fluorine-containing surfactant means that the amount of the fluorine-containing surfactant with respect to an aqueous medium is 10 mass ppm or less.
  • the amount of the fluorine-containing surfactant with respect to the aqueous medium is preferably 1 mass ppm or less, more preferably 100 mass ppb or less, still more preferably 10 mass ppb or less, still more preferably 1 mass ppb or less. Is.
  • the fluorine-containing surfactant will be described later in the description of the polymerization of fluoromonomers.
  • Polymerization of the monomer (I) can be performed by a known method.
  • a crude composition in which the polymer (I) is dispersed or dissolved in an aqueous medium can be obtained.
  • the polymer (11) is a novel polymer, which is simply obtained by polymerizing the monomer (11) represented by the general formula (11) in an aqueous medium. It is a production method of the polymer (11) for producing the polymer (11) of the polymer (11), and is produced by the production method (11) for maintaining the oxygen concentration in the reaction system of the polymerization at 500 volume ppm or less. be able to.
  • the oxygen concentration in the polymerization reaction system is 500 volume ppm or less.
  • the oxygen concentration in the reaction system is maintained at 500 volume ppm or less throughout the polymerization period of the monomer (11).
  • the oxygen concentration in the reaction system is preferably 350 volume ppm or less, more preferably 300 volume ppm or less, further preferably 100 volume ppm or less, and particularly preferably 50 volume ppm or less.
  • the oxygen concentration in the reaction system is usually 0.01 volume ppm or more.
  • the polymerization temperature of the monomer (11) is preferably 59 ° C. or lower, preferably 57 ° C. or lower, because the polymer (11) having a higher molecular weight can be easily produced. More preferably, it is 55 ° C. or lower, more preferably 53 ° C. or lower, particularly preferably 20 ° C. or higher, more preferably 25 ° C. or higher, and further preferably 30 ° C. or higher. It is preferably 35 ° C. or higher, and particularly preferably 35 ° C. or higher.
  • the monomer (11) may be copolymerized with the other monomer described above.
  • the polymerization pressure is usually atmospheric pressure to 10 MPaG.
  • the polymerization pressure is appropriately determined by the type of monomer used, the molecular weight of the target polymer, and the reaction rate.
  • the polymerization time is usually 1 to 200 hours, and may be 5 to 100 hours.
  • the polymer (12) is a novel polymer, which is simply obtained by polymerizing the monomer (12) represented by the general formula (12) in an aqueous medium. It is a method for producing a polymer (12) for producing a polymer (12) of a polymer (12), which is produced by a production method (12) for maintaining the oxygen concentration in the reaction system of polymerization at 1500 volume ppm or less. be able to.
  • the oxygen concentration in the polymerization reaction system is 1500 volume ppm or less.
  • the oxygen concentration in the reaction system is maintained at 1500 volume ppm or less throughout the polymerization period of the monomer (12).
  • the oxygen concentration in the reaction system is preferably 500 volume ppm or less, more preferably 100 volume ppm or less, and further preferably 50 volume ppm or less.
  • the oxygen concentration in the reaction system is usually 0.01 volume ppm or more.
  • the polymerization temperature of the monomer (12) is preferably 70 ° C. or lower, preferably 65 ° C. or lower, because the polymer (12) having a higher molecular weight can be easily produced. More preferably, it is more preferably 60 ° C. or lower, particularly preferably 55 ° C. or lower, particularly preferably 50 ° C. or lower, particularly preferably 45 ° C. or lower, and preferably 40 ° C. or lower. Most preferably, it is 10 ° C. or higher, more preferably 15 ° C. or higher, and even more preferably 20 ° C. or higher.
  • the monomer (12) may be copolymerized with the other monomer described above.
  • the polymerization pressure is usually atmospheric pressure to 10 MPaG.
  • the polymerization pressure is appropriately determined by the type of monomer used, the molecular weight of the target polymer, and the reaction rate.
  • the polymerization time is usually 1 to 200 hours, and may be 5 to 100 hours.
  • the oxygen concentration in the polymerization reaction system is, for example, an inert gas such as nitrogen or argon, or a gaseous state when a gaseous monomer is used.
  • the monomer can be controlled by circulating the monomer in the liquid phase or the gas phase in the reactor.
  • the oxygen concentration in the polymerization reaction system can be determined by measuring and analyzing the gas emitted from the exhaust gas line of the polymerization system with a low-concentration oxygen analyzer.
  • the aqueous medium is a reaction medium for polymerizing and means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains water, and includes water and, for example, a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower. May be included.
  • the aqueous medium is preferably water.
  • the polymerization of the monomer can be performed in the presence of the polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it can generate radicals in the above polymerization temperature range, and known oil-soluble and / or water-soluble polymerization initiators can be used. Further, the polymerization can be started as a redox in combination with a reducing agent or the like. The concentration of the polymerization initiator is appropriately determined depending on the type of monomer, the molecular weight of the target polymer, and the reaction rate.
  • persulfate for example, ammonium persulfate
  • organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide
  • a reducing agent such as sodium sulfite and used as a redox system.
  • a radical scavenger such as hydroquinone or catechol can be added, or a peroxide decomposing agent such as ammonium sulfate can be added to adjust the radical concentration in the system.
  • a persulfate is particularly preferable because a polymer having a higher molecular weight can be easily produced.
  • the persulfate include ammonium persulfate, potassium persulfate, sodium persulfate and the like, and ammonium persulfate is preferable.
  • the amount of the polymerization initiator added is not particularly limited, but an amount (for example, several ppm to water concentration) or more that does not significantly reduce the polymerization rate is collectively, sequentially, or continuously at the initial stage of polymerization. And add it.
  • the upper limit is a range in which the reaction temperature may be raised while removing heat from the apparatus surface with the heat of the polymerization reaction, and a more preferable upper limit is a range in which the heat of the polymerization reaction can be removed from the apparatus surface.
  • the polymerization initiator can be added at the start of the polymerization and also during the polymerization.
  • the ratio of the amount of the polymerization initiator added at the start of polymerization to the amount of the polymerization initiator added during polymerization is preferably 95/5 to 5/95, and more preferably 60/40 to 10 It is / 90, more preferably 30/70 to 15/85.
  • the method of adding the polymerization initiator added during the polymerization is not particularly limited, and the whole amount may be added at one time, may be added in two or more portions, or may be added continuously. May be good.
  • the total amount of the polymerization initiator added for the polymerization is 0.00001 to 10 with respect to the aqueous medium. It is preferably by mass%.
  • the total amount of the polymerization initiator added for the polymerization is more preferably 0.0001% by mass or more, further preferably 0.001% by mass or more, and particularly preferably 0.01% by mass or more. It is preferably 5% by mass or less, and more preferably 2% by mass or less.
  • the total amount of the polymerization initiator added for the polymerization is 0.001 to 0.001 to the monomer. It is preferably 10 mol%.
  • the total amount of the polymerization initiator added for the polymerization is more preferably 0.005 mol% or more, further preferably 0.01 mol% or more, more preferably 5 mol% or less, still more preferably. It is 2.5 mol% or less, particularly preferably 2.2 mol% or less, and most preferably 2.0 mol% or less.
  • a single amount containing the monomer (11) or the monomer (12) at the start of polymerization since a monomer having a higher molecular weight can be easily produced, a single amount containing the monomer (11) or the monomer (12) at the start of polymerization.
  • the abundance of the body is preferably 30% by mass or more with respect to the abundance of the aqueous medium.
  • the abundance of the monomer is more preferably 35% by mass or more, still more preferably 40% by mass or more.
  • the upper limit of the abundance of the monomer is not particularly limited, but may be 200% by mass or less from the viewpoint of facilitating the polymerization.
  • the abundance of the monomer at the start of polymerization refers to the monomer (11) or the monomer (12) present in the reactor at the start of polymerization, and other monomers if present. The total abundance.
  • the polymerization may be carried out in the presence of a pH adjuster.
  • the pH adjuster may be added before the start of the polymerization or after the start of the polymerization.
  • Acidity regulators include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, sodium phosphate, potassium phosphate, sodium citrate, citrus. Potassium acid, ammonium citrate, sodium gluconate, potassium gluconate, ammonium gluconate and the like can be used.
  • the polymerization of the monomer (11) or the monomer (12) is carried out in the reactor with an aqueous medium, the monomer (11) or the monomer (12). , And, if necessary, other monomers, if necessary, other additives, the contents of the reactor are agitated, and the reactor is kept at a predetermined polymerization temperature, then in a predetermined amount. It can be carried out by adding a polymerization initiator and initiating the polymerization reaction. After the start of the polymerization reaction, a monomer, a polymerization initiator, or another additive may be added depending on the purpose.
  • the crude composition thus obtained, as a polymer of the monomer (I), is usually a dimer having a total mass of more than 1.0% by mass with respect to the mass of the polymer of the monomer (I). And trimmers are included.
  • the content of the dimer and trimmer in the polymer of the monomer (I) may be, for example, 2.0% by mass or more with respect to the polymer of the monomer (I), and may be 3.0. It may be 5% by mass or more, 30.0% by mass or less, or 20.0% by mass or less.
  • the content of dimer and trimmer in the crude composition is the sum of the peak areas of the dimer and trimmer with respect to the total area of each peak of the chromatogram obtained by gel permeation chromatography (GPC) analysis of the crude composition. It can be specified by calculating the ratio (area percentage) of.
  • the dimer and trimmer of the monomer (I) contained in the crude composition obtained by the polymerization of the monomer (I) are removed from the crude composition.
  • the means for removing the dimer and trimmer are not particularly limited, but at least one means selected from the group consisting of ultrafiltration, microfiltration, diafiltration, liquid separation and reprecipitation is preferable, and ultrafiltration and microfiltration are preferred. At least one means selected from the group consisting of filtration and diafiltration membrane treatment is more preferred, and ultrafiltration is even more preferred.
  • the polymerization of the monomer (I) produces a dimer and a trimmer of the monomer (I), and as a result, the dimer and the trimmer of the monomer (I) are contained in the polymer (I).
  • the mechanism by which the monomer (I) dimer and trimmer are generated is not always clear, but in particular, the polymerization reaction in the polymerization system in which the monomer (I) accounts for the majority of the monomers present in the polymerization system. Therefore, it is presumed that the dimerization and trimerization of the monomer (I) occur at a non-negligible frequency.
  • the existence of the dimer and trimmer of the monomer (I) in the polymer (I) is clarified for the first time, and the dimer and trimmer of the monomer (I) in the polymer (I) are ultrafiltered.
  • the polymer (I) (crude composition) is removed with high efficiency by at least one means selected from the group consisting of microfiltration and diafiltration.
  • the unreacted monomer (I) When removing the dimer and trimmer, usually, the unreacted monomer (I) is also removed from the crude composition at the same time. Even if the unreacted monomer (I) is incorporated into the fluoropolymer by polymerization, it does not necessarily adversely affect the function of the fluoropolymer, so the unreacted monomer (I) must be removed. There is no. However, by removing the unreacted monomer (I) at the same time as the dimer and trimmer, the amount of the monomer to be polymerized can be calculated without considering the presence of the unreacted monomer (I). There is an advantage that a fluoropolymer having a desired monomer composition can be easily produced.
  • the crude composition obtained by the polymerization of the monomer (I) may be the composition obtained by the polymerization after the polymerization, or the composition obtained by the polymerization obtained by diluting or concentrating the composition after the polymerization. It may be the one which has been subjected to the dispersion stabilization treatment or the like. It is also preferable to adjust the viscosity of the crude composition by these treatments in order to smoothly proceed with ultrafiltration, microfiltration or dialysis membrane treatment.
  • the content of the polymer of the monomer (I) in the crude composition is not particularly limited, and may be, for example, 0.1 to 20% by mass.
  • the content of the polymer of the monomer (I) in the crude composition is preferably 18.0% by mass or less, more preferably 15.0% by mass or less, from the viewpoint of the removal efficiency of the dimer and the trimmer. It is more preferably 12.0% by mass or less, particularly preferably 10.0% by mass or less, preferably 0.5% by mass or more, and more preferably 1.0% by mass or more. It is more preferably 1.2% by mass or more, particularly preferably 1.5% by mass or more, and most preferably 2.0% by mass or more.
  • the content of the polymer of the monomer (I) in the crude composition is, for example, the method of adding water to the crude composition obtained by the polymerization of the monomer (I), that of the monomer (I). It can be adjusted by a method of concentrating the crude composition obtained by polymerization.
  • the pH of the crude composition is preferably 0 to 11, more preferably 0.5 to 8.0, and even more preferably 1.0 to 7.0.
  • the pH of the crude composition can be adjusted by adding a pH adjuster to the crude composition obtained by the polymerization of the monomer (I).
  • the pH adjuster may be an acid or an alkali, and examples thereof include phosphate, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like.
  • the viscosity of the crude composition is preferably 25 mPa ⁇ s or less because ultrafiltration, microfiltration or dialysis membrane treatment proceeds smoothly.
  • the viscosity of the crude composition can be determined by, for example, a method of adjusting the number average molecular weight of the polymer of the monomer (I), a method of adjusting the concentration of the polymer of the monomer (I) in the crude composition, or a crude composition. It can be adjusted by a method of adjusting the temperature of an object.
  • the above-mentioned ultrafiltration or microfiltration is not limited to the cross-flow method or the dead-end method, but the cross-flow method is preferable from the viewpoint of reducing clogging of the membrane.
  • the above ultrafiltration can be performed using an ultrafiltration membrane.
  • the ultrafiltration can be performed using, for example, an ultrafiltration device having an ultrafiltration membrane, and a centrifugal ultrafiltration method, a batch type ultrafiltration method, a circulation type ultrafiltration method, or the like can be adopted.
  • the molecular weight cut-off of the ultrafiltration membrane is usually about 0.1 ⁇ 10 4 to 30 ⁇ 10 4 Da.
  • the ultrafiltration membrane suppresses clogging of the membrane, because it can efficiently reduce the dimers and trimers, fractional molecular weight is preferably at 1.5 ⁇ 10 4 Da or more.
  • the molecular weight cut-off is more preferably 2.0 ⁇ 10 4 Da or more, particularly preferably 3.0 ⁇ 10 4 Da or more, and most preferably 5.0 ⁇ 10 4 Da or more.
  • the molecular weight cut-off may be 8.0 ⁇ 10 4 Da or more.
  • the molecular weight cut-off is preferably 20 ⁇ 10 4 Da or less, more preferably 10 ⁇ 10 4 Da or less, from the viewpoint of the removal efficiency of dimers and trimmers.
  • the fractional molecular weight of the ultrafiltration membrane can be, for example, a molecular weight that can prevent 90% by passing water through the membrane through polystyrene having a known weight average molecular weight.
  • the quantification of polystyrene can be performed using gel permeation chromatography.
  • Examples of the shape of the ultrafiltration membrane include, but are not limited to, conventionally known ones, and examples thereof include a hollow fiber type, a flat membrane type, a spiral type, and a tubular type. From the viewpoint of preventing clogging, the hollow fiber type is preferable.
  • the inner diameter of the hollow fiber type ultrafiltration membrane is not limited, but may be, for example, 0.1 to 2 mm. It is preferably 0.8 to 1.4 mm.
  • the length of the hollow fiber type ultrafiltration membrane is not limited, but may be, for example, 0.05 to 3 m. It is preferably 0.05 to 2 m.
  • the material of the ultrafiltration membrane is not particularly limited, but cellulose, cellulose ester, polysulfone, sulfonated polysulfone, polyethersulfone, sulfonated polyethersulfone, chlorinated polyethylene, polypropylene, polyolefin, polyvinyl alcohol, Examples thereof include organic materials such as polymethylmethacrylate, polyacrylicnitrile, polyvinylidene fluoride and polytetrafluoroethylene, metals such as stainless steel, and inorganic materials such as ceramics.
  • the material of the ultrafiltration membrane is preferably an organic material, more preferably chlorinated polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic nitrile, polysulfone, or polyethersulfone, and polypolysulfone. Acrylonitrile, polysulfone or polyvinylidene fluoride are more preferred.
  • ultrafiltration membrane DESAL's G-5 type, G-10 type, G-20 type, G-50 type, PW type, HWS UF type; KOCH's HFM-180, HFM- 183, HFM-251, HFM-300, HFM-116, HFM-183, HFM-300, HFK-131, HFK-328, MPT-U20, MPS-U20P, MPS-U20S; Synder's SPE1, SPE3, SPE5 , SPE10, SPE30, SPV5, SPV50, SOW30; Microza (registered trademark) UF series manufactured by Asahi Kasei Corporation; NTR7410 manufactured by Nitto Denko Corporation.
  • the above-mentioned extrafiltration is preferably performed at a pressure of 0.01 MPa or more from the viewpoint of removal efficiency of dimers and trimmers. More preferably, it is 0.03 MPa or more, and even more preferably 0.05 MPa or more. Further, the pressure is preferably 0.5 MPa or less, more preferably 0.25 MPa or less, and further preferably 0.2 MPa or less from the viewpoint of pressure resistance.
  • the above-mentioned extrafiltration is preferably performed at a flow rate of 10 mL / min or more, more preferably at a flow rate of 50 mL / min or more, and at a flow rate of 5000 mL / min or less. It is preferably carried out, and more preferably carried out at a flow rate of 1000 mL / min or less.
  • the microfiltration can be performed using a microfiltration membrane.
  • Microfiltration membranes typically have an average pore diameter of 0.05-1.0 ⁇ m.
  • the microfiltration membrane preferably has an average pore diameter of 0.1 ⁇ m or more because it can efficiently remove dimers and trimmers. It is more preferably 0.075 ⁇ m or more, and further preferably 0.1 ⁇ m or more.
  • the average pore diameter is 1.00 ⁇ m or less. More preferably, the average pore diameter is 0.50 ⁇ m or less, and even more preferably 0.25 ⁇ m or less.
  • the average pore diameter of the microfiltration membrane can be measured according to ASTM F 316-03 (bubble point method).
  • the shape of the microfiltration membrane is not limited to those conventionally known, and examples thereof include a hollow fiber type, a flat membrane type, a spiral type, and a tubular type. From the viewpoint of preventing clogging, the hollow fiber type is preferable.
  • the inner diameter of the hollow fiber type microfiltration membrane is not limited, but may be, for example, 0.1 to 2 mm. It is preferably 0.8 to 1.4 mm.
  • the length of the hollow fiber type microfiltration membrane is not limited, but may be, for example, 0.05 to 3 m. It is preferably 0.05 to 2 m.
  • Examples of the material of the precision filtration membrane include cellulose-based, aromatic polyamide, polyvinyl alcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, polypropylene, polycarbonate, polytetrafluoroethylene, ceramics, metal and the like. Be done. Among them, aromatic polyamide, polyvinyl alcohol, polysulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, polypropylene, polycarbonate, or polytetrafluoroethylene are preferable, and polyvinylidene nitrile or polyvinylidene fluoride is particularly preferable.
  • NGK Insulator's Cefil Asahi Kasei's Microza U series, Microza P series; Sumitomo Electric's Poaflon SPMW, Poaflon OPMW, Poaflon PM; Toray's Trefil; Micro Examples thereof include NADIR MP005 and NADIR MV020 manufactured by Dyne Nadia; and X-flow manufactured by Norit.
  • the microfiltration is preferably performed at a pressure of 0.01 MPa or more from the viewpoint of removal efficiency of dimers and trimmers. More preferably, it is 0.03 MPa or more, and even more preferably 0.05 MPa or more. Further, the pressure is preferably 0.5 MPa or less, more preferably 0.25 MPa or less, and further preferably 0.2 MPa or less from the viewpoint of pressure resistance.
  • the microfiltration is preferably performed at a flow rate of 10 mL / min or more, more preferably at a flow rate of 50 mL / min or more, and at a flow rate of 5000 mL / min or less. It is preferable, and it is more preferable to carry out at a flow rate of 1000 mL / min or less.
  • the dialysis membrane treatment is performed using a dialysis membrane.
  • the dialysis membrane usually has a molecular weight cut-off of 0.05 ⁇ 10 4 to 100 ⁇ 10 4 Da.
  • the dialysis membrane suppresses clogging of the membrane, because it can efficiently remove dimers and trimers, are preferably fractionated molecular weight of 0.3 ⁇ 10 4 Da or more.
  • the molecular weight cut-off is more preferably 0.5 ⁇ 10 4 Da or more, further preferably 1.0 ⁇ 10 4 Da or more, even more preferably 1.5 ⁇ 10 4 Da or more, and 2.0 ⁇ 10 4 Da or more.
  • the above is particularly preferable, 3.0 ⁇ 10 4 Da or more is particularly preferable, and 5.0 ⁇ 10 4 Da or more is most preferable.
  • the molecular weight cut-off may be 8.0 ⁇ 10 4 Da or more.
  • the molecular weight cut-off is preferably 20 ⁇ 10 4 Da or less, more preferably 10 ⁇ 10 4 Da or less, from the viewpoint of removal efficiency of dimers and trimmers.
  • the molecular weight cut-off of the dialysis membrane can be measured, for example, by the same method as that of the ultrafiltration membrane.
  • the material of the dialysis membrane is not particularly limited, and examples thereof include cellulose, polyacrylonitrile, polymethylmethacrylate, ethylene vinyl alcohol copolymer, polysulfone, polyamide, and polyester polymer alloy.
  • dialysis membrane examples include Spectra / Por (registered trademark) Float-A-Lyzer, Tube-A-Lyzer, Dialysis tubing, 6Dialysis tubing, and 7Dialysis tubing manufactured by Spectrum Laboratories.
  • the above ultrafiltration, microfiltration or dialysis membrane treatment is preferably performed at a temperature of 10 ° C. or higher. More preferably, it is 15 ° C. or higher, further preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher. By setting the temperature within the above range, dimers and trimmers can be reduced more efficiently.
  • the temperature is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, further preferably 70 ° C. or lower, and particularly preferably 60 ° C. or lower.
  • Ultrafiltration, microfiltration or dialysis membrane treatment can be performed while adding water to the crude composition or adjusting the pH of the crude composition. Water may be added intermittently to the crude composition or continuously added to the crude composition.
  • the end point of ultrafiltration, microfiltration or dialysis membrane treatment may be appropriately determined and is not limited. Further, in the above-mentioned ultrafiltration, microfiltration or dialysis membrane treatment, in order to improve the durability of the filtration membrane, backwashing with water may be performed about once with a filtration time of 1 to 24 hours as a guide.
  • the liquid separation can be carried out, for example, by adding an organic solvent to the composition, separating the composition into two phases, an aqueous phase and an organic solvent phase, and recovering the aqueous phase.
  • the composition is added dropwise to a poor solvent to precipitate the polymer, the precipitated polymer is recovered, the recovered polymer is dissolved in a good solvent, and the obtained solution is added dropwise to the poor solvent. Then, the polymer is precipitated again, and the precipitated polymer can be recovered.
  • the polymer (I) containing substantially no dimer and trimmer is usually contained.
  • An aqueous solution is obtained.
  • the polymer (I) used in the production method of the present disclosure may be a polymer (I) contained in the obtained aqueous solution, or may be a polymer (I) obtained by separating from the aqueous solution. ..
  • the method for separating the polymer (I) from the aqueous solution is not particularly limited.
  • the polymer (I) can be separated by a method such as coagulation, washing, or drying of the polymer (I) in an aqueous solution.
  • an aqueous solution containing the polymer (I) can be used as the polymer (I).
  • the preferred content of the monomer (I) dimer and trimmer with respect to the polymer (I) in the aqueous solution is as described above as the content of the dimer and trimmer in the polymer (I).
  • the fluoromonomer is polymerized in an aqueous medium.
  • the fluoromonomer preferably has at least one double bond.
  • the fluoromonomer include tetrafluoroethylene [TFE], hexafluoropropylene [HFP], chlorotrifluoroethylene [CTFE], vinyl fluoride, vinylidene fluoride [VDF], trifluoroethylene, fluoroalkyl vinyl ether, and fluoroalkylethylene.
  • General formula (120): CF 2 CF-OCH 2- Rf 121 (In the formula, Rf 121 is a perfluoroalkyl group having 1 to 5 carbon atoms).
  • General formula (130): CF 2 CFOCF 2 ORf 131 (In the formula, Rf 131 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, and 2 to 6 carbon atoms containing 1 to 3 oxygen atoms.
  • General formula (140): CF 2 CFO (CF 2 CF (Y 141 ) O) m (CF 2 ) n F (In the formula, Y 141 represents a fluorine atom or a trifluoromethyl group. M is an integer of 1 to 4. n is an integer of 1 to 4.) And a fluoromonomer.
  • CF 2 CF-O- (CF 2 CFY 151- O) n- (CFY 152 ) m- A 151
  • Y 151 represents a fluorine atom, a chlorine atom, a -SO 2 F group or a perfluoroalkyl group.
  • the perfluoroalkyl group may contain etheric oxygen and a -SO 2 F group. , 0 to 3.
  • n Y 151 may be the same or different.
  • Y 152 represents a fluorine atom, a chlorine atom or a -SO 2 F group. M is.
  • Y 152 represents an integer of 1 to 5 may be different or may be the same .
  • a 151 represents the -SO 2 X 151, -COZ 151 or -POZ 152 Z 153.
  • X 151 represents F, Cl, Br, I, -OR 151 or -NR 152 R 153 ;
  • Z 151 , Z 152 and Z 153 represent the same or different, -NR 154 R 155 or -OR 156 .
  • R 151 , R 152 , R 153 , R 154 , R 155 and R 156 represent alkyl, aryl, or sulfonyl-containing groups that may contain H, ammonium, alkali metal, or fluorine atoms, which may be the same or different. It is preferable that it is at least one selected from the group consisting of fluoromonomers represented by.).
  • perfluoroorganic group means an organic group in which all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the perfluoroorganic group may have ether oxygen.
  • Examples of the fluoromonomer represented by the general formula (110) include a fluoromonomer in which Rf 111 is a perfluoroalkyl group having 1 to 10 carbon atoms.
  • the number of carbon atoms of the perfluoroalkyl group is preferably 1 to 5.
  • Examples of the perfluoroorganic group in the general formula (110) include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like.
  • Rf 111 is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf 111 is the following formula:
  • Rf 111 is the following formula:
  • n an integer of 1 to 4.
  • CF 2 CF-ORf 161
  • Rf 161 represents a perfluoroalkyl group having 1 to 10 carbon atoms.
  • a fluoromonomer represented by is preferable.
  • Rf 161 is preferably a perfluoroalkyl group having 1 to 5 carbon atoms.
  • the fluoroalkyl vinyl ether is preferably at least one selected from the group consisting of fluoromonomers represented by the general formulas (160), (130) and (140).
  • the fluoromonomer represented by the general formula (160) at least one selected from the group consisting of perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro (propyl vinyl ether) is preferable, and per. At least one selected from the group consisting of fluoro (methyl vinyl ether) and perfluoro (propyl vinyl ether) is more preferable.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 F
  • CF 2 CFO (CF 2 CF (CF 3 ) O) 2 (CF 2) ) 3 F
  • CF 2 CFO (CF 2 CF (CF 3 ) O) 2 (CF 2 )
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF ( CF 2 CF 2 SO 2 F) OCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (SO 2 F)
  • At least one selected from the group consisting of 2 is preferable.
  • CH 2 CFCF 2 CF 2 CF 2 CF 3
  • CH 2 CFCF 3 is 2, 3, 3, 3-Tetrafluoropropylene is preferred.
  • fluoroalkylallyl ether examples include, for example.
  • General formula (180): CF 2 CF-CF 2- ORf 111 (In the formula, Rf 111 represents a perfluoroorganic group.) Examples thereof include fluoromonomers represented by.
  • Rf 111 of the general formula (180) is the same as Rf 111 of the general formula (110).
  • Rf 111 a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms is preferable.
  • the general formula (230) (In the formula, X 231 and X 232 are independently F, Cl, methoxy groups or fluorinated methoxy groups, and Y 231 is of formula Y 232 or formula Y 233 .
  • Z 231 and Z 232 are independently F or a fluorinated alkyl group having 1 to 3 carbon atoms.)
  • Examples thereof include fluorinated vinyl heterocyclic bodies.
  • CX 181 2 CX 182- R f 181 CHR 181 X 183
  • X 181 and X 182 are independently hydrogen atoms, fluorine atoms or CH 3
  • R f 181 are fluoroalkylene groups, perfluoroalkylene groups, fluoro (poly) oxyalkylene groups or perfluoro (poly).
  • An oxyalkylene group, R 181 is a hydrogen atom or CH 3
  • X 183 is a fluoromonomer represented by an iodine atom or a bromine atom.
  • CX 191 2 CX 192- R f 191 X 193
  • X 191 and X 192 are independent hydrogen atoms, fluorine atoms or CH 3
  • R f 191 is a fluoroalkylene group, a perfluoroalkylene group, a fluoropolyoxyalkylene group or a perfluoropolyoxyalkylene group.
  • X 193 is a fluoromonomer represented by an iodine atom or a bromine atom.
  • CF 2 CFO (CF 2 CF (CF 3 ) O) m (CF 2 ) n- X 201
  • m is an integer of 0 to 5
  • n is an integer of 1 to 3
  • X 201 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or -CH 2 I.
  • Fluoromonomono represented by and General formula (210): CH 2 CFCF 2 O (CF (CF 3 ) CF 2 O) m (CF (CF 3 )) n- X 211
  • m is an integer of 0 to 5
  • n is an integer of 1 to 3
  • X 211 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or -CH 2 OH.
  • Z 221 is linear or branched.
  • P is 0 or 1.
  • M / n is 0.2 to 5.
  • the molecular weight is 500 to 10000 (par). It is a fluoropolyoxyalkylene group.
  • X 183 and X 193 are preferably iodine atoms.
  • R f 181 and R f 191 are preferably perfluoroalkylene groups having 1 to 5 carbon atoms.
  • R181 is preferably a hydrogen atom.
  • X 201 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or -CH 2 I.
  • X 211 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or -CH 2 OH.
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 COOH
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CH 2 I
  • CF 2 CFOCF 2 CF 2 CH 2 I
  • CH 2 CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CN
  • CH 2 CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH
  • CH 2 CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CH 2 OH
  • CH 2 CHCF 2 CF 2 I
  • CF 2 CFO (CF 2 ) 5
  • the above fluoromonomer and the fluorine-free monomer may be polymerized.
  • the fluorine-free monomer include hydrocarbon-based monomers having reactivity with the fluoromonomer.
  • hydrocarbon-based monomer include alkens such as ethylene, propylene, butylene, and isobutylene; alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether; vinyl acetate, vinyl propionate, n.
  • the fluorine-free monomer may also be a functional group-containing hydrocarbon-based monomer (excluding the monomer that provides a cross-linking site).
  • the functional group-containing hydrocarbon monomer include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether, hydroxyisobutyl vinyl ether, and hydroxycyclohexyl vinyl ether; itaconic acid, succinic acid, succinic anhydride, and fumal.
  • Fluoro-free monomer having a carboxyl group such as acid, fumaric anhydride, crotonic acid, maleic acid, maleic anhydride, perfluorobutenoic acid; fluorine-free monomer having a glycidyl group such as glycidyl vinyl ether and glycidyl allyl ether; aminoalkyl Fluoro-free monomers having an amino group such as vinyl ether and aminoalkylallyl ether; fluorine-free monomers having an amide group such as (meth) acrylamide and methylol acrylamide can be mentioned.
  • particles of a desired fluoropolymer can be obtained by polymerizing one or more of the above fluoromonomers.
  • the amount of the polymer (I) added in the above polymerization is preferably 0.0001 to 10% by mass, more preferably 0.001% by mass or more, and a more preferable upper limit is 1 with respect to the aqueous medium. It is less than mass%. By setting the addition amount of the polymer (I) within the above range, the polymerization of the fluoromonomer in the aqueous medium can proceed smoothly.
  • the amount of the polymer (I) added is the total amount of the polymer (I) added in the above-mentioned polymerization.
  • the polymer (I) may be added all at once, or the polymer (I) may be added continuously.
  • the continuous addition of the polymer (I) means, for example, the addition of the polymer (I) not all at once, but over time, without interruption, or in divided portions.
  • an aqueous solution containing the polymer (I) and water may be prepared and the aqueous solution may be added.
  • the addition of the polymer (I) is started before the solid content of the fluoropolymer formed in the aqueous medium reaches 0.5% by mass, and the polymer (I) is continuously continued thereafter. It is preferable to add the mixture.
  • the addition start time of the polymer (I) is preferably before the solid content of the fluoropolymer reaches 0.3% by mass, more preferably before reaching 0.2% by mass, and even more preferably. Before reaching 0.1% by mass, particularly preferably at the same time as the start of polymerization.
  • the solid content is the content of the fluoropolymer relative to the total of the aqueous medium and the fluoropolymer.
  • a fluoropolymer can be efficiently produced.
  • two or more compounds included in the polymer (I) may be used at the same time, or if the compound is volatile or may remain in a molded product made of a fluoropolymer, the polymer ( Compounds having other surface-active ability other than I) may be used at the same time.
  • a nucleating agent may be used in the above polymerization.
  • the amount of the nucleating agent added can be appropriately selected depending on the type of the nucleating agent.
  • the amount of the nucleating agent added may be 5000 mass ppm or less, preferably 1000 mass ppm or less, more preferably 500 mass ppm or less, and further preferably 100 pmas pm with respect to the aqueous medium. It is less than or equal to, particularly preferably 50 mass ppm or less, and most preferably 10 mass ppm or less.
  • the nucleating agent it is preferable to add the nucleating agent to the aqueous medium before the start of the polymerization or before the solid content of the fluoropolymer formed in the aqueous medium reaches 5.0% by mass.
  • the amount of the nucleating agent added at the initial stage of polymerization is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.05 with respect to the obtained fluoropolymer. It is mass% or more, and particularly preferably 0.1 mass% or more.
  • the upper limit of the amount of the nucleating agent added at the initial stage of polymerization is not limited, but is, for example, 2000% by mass.
  • a fluoropolymer having a smaller primary particle size can be obtained as compared with the case where polymerization is carried out in the absence of the above nucleating agent.
  • nucleating agent examples include dicarboxylic acid, perfluoropolyether (PFPE) acid or a salt thereof, and a hydrocarbon-containing surfactant.
  • PFPE perfluoropolyether
  • the nucleating agent preferably does not contain an aromatic ring, and is preferably an aliphatic compound.
  • the nucleation agent is preferably added before the addition of the polymerization initiator or at the same time as the addition of the polymerization initiator, but the particle size distribution can be adjusted by adding the nucleating agent during the polymerization.
  • the preferable amount of the dicarboxylic acid is 1000 mass ppm or less, the more preferable amount is 500 mass ppm or less, and the further preferable amount is 100 mass ppm or less with respect to the aqueous medium.
  • the perfluoropolyether (PFPE) acid or salt thereof may have an arbitrary chain structure in which oxygen atoms in the main chain of the molecule are separated by a saturated fluorocarbon group having 1 to 3 carbon atoms. ..
  • PFPE perfluoropolyether
  • two or more types of fluorocarbon groups may be present in the molecule.
  • a typical structure has a repeating unit expressed by the following equation: (-CFCF 3- CF 2- O-) n (VII) (-CF 2- CF 2- CF 2- O-) n (VIII) (-CF 2 -CF 2 -O-) n - (- CF 2 -O-) m (IX) (-CF 2 -CFCF 3 -O-) n - (- CF 2 -O-) m (X)
  • the PFPE acid or salt thereof may have a carboxylic acid group or a salt thereof at one end or both ends.
  • the PFPE acid or a salt thereof may also have a sulfonic acid, a phosphonic acid group or a salt thereof at one end or both ends.
  • the above-mentioned PFPE acid or a salt thereof may have a different group at each terminal.
  • the other end of the molecule is usually hyperfluorinated but may contain hydrogen or chlorine atoms.
  • the PFPE acid or salt thereof has at least two ether oxygens, preferably at least four ether oxygens, and even more preferably at least six ether oxygens.
  • at least one of the fluorocarbon groups separating the ether oxygen more preferably at least two of such fluorocarbon groups, has two or three carbon atoms. Even more preferably, at least 50% of the fluorocarbon groups that separate the ether oxygen have 2 or 3 carbon atoms.
  • the PFPE acid or a salt thereof has at least 15 carbon atoms in total, and for example, the preferable minimum value of n or n + m in the repeating unit structure is at least 5.
  • the PFPE acid or salt thereof preferably has a number average molecular weight of less than 6000 g / mol.
  • the amount of the hydrocarbon-containing surfactant added is preferably 40 mass ppm or less, more preferably 30 mass ppm or less, still more preferably 20 ppm or less, based on the aqueous medium. It is presumed that the amount of ppm of the lipophilic nucleation site present in the aqueous medium is smaller than the amount of addition. Therefore, the amount of the lipophilic nucleation site is smaller than the above 40 mass ppm, 30 mass ppm, and 20 mass ppm, respectively. Since the lipophilic nucleation site is considered to exist as a molecule, even a very small amount of the hydrocarbon-containing surfactant can generate a large amount of lipophilic nucleation site.
  • a preferable lower limit value is 0.01 mass ppm, and a more preferable lower limit value is 0.1 mass ppm.
  • hydrocarbon-containing surfactants include siloxane surfactants such as those disclosed in US Pat. No. 7,897,682 (Brothers et al.) And US Pat. No. 7,977,438 (Brothers et al.). , Nonionic and cationic surfactants are included.
  • a nonionic surfactant for example, a nonionic hydrocarbon surfactant
  • a nonionic hydrocarbon surfactant is preferable. That is, as the nucleating agent, a nonionic surfactant is preferable.
  • the nonionic surfactant preferably does not contain an aromatic moiety.
  • nonionic surfactant examples include the following general formula (i).
  • R 3- OA 1- H (i) (In the formula, R 3 is a linear or branched primary or secondary alkyl group having 8 to 18 carbon atoms, and A 1 is a polyoxyalkylene chain.) Can be mentioned.
  • the carbon number of R 3 is preferably 10 to 16, and more preferably 12 to 16. When the carbon number of R 3 is 18 or less, good dispersion stability of the aqueous dispersion can be easily obtained. Further, when the carbon number of R 3 exceeds 18, it is difficult to handle because the flow temperature is high. When the carbon number of R 3 is smaller than 8, the surface tension of the aqueous dispersion becomes high, and the permeability and wettability tend to decrease.
  • the polyoxyalkylene chain may be composed of oxyethylene and oxypropylene. It is a polyoxyalkylene chain consisting of an average number of repetitions of an oxyethylene group of 5 to 20 and an average number of repetitions of an oxypropylene group of 0 to 2, and is a hydrophilic group.
  • the number of oxyethylene units can include either the broad or narrow monomodal distribution normally provided, or the broader or bimodal distribution obtained by blending. When the average number of repetitions of the oxypropylene group is more than 0, the oxyethylene group and the oxypropylene group in the polyoxyalkylene chain may be arranged in a block shape or a random shape.
  • a polyoxyalkylene chain composed of an average number of repetitions of oxyethylene groups of 7 to 12 and an average number of repetitions of oxypropylene groups of 0 to 2 is preferable.
  • a 1 has an average of 0.5 to 1.5 oxypropylene groups because low foaming property is good.
  • R 3 is (R') (R'') HC-, where R'and R'' are the same or different linear, branched or cyclic alkyl groups. Yes, the total amount of carbon atoms is at least 5, preferably 7-17. Preferably, at least one of R'or R'' is a branched or cyclic hydrocarbon group.
  • polyoxyethylene alkyl ether examples include C 13 H 27- O- (C 2 H 4 O) 10- H, C 12 H 25- O- (C 2 H 4 O) 10- H, C 10 H 21 CH (CH 3) CH 2 -O- (C 2 H 4 O) 9 -H, C 13 H 27 -O- (C 2 H 4 O) 9 - (CH (CH 3) CH 2 O) - Examples include H, C 16 H 33- O- (C 2 H 4 O) 10- H, HC (C 5 H 11 ) (C 7 H 15 ) -O- (C 2 H 4 O) 9- H, and the like. ..
  • Examples of commercially available products of the polyoxyethylene alkyl ether include Genapol X080 (product name, manufactured by Clariant), Neugen TDS-80 (trade name), and the Neugen TDS series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • Leocol TD series (manufactured by Lion) taking TD-90 (trade name) as an example, Lionol (registered trademark) TD series (manufactured by Lion), T-Det A series taking T-Det A138 (trade name) as an example (Manufactured by Harcros Chemicals), Tagitol (registered trademark) 15S series (manufactured by Dow Chemical Co., Ltd.) and the like.
  • the nonionic surfactant has an ethoxylate of 2,6,8-trimethyl-4-nonanol having an average of about 4 to about 18 ethylene oxide units, and an average of about 6 to about 12 ethylene oxide units 2, It is also preferable that it is an ethoxylate of 6,8-trimethyl-4-nonanol, or a mixture thereof.
  • This type of nonionic surfactant is also commercially available, for example, as TERGITOR TMN-6, TERGITOR TMN-10, and TERGITOR TMN-100X (all product names, manufactured by Dow Chemical Co., Ltd.).
  • the hydrophobic group of the nonionic surfactant may be any of an alkylphenol group, a linear alkyl group and a branched alkyl group.
  • examples of the polyoxyethylene alkyl phenyl ether-based nonionic compound include the following general formula (ii).
  • R 4- C 6 H 4- O-A 2- H (ii) (In the formula, R 4 is a linear or branched primary or secondary alkyl group having 4 to 12 carbon atoms, and A 2 is a polyoxyalkylene chain.) Can be mentioned.
  • Specific examples of the polyoxyethylene alkyl phenyl ether-based nonionic compound include Triton X-100 (trade name, manufactured by Dow Chemical Co., Ltd.) and the like.
  • nonionic surfactant examples include polyol compounds. Specific examples thereof include those described in International Publication No. 2011/014715.
  • a typical example of a polyol compound is a compound having one or more sugar units as a polyol unit.
  • the sugar unit may be modified to contain at least one long chain.
  • Suitable polyol compounds containing at least one long chain moiety include, for example, alkyl glycosides, modified alkyl glycosides, sugar esters, and combinations thereof.
  • sugars include, but are not limited to, monosaccharides, oligosaccharides, and sorbitan. Examples of monosaccharides include pentasaccharides and hexasaccharides.
  • Typical examples of monosaccharides include ribose, glucose, galactose, mannose, fructose, arabinose and xylose.
  • Examples of oligosaccharides include 2 to 10 oligomers of the same or different monosaccharides.
  • Examples of oligosaccharides include, but are not limited to, saccharose, maltose, lactose, raffinose, and isomaltose.
  • a suitable sugar for use as a polyol compound is a five-membered ring of four carbon atoms and one heteroatom (typically oxygen or sulfur, but preferably an oxygen atom).
  • examples thereof include a cyclic compound containing, or a cyclic compound containing a six-membered ring of five carbon atoms and one heteroatom as described above, preferably an oxygen atom. They further contain at least 2 or at least 3 hydroxy groups (-OH groups) attached to the carbocyclic atom.
  • the sugar is a hydrogen atom of a hydroxy group (and / or a hydroxyalkyl group) attached to a carbocyclic atom such that an ether or ester bond is formed between the long chain residue and the sugar moiety.
  • the sugar-based polyol may contain one sugar unit or a plurality of sugar units.
  • One sugar unit or a plurality of sugar units may be modified with the long chain portion as described above.
  • Specific examples of glycoside polyol compounds include glycosides, sugar esters, sorbitan esters, and mixtures and combinations thereof.
  • Preferred types of polyol compounds are alkyl or modified alkyl glucosides. These types of surfactants contain at least one glucose moiety. (In the formula, x represents 0, 1, 2, 3, 4, or 5, and R 1 and R 2 independently represent H or a long chain unit containing at least 6 carbon atoms. However, compounds represented by (but at least one of R 1 and R 2 is not H) can be mentioned. Typical examples of R 1 and R 2 include aliphatic alcohol residues.
  • fatty alcohols examples include hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol (lauryl alcohol), tetradecanol, hexadecanol (cetyl alcohol), heptadecanol, octadecanol (stearyl alcohol), Eikosanoic acid and combinations thereof can be mentioned.
  • the above formula represents a specific example of an alkylpolyglucoside exhibiting a pyranose form of glucose, although other sugars or sugars of the same but different enantiomers or diastereomeric forms may be used. Understood.
  • Alkyl glucosides are available, for example, by acid-catalyzed reactions of glucose, starch, or n-butyl glucosides with fatty alcohols, from which a mixture of various alkyl glucosides is typically obtained (Alkylporygylcosine, Rombp). , Lexikon Chemie, Version 2.0, Starch / New York, Georg Timee Verlag, 1999).
  • fatty alcohols examples include hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol (lauryl alcohol), tetradecanol, hexadecanol (cetyl alcohol), heptadecanol, octadecanol (stearyl alcohol), Eikosanoic acid and combinations thereof can be mentioned.
  • alkyl glucosides are commercially available from Cognis GmbH, Dusseldorf, Germany under the trade names GLUCOPON or DISPONIL.
  • non-ionic surfactants include bifunctional block copolymers supplied by BASF as the Pluronic® R series, and tridecyl alcohol alkoxyrates supplied by BASF as the Iconol® TDA series.
  • Hydrocarbon-containing siloxane surfactants preferably hydrocarbon surfactants, wherein the hydrocarbyl groups described above are completely substituted with hydrogen atoms where they can be substituted with halogens such as fluorine, thereby these.
  • the siloxane surfactant can also be considered as a hydrocarbon surfactant, i.e., the monovalent substituent on the hydrocarbyl group is hydrogen.
  • a compound having a functional group and a hydrophilic group capable of reacting by radical polymerization may be used together with the polymer (I).
  • the compound having a functional group and a hydrophilic group that can react by radical polymerization the same compound as the modified monomer (A) described later can be used.
  • an additive in addition to the polymer (I) and other compounds having a surface-active ability to be used as desired, an additive can be used to stabilize each compound.
  • the additive include a buffer, a pH adjuster, a stabilizing aid, a dispersion stabilizer and the like.
  • paraffin wax paraffin wax, fluorine-based oil, fluorine-based solvent, silicone oil and the like are preferable.
  • the stabilizing aid may be used alone or in combination of two or more. Paraffin wax is more preferable as the stabilizing aid.
  • the paraffin wax may be liquid, semi-solid, or solid at room temperature, but saturated hydrocarbons having 12 or more carbon atoms are preferable.
  • the melting point of the paraffin wax is usually preferably 40 to 65 ° C, more preferably 50 to 65 ° C.
  • the amount of the stabilizing aid used is preferably 0.1 to 12% by mass, more preferably 0.1 to 8% by mass, based on the mass of the aqueous medium used. It is desirable that the stabilizing aid is sufficiently hydrophobic and completely separated from the aqueous dispersion after polymerization so that it does not become a contaminated component.
  • an aqueous medium, the above-mentioned polymer (I), a monomer and, if necessary, other additives are charged into the polymerization reactor, the contents of the reactor are stirred, and the reactor is brought to a predetermined polymerization temperature. It is carried out by retaining, and then adding a predetermined amount of a polymerization initiator to initiate the polymerization reaction. After the start of the polymerization reaction, a monomer, a polymerization initiator, a chain transfer agent, a polymer (I) and the like may be additionally added depending on the purpose. The polymer (I) may be added after the polymerization reaction has started.
  • the polymerization temperature is 5 to 120 ° C.
  • the polymerization pressure is 0.05 to 10 MPaG.
  • the polymerization temperature and polymerization pressure are appropriately determined by the type of monomer used, the molecular weight of the target fluoropolymer, and the reaction rate.
  • the polymerization initiator is not particularly limited as long as it can generate radicals in the above polymerization temperature range, and known oil-soluble and / or water-soluble polymerization initiators can be used. Further, the polymerization can be started as a redox in combination with a reducing agent or the like. The concentration of the polymerization initiator is appropriately determined depending on the type of monomer, the molecular weight of the target fluoropolymer, and the reaction rate.
  • an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used as the above-mentioned polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example, dialkyl peroxy carbonates such as diisopropyl peroxy dicarbonate and disec-butyl peroxy dicarbonate, and t-butyl peroxy.
  • Peroxyesters such as isobutyrate and t-butylperoxypivalate, dialkyl peroxides such as dit-butyl peroxide, and di ( ⁇ -hydro-dodecafluorohexanoyl) peroxide, di ( ⁇ -Hydro-tetradecafluoroheptanoid) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyl) peroxide, di (perfluorovaleryl) peroxide, di (Perfluorohexanoyl) Peroxide, Di (Perfluoroheptanoyl) Peroxide, Di (Perfluorooctanoyl) Peroxide, Di (Perfluorononanoyl) Peroxide, Di ( ⁇ -Chloro-Hexafluorobutyryl) Peroxide, Di ( ⁇ -Chloro-Decafluorohexan
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfate, perboric acid, perchloric acid, perphosphoric acid, and percarbonate, potassium salts, and sodium salts. , Organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide, t-butyl permalate, t-butyl hydroperoxide and the like. Reducing agents such as sulfites and sulfites may also be included, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a redox initiator that combines an oxidizing agent and a reducing agent as the polymerization initiator.
  • the oxidizing agent include persulfate, organic peroxide, potassium permanganate, manganese triacetate, ammonium cerium nitrate and the like.
  • the reducing agent include sulfites, bisulfites, bromates, diimines, oxalic acid and the like.
  • persulfate include ammonium persulfate and potassium persulfate.
  • sulfites include sodium sulfite and ammonium sulfite.
  • a copper salt and an iron salt to the combination of the redox initiator.
  • the copper salt include copper (II) sulfate
  • the iron salt include iron (II) sulfate.
  • Examples of the redox initiator include potassium permanganate / oxalic acid, ammonium persulfate / bicarbonate / iron sulfate, manganese triacetate / oxalic acid, ammonium cerium nitrate / oxalic acid, bromate / sulfite, and the like. Therefore, potassium permanganate / oxalic acid is preferable.
  • an oxidizing agent or a reducing agent may be charged in advance in the polymerization tank, and then the other may be continuously or intermittently added to initiate polymerization.
  • potassium permanganate / oxalic acid it is preferable to charge oxalic acid in the polymerization tank and continuously add potassium permanganate to the oxalic acid.
  • the amount of the polymerization initiator added is not particularly limited, but an amount (for example, several ppm to water concentration) or more that does not significantly reduce the polymerization rate is collectively, sequentially, or continuously at the initial stage of polymerization. And add it.
  • the upper limit is a range in which the reaction temperature may be raised while removing heat from the apparatus surface with the heat of the polymerization reaction, and a more preferable upper limit is a range in which the heat of the polymerization reaction can be removed from the apparatus surface.
  • the aqueous medium is a reaction medium for polymerizing and means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains water, and water and a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower are used. And may be included.
  • a known chain transfer agent, radical scavenger, and decomposing agent can be added to adjust the polymerization rate and molecular weight, depending on the purpose.
  • chain transfer agent examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate and dimethyl succinate, as well as isopentane, methane, ethane, propane, methanol, isopropanol and acetone.
  • esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate and dimethyl succinate, as well as isopentane, methane, ethane, propane, methanol, isopropanol and acetone.
  • examples thereof include various halogenated hydrocarbons such as mercaptan and carbon tetrachloride, and cyclohexane.
  • a bromine compound or an iodine compound may be used as the chain transfer agent.
  • Examples of the polymerization method using a bromine compound or an iodine compound include a method in which a fluoromonomer is polymerized in an aqueous medium in the presence of a bromine compound or an iodine compound in a substantially oxygen-free state (). Iodine transfer polymerization method).
  • Typical examples of the bromine compound or iodine compound used include, for example, the general formula: R a I x Br y (In the formula, x and y are integers of 0 to 2, respectively, and satisfy 1 ⁇ x + y ⁇ 2, and Ra is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms or chlorofluoro. Examples thereof include a compound represented by a hydrocarbon group or a hydrocarbon group having 1 to 3 carbon atoms and may contain an oxygen atom).
  • a bromine compound or an iodine compound iodine or bromine is introduced into the polymer and functions as a cross-linking point.
  • bromine compound or iodine compound examples include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, and 1 , 5-Diode-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodine perfluoro hexadecane, diiodomethane, 1,2-diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFClB
  • 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane are used from the viewpoints of polymerization reactivity, cross-linking reactivity, availability, and the like. Is preferable.
  • the amount of the chain transfer agent used is usually 1 to 50,000 mass ppm, preferably 1 to 20,000 mass ppm, based on the total amount of fluoromonomer supplied.
  • the chain transfer agent may be added to the reaction vessel all at once before the start of polymerization, may be added all at once after the start of polymerization, or may be added in multiple portions during polymerization. Alternatively, it may be added continuously during the polymerization.
  • persulfate for example, ammonium persulfate
  • organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide
  • a reducing agent such as sodium sulfite and used as a redox system.
  • a radical scavenger such as hydroquinone or catechol can be added, or a peroxide decomposing agent such as ammonium sulfate can be added to adjust the radical concentration in the system.
  • a fluoromonomer is polymerized in an aqueous medium in the presence of the polymer (I) to produce an aqueous dispersion of fluoropolymer particles, and the fluoromonomer is produced in the aqueous dispersion of the fluoropolymer particles. May be seed-polymerized into fluoropolymer particles to obtain a fluoropolymer.
  • the fluoromonomer is polymerized substantially in the absence of a fluorine-containing surfactant.
  • a fluorine-containing surfactant has been used for polymerization of a fluoromonomer in an aqueous medium, but according to the production method of the present disclosure, a fluoropolymer even when a fluorine-containing surfactant is not used. Can be obtained.
  • substantially in the absence of a fluorine-containing surfactant means that the amount of the fluorine-containing surfactant with respect to an aqueous medium is 10 mass ppm or less.
  • the amount of the fluorine-containing surfactant with respect to the aqueous medium is preferably 1 mass ppm or less, more preferably 100 mass ppb or less, still more preferably 10 mass ppb or less, still more preferably 1 mass ppb or less. Is.
  • fluorine-containing surfactant examples include anionic fluorine-containing surfactant and the like.
  • the anionic fluorine-containing surfactant may be, for example, a surfactant containing a fluorine atom having a total carbon number of 20 or less in a portion excluding the anionic group.
  • the fluorine-containing surfactant may also be a fluorine-containing surfactant having an anionic portion having a molecular weight of 800 or less.
  • the "anionic portion” means a portion of the fluorine-containing surfactant excluding the cation. For example, in the case of F (CF 2) n1 COOM of formula (I) to be described later, a part of the "F (CF 2) n1 COO".
  • Examples of the fluorine-containing surfactant include a fluorine-containing surfactant having a Log POW of 3.5 or less.
  • the LogPOW is the partition coefficient between 1-octanol and water, and LogP [in the formula, P is the octanol when the octanol / water (1: 1) mixture containing the fluorine-containing interface active agent is phase-separated. Represents the concentration of the fluorine-containing surfactant in water / the concentration of the fluorine-containing surfactant in water].
  • a calibration line of each elution time and a known octanol / water partition coefficient is prepared, and the calculation is made from the HPLC elution time in the sample solution based on this calibration line.
  • anionic fluorine-containing surfactant As the anionic fluorine-containing surfactant, the following general formula (N 0 ): X n0- Rf n0- Y 0 (N 0 ) (In the formula, X n0 is H, Cl or F. Rf n0 has 3 to 20 carbon atoms and is chain, branched or cyclic, with some or all H substituted by F. The alkylene group may contain one or more ether bonds, and a part of H may be substituted with Cl . Y 0 is an anionic group). Can be mentioned. Anionic group Y 0 is, -COOM, -SO 2 M, or may be a -SO 3 M, -COOM, or may be a -SO 3 M.
  • M is, H, a metal atom, NR 7 4, which may imidazolium substituted, a good phosphonium also have a pyridinium which may have a substituent or substituents, R 7 Is H or an organic group.
  • the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and examples thereof include Na, K, and Li.
  • R 7 may be an organic group of H or C 1-10 , an organic group of H or C 1-4 , or an alkyl group of H or C 1-4.
  • M is, H, may be a metal atom or NR 7 4, H, an alkali metal (Group 1), alkaline earth metal (Group 2) or NR 7 may be 4, H, Na, K, Li or It may be NH 4.
  • the Rf n0 may be such that 50% or more of H is replaced with fluorine.
  • N 0 As a compound represented by the above general formula (N 0), The following general formula (N 1 ): X n0- (CF 2 ) m1- Y 0 (N 1 ) (In the formula, X n0 is H, Cl and F, m1 is an integer of 3 to 15, and Y 0 is the one defined above.) The compound represented by the following general formula (N 2).
  • Rf n1 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • m2 is an integer of 0 to 3
  • X n1 is F or CF 3
  • Y 0 is defined above.
  • Rf n2 (CH 2 ) m3- (Rf n3 ) q- Y 0 (N 3 )
  • Rf n2 is a partially or fully fluorinated alkyl group capable of containing an ether bond having 1 to 13 carbon atoms
  • m3 is an integer of 1 to 3
  • Rf n3 is linear.
  • it is a branched perfluoroalkylene group having 1 to 3 carbon atoms
  • q is 0 or 1
  • Y 0 is the one defined above.
  • N 4 The compound represented by the above general formula (N 4 ).
  • Rf n4 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain an ether bond and / or a chlorine atom having 1 to 12 carbon atoms, and is Y n1 and Y n2.
  • H or F H or F
  • p is 0 or 1
  • Y 0 is the one defined above
  • N 5 the general formula (N 5 ) :.
  • X n2 , X n3 and X n4 may be the same or different, and may contain an ether bond of H, F, or 1 to 6 carbon atoms, which is a linear or branched chain portion or complete. It is a fluorinated alkyl group.
  • Rf n5 is a linear or branched chain moiety or a fully fluorinated alkylene group that may contain an ether bond having 1 to 3 carbon atoms, and L is a linking group.
  • Y 0 is defined above. However, the total carbon number of X n2 , X n3 , X n4 and Rf n5 is 18 or less).
  • the perfluorocarboxylic acid (I) has the following general formula (I).
  • F (CF 2 ) n1 COM (I) (Wherein, n1 is 3 is an integer of ⁇ 14, M is H, a metal atom, NR 7 4, which may imidazolium substituted, pyridinium which may have a substituent or It is a phosphonium which may have a substituent, and R 7 is represented by H or an organic group).
  • ⁇ -H perfluorocarboxylic acid (II) has the following general formula (II).
  • H (CF 2 ) n2 COM (II) (In the formula, n2 is an integer of 4 to 15, and M is the one defined above.).
  • the perfluoropolyether carboxylic acid (III) has the following general formula (III).
  • Rf 1 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • n3 is an integer of 0 to 3
  • M is the one defined above.
  • the perfluoroalkylalkylenecarboxylic acid (IV) is represented by the following general formula (IV).
  • Rf 2 (CH 2 ) n4 Rf 3 COM (IV) (In the formula, Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms, Rf 3 is a linear or branched perfluoroalkylene group having 1 to 3 carbon atoms, and n4 is a perfluoroalkylene group having 1 to 3 carbon atoms. It is an integer, and M is as defined above.).
  • the alkoxyfluorocarboxylic acid (V) has the following general formula (V).
  • Rf 4- O-CY 1 Y 2 CF 2- COMM (V) (In the formula, Rf 4 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds and / or chlorine atoms having 1 to 12 carbon atoms, and Y 1 and Y 2 Are the same or different, H or F, and M is as defined above).
  • the perfluoroalkyl sulfonic acid (VI) has the following general formula (VI). F (CF 2 ) n5 SO 3 M (VI) (In the formula, n5 is an integer of 3 to 14, and M is the one defined above.).
  • ⁇ -H perfluorosulfonic acid has the following general formula (VII).
  • H (CF 2 ) n6 SO 3 M (VII) (In the formula, n6 is an integer of 4 to 14, and M is the one defined above.).
  • the perfluoroalkylalkylene sulfonic acid (VIII) has the following general formula (VIII).
  • Rf 5 (CH 2 ) n7 SO 3 M (VIII) (In the formula, Rf 5 is a perfluoroalkyl group having 1 to 13 carbon atoms, n7 is an integer of 1 to 3, and M is the one defined above.) ..
  • the alkylalkylene carboxylic acid (IX) has the following general formula (IX).
  • Rf 6 (CH 2 ) n8 COM (IX) (In the formula, Rf 6 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds of 1 to 13 carbon atoms, n8 is an integer of 1 to 3 and M is as defined above).
  • the fluorocarboxylic acid (X) has the following general formula (X).
  • Rf 7- O-Rf 8- O-CF 2- COM (X) (In the formula, Rf 7 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds and / or chlorine atoms having 1 to 6 carbon atoms, and Rf 8 is carbon. It is a linear or branched portion of the numbers 1 to 6 or a fully fluorinated alkyl group, and M is as defined above).
  • the above alkoxyfluorosulfonic acid (XI) has the following general formula (XI).
  • Rf 9- O-CY 1 Y 2 CF 2- SO 3 M (XI) (In the formula, Rf 9 is a partially or fully fluorinated alkyl group that is linear or branched and may contain chlorine and may contain ether bonds of 1-12 carbon atoms, Y. 1 and Y 2 are the same or different, H or F, and M is as defined above).
  • the compound (XII) has the following general formula (XII): (In the formula, X 1 , X 2 and X 3 may be the same or different and may contain H, F and ether bonds of 1 to 6 carbon atoms in a linear or branched chain moiety or fully fluorinated.
  • Rf 10 is a perfluoroalkylene group having 1 to 3 carbon atoms
  • L is a linking group
  • Y 0 is an anionic group
  • Y 0 may be -COOM, -SO 2 M, or -SO 3 M, and may be -SO 3 M, or COM (in the formula, M is defined above).
  • Examples of L include a single bond, a moiety capable of containing an ether bond having 1 to 10 carbon atoms, or a completely fluorinated alkylene group.
  • the above compound (XIII) has the following general formula (XIII): Rf 11- O- (CF 2 CF (CF 3 ) O) n9 (CF 2 O) n10 CF 2 COM (XIII) (In the formula, Rf 11 is a fluoroalkyl group having 1 to 5 carbon atoms containing chlorine, n9 is an integer of 0 to 3, n10 is an integer of 0 to 3, and M is the above definition. It is represented by). As the compound (XIII), CF 2 ClO (CF 2 CF (CF 3 ) O) n9 (CF 2 O) n10 CF 2 COONH 4 (mixture having an average molecular weight of 750, in the formula, n9 and n10 are defined above. There is.).
  • examples of the anionic fluorine-containing surfactant include a carboxylic acid-based surfactant and a sulfonic acid-based surfactant.
  • the fluorine-containing surfactant may be one kind of fluorine-containing surfactant or a mixture containing two or more kinds of fluorine-containing surfactants.
  • fluorine-containing surfactant examples include compounds represented by the following formulas.
  • the fluorine-containing surfactant may be a mixture of these compounds.
  • the fluoromonomer is polymerized substantially in the absence of the compound represented by the following formula.
  • an aqueous dispersion containing the above fluoropolymer can be obtained.
  • the fluoropolymer usually has a concentration of 8 to 50% by mass of the aqueous dispersion obtained by carrying out the above polymerization.
  • the preferable lower limit of the concentration of the fluoropolymer is 10% by mass, the more preferable lower limit is 15% by mass, the preferable upper limit is 40% by mass, and the more preferable upper limit is 35% by mass.
  • the fluoropolymer As the fluoropolymer, the monomer having the highest molar ratio of the monomer in the polymer (hereinafter, “the most monomer”) is the TFE polymer, the most monomer is the VDF VDF polymer, and the most monomer. Examples thereof include a CTFE polymer in which is CTFE.
  • the fluoropolymer preferably has an ion exchange rate (IXR) higher than 53.
  • Preferred fluoropolymers have no ionic groups or have a limited number of ionic groups that result in an ion exchange rate greater than about 100.
  • the ion exchange rate of the fluoropolymer is preferably 1000 or more, more preferably 2000 or more, still more preferably 5000 or more.
  • the TFE polymer may preferably be a TFE homopolymer, or (1) TFE, (2) one or more fluorine-containing monomers other than TFE having 2 to 8 carbon atoms.
  • it may be a copolymer composed of VDF, HFP or CTFE, and (3) other monomers.
  • (3) other monomer include fluoro (alkyl vinyl ether) having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms; fluorodioxol; perfluoroalkylethylene; ⁇ -. Examples thereof include hydroperfluoroolefins.
  • the TFE polymer may also be a copolymer of TFE and one or more fluorine-free monomers.
  • fluorine-free monomer examples include alkenes such as ethylene and propylene; vinyl esters; and vinyl ethers.
  • the TFE polymer is also a copolymer of TFE, one or more fluorine-containing monomers having 2 to 8 carbon atoms, and one or more fluorine-free monomers. May be good.
  • the VDF polymer may preferably be a VDF copolymer [PVDF], and other than (1) VDF and (2) one or more VDFs having 2 to 8 carbon atoms.
  • PVDF VDF copolymer
  • the CTFE polymer may preferably be a CTFE homopolymer, or (1) CTFE, (2) one or more fluoroolefins other than CTFE having 2 to 8 carbon atoms.
  • CTFE may be a copolymer composed of TFE or HFP, and (3) perfluoro (alkyl vinyl ether) having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms.
  • the CTFE polymer may also be a copolymer of CTFE and one or more fluorine-free monomers, and the fluorine-free monomers include alkenes such as ethylene and propylene; vinyl. Esters: Vinyl ethers and the like can be mentioned.
  • the fluoropolymer can be glassy, plastic or elastomeric. These are amorphous or partially crystalline and can be subjected to compression firing, melting or non-melting.
  • TFE polymer PTFE
  • ethylene / TFE co-weight a melt processable fluorine resin
  • the electrolyte polymer precursor is (III) as a fluororubber, a TFE / propylene copolymer, a TFE / propylene / third monomer copolymer (the third monomer is VDF, HFP, CTFE, fluoroalkyl vinyl ethers, etc.), Copolymer consisting of TFE and fluoroalkyl vinyl ethers; HFP / ethylene copolymer, HFP / ethylene / TFE copolymer; PVDF; VDF / HFP copolymer, HFP / ethylene copolymer, VDF / TFE / HFP Thermoplastic elastomers such as cop
  • a fluororesin is preferable, a fluororesin having a fluororesin having a fluorine substitution rate of 50% or more calculated by the following formula is more preferable, and a fluororesin having a fluororesin having a fluorine substitution rate of more than 50% is more preferable.
  • a fluororesin having a substitution rate of 55% or more is even more preferable, a fluororesin having a fluorine substitution rate of 60% or more is even more preferable, and a fluororesin having a fluorine substitution rate of 75% or more is even more preferable.
  • a fluororesin having a value of 80% or more is particularly preferable, and a fluororesin having a fluorine substitution rate of 90 to 100%, that is, a perfluororesin is most preferable.
  • Fluorine substitution rate (%) (number of fluorine atoms bonded to carbon atoms constituting the fluoropolymer) / ((number of hydrogen atoms bonded to the carbon atoms constituting the fluoropolymer) + (carbon atoms constituting the fluoropolymer) Number of fluorine atoms and chlorine atoms bonded to))) ⁇ 100
  • a fluororesin having a fluorine substitution rate of 95 to 100% is more preferable, PTFE, FEP or PFA is more preferable, and PTFE is particularly preferable.
  • the fluoropolymer may have a core-shell structure.
  • Fluoropolymers having a core-shell structure include, for example, modified PTFE containing a high molecular weight PTFE core in the particles and a lower molecular weight PTFE or modified PTFE shell. Examples of such modified PTFE include PTFE described in JP-A-2005-527652.
  • the core-shell structure may have the following structure.
  • Core TFE homopolymer Shell: TFE homopolymer Core: Modified PTFE Shell: TFE homopolymer Core: Modified PTFE Shell: Modified PTFE Core: TFE homopolymer Shell: Modified PTFE Core: Low molecular weight PTFE Shell: High molecular weight PTFE Core: High molecular weight PTFE Shell: Low molecular weight PTFE
  • the lower limit of the core ratio is preferably 0.5% by mass, more preferably 1.0% by mass, still more preferably 3.0% by mass, and particularly preferably 5.0% by mass. , Most preferably 10.0% by mass.
  • the upper limit of the core ratio is preferably 99.5% by mass, more preferably 99.0% by mass, still more preferably 98.0% by mass, still more preferably 97.0% by mass, and particularly preferably 95.0% by mass. %, Most preferably 90.0% by mass.
  • the lower limit of the shell ratio is preferably 0.5% by mass, more preferably 1.0% by mass, still more preferably 3.0% by mass, and particularly preferably 5.0% by mass. , Most preferably 10.0% by mass.
  • the upper limit of the ratio of the shell is preferably 99.5% by mass, more preferably 99.0% by mass, still more preferably 98.0% by mass, still more preferably 97.0% by mass, and particularly preferably 95.0% by mass. %, Most preferably 90.0% by mass.
  • the core or the shell may have two or more layers.
  • it may be a fluoropolymer having a three-layer structure having a core core portion of the modified PTFE, a core outer layer portion of the TFE homopolymer, and a shell of the modified PTFE.
  • Examples of the fluoropolymer having the core-shell structure include those in which one particle of the fluoropolymer has a plurality of cores.
  • the polymerization of TFE is usually carried out at a polymerization temperature of 10 to 150 ° C. and a polymerization pressure of 0.05 to 5 MPaG.
  • the polymerization temperature is more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
  • 120 ° C. or lower is more preferable, and 100 ° C. or lower is further preferable.
  • the polymerization pressure is more preferably 0.3 MPaG or more, further preferably 0.5 MPaG or more, still more preferably 5.0 MPaG or less, still more preferably 3.0 MPaG or less.
  • 1.0 MPaG or more is preferable, 1.2 MPaG or more is more preferable, 1.5 MPaG or more is further preferable, and 2.0 MPaG or more is more preferable.
  • pure water is charged in a pressure-resistant reaction vessel equipped with a stirrer, deoxidized, TFE is charged, the temperature is brought to a predetermined temperature, and a polymerization initiator is added to start the reaction. If the pressure decreases as the reaction progresses, additional TFE is continuously or intermittently supplied to maintain the initial pressure. When a predetermined amount of TFE is supplied, the supply is stopped, the TFE in the reaction vessel is purged, the temperature is returned to room temperature, and the reaction is terminated. Additional TFE may be supplied continuously or intermittently so that the pressure does not drop.
  • the TFE polymer is not only a TFE homopolymer, but also a copolymer of TFE and a modified monomer, which is non-melt processable (hereinafter, referred to as "modified PTFE"). It is a concept that includes.
  • the modified monomer is not particularly limited as long as it can be copolymerized with TFE, and examples thereof include fluoromonomers and non-fluoromonomers. Further, the modified monomer used may be one kind or a plurality of kinds.
  • the O-CO- * or an -O- * is bonding position of the R Q2 .R Q2 representing the a hydrogen atom, and monomers represented by the representative.) the alkyl group or a nitrile group.
  • non-fluoromonomonomer examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate butyl acrylate, butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, vinyl methacrylate, vinyl acetate, acrylic acid, methacrylic acid and acrylonitrile. , Methacrylonitrile, ethyl vinyl ether, cyclohexyl vinyl ether and the like. Of these, butyl methacrylate, vinyl acetate, and acrylic acid are preferable as the non-fluoromonomer.
  • fluoromonomers for example, perfluoroolefins such as hexafluoropropylene [HFP]; hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VDF]; perhaloolefins such as chlorotrifluoroethylene; perfluorovinyl ethers; Perfluoroalkyl) ethylene; perfluoroallyl ether and the like can be mentioned.
  • HFP hexafluoropropylene
  • VDF vinylidene fluoride
  • perhaloolefins such as chlorotrifluoroethylene
  • perfluorovinyl ethers perfluorovinyl ethers
  • Perfluoroalkyl) ethylene perfluoroallyl ether and the like
  • Rf represents a perfluoroorganic group.
  • perfluoroorganic group means an organic group in which all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the perfluoroorganic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf is a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (A). The number of carbon atoms of the perfluoroalkyl group is preferably 1 to 5.
  • Examples of the perfluoroalkyl group in the above-mentioned PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is the following formula:
  • n an integer of 1 to 4.
  • the (perfluoroalkyl) ethylene (PFAE) is not particularly limited, and examples thereof include (perfluorobutyl) ethylene (PFBE) and (perfluorohexyl) ethylene.
  • perfluoroallyl ether examples include, for example.
  • General formula: CF 2 CF-CF 2- ORf (In the formula, Rf represents a perfluoroorganic group.) Fluoromonomer represented by.
  • Rf of the above general formula is the same as the Rf of the general formula (A).
  • Rf a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms is preferable.
  • a modified monomer (3) having a monomer reactivity ratio of 0.1 to 8 is also preferably exemplified.
  • PTFE particles having a small particle size can be obtained, and an aqueous dispersion having high dispersion stability can be obtained.
  • the monomer reactivity ratio in the copolymerization with TFE is the rate constant when the growth radical reacts with TFE when the growth radical is less than the repeating unit based on TFE, and the growth radical is a modified monomer. It is a value divided by the rate constant when reacting with. The lower this value is, the more reactive the modified monomer is with TFE.
  • the monomer reactivity ratio can be calculated from the Fineman-Loss formula by obtaining the composition in the produced polymer immediately after the start by copolymerizing TFE and the modified monomer.
  • the above copolymerization was carried out using 3600 g of deionized degassed water in a stainless steel autoclave having an internal volume of 6.0 L, 1000 mass ppm of ammonium perfluorooctanoate and 100 g of paraffin wax with respect to the water, and the pressure was 0. It is carried out at 78 MPaG and a temperature of 70 ° C. 0.05 g, 0.1 g, 0.2 g, 0.5 g, and 1.0 g of modified monomers were added to the reactor, 0.072 g of ammonium persulfate (20 mass ppm against water) was added, and the polymerization pressure was 0. TFE is continuously supplied to maintain 78 MPaG.
  • the amount of TFE charged reaches 1000 g, stirring is stopped and decompression is performed until the reactor reaches atmospheric pressure. After cooling, the paraffin wax is separated to obtain an aqueous dispersion containing the produced polymer. The aqueous dispersion is stirred to coagulate the resulting polymer and dried at 150 ° C.
  • the composition in the obtained produced polymer is calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the modified monomer (3) having a monomer reactivity ratio of 0.1 to 8 is preferably at least one selected from the group consisting of modified monomers represented by the formulas (3a) to (3d).
  • CH 2 CH-Rf 1 (3a) (In the formula, Rf 1 is a perfluoroalkyl group having 1 to 10 carbon atoms.)
  • CF 2 CF-O-Rf 2 (3b) (In the formula, Rf 2 is a perfluoroalkyl group having 1 to 2 carbon atoms.)
  • CF 2 CF-O- (CF 2 )
  • n CF CF 2 (3c) (In the formula, n is 1 or 2.)
  • X 3 and X 4 are F, Cl or methoxy groups, and Y is the formula Y1 or Y2.
  • the content of the modified monomer (3) unit is preferably in the range of 0.00001 to 1.0% by mass with respect to the total polymerization units of PTFE.
  • As the lower limit 0.0001% by mass is more preferable, 0.0005% by mass is more preferable, 0.001% by mass is further preferable, and 0.005% by mass is even more preferable.
  • the upper limit is 0.90% by mass, 0.50% by mass, 0.40% by mass, 0.30% by mass, 0.20% by mass, 0.15% by mass, 0.10% by mass, and 0 in the order of preference. It is .08% by mass, 0.05% by mass, and 0.01% by mass.
  • hexafluoropropylene, chlorotrifluoroethylene, and vinylidene fluoride can be obtained because an aqueous dispersion having a small average primary particle diameter of the primary particles, a small aspect ratio of the primary particles, and excellent stability can be obtained.
  • Perfluoro (alkyl vinyl ether), (perfluoroalkyl) ethylene, ethylene, and at least one selected from the group consisting of a modified monomer having a functional group and a hydrophilic group capable of reacting with radical polymerization is preferable.
  • aqueous dispersion of PTFE having a smaller average primary particle size, a smaller aspect ratio of the primary particles, and excellent dispersion stability.
  • an aqueous dispersion with less uncoagulated polymer can be obtained.
  • the modified monomer preferably contains at least one selected from the group consisting of hexafluoropropylene, perfluoro (alkyl vinyl ether) and (perfluoroalkyl) ethylene. More preferably, it is selected from the group consisting of hexafluoropropylene, perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), (perfluorobutyl) ethylene, (perfluorohexyl) ethylene, and (perfluorooctyl) ethylene. At least one of them is included.
  • the total amount of the hexafluoropropylene unit, the perfluoro (alkyl vinyl ether) unit and the (perfluoroalkyl) ethylene unit is preferably in the range of 0.00001 to 1% by mass with respect to the total polymerization units of PTFE.
  • As the lower limit of the total amount 0.0001% by mass is more preferable, 0.0005% by mass is more preferable, 0.001% by mass is further preferable, and 0.005% by mass is further preferable.
  • the upper limit is 0.80% by mass, 0.70% by mass, 0.50% by mass, 0.40% by mass, 0.30% by mass, 0.20% by mass, 0.15% by mass, and 0 in the order of preference. .10% by mass, 0.08% by mass, 0.05% by mass, 0.01% by mass.
  • the modified monomer contains a modified monomer having a functional group and a hydrophilic group capable of reacting by radical polymerization (hereinafter referred to as "modified monomer (A)").
  • PTFE particles having a small primary particle size can be obtained, and an aqueous dispersion liquid having high dispersion stability can be obtained.
  • the amount of uncoagulated polymer can be reduced.
  • the aspect ratio of the primary particles can be reduced.
  • the amount of the modified monomer (A) used is preferably more than 0.1 mass ppm of the aqueous medium, more preferably more than 0.5 mass ppm, and more preferably 1.0.
  • the amount is more preferably more than mass ppm, further preferably 5 mass ppm or more, and particularly preferably 10 mass ppm or more. If the amount of the modified monomer (A) used is too small, the average primary particle size of the obtained PTFE may not be reduced.
  • the amount of the modified monomer (A) used may be in the above range, but the upper limit can be, for example, 5000 mass ppm. Further, in the above production method, the modified monomer (A) may be added to the system during the reaction in order to improve the stability of the aqueous dispersion during or after the reaction.
  • the modified monomer (A) is highly water-soluble, even if the unreacted modified monomer (A) remains in the aqueous dispersion, it can be easily removed in the concentration step or the coagulation / washing step.
  • the modified monomer (A) is incorporated into the produced polymer in the process of polymerization, but the concentration of the modified monomer (A) in the polymerization system itself is low and the amount incorporated into the polymer is small, so that the heat resistance of PTFE is lowered. There is no problem of coloring after firing.
  • Examples of the hydrophilic group in the modified monomer (A) include -NH 2 , -PO 3 M, -OPO 3 M, -SO 3 M, -OSO 3 M, and -COOM (in each formula, M is H, Metal atom, NR 7y 4 , imidazolium which may have a substituent, pyridinium which may have a substituent or phosphonium which may have a substituent, R 7y is H or an organic group. Yes, they may be the same or different. Any two of them may be bonded to each other to form a ring).
  • As the hydrophilic group -SO 3 M or -COOM is particularly preferable.
  • As the organic group in R 7y an alkyl group is preferable.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • the metal atom include monovalent and divalent metal atoms, and examples thereof include alkali metals (Group 1) and alkaline earth metals (Group 2), with Na, K or Li being preferable.
  • Examples of the "functional group capable of reacting by radical polymerization" in the modified monomer (A) include a group having an ethylenically unsaturated bond such as a vinyl group and an allyl group.
  • the linking group R include linking groups as R a, which will be described later.
  • the modified monomer (A) Since the modified monomer (A) has a functional group capable of reacting by radical polymerization, when used in the polymerization, it reacts with a fluorine-containing monomer at the initial stage of the polymerization reaction and has a hydrophilic group derived from the modified monomer (A). It is presumed that highly stable particles are formed. Therefore, it is considered that the number of particles increases when the polymerization is carried out in the presence of the modified monomer (A).
  • one kind of the modified monomer (A) may be present, or two or more kinds of the modified monomer (A) may be present.
  • a compound having an unsaturated bond can be used as the above-mentioned modified monomer (A).
  • R 7y are H or an organic group, and are the same or different. Either two may be bonded to each other to form a ring.).
  • hydrophilic group -SO 3 M or -COOM is particularly preferable.
  • organic group in R 7y an alkyl group is preferable.
  • R 7y an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • Examples of the metal atom include monovalent and divalent metal atoms, and examples thereof include alkali metals (Group 1) and alkaline earth metals (Group 2), with Na, K or Li being preferable.
  • alkali metals Group 1
  • alkaline earth metals Group 2
  • Na, K or Li being preferable.
  • Ra is a linking group.
  • linking group refers to a divalent linking group.
  • the linking group may be a single bond and preferably contains at least one carbon atom, and the number of carbon atoms may be 2 or more, 4 or more, or 8 or more. It may be 10 or more, and may be 20 or more. The upper limit is not limited, but may be 100 or less, and may be 50 or less, for example.
  • the linking group may be chain or branched, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted, and may optionally be one or more selected from the group consisting of sulfur, oxygen, and nitrogen.
  • the linking group does not contain a carbon atom and may be a catenary heteroatom such as oxygen, sulfur or nitrogen.
  • the Ra is preferably a catenary heteroatom such as oxygen, sulfur, or nitrogen, or a divalent organic group.
  • the hydrogen atom bonded to the carbon atom may be replaced with a halogen other than fluorine, such as chlorine, and may or may not contain a double bond.
  • R a is linear and may be either branched, may be either cyclic or acyclic.
  • R a is a functional group (e.g., esters, ethers, ketones, amines, halides, etc.).
  • Ra may also be a non-fluorinated divalent organic group or a partially fluorinated or perfluorinated divalent organic group.
  • a, b, c and d are independently at least one or more.
  • a, b, c and d may be independently 2 or more, 3 or more, 4 or more, 10 or more, and 20 or more.
  • the upper limit of a, b, c and d is, for example, 100.
  • X 6 is H, F or CF 3 independently, e is an integer of 0 to 3, f is an integer of 0 to 3, g is 0 or 1, and h is.
  • a divalent group represented by 1) is also preferable.
  • the compound represented by the general formula (4) has a CF bond and does not have a CH bond, except for the hydrophilic group (Y 3). That is, in the general formula (4), it is preferable that all of X i , X j , and X k are F, and Ra is a perfluoroalkylene group having 1 or more carbon atoms, and the perfluoroalkylene group is preferably a perfluoroalkylene group having 1 or more carbon atoms. , Chained or branched, cyclic or acyclic, and may contain at least one catenary heteroatom. The number of carbon atoms of the perfluoroalkylene group may be 2 to 20, and may be 4 to 18.
  • the compound represented by the general formula (4) may be partially fluorinated. That is, the compound represented by the general formula (4), with the exception of hydrophilic group (Y 3), having at least one hydrogen atom bonded to a carbon atom, having at least one fluorine atom attached to a carbon atom It is also preferable.
  • the compound represented by the general formula (4) is also preferably a compound represented by the following formula (4a).
  • CF 2 CF-O-Rf 0- Y 3 (4a)
  • Y 3 is a hydrophilic group and Rf 0 is hyperfluorinated and may be chain or branched, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted.
  • a perfluorinated divalent linking group optionally additionally containing one or more heteroatoms selected from the group consisting of sulfur, oxygen, and nitrogen.
  • the compound represented by the general formula (4) is also preferably a compound represented by the following formula (4b).
  • CH 2 CH-O-Rf 0- Y 3 (4b) (In the formula, Y 3 is a hydrophilic group and Rf 0 is a perfluorinated divalent linking group defined by the formula (4a).)
  • Y 3 is one of the preferable forms of ⁇ OSO 3 M.
  • Y 3 is ⁇ SO 3 M.
  • M is the same as above.
  • Y 3 is also one of preferred embodiments it is -COOM.
  • Y 3 is ⁇ OPO 3 M or ⁇ OP (O) (OM) 2.
  • Y 3 is ⁇ PO 3 M or ⁇ P (O) (OM) 2.
  • Y 3 is -PO 3 M or -P (O) (OM) 2
  • CX 2 CY (-O-Rf-Y 3 ) (6)
  • X is the same or different, -H or -F
  • Y is -H, -F, an alkyl group or a fluorine-containing alkyl group
  • Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms.
  • CX 2 CY (-Rf-Y 3 ) (7)
  • X is the same or different, -H or -F
  • Y is -H, -F, an alkyl group or a fluorine-containing alkyl group
  • Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms.
  • .Y 3 is a fluorine-containing alkylene group having ether bond having 2 to 100 carbon atoms are the same as defined above, and.
  • the fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms is an alkylene group that does not contain a structure in which an oxygen atom is a terminal and contains an ether bond between carbon carbons.
  • X is -H or -F. Both of X may be -F, and at least one may be -H. For example, one may be -F and the other may be -H, or both may be -H.
  • Y is an —H, —F, an alkyl group or a fluorine-containing alkyl group.
  • the alkyl group may be an alkyl group containing no fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • Y, -H, -F or -CF 3 is preferable, and -F is more preferable.
  • Z is the same or different, —H, —F, alkyl group or fluoroalkyl group.
  • the alkyl group may be an alkyl group containing no fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • -H, -F or -CF 3 is preferable, and -F is more preferable.
  • X may be -H and Y and Z may be -F.
  • the Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • the fluorine-containing alkylene group preferably has 2 or more carbon atoms. Further, 30 or less is preferable, 20 or less is more preferable, and 10 or less is further preferable.
  • fluorinated alkylene group -CF 2 -, - CH 2 CF 2 -, - CF 2 CF 2 -, - CF 2 CH 2 -, - CF 2 CF 2 CH 2 -, - CF (CF 3) - , -CF (CF 3) CF 2 -, - CF (CF 3) CH 2 - and the like.
  • the fluorine-containing alkylene group is preferably a perfluoroalkylene group.
  • the fluorine-containing alkylene group having an ether bond preferably has 3 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group having an ether bond is preferably 60 or less, more preferably 30 or less, and even more preferably 12 or less.
  • Examples of the fluorine-containing alkylene group having an ether bond include the following formula: (In the formula, Z 1 is F or CF 3 ; Z 2 and Z 3 are H or F, respectively; Z 4 is H, F or CF 3 ; p1 + q1 + r1 is an integer of 1 to 10; s1 is 0 or 1; t1 is 0. It is also preferable that it is a divalent group represented by (an integer of ⁇ 5).
  • n is an integer of 1 to 10
  • n is an integer of 1 to 10
  • Y 3 is -COOM, -SO 3 M or -OSO 3 M
  • M is H, a metal atom, NR 7y 4 , an imidazolium which may have a substituent, a substituent.
  • Pyridineium, which may have a substituent, or phosphonium, R 7y which may have a substituent, may be an H or an organic group, and may be the same or different. Any two of them are bonded to each other and have a ring. May be formed.).
  • the organic group in R 7y an alkyl group is preferable.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and Na, K, or Li is preferable.
  • Y 3 preferably -COOM or -SO 3 M, -COOM is more preferable.
  • the compound represented by the general formula (5) is preferably the compound (5a) represented by the general formula (5a).
  • CH 2 CF (-CF 2 -ORf-Y 3 ) (5a) (Wherein, Rf and Y 3 are as defined above.)
  • Z 1 is F or CF 3 ;
  • Z 2 and Z 3 are H or F, respectively;
  • Z 4 is H, F or CF 3 ;
  • p1 + q1 + r1 is an integer of 0 to 10;
  • s1 is 0 or 1;
  • t1 is 0.
  • the integers of to 5 and Y 3 are the same as described above. However, when Z 3 and Z 4 are both H, p1 + q1 + r1 + s1 is not 0). More specifically
  • Etc. are preferably mentioned, among them
  • the compound represented by the general formula (5) is preferably the compound (5b) represented by the general formula (5b).
  • CX 2 2 CFCF 2- O- (CF (CF 3 ) CF 2 O) n5- CF (CF 3 ) -Y 3 (5b) (In the equation, each X 2 is the same and represents F or H. N5 represents 0 or an integer of 1 to 10, and Y 3 is the same as the above definition.)
  • the above n5 is preferably 0 or an integer of 1 to 5, more preferably 0, 1 or 2, and 0 or 1 in terms of the stability of the obtained aqueous dispersion. Is more preferable.
  • the Y 3 is preferably -COOM from the stability of the proper water solubility and an aqueous dispersion is obtained, the M is less likely to remain as an impurity, the heat resistance of the obtained molded article is improved In terms of points, it is preferably H or NH 4.
  • CF 2 CFCF 2 -ORf-Y 3 (5c) (Wherein, Rf and Y 3 are as defined above)
  • X is -H or -F. Both of X may be -F, and at least one may be -H. For example, one may be -F and the other may be -H, or both may be -H.
  • Y is an —H, —F, an alkyl group or a fluorine-containing alkyl group.
  • the alkyl group may be an alkyl group containing no fluorine atom and may have 1 or more carbon atoms.
  • the alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • the fluorine-containing alkyl group is an alkyl group containing at least one fluorine atom, and may have 1 or more carbon atoms.
  • the fluorine-containing alkyl group preferably has 6 or less carbon atoms, more preferably 4 or less, and even more preferably 3 or less.
  • Y, -H, -F or -CF 3 is preferable, and -F is more preferable.
  • X and Y contains a fluorine atom.
  • X may be -H and Y and Z may be -F.
  • the Rf is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms.
  • the fluorine-containing alkylene group preferably has 2 or more carbon atoms.
  • the number of carbon atoms of the fluorine-containing alkylene group is preferably 30 or less, more preferably 20 or less, and even more preferably 10 or less.
  • fluorinated alkylene group -CF 2 -, - CH 2 CF 2 -, - CF 2 CF 2 -, - CF 2 CH 2 -, - CF 2 CF 2 CH 2 -, - CF (CF 3) - , -CF (CF 3) CF 2 -, - CF (CF 3) CH 2 - and the like.
  • the fluorine-containing alkylene group is preferably a perfluoroalkylene group.
  • Y 3 is -COOM, -SO 3 M or -OSO 3 M
  • M is H, a metal atom, NR 7y 4 , an imidazolium which may have a substituent, a substitution.
  • Pyridineium which may have a group or phosphonium which may have a substituent, R 7y may be an H or an organic group, and may be the same or different. Either two are bonded to each other, and the two are bonded to each other. A ring may be formed.).
  • the organic group of R 7y an alkyl group is preferable.
  • an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and Na, K, or Li is preferable.
  • Y 3 preferably -COOM or -SO 3 M, -COOM is more preferable.
  • n1 is preferably an integer of 5 or less, and more preferably an integer of 2 or less.
  • the Y 3 are points obtained stability proper water solubility and an aqueous dispersion is preferably -COOM, M is little tendency toward remaining as an impurity, that the heat resistance of the resulting molded article is improved Therefore, it is preferably H or NH 4.
  • n2 is in terms of stability of the resulting aqueous dispersion is preferably 3 or less an integer
  • Y 3 is the stability of the proper water solubility and an aqueous dispersion obtained In that respect, it is preferably ⁇ COOM
  • M is preferably H or NH 4 in that it does not easily remain as an impurity and the heat resistance of the obtained molded product is improved.
  • n3 is preferably 5 or less integer in terms of water-soluble
  • the Y 3 is in that the stability of the proper water solubility and an aqueous dispersion is obtained
  • -COOM is preferably H or NH 4 in terms of improving dispersion stability.
  • the above X 1 is preferably ⁇ CF 3 in terms of the stability of the aqueous dispersion, and the above n4 is preferably an integer of 5 or less in terms of water solubility.
  • the above Y 3 is preferably ⁇ COOM in that appropriate water solubility and stability of the aqueous dispersion can be obtained, and the above M is preferably H or NH 4 .
  • CF (CF 3 ) OCF 2 CF 2 CF 2 COM in the formula, M represents H, NH 4 or an alkali metal
  • n5 is preferably 5 or less integer in terms of water-soluble
  • the Y 3 is a -COOM in that the stability of the proper water solubility and an aqueous dispersion is obtained
  • the above M is preferably H or NH 4 .
  • Rf is preferably a fluorine-containing alkylene group having 1 to 40 carbon atoms. In the general formula (7), it is preferable that at least one of X and Y contains a fluorine atom.
  • the compound represented by the general formula (7) is the general formula (7a) :.
  • CF 2 CF- (CF 2 ) n1- Y 3 (7a) (.
  • n1 represents an integer of 1 ⁇ 10
  • Y 3 is defined as the same
  • a compound represented by and the general formula (7b):
  • CF 2 CF- (CF 2 C (CF 3 ) F) n2- Y 3 (7b) (Wherein, n2 represents an integer of 1 ⁇ 5, Y 3 is defined as the same.)
  • At least one selected from the group consisting of compounds represented by are preferred.
  • the Y 3 is preferably -SO 3 M or -COOM, where M is H, a metal atom, NR 7y 4 , imidazolium which may have a substituent, pyridinium which may have a substituent, or It is preferably phosphonium which may have a substituent.
  • the R 7y represents H or an organic group.
  • the above n1 is preferably an integer of 5 or less, and more preferably an integer of 2 or less.
  • the Y 3 are points obtained stability proper water solubility and an aqueous dispersion is preferably -COOM, M is little tendency toward remaining as an impurity, that the heat resistance of the resulting molded article is improved Therefore, it is preferably H or NH 4.
  • n2 is in terms of stability of the resulting aqueous dispersion is preferably 3 or less an integer
  • Y 3 is the stability of the proper water solubility and an aqueous dispersion obtained In that respect, it is preferably ⁇ COOM
  • M is preferably H or NH 4 in that it does not easily remain as an impurity and the heat resistance of the obtained molded product is improved.
  • the modified monomer preferably contains the modified monomer (A), and has a general formula (5a), a general formula (5c), a general formula (6a), a general formula (6b), a general formula (6c), and a general formula. It is preferable to contain at least one selected from the group consisting of the compounds represented by (6d), and it is more preferable to contain the compound represented by the general formula (5a) or the general formula (5c).
  • the content of the modified monomer (A) unit is in the range of 0.00001 to 1.0% by mass with respect to the total polymerization units of the TFE polymer (PTFE). It is preferable to have.
  • As the lower limit 0.0001% by mass is more preferable, 0.0005% by mass is more preferable, 0.001% by mass is further preferable, and 0.005% by mass is even more preferable.
  • the upper limit is 0.90% by mass, 0.50% by mass, 0.40% by mass, 0.30% by mass, 0.20% by mass, 0.15% by mass, 0.10% by mass, and 0 in the order of preference. It is .08% by mass, 0.05% by mass, and 0.01% by mass.
  • the polymer (I) can be used within the range of use in the above-mentioned production method of the present disclosure.
  • the concentration of the polymer (I) is not particularly limited as long as it is in the above range. If the amount added is too large, needle-like particles having a large aspect ratio are generated, and the aqueous dispersion becomes gel-like and the stability is impaired.
  • the lower limit of the amount of the polymer (I) used is preferably 0.0001% by mass, more preferably 0.001% by mass, still more preferably 0.01% by mass, and particularly preferably 0.02 with respect to the aqueous medium. It is mass%.
  • the upper limit of the amount of the polymer (I) used is preferably 10% by mass, more preferably 5% by mass, based on the aqueous medium.
  • the polymer (I) may be added to the reaction vessel all at once before the start of the polymerization, may be added all at once after the start of the polymerization, or may be added in a plurality of times during the polymerization. It may be added continuously during the polymerization.
  • persulfate for example, ammonium persulfate
  • an organic peroxide such as disuccinic acid peroxide or diglutaric acid peroxide
  • a radical scavenger such as hydroquinone or catechol
  • a peroxide decomposing agent such as ammonium sulfate
  • a redox initiator that combines an oxidizing agent and a reducing agent.
  • the oxidizing agent include persulfate, organic peroxide, potassium permanganate, manganese triacetate, ammonium cerium nitrate and the like.
  • the reducing agent include sulfites, bisulfites, bromates, diimines, oxalic acid and the like.
  • persulfate include ammonium persulfate and potassium persulfate.
  • sulfites include sodium sulfite and ammonium sulfite.
  • a copper salt and an iron salt to the combination of the redox initiator.
  • the copper salt include copper (II) sulfate
  • the iron salt include iron (II) sulfate.
  • Examples of the redox initiator include potassium permanganate / oxalic acid, ammonium persulfate / bicarbonate / iron sulfate, manganese triacetate / oxalic acid, ammonium cerium nitrate / oxalic acid, bromate / sulfite, and the like. Therefore, potassium permanganate / oxalic acid is preferable.
  • an oxidizing agent or a reducing agent may be charged in advance in the polymerization tank, and then the other may be continuously or intermittently added to initiate polymerization.
  • potassium permanganate / oxalic acid it is preferable to charge oxalic acid in the polymerization tank and continuously add potassium permanganate to the oxalic acid.
  • chain transfer agents can be used.
  • saturated hydrocarbons such as methane, ethane, propane and butane
  • halogenated hydrocarbons such as chloromethane, dichloromethane and difluoroethane
  • the amount of the chain transfer agent used is usually 1 to 10000 mass ppm, preferably 1 to 5000 mass ppm, based on the total amount of TFE supplied.
  • a saturated hydrocarbon having 12 or more carbon atoms which is substantially inert to the reaction and becomes liquid under the above reaction conditions, is used as the aqueous medium 100. It can also be used in an amount of 2 to 10 parts by mass with respect to a part by mass. Further, ammonium carbonate, ammonium phosphate or the like may be added as a buffer for adjusting the pH during the reaction.
  • an aqueous dispersion having a solid content concentration of 1.0 to 70% by mass and an average primary particle size of 50 to 500 nm can be obtained.
  • the lower limit of the solid content concentration is preferably 5% by mass, more preferably 8% by mass.
  • the upper limit is not particularly limited, but may be 40% by mass or 35% by mass.
  • the lower limit of the average primary particle size is preferably 100 nm, more preferably 150 nm.
  • the upper limit is preferably 400 nm, more preferably 350 nm.
  • the average primary particle size can be measured by a dynamic light scattering method.
  • the above average primary particle size was adjusted to a solid content concentration of about 1.0% by mass to prepare an aqueous dispersion, and the dynamic light scattering method was used at 25 ° C., and the refractive index of the solvent (water) was 1.3328. , The viscosity of the solvent (water) is 0.8878 mPa ⁇ s, and can be measured 70 times in total.
  • the dynamic light scattering method for example, ELSZ-1000S (manufactured by Otsuka Electronics Co., Ltd.) can be used.
  • Fine powder can be produced by coagulating the above aqueous dispersion.
  • the aqueous dispersion of the TFE polymer can be used as a fine powder for various purposes after being coagulated, washed and dried.
  • the aqueous dispersion obtained by polymerization of polymer latex or the like is usually diluted with water so as to have a polymer concentration of 5 to 20% by mass.
  • the pH is adjusted to neutral or alkaline, and then the mixture is stirred vigorously in a container equipped with a stirrer rather than during the reaction.
  • the coagulation may be carried out while adding a water-soluble organic compound such as methanol or acetone, an inorganic salt such as potassium nitrate or ammonium carbonate, or an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid as a coagulant.
  • a water-soluble organic compound such as methanol or acetone
  • an inorganic salt such as potassium nitrate or ammonium carbonate
  • an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid
  • the coagulation may also be carried out continuously using an in-line mixer or the like.
  • the concentration of the unaggregated TFE polymer in the waste water generated by the aggregation is preferably low from the viewpoint of productivity, more preferably less than 0.4% by mass, and particularly preferably less than 0.3% by mass.
  • Drying of the wet powder obtained by coagulating the aqueous dispersion of the TFE polymer is usually carried out in a vacuum, high frequency, hot air or the like while maintaining a state in which the wet powder does not flow so much, preferably in a stationary state. This is done by means. Friction between the powders, especially at high temperatures, generally has an unfavorable effect on the fine powder type TFE polymer. This is because the particles made of this type of TFE polymer have the property of being easily fibrillated by a small shearing force and losing the state of the original stable particle structure.
  • the above drying is performed at a drying temperature of 10 to 300 ° C, preferably 100 to 300 ° C.
  • the obtained TFE polymer fine powder is preferable for molding, and suitable applications include hydraulic systems such as aircraft and automobiles, fuel system tubes and the like, flexible hoses such as chemicals and steam, and electric wire coating applications. Can be mentioned.
  • the aqueous dispersion of the TFE polymer obtained by the above polymerization is also stabilized and further concentrated by adding a nonionic surfactant, and an organic or inorganic filler is added depending on the purpose. It is also preferable to use it for various purposes.
  • the above composition has a non-adhesive and low friction coefficient by coating on a base material made of metal or ceramics, and has excellent gloss, smoothness, abrasion resistance, weather resistance and heat resistance. It is suitable for painting rolls and cooking utensils, impregnating glass cloth, and the like.
  • the organosol can contain the TFE polymer and an organic solvent, and examples of the organic solvent include ether-based solvents, ketone-based solvents, alcohol-based solvents, amide-based solvents, ester-based solvents, and aliphatic hydrocarbon-based solvents. Examples thereof include aromatic hydrocarbon solvents and halogenated hydrocarbon solvents, and N-methyl-2-pyrrolidone, dimethylacetamide and the like can be preferably used.
  • the preparation of the organosol can be carried out, for example, by the method described in International Publication No. 2012/002038.
  • the aqueous dispersion of the TFE polymer or the fine powder of the TFE polymer is also preferably used as a processing aid.
  • a processing aid by mixing the aqueous dispersion or the fine powder with a host polymer or the like, the melt strength during melt processing of the host polymer can be improved, and the mechanical strength, electrical properties, and difficulties of the obtained polymer can be improved. It is possible to improve flammability, drip prevention during combustion, and slidability.
  • the aqueous dispersion of the TFE polymer or the fine powder of the TFE polymer is also preferably used as a binder for batteries and dustproof.
  • the aqueous dispersion of the TFE polymer or the fine powder of the TFE polymer is used as a processing aid after being combined with a resin other than the TFE polymer.
  • the aqueous dispersion or the fine powder is, for example, a raw material for PTFE described in JP-A-11-49912, US Pat. No. 5,804,654, JP-A-11-29679, and JP-A-2003-2980. Is suitable as.
  • the processing aid using the aqueous dispersion or the fine powder is not inferior to the processing aids described in the respective publications.
  • the aqueous dispersion of the TFE polymer is mixed with the aqueous dispersion of a melt-processable fluororesin and coagulated to obtain a co-coagulation powder.
  • the co-coagulation powder is suitable as a processing aid.
  • melt-processable fluororesin examples include FEP, PFA, TFE / perfluoroallyl ether copolymer, ETFE, ethylene / TFE / HFP copolymer [EFEP], and FEP is preferable.
  • the aqueous dispersion preferably contains the melt-processable fluororesin.
  • the melt-processable fluororesin include FEP, PFA, TFE / perfluoroallyl ether copolymer, ETFE, and EFEP.
  • the aqueous dispersion containing the melt-processable fluororesin can be used as a coating material. Since the melt-processable fluororesin can sufficiently fuse the particles of the TFE polymer to each other, the film-forming property can be improved and the obtained film can be glossy.
  • the fluorine-free resin to which the co-coagulation powder is added may be in the form of a powder, in the form of pellets, or in the form of an emulsion.
  • the above addition is preferably carried out while applying a shearing force by a known method such as extrusion kneading or roll kneading, in that each resin is sufficiently mixed.
  • the aqueous dispersion of the TFE polymer is also preferably used as a dust control treatment agent.
  • the dust control treatment agent is a method of mixing a dust generating substance and applying a compression-shearing action to the mixture at a temperature of 20 to 200 ° C. to fibril the TFE polymer to suppress the dust of the dust generating substance.
  • it can be used in methods such as Japanese Patent No. 2827152 and Japanese Patent No. 2538783.
  • the aqueous dispersion of the TFE polymer can be suitably used for, for example, the dust control treatment agent composition described in International Publication No. 2007/004250, and the dust control treatment method described in International Publication No. 2007/000812. Can also be suitably used.
  • the above-mentioned dust control treatment agents include building materials, soil stabilizers, solidifying materials, fertilizers, incineration ash and harmful substances, explosion-proofing, cosmetics, sand for excretion of pets represented by cat sand, etc. It is suitably used for the dust control treatment of.
  • the aqueous dispersion of the TFE polymer is also preferably used as a raw material for obtaining TFE polymer fibers by a dispersion spinning method.
  • a dispersion spinning method an aqueous dispersion of the TFE polymer and an aqueous dispersion of a matrix polymer are mixed, and the mixture is extruded to form an intermediate fiber structure, and the intermediate fiber structure is formed.
  • the high molecular weight PTFE powder obtained by polymerization has stretchability and non-melt processability, and is also useful as a raw material for a stretched body (porous body).
  • this stretched body is a membrane (PTFE stretched membrane or PTFE porous membrane)
  • it can be stretched by a known PTFE stretching method.
  • the high molecular weight PTFE is easily fibrillated into a PTFE porous body (membrane) composed of nodules and fibers.
  • a uniaxially stretched film can be obtained by roll-stretching a sheet-shaped or rod-shaped paste extrusion in the extrusion direction.
  • a biaxially stretched film can also be obtained by stretching in the width direction with a tenter or the like. It is also preferable to perform a semi-baking treatment before stretching.
  • This PTFE stretched body is a porous body having a high porosity, and can be suitably used as a filter medium for various microfiltration filters such as an air filter and a chemical solution filter, a support material for a polymer electrolyte membrane, and the like. It is also useful as a material for products used in the textile field, medical field, electrochemical field, sealing material field, air filtration field, ventilation / internal pressure adjustment field, liquid filtration field, general consumer material field, and the like. Specific uses will be illustrated below.
  • Electrochemical field Dielectric material prepreg EMI shielding material, heat transfer material, etc. More specifically, printed wiring boards, electromagnetic shielding shield materials, insulating heat transfer materials, insulating materials, etc. Sealing material field Gaskets, packings, pump diaphragms, pump tubes, aircraft sealing materials, etc.
  • Air filtration field ULPA filter for semiconductor manufacturing
  • HEPA filter for hospital / semiconductor manufacturing
  • cylindrical cartridge filter for industrial use
  • bug filter for industrial use
  • heat-resistant bag filter- for exhaust gas treatment
  • heat-resistant pleated filter for exhaust gas treatment
  • SINBRAN filter for industrial use
  • catalyst filter for exhaust gas treatment
  • filter with adsorbent built-in HDD
  • vent filter with adsorbent for built-in HDD
  • vent filter for built-in HDD, etc.
  • cleaning Machine filters for vacuum cleaners
  • general-purpose multi-layer felt materials for GT cartridge filters (for GT compatible products), cooling filters (for electronic device housings), etc.
  • Ventilation / internal pressure adjustment field Freezing and drying materials such as containers for freezing and drying, ventilation materials for automobiles for electronic circuits and lamps, container applications such as container caps, electronic devices including small terminals such as tablet terminals and mobile phone terminals
  • container applications such as container caps
  • electronic devices including small terminals such as tablet terminals and mobile phone terminals
  • protective ventilation applications such as for tablets, medical ventilation applications, etc.
  • Liquid filtration field Semiconductor liquid filtration filter (for semiconductor manufacturing), hydrophilic PTFE filter (for semiconductor manufacturing), chemical filter (for chemical treatment), pure water production line filter (for pure water production), backwash type liquid Filtration filter (for industrial wastewater treatment), etc.
  • Textile field PTFE fiber fiber material
  • sewing thread textile
  • weaving thread textile
  • rope etc.
  • Low molecular weight PTFE can also be produced by the production method of the present disclosure.
  • the low molecular weight PTFE may be produced by polymerization, or the high molecular weight PTFE obtained by polymerization may be produced by reducing the molecular weight by a known method (pyrolysis, irradiation decomposition, etc.).
  • Low molecular weight PTFE also called PTFE micropowder
  • PTFE micropowder with a molecular weight of 600,000 or less has excellent chemical stability, extremely low surface energy, and is less likely to cause fibrillation, thus improving slipperiness and the texture of the coating film surface. It is suitable for producing plastics, inks, cosmetics, paints, greases, office automation equipment members, toners and the like as additives for the purpose of making them (see, for example, Japanese Patent Application Laid-Open No. 10-147617).
  • the polymerization initiator and the polymer (I) are dispersed in an aqueous medium, and TFE or a monomer copolymerizable with TFE is polymerized with TFE to obtain low molecular weight PTFE. You may get it.
  • the chain transfer agent at least one selected from the group consisting of alkanes having 2 to 4 carbon atoms is preferable. Specifically, methane, ethane, propane, butane and isobutane are more preferable, and ethane and propane are even more preferable.
  • the amount of the chain transfer agent is preferably 10 mass ppm or more or more than 10 mass ppm with respect to the aqueous medium.
  • the low molecular weight PTFE obtained by the above polymerization is used as a powder, it can be made into powder particles by coagulating the above aqueous dispersion.
  • the high molecular weight PTFE means a PTFE having non-melt processability and fibrillation property.
  • the low molecular weight PTFE means PTFE having melt processability and not fibrillation property.
  • the non-melt processability means a property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point in accordance with ASTM D 1238 and D 2116.
  • the presence or absence of fibrillation can be determined by "paste extrusion", which is a typical method for molding "high molecular weight PTFE powder” which is a powder made from a polymer of TFE.
  • paste extrusion is possible because high molecular weight PTFE has fibrillation properties. If the unbaked molded product obtained by paste extrusion does not have substantial strength or elongation, for example, if the elongation is 0% and it breaks when pulled, it can be considered that there is no fibrillation property.
  • the high molecular weight PTFE preferably has a standard specific gravity (SSG) of 2.130 to 2.280.
  • the standard specific gravity is measured by a water substitution method based on ASTM D 792 using a sample molded according to ASTM D4895-89.
  • “high molecular weight” means that the standard specific gravity is within the above range.
  • the low molecular weight PTFE has a complex viscosity (melt viscosity) at 340 ° C. of 1 ⁇ 10 2 to 7 ⁇ 10 5 Pa ⁇ s.
  • "low molecular weight” means that the complex viscosity is within the above range.
  • the melt viscosity conforms to ASTM D 1238, and a 2 g sample preheated at 380 ° C. for 5 minutes using a flow tester (manufactured by Shimadzu Corporation) and a 2 ⁇ -8L die under a load of 0.7 MPa. It is a value measured while maintaining the above temperature.
  • the high molecular weight PTFE has a much higher complex viscosity (melt viscosity) than the low molecular weight PTFE, and it is difficult to accurately measure the complex viscosity.
  • the complex viscosity of the low molecular weight PTFE can be measured, it is difficult to obtain a molded product that can be used for measuring the standard specific density from the low molecular weight PTFE, and it is difficult to measure the accurate standard specific gravity. Is. Therefore, in the present disclosure, the standard specific gravity is adopted as an index of the molecular weight of the high molecular weight PTFE, and the complex viscosity is adopted as an index of the molecular weight of the low molecular weight PTFE. There is no known measurement method capable of directly specifying the molecular weight of either the high molecular weight PTFE or the low molecular weight PTFE.
  • the high molecular weight PTFE preferably has a peak temperature of 333 to 347 ° C, and more preferably 335 to 345 ° C.
  • the low molecular weight PTFE preferably has a peak temperature of 322 to 333 ° C, more preferably 324 to 332 ° C.
  • the peak temperature is the differential heat (differential heat) obtained by raising the temperature of PTFE, which has no history of heating to a temperature of 300 ° C or higher, under the condition of 10 ° C / min using a TG / DTA (differential thermal heat weight simultaneous measuring device). It can be specified as the temperature corresponding to the maximum value appearing in the DTA) curve.
  • the peak temperature of PTFE may be 322 to 347 ° C.
  • the upper limit of the peak temperature of PTFE is 347 ° C or lower, 346 ° C or lower, 345 ° C or lower, 344 ° C or lower, 343 ° C or lower, 342 ° C or lower, 341 ° C or lower, 340 ° C or lower. It's okay.
  • the lower limit of the peak temperature of the PTFE may be 333 ° C. or higher and 335 ° C. or higher.
  • the upper limit of the peak temperature of the PTFE may be 333 ° C or lower and 332 ° C or lower.
  • the lower limit of the peak temperature of the PTFE may be 322 ° C. or higher and 324 ° C. or higher.
  • the average primary particle size of the low molecular weight PTFE primary particles is preferably 10 to 200 nm, more preferably 20 nm or more, more preferably 140 nm or less, still more preferably 150 nm or less, and particularly preferably 90 nm or less. Is.
  • the relatively small average primary particle size of the primary particles can be obtained, for example, by adding a modified monomer to the polymerization system at the initial stage of polymerization of TFE.
  • the average primary particle size of low molecular weight PTFE primary particles can be measured by the dynamic light scattering method.
  • a low molecular weight PTFE aqueous dispersion having a polymer solid content concentration adjusted to about 1.0% by mass was prepared, and a dynamic light scattering method was used to measure the measurement temperature at 25 ° C. and the refractive index of the solvent (water). It can be measured with 1.3328, the viscosity of the solvent (water) being 0.8878 mPa ⁇ s, and the number of integrations being 70 times.
  • ELSZ-1000S manufactured by Otsuka Electronics Co., Ltd.
  • the high molecular weight PTFE is 333 to 347 ° C. in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC] for a PTFE having no history of heating to a temperature of 300 ° C. or higher. It is preferable that at least one heat absorption peak appears in the range of 1 and the amount of heat of fusion calculated from the heat of fusion curve at 290 to 350 ° C. is 62 mJ / mg or more.
  • Unfired tape (raw tape) can also be obtained from the PTFE fine powder obtained above.
  • the polymerization of FEP is preferably carried out at a polymerization temperature of 10 to 150 ° C. and a polymerization pressure of 0.3 to 6.0 MPaG.
  • the FEP may be further modified by using perfluoro (alkyl vinyl ether) as the third component within a range of 0.1 to 2% by mass of all the monomers.
  • the polymer (I) can be used within the range of use in the production method of the present disclosure, but usually, an amount of 0.0001 to 10% by mass is added with respect to 100% by mass of the aqueous medium. ..
  • cyclohexane methanol, ethanol, propanol, ethane, propane, butane, pentane, hexane, carbon tetrachloride, chloroform, methylene chloride, methyl chloride and the like are preferably used, and pH.
  • the buffer it is preferable to use ammonium carbonate, disodium hydrogen phosphate or the like.
  • the aqueous dispersion of FEP obtained by the production method of the present disclosure may be subjected to post-treatment such as concentration if necessary, dried, powdered, and then melt-extruded to be pelletized.
  • the aqueous medium in the aqueous dispersion of FEP may contain an additive such as a nonionic surfactant, if necessary, but may contain a water-soluble organic solvent such as a water-soluble alcohol. It may be the one which does not contain a water-soluble organic solvent.
  • melt extrusion can be performed by appropriately setting the extrusion conditions as long as the extrusion conditions can be generally pelletized.
  • the obtained FEP may have a terminal group such as -CF 3 or -CF 2 H at at least one of the polymer main chain and the polymer side chain.
  • a terminal group such as -CF 3 or -CF 2 H at at least one of the polymer main chain and the polymer side chain.
  • the unstable terminal group is chemically unstable, it not only lowers the heat resistance of the resin but also causes an increase in the amount of attenuation of the obtained electric wire.
  • the polymer at the end of polymerization can be produced so that the total number of unstable terminal groups and -CF 2 H terminal groups is 50 or less per 1 ⁇ 10 6 carbon atoms. preferable. More preferably, it is less than 20 per 1 ⁇ 10 6 carbon atoms, and even more preferably 5 or less.
  • the unstable terminal group and the -CF 2 H terminal group may be absent and all may be a -CF 3 terminal group.
  • Unstable end groups and -CF 2 H end groups can be converted to -CF 3 end groups and stabilized by fluorination treatment.
  • the fluorination treatment method is not particularly limited, and examples thereof include a method of exposing the polymer to a fluorine radical source that generates fluorine radicals under fluorination treatment conditions.
  • the fluorine radical source include fluorine gas, CoF 3 , AgF 2 , UF 6 , OF 2 , N 2 F 2 , CF 3 OF, and halogen fluoride, for example, IF 5 , ClF 3 .
  • a method of directly contacting fluorine gas with the FEP obtained by the production method of the present disclosure is preferable, and the above contact is performed using diluted fluorine gas having a fluorine gas concentration of 10 to 50% by mass in terms of reaction control.
  • the diluted fluorine gas can be obtained by diluting the fluorine gas with an inert gas such as nitrogen gas or argon gas.
  • the fluorine gas treatment can be performed, for example, at a temperature of 100 to 250 ° C. The processing temperature is not limited to the above range and can be appropriately set according to the situation.
  • the fluorine gas treatment is preferably carried out by continuously or intermittently supplying diluted fluorine gas into the reactor. This fluorination treatment may be a dry powder after polymerization or pellets extruded by melt.
  • the FEP obtained by the manufacturing method of the present disclosure has good moldability, is less likely to cause molding defects, and has good heat resistance, chemical resistance, solvent resistance, insulation, electrical properties, and the like.
  • the above-mentioned method for producing FEP powder is a method for obtaining powder by drying and pulverizing the FEP obtained by the above-mentioned production method of the present disclosure.
  • the above powder may be fluorinated.
  • the above-mentioned method for producing a fluorinated powder is a method for obtaining a fluorinated powder by fluorinating the powder obtained by the above-mentioned method for producing a powder by supplying fluorinated gas.
  • the above-mentioned method for producing pellets of FEP is a method for obtaining pellets by pelletizing the FEP obtained by the above-mentioned production method of the present disclosure.
  • the pellets may be fluorinated.
  • the above-mentioned method for producing fluorinated pellets is a method for obtaining fluorinated pellets by fluorinating the pellets obtained by the above-mentioned method for producing pellets by supplying fluorinated gas.
  • this FEP can be used for manufacturing various molded products such as coating materials such as electric wires, foamed electric wires, cables and wires, tubes, films, sheets and filaments.
  • the polymerization of a TFE / perfluoro (alkyl vinyl ether) copolymer such as PFA or MFA and a TFE / perfluoroallyl ether copolymer is usually carried out at a polymerization temperature of 10 to 100 ° C.
  • the pressure is preferably 0.3 to 6.0 MPaG.
  • the polymer (I) can be used within the range of use in the production method of the present disclosure, but is usually used. It is preferable to add in an amount of 0.0001 to 10% by mass with respect to 100% by mass of the aqueous medium.
  • TFE / perfluoro (alkyl vinyl ether) copolymer and TFE / perfluoroallyl ether copolymer cyclohexane, methanol, ethanol, propanol, propane, butane, pentane, hexane, carbon tetrachloride, as chain transfer agents, Chloroform, methylene chloride, methyl chloride, methane, ethane and the like are preferably used, and ammonium carbonate, disodium hydrogen phosphate and the like are preferably used as the pH buffer.
  • an aqueous dispersion of TFE / perfluoro (alkyl vinyl ether) copolymer such as PFA and MFA and TFE / perfluoroallyl ether copolymer obtained by the production method of the present disclosure if necessary. It may be pelletized by drying, powdering, and then melt extrusion.
  • the aqueous medium in the aqueous dispersion may contain an additive such as a nonionic surfactant, if necessary, but may contain a water-soluble organic solvent such as a water-soluble alcohol. It may be the one which does not contain a water-soluble organic solvent.
  • melt extrusion can be performed by appropriately setting the extrusion conditions as long as the extrusion conditions can be generally pelletized.
  • the above copolymer is preferably treated with fluorine gas for the purpose of improving its heat resistance and further enhancing the effect of suppressing the permeation of the molded product into the chemical solution.
  • Fluorine gas treatment is performed by bringing fluorine gas into contact with a chemical permeation inhibitor. However, since the reaction with fluorine is very exothermic, it is preferable to dilute fluorine with an inert gas such as nitrogen.
  • the amount of fluorine in the fluorine gas / inert gas mixture is 1 to 100% by mass, preferably 10 to 25% by mass.
  • the treatment temperature is 150 to 250 ° C., preferably 200 to 250 ° C., and the fluorine gas treatment time is 3 to 16 hours, preferably 4 to 12 hours.
  • the gas pressure of the fluorine gas treatment is in the range of 1 to 10 atm, but atmospheric pressure is preferably used. When the reactor is used at atmospheric pressure, the fluorine gas / inert gas mixture may be continuously passed through the reactor. As a result, unstable end of the copolymer is converted to -CF 3 end, a thermally stable.
  • molding methods such as compression molding, transfer molding, extrusion molding, injection molding, and blow molding can be applied as in the case of conventional PFA.
  • a desired molded product can be obtained by such a molding method.
  • the molded product include a sheet, a film, a packing, a round bar, a square bar, a pipe, a tube, a round tank, a square tank, a tank, and a wafer.
  • tubes, pipes, tanks, connectors, etc. used for various chemical reaction devices, semiconductor manufacturing devices, and acid-based or alkaline-based chemical solution supply devices that require impermeable chemical solutions. Can be used.
  • a nonionic surfactant is appropriately added to the aqueous dispersion of the TFE / perfluoro (alkyl vinyl ether) copolymer such as PFA and MFA and the TFE / perfluoroallyl ether copolymer, and if necessary, poly.
  • a primer composition can be obtained by dissolving or dispersing ether sulfone, polyamideimide and / or polyimide, and a metal powder in an organic solvent. This primer composition is applied to a metal surface, a melt-processable fluororesin composition is applied onto the thus formed primer layer, and the melt-processable fluororesin composition layer is fired together with the primer layer to form fluorine on the metal surface. It can also be used as a resin coating method.
  • ETFE is polymerized at a polymerization temperature of 10 to 100 ° C. and a polymerization pressure of 0.3 to 2.0 MPaG.
  • the ETFE may be further modified by using a third monomer in a range of 0 to 20% by mass of all the monomers.
  • TFE: ethylene: third monomer (63 to 94) :( 27 to 2) :( 1 to 10).
  • the polymer (I) can be used within the range of use in the production method of the present disclosure, but is usually added in an amount of 0.0001 to 10% by mass with respect to 100% by mass of the aqueous medium. ..
  • cyclohexane methanol, ethanol, propanol, ethane, propane, butane, pentane, hexane, carbon tetrachloride, chloroform, methylene chloride, methyl chloride and the like as the chain transfer agent.
  • the aqueous dispersion of ETFE obtained by the production method of the present disclosure may be subjected to post-treatment such as concentration if necessary, dried, powdered, and then melt-extruded to be pelletized.
  • the aqueous medium in the aqueous dispersion may contain an additive such as a nonionic surfactant, if necessary, but may contain a water-soluble organic solvent such as a water-soluble alcohol. It may be the one which does not contain a water-soluble organic solvent.
  • melt extrusion can be performed by appropriately setting the extrusion conditions as long as the extrusion conditions can be generally pelletized.
  • the above ETFE sheet can be extruded into a sheet. That is, the ETFE powder or pellets can be melted, continuously extruded from the die, and cooled to obtain a sheet-shaped molded product. Additives may be added to ETFE.
  • the additive a known additive can be appropriately used. Specific examples include ultraviolet absorbers, light stabilizers, antioxidants, infrared absorbers, flame retardants, flame retardant fillers, organic pigments, inorganic pigments, dyes and the like. Inorganic additives are preferable from the viewpoint of excellent weather resistance.
  • the content of the additive in the ETFE sheet is preferably 20% by mass or less, and particularly preferably 10% by mass or less, based on the total mass of the ETFE sheet.
  • membrane materials for membrane structure buildings (athletic facilities, gardening facilities, atriums, etc.) ) Is suitable.
  • membrane materials for membrane-structured buildings for example, outdoor board materials (soundproof walls, windbreak fences, overwave fences, garage canopies, shopping malls, pedestrian walls, roofing materials), glass shatterproof films, heat and water resistance.
  • Sheets, building materials, etc. tent materials for tent warehouses, membrane materials for sunshades, partial roofing materials for lighting, window materials that replace glass, membrane materials for flameproof partitions, curtains, exterior wall reinforcement, waterproof membranes, smokeproof membranes, etc.
  • Non-combustible transparent partition road reinforcement, interior (lighting, wall surface, brand, etc.), exterior (tent, signboard, etc.), daily leisure goods (fishing rod, racket, golf club, projection curtain, etc.), automobile materials (roof) , Vibration damping material, body, etc.), aircraft materials, ship materials, home appliance exteriors, tanks, container inner walls, filters, construction film materials, electronic materials (printed boards, wiring boards, insulating films, release films, etc.), solar cells It is useful as a surface material for modules, a mirror protective material for solar thermal power generation, a surface material for solar water heaters, and the like.
  • An electrolyte polymer precursor can also be produced using the production method of the present disclosure.
  • the polymerization of the electrolyte polymer precursor is preferably carried out at a polymerization temperature of 10 to 100 ° C. and a polymerization pressure of 0.1 to 2.0 MPaG.
  • the electrolyte polymer precursor is composed of a vinyl ether monomer as shown below, and can be converted into an ion-exchangeable polymer through a hydrolysis treatment.
  • CF 2 CF-O- (CF 2 CFY 151- O) n- (CFY 152 ) m- A 151
  • Y 151 represents a fluorine atom, a chlorine atom, a -SO 2 F group or a perfluoroalkyl group.
  • the perfluoroalkyl group may contain etheric oxygen and a -SO 2 F group. , 0 to 3.
  • n Y 151 may be the same or different.
  • Y 152 represents a fluorine atom, a chlorine atom or a -SO 2 F group. M is.
  • Y 152 represents an integer of 1 to 5 may be different or may be the same .
  • a 151 represents the -SO 2 X 151, -COZ 151 or -POZ 152 Z 153.
  • X 151 represents F, Cl, Br, I, -OR 151 or -NR 152 R 153 ;
  • Z 151 , Z 152 and Z 153 represent the same or different, -NR 154 R 155 or -OR 156 .
  • R 151 , R 152 , R 153 , R 154 , R 155 and R 156 represent alkyl, aryl, or sulfonyl-containing groups that may contain H, ammonium, alkali metal, or fluorine atoms, which may be identical or different. ) Can be mentioned.
  • the electrolyte polymer precursor may be modified with a third monomer within a range of 0 to 20% by mass of all the monomers.
  • the third monomer include polyfunctional monomers such as CTFE, vinylidene fluoride, perfluoroalkyl vinyl ether, and divinylbenzene.
  • the electrolyte polymer precursor thus obtained is formed into, for example, a film, hydrolyzed with an alkaline solution, and treated with mineral acid to form a polymer electrolyte film such as a fuel cell, an electrolyzer, and a redox flow battery. Can be used for.
  • the electrolyte polymer dispersion liquid can be obtained by hydrolyzing with an alkaline solution while maintaining the dispersed state of the electrolyte polymer precursor. Subsequently, by heating to 120 ° C. or higher in the pressure vessel, it can be dissolved in, for example, a water / alcohol mixed solvent to be in a solution state.
  • the solution thus obtained can be used, for example, as a binder for electrodes, or can be combined with various additives to form a cast film, and can be used, for example, for an antifouling coating film, an organic actuator, or the like.
  • the polymerization temperature of the TFE / VDF copolymer is not particularly limited and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the polymerization temperature, but is usually 0 to 9.8 MPaG.
  • the TFE / VDF copolymer may also be modified by using a third monomer in a range of 0 to 50 mol% of all the monomers.
  • TFE: ethylene: third monomer (30 to 85) :( 10 to 69.9) :( 0.1 to 10).
  • CX 11 X 12 CX 13 (CX 14 X 15 ) n11 X 16 (In the formula, X 11 to X 16 represent H, F or Cl in the same or different manner, and n 11 represents an integer of 0 to 8. However, TFE and VDF are excluded.)
  • CX 21 X 22 CX 23- O (CX 24 X 25 ) n21 X 26 (In the formula, X 21 to X 26 represent H, F or Cl in the same or different manner, and n 21 represents an integer of 0 to 8).
  • the third monomer may be a fluorine-free ethylenic monomer.
  • the fluorine-free ethylenic monomer is preferably selected from ethylenic monomers having 6 or less carbon atoms in terms of maintaining heat resistance and chemical resistance.
  • examples thereof include sulfonic acid, acrylic acid and methacrylic acid.
  • the polymer (I) can be used within the range of use in the production method of the present disclosure, but is usually 0.0001 to 5% by mass with respect to 100% by mass of the aqueous medium. Add in quantity.
  • the TFE / VDF copolymer obtained by polymerization may be amidated by contacting it with aqueous ammonia, ammonia gas, or a nitrogen compound capable of producing ammonia.
  • the TFE / VDF copolymer obtained by the above-mentioned method is also preferably used as a raw material for obtaining TFE / VDF copolymer fibers by the spinning and drawing method.
  • a TFE / VDF copolymer is melt-spun and then cooled and solidified to obtain an undrawn yarn, and then the undrawn yarn is run in a heated tubular body and drawn to form a TFE.
  • a method for obtaining VDF copolymer fibers is also preferably used as a raw material for obtaining TFE / VDF copolymer fibers by the spinning and drawing method.
  • the TFE / VDF copolymer can also be dissolved in an organic solvent to obtain a solution of the TFE / VDF copolymer.
  • organic solvent include nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide and dimethylformamide; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; ethyl acetate.
  • Ester solvent such as butyl acetate; Ether solvent such as tetrahydrofuran and dioxane;
  • general-purpose organic solvent having a low boiling point such as a mixed solvent thereof can be mentioned.
  • the above solution can be used as a binder for batteries.
  • aqueous dispersion of the TFE / VDF copolymer on a porous substrate made of a polyolefin resin and use it as a composite porous membrane. It is also preferable to disperse inorganic particles or organic particles in an aqueous dispersion liquid and coat it on a porous substrate to use it as a composite porous membrane.
  • the composite porous membrane thus obtained can be used as a separator for a lithium secondary battery or the like.
  • the melt-processable fluororesin powder can be suitably used as a powder coating material.
  • a powder coating material made of the melt-processable fluororesin powder is applied to the base material, a film having a smooth surface can be obtained.
  • the melt-processable fluororesin powder having an average particle size of 1 ⁇ m or more and less than 100 ⁇ m is particularly suitable as a powder coating material used for electrostatic coating, and the melt-processable fluororesin powder having an average particle size of 100 ⁇ m or more and 1000 ⁇ m or less is particularly suitable.
  • it is suitable as a powder coating material used for rotary coating or rotary molding.
  • the melt-processable fluororesin powder can be produced by a method of obtaining a powder by drying and pulverizing the melt-processable fluororesin obtained by the above-described production method of the present disclosure.
  • a production method for producing the melt-processable fluororesin powder is also one of the present disclosures.
  • thermoplastic elastomer when a thermoplastic elastomer is produced as the fluororubber, as disclosed in International Publication No. 00/01741, fluoropolymer fine particles are once synthesized at a high concentration, then diluted and further polymerized. Therefore, it is also possible to use a method capable of increasing the final polymerization rate as compared with the usual polymerization.
  • the polymerization temperature is usually ⁇ 20 to 200 ° C., preferably 5 to 150 ° C.
  • the polymerization pressure is usually 0. It is carried out at 5 to 10 MPaG, preferably 1 to 7 MPaG.
  • the pH in the polymerization medium is usually preferably maintained at 2.5 to 13 by a known method or the like, using a pH adjuster or the like described later.
  • Examples of the monomer used for the polymerization of the fluororubber include fluoroethylene unsaturated monomers having at least the same number of fluorine atoms as carbon atoms and capable of copolymerizing with vinylidene fluoride, in addition to vinylidene fluoride.
  • Examples of the fluorine-containing ethylenically unsaturated monomer include trifluoropropene, pentafluoropropene, hexafluorobutene, and octafluorobutene. Among them, hexafluoropropene is particularly suitable because of the properties of the elastomer obtained when it blocks the crystal growth of the polymer.
  • fluorine-containing ethylenically unsaturated monomer examples include trifluoroethylene, TFE and CTFE, and a fluorine-containing monomer having one or more chlorine and / or bromine substituents may be used. it can. Perfluoro (alkyl vinyl ether), for example perfluoro (methyl vinyl ether), can also be used. TFE and HFP are preferred for producing fluororubber.
  • the polymer (I) can be used within the range of use in the production method of the present disclosure, but is usually added in an amount of 0.0001 to 20% by mass with respect to 100% by mass of the aqueous medium. To do. It is preferably 10% by mass or less, and more preferably 2% by mass or less.
  • a known inorganic radical polymerization initiator can be used as the polymerization initiator.
  • conventionally known water-soluble inorganic peroxides such as sodium, potassium and ammonium persulfates, perphosphates, perborates, percarbonates or permanganates are particularly preferable. It is useful.
  • the radical polymerization initiator further comprises a reducing agent, for example, sodium, potassium or ammonium sulfite, sulfite, metabisulfite, hyposulfite, thiosulfate, sulfite or hypophosphate.
  • a suitable inorganic radical polymerization initiator is ammonium persulfate, and it is more preferable to use it in a redox system together with ammonium persulfate and sodium bisulfite.
  • the concentration of the polymerization initiator added is appropriately determined by the molecular weight of the target fluoropolymer and the polymerization reaction rate, but is 0.0001 to 10% by mass, preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the monomer. Set to an amount of 5% by mass.
  • thermoplastic elastomer In the above-mentioned polymerization of fluororubber, known ones can be used as the chain transfer agent, but hydrocarbons, esters, ethers, alcohols, ketones, chlorine compounds, carbonates and the like can be used, and the thermoplastic elastomer can be used. , Hydrocarbons, esters, ethers, alcohols, chlorine compounds, iodine compounds and the like can be used. Of these, acetone and isopropyl alcohol are preferable, and in the polymerization of the thermoplastic elastomer, isopentane, diethyl malonate and ethyl acetate are preferable from the viewpoint that the reaction rate does not easily decrease, and I (CF 2 ) 4 I, I (CF 2). ) 6 I, ICH 2 I and other diiodine compounds are preferable from the viewpoint that the polymer terminal can be iodinated and can be used as a reactive polymer.
  • the amount of the chain transfer agent used is usually 0.5 ⁇ 10 -3 to 5 ⁇ 10 -3 mol%, preferably 1.0 ⁇ 10 -3 to 3.5 ⁇ 10 with respect to the total amount of the supplied monomers. It is preferably -3 mol%.
  • paraffin wax or the like can be preferably used as the emulsion stabilizer, and in the polymerization of the thermoplastic elastomer, a phosphate, sodium hydroxide, potassium hydroxide or the like can be preferably used as the pH adjuster. it can.
  • the fluororubber obtained by the production method of the present disclosure has a solid content concentration of 1.0 to 40% by mass and an average particle size of 0.03 to 1 ⁇ m, preferably 0.05 to 0.5 ⁇ m at the time when the polymerization is completed.
  • the number average molecular weight is 1,000 to 2,000,000.
  • the fluororubber obtained by the production method of the present disclosure can be made into a dispersion suitable for rubber molding by adding or concentrating a dispersion stabilizer such as a hydrocarbon-based surfactant, if necessary. it can.
  • the dispersion is processed by adjusting the pH, coagulating, heating and the like. Each process is performed as follows.
  • the above solidification is performed by adding an alkaline earth metal salt.
  • alkaline earth metal salt examples include nitrates, chlorates and acetates of calcium or magnesium.
  • the pH adjustment and the coagulation may be performed first, but it is preferable to perform the pH adjustment first.
  • the perfluoro rubber is obtained by polymerizing the perfluoromonomer in an aqueous medium in the presence of the polymer (I).
  • CF 2 CF-ORf 13 (In the formula, Rf 13 represents a perfluoroalkyl group having 1 to 8 carbon atoms.)
  • CF 2 CFOCF 2 ORf 14 (In the formula, Rf 14 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, and 2 carbon atoms containing 1 to 3 oxygen atoms.
  • Fluoromonomer represented by ⁇ 6 linear or branched perfluorooxyalkyl groups), and General formula: CF 2 CFO (CF 2 CF (Y 15 ) O) m (CF 2 ) n F (In the formula, Y 15 represents a fluorine atom or a trifluoromethyl group. M is an integer of 1 to 4. n is an integer of 1 to 4.) Selected from the group consisting of fluoromonomers. At least one type is preferable.
  • the monomer that gives the cross-linking site may be polymerized together with the perfluoromonomer.
  • the polymer (I) used in the method for producing a perfluoroelastomer preferably has an ion exchange capacity of 1.50 meq / g or more.
  • the ion exchange capacity of the polymer (I) is 1.50 meq / g or more, 1.75 meq / g or more, 2.00 meq / g or more, 2.40 meq / g or more, and 2.50 meq / g in the more preferable order. These are 2.60 meq / g or more, 3.00 meq / g or more, and 3.50 meq / g or more.
  • the ion exchange capacity is the content of the ionic group (anionic group) of the polymer (I), and is calculated from the composition of the polymer (I).
  • Precursor groups that become ionic by hydrolysis eg, -COOCH 3
  • ion exchange capacity is the content of the ionic group (anionic group) of the polymer (I), and is calculated from the composition of the polymer (I).
  • Precursor groups that become ionic by hydrolysis eg, -COOCH 3
  • ion exchange capacity of the polymer (I) the more anionic groups of the polymer (I), the more stable particles are formed, and the higher the particle forming power, the higher the number of particles per unit amount of water. It is presumed that the number will increase and the polymerization rate will be higher.
  • the perfluoroelastomere produced by the polymerization may adhere to the polymerization tank, a sufficient polymerization rate may not be obtained, or the number of perfluoroelastomer particles generated may be small. To do.
  • the amount of the polymer (I) added is preferably 0.01 to 20% by mass with respect to 100% by mass of the aqueous medium.
  • the amount of the polymer (I) added is more preferably 0.1% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the aqueous medium, because the polymerization reaction of the perfluoromonomer proceeds more smoothly. It is 0.5% by mass or more, particularly preferably 0.75% by mass or more, and most preferably 1.0% by mass or more.
  • the addition amount of the polymer (I) is more preferably 15% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less with respect to 100% by mass of the aqueous medium.
  • the perfluoromonomer may be polymerized in the presence of a polymerization initiator.
  • the polymerization initiator is as described above.
  • the amount of the polymerization initiator added is preferably 0.0001 to 10% by mass, more preferably 0.01 to 5% by mass, based on 100% by mass of the perfluoromonomer.
  • Polymerization of the perfluoromonomer may be carried out in the presence of a pH adjuster.
  • a pH adjuster By carrying out the polymerization in the presence of a pH adjuster, it is possible to generate a sufficient number of perfluoroelumate particles at a sufficient polymerization rate while further suppressing the adhesion of the perfluoroelastomer to the polymerization tank.
  • the pH adjuster may be added before the start of the polymerization or after the start of the polymerization.
  • Acidity regulators include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, sodium phosphate, potassium phosphate, sodium citrate, citrus. Potassium acid, ammonium citrate, sodium gluconate, potassium gluconate, ammonium gluconate and the like can be used.
  • the partially fluororubber is obtained by polymerizing the fluoromonomer in an aqueous medium in the presence of the polymer (I).
  • Fluoromonomers for obtaining partially fluorinated rubber include vinylidene fluoride (vinylidene fluoride) (VdF), tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE), and chloro.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • PAVE perfluoro (alkyl vinyl ether)
  • Trifluoroethylene trifluoroethylene
  • trifluoropropylene trifluoropropylene
  • tetrafluoropropylene pentafluoropropylene
  • trifluorobutene tetrafluoroisobutene
  • hexafluoroisobutene vinyl fluoride, iodine-containing fluorinated vinyl ether
  • CHX 1 CX 2 Rf
  • X 1 and X 2 have H on one side and F on the other side, and Rf is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms). At least one selected from the group consisting of the monomer (2) is preferable.
  • the method for producing a partially fluorinated rubber it is preferable to polymerize at least vinylidene fluoride or tetrafluoroethylene as a fluoromonomer, and it is more preferable to polymerize vinylidene fluoride.
  • the amount of the polymer (I) added is preferably 0.01 to 20% by mass with respect to 100% by mass of the aqueous medium.
  • the addition amount (absence amount) of the polymer (I) in the above polymerization within the above range, the polymerization reaction of the fluoromonomer proceeds smoothly, and the partially fluorinated rubber can be efficiently produced. If the amount of the polymer (I) added is too small, a sufficient polymerization rate may not be obtained or a sufficient yield may not be obtained.
  • the amount of the polymer (I) added is more preferably 0.0001% by mass or more, still more preferably 0, based on 100% by mass of the aqueous medium, because the polymerization reaction of the fluoromonomer proceeds more smoothly. It is 0005% by mass or more, more preferably 0.001% by mass or more, particularly preferably 0.005% by mass or more, and most preferably 0.01% by mass or more.
  • the addition amount of the polymer (I) if the addition amount is too large, an effect commensurate with the addition amount cannot be obtained, which is economically disadvantageous. It is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • the fluoromonomer may be polymerized in the presence of a polymerization initiator.
  • the polymerization initiator is as described above.
  • the amount of the polymerization initiator is appropriately determined depending on the type of monomer, the molecular weight of the target partially fluorinated rubber, and the reaction rate.
  • the amount of the polymerization initiator is appropriately determined depending on the molecular weight of the target partially fluorinated rubber and the polymerization reaction rate, but is preferably 0.00001 to 10% by mass with respect to 100% by mass of the total amount of the monomers. , More preferably 0.0001 to 1% by mass.
  • the fluororubber may be partially fluororubber or perfluororubber.
  • the partially fluorinated rubber preferably contains a methylene group (-CH 2-) in the main chain.
  • the partially fluorinated rubbers containing, -CH 2 - - -CH 2 in the main chain is not particularly limited as long as it contains a chemical structure represented by, for example, -CH 2 -CF 2 -, - CH 2 Examples thereof include partially fluorinated rubbers containing structures such as -CH (CH 3 )-and -CH 2- CH 2-, which are partially fluorinated by, for example, polymerizing vinylidene fluoride, propylene, ethylene and the like. It can be introduced into the main chain of rubber.
  • the content of the tetrafluoroethylene unit in the partially fluorinated rubber (the content of the polymerization unit based on tetrafluoroethylene with respect to the total polymerization unit of the partially fluorinated rubber) may be less than 40 mol%.
  • TFE tetrafluoroethylene
  • VdF vinylidene fluoride
  • CF 2 CF-Rf a
  • Rf a is -CF 3 or -ORf b (Rf b is).
  • the partially fluorinated rubber preferably contains VdF units or TFE units.
  • the partially fluorinated rubber includes vinylidene fluoride (VdF) -based fluorororubber, tetrafluoroethylene (TFE) / propylene (Pr) -based fluororubber, and tetrafluoroethylene (TFE) / propylene / vinylidene fluoride (VdF) -based fluororubber.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • Pr propylene
  • TFE tetrafluoroethylene
  • VdF vinylidene fluoride
  • HFP Ethylene / hexafluoropropylene
  • HFP ethylene / hexafluoropropylene
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • at least one selected from the group consisting of vinylidene fluoride-based fluororubber and tetrafluoroethylene / propylene-based fluororubber is preferable.
  • the vinylidene fluoride-based fluororubber is preferably a copolymer composed of 45 to 85 mol% of vinylidene fluoride and 55 to 15 mol% of at least one other monomer copolymerizable with vinylidene fluoride. .. More preferably, it is a copolymer consisting of 50 to 80 mol% of vinylidene fluoride and 50 to 20 mol% of at least one other monomer copolymerizable with vinylidene fluoride.
  • Examples of at least one other monomer copolymerizable with the above vinylidene fluoride include tetrafluoroethylene [TFE], hexafluoropropylene [HFP], fluoroalkyl vinyl ether, chlorotrifluoroethylene [CTFE], trifluoroethylene, and tri.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CFE chlorotrifluoroethylene
  • trifluoroethylene trifluoroethylene
  • Fluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, hexafluoroisobutene, vinyl fluoride, general formula (100): CHX 101 CX 102 Rf 101 (In the formula, one of X 101 and X 102 is H.
  • -Fluoromonomer represented by X 171 (in the formula, X 171 is H or F, n is an integer of 3 to 10), a monomer such as a monomer giving a cross-linking site; ethylene, propylene, alkyl vinyl ether, etc.
  • Non-fluorinated monomer of. can be used alone or in any combination. Among these, it is preferable to use at least one selected from the group consisting of TFE, HFP, fluoroalkyl vinyl ether and CTFE.
  • the fluoroalkyl vinyl ether a fluoromonomer represented by the general formula (160) is preferable.
  • vinylidene fluoride-based fluorororubber examples include VdF / HFP-based rubber, VdF / HFP / TFE-based rubber, VdF / CTFE-based rubber, VdF / CTFE / TFE-based rubber, and VDF / general formula (100).
  • VDF / perfluoro (methyl vinyl ether) [PMVE] rubber examples include TFE / HFP type rubber.
  • VdF / HFP copolymer or a VdF / HFP / TFE copolymer is more preferable, and the composition of VdF / HFP / TFE is (32 to 85) / (10 to 34) / (0). ⁇ 40) (mol%) is particularly preferable.
  • the composition of VdF / HFP / TFE is more preferably (32 to 85) / (15 to 34) / (0 to 34) (mol%), and (47 to 81) / (17 to 32) / (0 to 0 to). 26) (mol%) is more preferred.
  • the composition of VdF / HFP is preferably (45 to 85) / (15 to 55) (mol%), and more preferably (50 to 83) / (17). -50) (mol%), more preferably (55-81) / (19-45) (mol%), and particularly preferably (60-80) / (20-40) (mol%). is there.
  • the tetrafluoroethylene / propylene fluororubber is preferably a copolymer composed of 45 to 70 mol% of tetrafluoroethylene, 55 to 30 mol% of propylene, and 0 to 5 mol% of fluoromonomer that provides a crosslinked site. ..
  • the fluororubber may be a perfluoro rubber.
  • the perfluoro rubber include perfluoro rubber containing TFE, for example, a fluoromonomer copolymer represented by TFE / general formula (160), (130) or (140) and TFE / general formula (160), (130). ) Or (140), at least one selected from the group consisting of a fluoromonomer / a monomer copolymer giving a cross-linking site is preferable.
  • the composition is preferably 45 to 90/10 to 55 (mol%), more preferably 55 to 80/20 to 45, and even more preferably 55 to 55. It is 70 / 30-45.
  • a monomer copolymer giving a TFE / PMVE / cross-linking site it is preferably 45 to 89.9 / 10 to 54.9 / 0.01 to 4 (mol%), and more preferably 55 to 77. It is 9/20 to 49.9 / 0.1 to 3.5, and more preferably 55 to 69.8 / 30 to 44.8 / 0.2 to 3.
  • the fluoromonomer copolymer represented by the general formula (160), (130) or (140) having TFE / carbon number of 4 to 12 it is preferably 50 to 90/10 to 50 (mol%). , More preferably 60 to 88/12 to 40, and even more preferably 65 to 85/15 to 35.
  • perfluoro rubber examples include TFE / a fluoromonomer represented by the general formula (140) / a fluoromonomer copolymer giving a crosslinked site, TFE / a perfluorovinyl ether copolymer represented by the general formula (140), and TFE. / At least one selected from the group consisting of a fluoromonomer copolymer represented by the general formula (160) and a TFE / fluoromonomer represented by the general formula (160) / a monomer copolymer giving a cross-linking site. Is preferable.
  • perfluoro rubber examples include perfluoro rubbers described in International Publication No. 97/24381, Japanese Patent Publication No. 61-57324, Japanese Patent Publication No. 4-81608, Japanese Patent Publication No. 5-13961, and the like. Can be done.
  • the fluororubber is excellent in compression set at high temperature, and therefore has a glass transition temperature of ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and even more preferably ⁇ 50 ° C. or higher. .. Further, from the viewpoint of good cold resistance, it is preferably 5 ° C. or lower, more preferably 0 ° C. or lower, and even more preferably -3 ° C. or lower.
  • the glass transition temperature is determined by using a differential scanning calorimeter (DSC822e, manufactured by METTLER TOLEDO) to raise the temperature of 10 mg of the sample at 10 ° C./min to obtain a DSC curve, which is the base before and after the secondary transition of the DSC curve. It can be obtained as the temperature indicating the midpoint of the intersection of the extension line of the line and the tangent line at the turning point of the DSC curve.
  • DSC822e differential scanning calorimeter
  • the fluororubber has a good heat resistance, and the Mooney viscosity ML (1 + 20) at 170 ° C. is preferably 30 or more, more preferably 40 or more, and further preferably 50 or more. Further, in terms of good workability, it is preferably 150 or less, more preferably 120 or less, and further preferably 110 or less.
  • the fluororubber has a good heat resistance, and the Mooney viscosity ML (1 + 20) at 140 ° C. is preferably 30 or more, more preferably 40 or more, and further preferably 50 or more. Further, in terms of good workability, it is preferably 180 or less, more preferably 150 or less, and further preferably 110 or less.
  • the fluororubber has a good heat resistance, and the Mooney viscosity ML (1 + 10) at 100 ° C. is preferably 10 or more, more preferably 20 or more, and further preferably 30 or more. Further, in terms of good workability, it is preferably 120 or less, more preferably 100 or less, and further preferably 80 or less.
  • the Mooney viscosity can be measured according to JIS K6300 at 170 ° C., 140 ° C., or 100 ° C. using a Mooney viscometer MV2000E manufactured by ALPHA TECHNOLOGIES.
  • the fluorororubber obtained by the production method of the present disclosure may be in any form as long as it is obtained from the above polymerization, and may be an aqueous dispersion after polymerization, or an aqueous dispersion after polymerization. It can also be used as a gum or a crumb obtained by coagulation, drying or the like by a conventionally known method.
  • the polymer (I) used in the production method of the present disclosure can improve the stability of the aqueous dispersion, and as described above, such as an initiator such as an organic peroxide, an iodine or a bromine compound during the polymerization. It is more preferably used in a polymerization method in which a poorly water-soluble substance such as a chain transfer agent is added.
  • the gum is a small granular mass made of fluororubber, and the crumb is a result of the fluororubber being unable to maintain a small granular shape as a gum at room temperature and being fused to each other. It is in the form of an amorphous mass.
  • the above fluororubber can be processed into a fluororubber composition by adding a curing agent, a filler and the like.
  • curing agent examples include polyols, polyamines, organic peroxides, organic tins, bis (aminophenol) tetraamines, and bis (thioaminophenol).
  • the above-mentioned fluororubber composition is made of the above-mentioned fluororubber, it is excellent in that it does not substantially contain an emulsifier and is easily crosslinked during molding.
  • a fluororubber molded product can be obtained by molding using the above-mentioned fluororubber.
  • the molding process is not particularly limited, and examples thereof include known methods using the above-mentioned curing agent.
  • Examples of the molding method include, but are not limited to, a compression molding method, an injection molding method, an injection molding method, an extrusion molding method, and a molding method by Rohto cure.
  • a crosslinked product can be obtained as a fluororubber molded product by crosslinking the fluororubber composition.
  • a cross-linking method a steam cross-linking method, a cross-linking method by heating, a radiation cross-linking method and the like can be adopted, and among them, the steam cross-linking method and the cross-linking method by heating are preferable.
  • Specific cross-linking conditions that are not limited are usually determined as appropriate depending on the type of cross-linking accelerator, cross-linking agent, acid-receiving agent, etc. within a temperature range of 140 to 250 ° C. and a cross-linking time of 1 minute to 24 hours.
  • the fluororubber molded product is suitable as a seal, gasket, electric wire coating, hose, tube, laminate, accessory, etc., and is particularly suitable for parts for semiconductor manufacturing equipment, automobile parts, etc.
  • the fluoropolymer when the fluoropolymer is coagulated, washed, dried, etc., wastewater and off-gas are generated. From the wastewater generated by the coagulation or washing and / or the off-gas generated by drying, the polymer (I), the decomposition product of the polymer (I) produced as a by-product from the polymer (I), or By recovering and purifying by-products, residual monomers, etc., the polymer (I), decomposition products, by-products, residual monomers, etc. of the polymer (I) produced as a by-product from the polymer (I), etc. May be reused.
  • the method for collecting and purifying the above is not particularly limited, but it can be performed by a known method.
  • an ion exchange resin and activated carbon are used in the wastewater.
  • Silica, clay, zeolite and the like are brought into contact with each other to adsorb the polymer (I) and the like, and then the wastewater and the adsorbed particles are separated.
  • incinerating the adsorbed particles adsorbing the polymer (I) or the like it is possible to prevent the polymer (I) or the like from being released into the environment.
  • the polymer (I) and the like can be desorbed and eluted from the ion exchange resin particles adsorbing the polymer (I) and the like by a known method to recover the polymer (I) and the like.
  • the ion exchange resin particles are anion exchange resin particles
  • the polymer (I) or the like can be eluted by contacting the mineral acid with the anion exchange resin.
  • a water-soluble organic solvent is added to the subsequently obtained eluate, it is usually separated into two phases. Therefore, the polymer (I) and the like are recovered by recovering and neutralizing the lower phase containing the polymer (I) and the like. it can.
  • the water-soluble organic solvent include polar solvents such as alcohols, ketones, and ethers.
  • Another method for recovering the polymer (I) or the like from the ion exchange resin particles includes a method using an ammonium salt and a water-soluble organic solvent, and a method using an alcohol and an acid if desired. Since the latter method produces an ester derivative such as the polymer (I), it can be easily separated from the alcohol by distillation.
  • the wastewater contains fluoropolymer particles or other solids, it is preferable to remove them before contacting the wastewater with the adsorbed particles.
  • the method for removing the fluoropolymer particles and other solids include a method of separating the wastewater and the precipitate after precipitating them by adding an aluminum salt or the like, an electrocoagulation method or the like. Further, it may be removed by a mechanical method, and examples thereof include a cross flow filtration method, a deep layer filtration method, and a precoat filtration method.
  • the concentration of the unaggregated fluoropolymer in the waste water is preferably low from the viewpoint of productivity, more preferably less than 0.4% by mass, and particularly preferably less than 0.3% by mass.
  • a scrubber As a method for recovering the polymer (I) or the like from the off-gas, a scrubber is used to bring the polymer (I) or the like into contact with an organic solvent such as deionized water, an alkaline aqueous solution, or a glycol ether solvent.
  • an organic solvent such as deionized water, an alkaline aqueous solution, or a glycol ether solvent.
  • a method of obtaining a scrubber solution can be mentioned.
  • the scrubber solution can be recovered in a state where the polymer (I) and the like are phase-separated, so that the polymer (I) and the like can be easily recovered and reused.
  • the alkaline compound include alkali metal hydroxides and quaternary ammonium salts.
  • the scrubber solution containing the polymer (I) or the like may be concentrated using a reverse osmosis membrane or the like.
  • the concentrated scrubber solution usually contains fluorine ions, but the polymer (I) and the like can be easily reused by further adding alumina after concentration to remove the fluorine ions.
  • the polymer (I) or the like may be recovered by bringing the adsorbed particles into contact with the scrubber solution to adsorb the polymer (I) or the like.
  • the polymer (I) and the like recovered by any of the above methods can be reused for the production of fluoropolymers.
  • the obtained mixed solution was centrifuged at 4000 rpm for 1 hour, and the supernatant containing the polymer was recovered as an extract.
  • the extract was analyzed using a liquid chromatograph mass spectrometer (Waters, LC-MS ACQUITY UPLC / TQD) to obtain a chromatogram of the extract.
  • the content of the monomeric dimer and trimmer contained in the extract is the integral value of the peaks derived from the monomeric dimer and trimmer appearing in the chromatogram of the extract, using a calibration curve. It was determined by converting to the content of dimer and trimmer.
  • the quantification limit in this measuring device configuration is 1 ng / mL.
  • the refractive index of the solvent (water) was 1.3328, and the viscosity of the solvent (water) was 0.8878 mPa ⁇ s.
  • DTA differential thermal
  • HFP units The content of HFP units is 0.3, which is the ratio of the absorbance at 982 cm -1 / the absorbance at 935 cm -1 from the infrared absorbance measured by FT-IR of the thin film disk created by press-molding the PTFE powder. I asked for it by multiplying.
  • the content of PMVE units was determined from the spectrum obtained by solid 19 F-MAS NMR measurement using the following formula.
  • the composition of the perfloelastomer was measured with a Fourier transform infrared spectrophotometer (FT-IR), and the content of the polymer D was determined by taking the difference from the value of Y obtained from the above formula.
  • FT-IR Fourier transform infrared spectrophotometer
  • ⁇ Aspect ratio> An aqueous dispersion diluted to a solid content concentration of about 1% by mass was observed with a scanning electron microscope (SEM), and image processing was performed on 400 or more randomly selected particles, and the major axis and minor axis thereof were measured. It was calculated from the average of the ratios.
  • ⁇ Glass transition temperature of perfluoroelastomer> a DSC curve was obtained by raising the temperature of 10 mg of the sample at 10 ° C./min using a differential scanning calorimeter (DSC822e, manufactured by METTLER TOLEDO), and the peak of the differential curve defined in JIS K6240. The top temperature was defined as the glass transition temperature.
  • Polymerization rate ⁇ weight of aqueous dispersion x solid content concentration / 100 ⁇ / ⁇ (amount of pure water used for polymerization + amount of water contained in aqueous solution of polymer (I) used for polymerization) x polymerization time ⁇
  • Aqueous dispersion weight g Solid content concentration: mass%
  • Amount of pure water used for polymerization kg
  • Polymerization time time
  • Polymerization rate g / (hour x kg)
  • PTFE Polytetrafluoroethylene
  • the content of the polymer D was Mw 180,000, Mn 86,000, dimer, and trimmer in an amount of 2.0% by mass with respect to the polymer D. there were.
  • aqueous polymer D solution D-1 Water was added to the obtained aqueous polymer D solution D-1 to adjust the concentration of the polymer D to 5.0% by mass, and then the ultrafiltration membrane (molecular weight cut off 50,000 Da, made of polyethylene) was applied at 30 ° C. Then, contact was carried out with a water pressure of 0.1 MPa and ultrafiltration was carried out. While appropriately injecting water, ultrafiltration was continued until 7 times the amount of the filtered solution of water was finally eluted with respect to the aqueous solution to obtain a polymer D aqueous solution D-2.
  • the ultrafiltration membrane molecular weight cut off 50,000 Da, made of polyethylene
  • the content of Mw 180,000, Mn 140,000, dimer, and trimmer of the polymer D was less than 1 mass ppm with respect to the polymer D.
  • the concentration of the obtained polymer D aqueous solution D-2 was 5.0% by mass.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 24.5% by mass, and the average primary particle size was 372 nm.
  • the obtained PTFE aqueous dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, coagulated under high-speed stirring conditions, and the coagulated wet powder was dried at 150 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 2.
  • Example 2 CF 2 CFOCF 2 CF 2
  • the polymer E was Mw 7,000 and Mn 5,000.
  • the pH was adjusted to 9.2 by adding 515 g of deionized water, 30 g of paraffin wax, 15.28 g of polymer E aqueous solution E-2 and aqueous ammonia to a glass reactor with an internal volume of 1 L. Next, the contents of the reactor were sucked while heating to 70 ° C., and at the same time, oxygen in the reactor was removed by purging with a TFE monomer. Then, the contents were stirred at 540 rpm. After adding 0.13 g of PMVE into the reactor, TFE monomers were added until the pressure reached 0.73 MPaG.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 21.0% by mass, and the average primary particle size was 216 nm.
  • the obtained aqueous PTFE dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, and coagulated under high-speed stirring conditions.
  • the solidified wet powder was dried at 150 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 2.
  • Example 3 Polymerization was carried out in the same manner as in Example 2 except that 0.13 g of PMVE was changed to 0.18 g of HFP and the supply of TFE monomer was stopped when the amount of TFE monomer consumed in the reaction reached about 70 g. Was done.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 10.7% by mass, and the average primary particle size was 221 nm.
  • the obtained aqueous PTFE dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, and coagulated under high-speed stirring conditions.
  • the solidified wet powder was dried at 150 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 2.
  • a polymer F aqueous solution F-1 containing a copolymer (polymer F) was obtained.
  • the polymer F was Mw 7,000 and Mn 4,000.
  • the obtained polymer F aqueous solution F-1 was brought into contact with a dialysis membrane (molecular weight cut-off 35000 Da, made of polyethylene) at 30 ° C. and filtered to obtain a polymer F aqueous solution F-2.
  • a dialysis membrane molecular weight cut-off 35000 Da, made of polyethylene
  • the content of the polymer F was Mw 0.99, Mn 6,000, the dimer of the monomer F, and the trimmer were higher than those of the polymer F. It was less than 1 mass ppm.
  • the concentration of the obtained polymer F aqueous solution F-2 was 2.0% by mass.
  • Polymerization was carried out in the same manner as in Example 2 except that 515 g of deionized water was changed to 500 g of deionized water and 15.28 g of polymer E aqueous solution E-2 was changed to 27.50 g of polymer F aqueous solution F-2. Was done.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 20.8% by mass, and the average primary particle size was 200 nm.
  • various physical properties of the obtained PTFE powder were measured. The results are shown in Table 2.
  • Example 5 515 g of deionized water was changed to 500 g of deionized water, 15.28 g of polymer E aqueous solution E-2 was changed to 27.50 g of polymer F aqueous solution F-2, and 0.13 g of PMVE was changed to 0. Polymerization was carried out in the same manner as in Example 2 except that the HFP was changed to 18 g and the supply of the TFE monomer was stopped when the TFE monomer consumed in the reaction reached about 70 g. The solid content concentration of the obtained PTFE aqueous dispersion was 13.8% by mass, and the average primary particle size was 190 nm. Further, in the same manner as in Example 2, after obtaining the PTFE powder, various physical properties of the obtained PTFE powder were measured. The results are shown in Table 2.
  • TFE tetrafluoroethylene
  • PMVE perfluoromethyl vinyl ether
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (CNVE) was press-fitted with 0.259 g of nitrogen, 1.03 g of ammonium persulfate (APS) was dissolved in 2.5 g of water, and press-fitted with nitrogen. And started the reaction.
  • APS ammonium persulfate
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN was added twice, and when the total amount of TFE charged reached 6 or 10 g, 0.259 g was divided and press-fitted with nitrogen. Then, the autoclave was cooled to release the unreacted monomer to obtain 214 g of an aqueous dispersion having a solid content concentration of 8.1% by mass. The polymerization time was 5.4 hours. There was no agglomerated polymer in the aqueous dispersion, and there was no adherent polymer in the tank such as the stirring blade of the autoclave, the inner wall of the tank, and the baffle plate after the aqueous dispersion was taken out.
  • perfluoroelastomer Since perfluoroelastomer is coagulated in an aqueous hydrochloric acid solution, the coagulated perfluoroelastomer was filtered off, transferred to 100 g of pure water, and washed with stirring for 5 minutes. After 5 minutes, the perfluoroelastomer was filtered off again, transferred to 100 g of pure water, and washed with stirring for 5 minutes. After repeating this washing operation with 100 g of pure water three times, the perfluoroelastomer was filtered off. The filtered perfluoroelastomer was vacuum dried at 70 ° C. for 48 hours. After drying, a composition (clam) containing a perfluoroelastomer and polymer D was obtained. The mass of the obtained composition was 6.2 g.
  • the specific gravity of the perfluoroelastomer was 2.030.
  • the content of the polymer D was calculated by measuring the mass of the residue (polymer D) obtained by recovering the upper layer (aqueous layer) and drying it by heating.
  • the content of the polymer D in the composition was 3.74% by mass.
  • Example 7 To the reactor, 1650 g of perfluoro- (6,6-dihydro-2-trifluoromethyl-3-oxa-5-hexenoic acid) (monomer D) and 3850 g of water were added, and the solution in the reactor was N. The mixture was stirred at room temperature for 30 minutes while bubbling. Ammonium persulfate (APS) was added in an amount corresponding to 0.5 mol% with respect to the amount of monomer D while stirring at 52 ° C., and the reaction was started. The reaction was terminated after stirring for 23 hours. The oxygen concentration in the reactor changed in the range of 11 volume ppm to 20 volume ppm. An aqueous polymer H solution H-1 containing a polymer H, which is a homopolymer of the monomer D, was obtained.
  • APS Ammonium persulfate
  • the content of the polymer H was Mw46.0 ⁇ 10 4 , Mn12.2 ⁇ 10 4 , dimer, and trimmer with respect to the polymer H. It was 0.1% by mass or less.
  • the concentration of the obtained polymer H aqueous solution H-2 was 2.1% by mass.
  • the PTFE powder was obtained in the same manner as in Example 1, and various physical properties of the obtained PTFE powder were measured. The results are shown in Table 3.
  • the obtained PTFE was a low molecular weight PTFE.
  • Example 8 In a SUS reactor with an internal volume of 6 L, 3302 g of deionized water, 104 g of paraffin wax, 255.7 g of polymer H aqueous solution H-2, 1.1 g of 1.0 mass% concentration isopropanol aqueous solution and An aqueous solution of 1.25 g of TMN-100X (manufactured by Dow Chemical Co., Ltd.) having a concentration of 0.1% by mass was added. Ammonia water was added to adjust the pH to 8.7. Next, the contents of the reactor were sucked while heating to 70 ° C., and at the same time, the contents were purged with TFE to remove oxygen in the reactor, and the contents were stirred. The operation after adding 2.4 g of HFP was the same as in Example 1. Various physical properties of the obtained PTFE aqueous dispersion were measured. The results are shown in Table 4.
  • the obtained PTFE aqueous dispersion was coagulated in the same manner as in Example 1.
  • the solidified wet powder was dried at 240 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 4.
  • Example 9 Polymerization was carried out in the same manner as in Example 8 except that an aqueous solution of T-Det A138 (manufactured by Harcros Chemicals) was used instead of the aqueous solution of TMN-100X (manufactured by Dow Chemical Co., Ltd.). Various physical properties of the obtained PTFE aqueous dispersion were measured. The results are shown in Table 4. Further, in the same manner as in Example 8, PTFE powder was obtained, and various physical properties of the obtained PTFE powder were measured. The results are shown in Table 4.
  • Example 10 Polymerization was carried out in the same manner as in Example 8 except that an aqueous solution of T-Det A1315 (manufactured by Harcros Chemicals) was used instead of the aqueous solution of TMN-100X (manufactured by Dow Chemical Co., Ltd.). Various physical properties of the obtained PTFE aqueous dispersion were measured. The results are shown in Table 4. Further, in the same manner as in Example 8, PTFE powder was obtained, and various physical properties of the obtained PTFE powder were measured. The results are shown in Table 4.
  • the mixture was stirred at 52 ° C. under N 2 flow.
  • an amount of APS corresponding to 1.0 mol% was added, and when 48 hours had passed, an amount of APS corresponding to 1.5 mol% was further added, and at 52 ° C.
  • an aqueous polymer I solution I-1 containing the polymer I which is a homopolymer of the monomer E, was obtained.
  • the oxygen concentration in the reactor changed in the range of 15% by volume ppm to 40% by volume ppm.
  • the weight average molecular weight of the obtained polymer I (Mw) is 1.7 ⁇ 10 4
  • a number average molecular weight (Mn) was 1.1 ⁇ 10 4.
  • the content of the dimer and the trimmer in the aqueous solution obtained by performing the ultrafiltration was 0.1% by mass or less with respect to the polymer I.
  • the TFE monomer was added to the reactor to maintain pressure and polymerization was continued until approximately 140 g of TFE monomer had completed the reaction. After that, the reactor was exhausted until the pressure in the reactor became normal pressure, and the contents were taken out from the reactor and cooled. The supernatant paraffin wax was removed from the PTFE aqueous dispersion.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 21.6% by mass, and the average primary particle size was 176 nm.
  • the obtained PTFE aqueous dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, and coagulated under high-speed stirring conditions.
  • the solidified wet powder was dried at 210 ° C. for 18 hours. The results are shown in Table 5.
  • Example 12 Same as in Example 11 except that after adding the polymer I aqueous solution I-2 to the reactor and before heating the contents of the reactor, ammonia water was further added to adjust the pH to 8.9. Polymerization was performed.
  • the solid content concentration of the obtained PTFE aqueous dispersion was 21.4% by mass, and the average primary particle size was 222 nm.
  • the obtained aqueous PTFE dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, and coagulated under high-speed stirring conditions.
  • the solidified wet powder was dried at 210 ° C. for 18 hours. The results are shown in Table 5.
  • Example 13 In a SUS reactor with an internal volume of 6 L, 3223 g of deionized water, 104 g of paraffin wax, 341 g of polymer I aqueous solution I-2, and 3.58 g of 0.1 mass% isopropanol aqueous solution were placed. .. Next, the contents of the reactor were sucked while heating to 70 ° C., and at the same time, the contents were purged with TFE to remove oxygen in the reactor, and the contents were stirred. After adding 3.2 g of HFP into the reactor, TFE was added until the pressure reached 0.73 MPaG.
  • the obtained PTFE aqueous dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, coagulated under high-speed stirring conditions, and the coagulated wet powder was dried at 210 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 5.
  • the obtained PTFE aqueous dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, coagulated under high-speed stirring conditions, and the coagulated wet powder was dried at 240 ° C. for 18 hours.
  • Various physical properties of the obtained PTFE powder were measured. The results are shown in Table 6.
  • APS ammonium persulfate
  • the concentration of monomer J was adjusted to 3.0% by mass by adding an amount of ammonia corresponding to 0.4 equivalents to the amount of water and monomer F to the obtained polymer J aqueous solution J-1. After that, it was brought into contact with an ultrafiltration membrane (molecular weight cut off 6000, manufactured by Polysulphon) at room temperature with a water pressure of 0.1 MPa, and ultrafiltration was carried out to obtain a polymer J aqueous solution J-2.
  • an ultrafiltration membrane molecular weight cut off 6000, manufactured by Polysulphon
  • the weight average molecular weight of the obtained polymer J (Mw) is 1.4 ⁇ 10 4, a number average molecular weight (Mn) of 0.9 ⁇ 10 4.
  • the concentration of the polymer J in the polymer J aqueous solution J-2 obtained by performing the ultrafiltration was 1.9% by mass.
  • the content of the dimer and the trimmer in the aqueous solution obtained by performing the ultrafiltration was 0.1% by mass or less with respect to the polymer J.
  • the obtained PTFE aqueous dispersion was diluted with deionized water so that the solid content concentration was about 10% by mass, and coagulated under high-speed stirring conditions.
  • the solidified wet powder was dried at 210 ° C. for 18 hours. The results are shown in Table 5.
  • Mooney viscosity was measured at 100 ° C. according to JIS K 6300-1.2013 using a Mooney viscometer MV2000E manufactured by ALPHA TECHNOLOGIES.
  • the polymer adhering to the inside of the polymerization tank such as the inner wall of the polymerization tank and the stirring blade, and the polymer which is released from the aqueous dispersion by aggregation and is suspended or precipitated without being dispersed in the aqueous dispersion. ..
  • the mass of the polymer deposit is the mass after the water contained in the polymer deposit has been dried and removed at 120 ° C.
  • Polymerization rate ⁇ weight of aqueous dispersion x solid content concentration / 100 ⁇ / ⁇ (amount of pure water used for polymerization + amount of water contained in the aqueous solution of polymer (1) used for polymerization) x polymerization time ⁇
  • Aqueous dispersion weight g Solid content concentration: mass%
  • Amount of pure water used for polymerization kg
  • Polymerization time time
  • Polymerization rate g / (hour x kg)
  • the average particle size is the average diameter of the cumulant calculated by the above method
  • the number of polymer particles is the number per 1 cc of water
  • all the partially fluorinated rubbers of the examples The specific gravity of was set to 1.8.
  • a polymer QA aqueous solution QA-1 containing a coalesced polymer QA was obtained.
  • APS was added as appropriate during the reaction, and a total of 5 mol% was used.
  • the oxygen concentration in the reactor changed in the range of 11 volume ppm to 61 volume ppm.
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2
  • Monomer F 30 g represented by COOH, water 60 g, NH 3 0.5 eq (amount corresponding to 0.5 equivalent with respect to monomer F), APS 2 mol% was added, and the mixture was stirred at 52 ° C. for 72 hours in a nitrogen atmosphere to prepare a polymer QB aqueous solution QB-1 containing a polymer QB which is a homopolymer of CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 COOH. Obtained.
  • the oxygen concentration in the reactor changed in the range of 20% by volume ppm to 50% by volume ppm.
  • VDF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • Aqueous aluminum sulfate solution was added to the above aqueous dispersion to perform coagulation.
  • the obtained coagulated product was washed with water and dried to obtain a partially fluorinated rubber.
  • VDF / TFE / HFP 50/20/30 (mol%).
  • Example 22 Experiment under the same conditions as in Example 21 except that 34.09 g of the polymer QA aqueous solution QA-2 (2.2% by mass) was neutralized with aqueous ammonia to adjust the pH to 5.6 and then added to the polymerization tank. Was done.
  • the polymerization tank was cooled to obtain an aqueous dispersion.
  • the results are shown in Table 7.
  • Aqueous aluminum sulfate solution was added to the above aqueous dispersion to perform coagulation.
  • the obtained coagulated product was washed with water and dried to obtain a partially fluorinated rubber.
  • VDF / TFE / HFP 50/20/30 (mol%).
  • Example 23 With 1460 g of deionized water, 40.32 g of polymer QB aqueous solution QB-2 (1.9% by mass) was used in the polymerization tank instead of 34.09 g of polymer QA aqueous solution QA-2 (2.2% by mass).
  • the experiments were carried out under the same conditions as in Example 21 except that 0.026 g of an aqueous polymerization initiator solution of APS was press-fitted with nitrogen gas 3.0 hours and 6.0 hours after the start of polymerization.
  • the polymerization tank was cooled to obtain an aqueous dispersion.
  • the results are shown in Table 7.
  • Aqueous aluminum sulfate solution was added to the above aqueous dispersion to perform coagulation.
  • the obtained coagulated product was washed with water and dried to obtain a partially fluorinated rubber.
  • VDF / TFE / HFP 50/20/30 (mol%).
  • the partially fluorinated rubbers obtained in Examples 21 to 23 were kneaded with the formulations shown in Table 8 to obtain a partially fluorinated rubber composition.
  • a cross-linking curve was obtained using a rubber vulcanization tester MDRH2030 (manufactured by M & K Co., Ltd.) at the time of press cross-linking, and the minimum viscosity (ML), maximum torque level (MH), and induction time ( T10) and the optimum cross-linking time (T90) were determined.
  • the partially fluorinated rubber composition was crosslinked by press-crosslinking and oven-crosslinking following the press-crosslinking to obtain a crosslinked molded product sheet. Kneading method: Roll kneading Press cross-linking: 160 ° C for 10 minutes
  • Oven cross-linking 180 ° C for 4 hours
  • MT carbon Themax N-990 Cancarb TAIC: Triallyl isocyanurate, Tyke Nihon Kasei Perhexa 25B: 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, NOF
  • a dumbbell No. 6 shaped test piece was prepared according to JIS K6251, and the prepared test piece was 100% modulus (M100) under normal conditions, tensile strength at break (TB), and at break. Elongation (EB) was measured.
  • a dumbbell No. 6 shaped test piece was prepared in the same manner as described above, and the hardness (Shore A) of the prepared test piece was measured according to JIS K6253 (peak value, 1 sec, 3 sec).
  • ⁇ Glass transition temperature of perfluoroelastomer> a DSC curve was obtained by raising the temperature of 10 mg of the sample at 10 ° C./min using a differential scanning calorimeter (DSC822e, manufactured by METTLER TOLEDO), and the peak of the differential curve defined in JIS K6240. The top temperature was defined as the glass transition temperature.
  • the polymer adhering to the inside of the polymerization tank such as the inner wall of the polymerization tank and the stirring blade, and the polymer which is released from the aqueous dispersion by aggregation and is suspended or precipitated without being dispersed in the aqueous dispersion. ..
  • the mass of the polymer deposit is the mass after the water contained in the polymer deposit has been dried and removed at 120 ° C.
  • Polymerization rate ⁇ weight of aqueous dispersion x solid content concentration / 100 ⁇ / ⁇ (amount of pure water used for polymerization + amount of water contained in the aqueous solution of polymer (1) used for polymerization) x polymerization time ⁇
  • Aqueous dispersion weight g Solid content concentration: mass%
  • Amount of pure water used for polymerization kg
  • Polymerization time time
  • Polymerization rate g / (hour x kg)
  • the average particle size is the average diameter of the cumulant calculated by the above method, the number of polymer particles (the number of perfluoroelamic particles) is the number per 1 cc of water, and the specific gravity is actually measured. The value was used.
  • a polymer XB aqueous solution XB-1 containing the polymer XB was obtained.
  • APS was added as appropriate during the reaction, and a total of 4 mol% was used.
  • the oxygen concentration in the reactor changed in the range of 30% by volume ppm to 65% by volume ppm.
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2
  • Monomer F represented by COOH 30 g, water 60 g, NH 3 0.5 eq (amount corresponding to 0.5 equivalent with respect to monomer F) , APS 2 mol%, stirred at 52 ° C. for 72 hours in a nitrogen atmosphere, and polymer XC aqueous solution XC-containing polymer XC which is a homopolymer of CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 COOH.
  • Example 31 Polymerization of CN group-containing perfluoroelastomer
  • An ignition source made of SUS316, comes with a full zone type stirring blade and a baffle plate
  • the inside of the system was sufficiently replaced with nitrogen gas, degassed, and the temperature was raised to 54 ° C. while stirring at 1000 rpm.
  • a mixed gas (TFE / PMVE 24/76 mol% ratio) of tetrafluoroethylene (TFE) and perfluoromethyl vinyl ether (PMVE) was charged so that the internal pressure was 0.83 MPa ⁇ G.
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN (CNVE) 0.259 g was press-fitted with 0.8 g of deionized water with nitrogen, and then 1.03 g of ammonium persulfate (APS) was added to the deionized water 2. The reaction was started by dissolving in 5.5 g and press-fitting with nitrogen.
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN was divided 5 times, and when the total amount of TFE charged reached 6, 10, 14, 18, and 24 g, it was divided by 0.259 g. It was press-fitted with nitrogen together with 0.8 g of deionized water.
  • the autoclave was cooled to release the unreacted monomer to obtain 248 g of an aqueous dispersion having a solid content concentration of 19.7% by mass.
  • the polymerization time was 7.3 hours.
  • the polymer adhering to the stirring blade of the autoclave, the inner wall of the tank, and the baffle plate was collected, and the water content was removed by heating to obtain 5.7 g.
  • the adhesion rate was calculated by the above formula, it was 10.4% by mass.
  • the coagulated perfluoroelastomer was filtered off, transferred to 100 g of deionized water, and washed with stirring for 5 minutes. After 5 minutes, the perfluoroelastomer was filtered off again, transferred to 100 g of deionized water, and washed with stirring for 5 minutes. After that, the washing operation with 100 g of deionized water was repeated, and when the pH of the washing water after washing with water became 6 or more, the perfluoroelastomer was filtered off. The filtered perfluoroelastomer was vacuum dried at 70 ° C. for 48 hours. The amount of perfluoroelastomer obtained was 19.3 g.
  • the average cumulant diameter of the perfluoroelastomer particles in the aqueous dispersion was 49.7 nm.
  • the number of perfluoroelastomer particles in the aqueous dispersion was calculated by the above formula, it was 1.9 ⁇ 10 15 particles / cc.
  • Example 32 Example 31 except that the amount of deionized water to be charged first was changed to 86.5 g and the amount of polymer XA aqueous solution XA-2 (solid content concentration: 2.2% by mass) was changed to 110.8 g. Polymerization was carried out in the same manner to obtain 255 g of an aqueous dispersion having a solid content concentration of 21.2% by mass.
  • the polymerization time was 6.8 hours.
  • the adhered polymer in the tank was collected and the water was removed by heating, it was 2.8 g, and the adherence rate was 5.0% by mass.
  • aqueous dispersion was post-treated in the same manner as in Example 31 to obtain 19.6 g of perfluoroelastomer.
  • the polymerization rate was 40.7 g / (hour x kg)
  • the average diameter of the cumulant particles of the perfluoroelousin particles in the aqueous dispersion was 45.4 nm
  • the number of perfluoroelamic particles in the aqueous dispersion was 2.7 ⁇ 10 15 particles /. It was cc.
  • Example 33 Example 31 except that the amount of deionized water to be charged first was changed to 64.8 g and the amount of the polymer XA aqueous solution XA-2 (solid content concentration: 2.2% by mass) was changed to 133.0 g. The polymerization was carried out in the same manner as in the above to obtain 257 g of an aqueous dispersion having a solid content concentration of 21.4% by mass.
  • the polymerization time was 6.9 hours.
  • the adhered polymer in the tank was collected and the water was removed by heating, it was 0.7 g, and the adherence rate was 1.3% by mass.
  • aqueous dispersion was post-treated in the same manner as in Example 31 to obtain 19.6 g of perfluoroelastomer.
  • the polymerization rate was 41.2 g / (hour x kg)
  • the average diameter of the cumulant particles in the aqueous dispersion was 44.3 nm
  • the number of perfluoroelastomere particles in the aqueous dispersion was 3.0 ⁇ 10 15 particles /. It was cc.
  • Example 34 Manufacture of CN group-containing perfluoroelastomer
  • aqueous solution XB-2 solid content concentration: 2.2% by mass
  • TFE tetrafluoroethylene
  • PMVE perfluoromethyl vinyl ether
  • the reaction was started by dissolving in 30 g and press-fitting with nitrogen.
  • CNVE was added 17 times, 1.21 g each, and was press-fitted into the polymerization tank together with 1.5 g of deionized water.
  • the intermediate addition of CNVE at the xth time (1 ⁇ x ⁇ 17) was performed when the amount of TFE charged exceeded ⁇ (328/18) ⁇ x ⁇ g.
  • the autoclave was cooled to release the unreacted monomer to obtain 3127 g of an aqueous dispersion having a solid content concentration of 23.1% by mass.
  • the polymerization time was 6.6 hours.
  • the adhering polymer in the tank was collected, and the water content was removed by heating. The amount was 20.1 g, and the adhering rate was 2.7% by mass.
  • the polymerization rate was 46.6 g / (hour x kg)
  • the average diameter of the cumulant particles in the aqueous dispersion was 54.6 nm
  • the number of perfluoroelastomere particles in the aqueous dispersion was 1.8 ⁇ 10 15 particles /. It was cc.
  • AFTA-Ph 2,2-Bis [3-amino-4- (N-phenylamino) phenyl] hexafluoropropane
  • a crosslinkable perfluoroelastomer composition was prepared by kneading 2.0 parts by mass and 5 parts by mass of calcium oxide (CML # 35, manufactured by Omi Chemical Industry Co., Ltd.) as a filler with an open roll. ..
  • the obtained perfluoroelastomer composition was pressed at 200 ° C. for 40 minutes for cross-linking, and then subjected to oven cross-linking at 290 ° C. for 24 hours to prepare a cross-linked product having a thickness of 2 mm and an O-ring (P-24). did.
  • Various physical properties of the perfluoroelastomer composition and the crosslinked product were measured by the following methods. The results are shown in Table 9.
  • the cross-linking curve at 200 ° C. was determined using RPA2000 manufactured by ALPHA TECHNOLOGIES, and the minimum torque (ML), maximum torque (MH), induction time (T10) and optimum cross-linking time (T90) were determined. It was.
  • the specific gravity of the crosslinked product was measured using an automatic hydrometer DMA-220H (manufactured by Shinko Denshi Co., Ltd.) using a crosslinked product having a thickness of 2 mm.
  • the compression set of the O-ring was measured by the following method.
  • the compression set of the O-ring was 24.4%.
  • the compression set was measured according to the method described in ASTM D395 or JIS K6262.
  • the O-ring was compressed to a compression ratio of 25% at room temperature using a compression device (an O-ring having a thickness (wire diameter) of 3.5 mm was compressed to a thickness of 2.625 mm).
  • the compression device to which the compressed O-ring was fixed was allowed to stand in an electric furnace, left at 300 ° C. for 70 hours, and then the compression device was taken out from the electric furnace. Then, the compression device to which the compressed O-ring was fixed was allowed to stand in another electric furnace and left at 70 ° C. for 24 hours.
  • the O-ring was removed from the compression device, the removed O-ring was allowed to stand in a thermostatic chamber, left at 23 ° C. for 30 minutes, and the thickness (t2) of the O-ring was measured.
  • the compression set was calculated by the following equation.
  • the low compression set means that the compression set is small and the compression set property is excellent even after the crosslinked product is used under severe conditions.
  • Example 35 First, change the amount of deionized water to be charged to 84.9 g, change the amount of polymer XA aqueous solution XA-2 (solid content concentration: 2.2% by mass) to 110.8 g, and then add ammonia water to pH. The polymerization was carried out in the same manner as in Example 31 except that the above amount was adjusted to 7.1 to obtain 256 g of an aqueous dispersion having a solid content concentration of 21.1% by mass.
  • the polymerization time was 11.5 hours.
  • the adhered polymer in the tank was collected and the water content was removed by heating, it was 0.5 g and the adherence rate was 0.8% by mass.
  • aqueous dispersion was post-treated in the same manner as in Example 31 to obtain 20.0 g of perfluoroelastomer.
  • the polymerization rate was 24.2 g / (hour x kg), the average diameter of the cumulant particles in the aqueous dispersion was 82.3 nm, and the number of perfluoroelastomere particles in the aqueous dispersion was 4.5 x 10 14 particles /. It was cc.
  • Example 36 The amount of deionized water to be charged first was changed to 128.1 g, and the amount of polymer XA aqueous solution XA-2 (solid content concentration: 2.2% by mass) was changed to 66.5 g. Polymerization was carried out in the same manner as in Example 31 except that 1.03 g of a 10% aqueous ammonia solution was press-fitted with nitrogen when 16.8 g was added to obtain 248 g of an aqueous dispersion having a solid content concentration of 19.6% by mass.
  • the polymerization time was 7.5 hours.
  • the adhering polymer in the tank was collected and the water was removed by heating, it was 6.3 g, and the adhering rate was 11.5% by mass.
  • Example 31 With respect to 100 g of the obtained aqueous dispersion, post-treatment was carried out in the same manner as in Example 31 except that 75 g of deionized water to be added, 500 g of a 10% hydrochloric acid aqueous solution to which a diluted solution was added dropwise, and 100 g of deionized water for cleaning were used. This was carried out to obtain 19.0 g of perfluoro elastomer.
  • the polymerization rate was 33.4 g / (hour x kg), the average diameter of the cumulant particles in the aqueous dispersion was 54.8 nm, and the number of perfluoroelastomere particles in the aqueous dispersion was 1.4 ⁇ 10 15. It was cc.
  • Example 37 Polymerization of iodine-containing perfluoroelastomer
  • An ignition source made of SUS316, comes with a full zone type stirring blade and a baffle plate
  • the inside of the system was sufficiently replaced with nitrogen gas, degassed, and the temperature was raised to 50 ° C. while stirring at 1000 rpm.
  • TFE tetrafluoroethylene
  • PMVE perfluoromethyl vinyl ether
  • the autoclave was cooled to release the unreacted monomer to obtain 298 g of an aqueous dispersion having a solid content concentration of 23.8% by mass.
  • the polymerization time was 34.2 hours.
  • the adhering polymer in the tank was collected, and when water was removed by heating, the amount was 0.5 g and the adhering rate was 0.7% by mass.
  • the polymerization rate was 9.1 g / (hour x kg)
  • the average diameter of the cumulant particles in the aqueous dispersion was 119.9 nm
  • the number of perfluoro elastomer particles in the aqueous dispersion was 1.7 ⁇ 10 14 particles /. It was cc.
  • the obtained perfluoroelastomer composition was pressed at 160 ° C. for 10 minutes for cross-linking, and then subjected to oven cross-linking at 180 ° C. for 4 hours to prepare a cross-linked product having a thickness of 2 mm and an O-ring (P-24). did.
  • Various physical properties of the perfluoroelastomer composition and the crosslinked product were measured in the same manner as in Example 34. The results are shown in Table 9.
  • Example 38 Except that the amount of deionized water to be charged first was changed to 46.9 g, and the polymer XA aqueous solution XA-2 was changed to the polymer XC aqueous solution XC-2 (solid content concentration: 2.8% by mass) 152.2 g. Polymerization was carried out in the same manner as in Example 31 to obtain 253 g of an aqueous dispersion having a solid content concentration of 21.8% by mass.
  • the polymerization time was 9.2 hours.
  • the adhering polymer in the tank was collected and the water was removed by heating, it was 4.3 g, and the adhering rate was 7.2% by mass.
  • post-treatment was carried out in the same manner as in Example 31 except that 75 g of deionized water to be added, 800 g of 10% hydrochloric acid aqueous solution to which the diluted solution was added dropwise, and 100 g of deionized water for cleaning were used. This was carried out to obtain 16.6 g of perfluoro elastomer.
  • the polymerization rate was 30.9 g / (hour x kg)
  • the average diameter of the cumulant particles in the aqueous dispersion was 105.2 nm
  • the number of perfluoroelastomere particles in the aqueous dispersion was 2.3 ⁇ 10 14 particles /. It was cc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

実質的に含フッ素界面活性剤(ただし、一般式(I)で表される単量体(I)を除く)の非存在下に、水性媒体中で一般式(I)で表される単量体(I)を重合することにより、単量体(I)の重合体を含有する粗組成物を得る工程、前記粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、前記粗組成物から除去することにより、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体(I)を得る工程、および、重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合することにより、フルオロポリマーを得る工程を含むフルオロポリマーの製造方法を提供する。 CX=CXR(-CZ-A (I) (式中、XおよびXは、それぞれ独立して、F、Cl、HまたはCFであり;Xは、H、F、アルキル基または含フッ素アルキル基であり;Aは、アニオン性基であり;Rは連結基であり;ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基であり;mは1以上の整数である。)

Description

フルオロポリマーの製造方法
 本開示は、フルオロポリマーの製造方法に関する。
 特許文献1には、フルオロポリマーのバルクとフッ素化イオノマーの核とを含む粒子が記載されている。
国際公開第2010/075494号公報
 本開示では、フルオロモノマーの重合に用いる重合体を構成する単量体のダイマーおよびトリマーを実質的に含有しないフルオロポリマーを製造できる製造方法を提供することを目的とする。
 本開示によれば、実質的に含フッ素界面活性剤(ただし、一般式(I)で表される単量体(I)を除く)の非存在下に、水性媒体中で一般式(I)で表される単量体(I)を重合することにより、単量体(I)の重合体を含有する粗組成物を得る工程、前記粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、前記粗組成物から除去することにより、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体(I)を得る工程、および、重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合することにより、フルオロポリマーを得る工程を含むフルオロポリマーの製造方法が提供される。
   CX=CXR(-CZ-A   (I)
(式中、XおよびXは、それぞれ独立して、F、Cl、HまたはCFであり;Xは、H、F、アルキル基または含フッ素アルキル基であり;Aは、アニオン性基であり;Rは連結基であり;ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基であり;mは1以上の整数である。)
 本開示の製造方法において、単量体(I)の分子量が500以下であることが好ましい。
 一般式(I)において、Aが、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)であることが好ましい。
 一般式(I)において、Aが、-COOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)であることが好ましい。
 本開示の製造方法において、単量体(I)が、一般式(1)で表される単量体であることが好ましい。
  CX=CY(-CZ-O-Rf-A)   (1)
(式中、Xは、同一または異なって、-HまたはFであり、Yは-H、-F、アルキル基または含フッ素アルキル基であり、Zは、同一または異なって、-H、-F、アルキル基またはフルオロアルキル基である。Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である。但し、X、YおよびZの少なくとも1つはフッ素原子を含む。)
 本開示の製造方法において、単量体(I)が、一般式(1A)で表される単量体であることが好ましい。
   CH=CF(-CF-O-Rf-A)   (1A)
(式中、Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である。)
 一般式(1)および(1A)において、Aが、-COOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)であることが好ましい
 本開示の製造方法において、前記粗組成物の限外濾過により、前記粗組成物から単量体(I)のダイマーおよびトリマーを除去することが好ましい。
 本開示によれば、フルオロモノマーの重合に用いる重合体を構成する単量体のダイマーおよびトリマーを実質的に含有しないフルオロポリマーを製造できる製造方法を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示を具体的に説明する前に、本開示で使用するいくつかの用語を定義または説明する。
 本開示において、フッ素樹脂とは、部分結晶性フルオロポリマーであり、フルオロプラスチックスである。フッ素樹脂は、融点を有し、熱可塑性を有するが、溶融加工性であっても、非溶融加工性であってもよい。
 本開示において、溶融加工性とは、押出機及び射出成形機等の従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。従って、溶融加工性のフッ素樹脂は、後述する測定方法により測定されるメルトフローレートが0.01~500g/10分であることが通常である。
 本開示において、フッ素ゴムとは、非晶質フルオロポリマーである。「非晶質」とは、フルオロポリマーの示差走査熱量測定〔DSC〕(昇温速度10℃/分)あるいは示差熱分析〔DTA〕(昇温速度10℃/分)において現われた融解ピーク(ΔH)の大きさが4.5J/g以下であることをいう。フッ素ゴムは、架橋することにより、エラストマー特性を示す。エラストマー特性とは、ポリマーを延伸することができ、ポリマーを延伸するのに必要とされる力がもはや適用されなくなったときに、その元の長さを保持できる特性を意味する。
 本開示において、部分フッ素化ゴムとは、フルオロモノマー単位を含み、全重合単位に対するパーフルオロモノマー単位の含有量が90モル%未満のフルオロポリマーであって、20℃以下のガラス転移温度を有し、4.5J/g以下の融解ピーク(ΔH)の大きさを有するフルオロポリマーである。
 本開示において、パーフルオロゴム(パーフルオロエラストマー)とは、全重合単位に対するパーフルオロモノマー単位の含有量が90モル%以上、好ましくは91モル%以上のフルオロポリマーであって、20℃以下のガラス転移温度を有し、4.5J/g以下の融解ピーク(ΔH)の大きさを有するフルオロポリマーであり、更に、フルオロポリマーに含まれるフッ素原子の濃度が71質量%以上、好ましくは71.5質量%以上であるポリマーである。本開示において、フルオロポリマーに含まれるフッ素原子の濃度は、フルオロポリマーを構成する各モノマーの種類と含有量より、フルオロポリマーに含まれるフッ素原子の濃度(質量%)を計算により求めるものである。
 本開示において、パーフルオロモノマーとは、分子中に炭素原子-水素原子結合を含まないモノマーである。上記パーフルオロモノマーは、炭素原子及びフッ素原子の他、炭素原子に結合しているフッ素原子のいくつかが塩素原子で置換されたモノマーであってもよく、炭素原子の他、窒素原子、酸素原子、硫黄原子、燐原子、硼素原子又は珪素原子を有するものであってもよい。上記パーフルオロモノマーとしては、全ての水素原子がフッ素原子に置換されたモノマーであることが好ましい。上記パーフルオロモノマーには、架橋部位を与えるモノマーは含まれない。
 架橋部位を与えるモノマーとは、硬化剤により架橋を形成するための架橋部位をフルオロポリマーに与える架橋性基を有するモノマー(キュアサイトモノマー)である。
 本開示において、ポリテトラフルオロエチレン〔PTFE〕は、全重合単位に対するテトラフルオロエチレンの含有量が99モル%以上であるフルオロポリマーであることが好ましい。
 本開示において、フッ素樹脂(但し、ポリテトラフルオロエチレンを除く)及びフッ素ゴムは、いずれも、全重合単位に対するテトラフルオロエチレンの含有量が99モル%未満であるフルオロポリマーであることが好ましい。
 本開示において、フルオロポリマーを構成する各モノマーの含有量は、NMR、FT-IR、元素分析、蛍光X線分析をモノマーの種類によって適宜組み合わせることで算出できる。
 本開示において、「有機基」は、1個以上の炭素原子を含有する基、または有機化合物から1個の水素原子を除去して形成される基を意味する。
 当該「有機基」の例は、
1個以上の置換基を有していてもよいアルキル基、
1個以上の置換基を有していてもよいアルケニル基、
1個以上の置換基を有していてもよいアルキニル基、
1個以上の置換基を有していてもよいシクロアルキル基、
1個以上の置換基を有していてもよいシクロアルケニル基、
1個以上の置換基を有していてもよいシクロアルカジエニル基、
1個以上の置換基を有していてもよいアリール基、
1個以上の置換基を有していてもよいアラルキル基、
1個以上の置換基を有していてもよい非芳香族複素環基、
1個以上の置換基を有していてもよいヘテロアリール基、
シアノ基、
ホルミル基、
RaO-、
RaCO-、
RaSO-、
RaCOO-、
RaNRaCO-、
RaCONRa-、
RaOCO-、
RaOSO-、および、
RaNRbSO
(これらの式中、Raは、独立して、
1個以上の置換基を有していてもよいアルキル基、
1個以上の置換基を有していてもよいアルケニル基、
1個以上の置換基を有していてもよいアルキニル基、
1個以上の置換基を有していてもよいシクロアルキル基、
1個以上の置換基を有していてもよいシクロアルケニル基、
1個以上の置換基を有していてもよいシクロアルカジエニル基、
1個以上の置換基を有していてもよいアリール基、
1個以上の置換基を有していてもよいアラルキル基、
1個以上の置換基を有していてもよい非芳香族複素環基、または、
1個以上の置換基を有していてもよいヘテロアリール基、
Rbは、独立して、Hまたは1個以上の置換基を有していてもよいアルキル基である)
を包含する。
 上記有機基としては、1個以上の置換基を有していてもよいアルキル基が好ましい。
 また、本開示において、「置換基」は、置換可能な基を意味する。当該「置換基」の例は、脂肪族基、芳香族基、ヘテロ環基、アシル基、アシルオキシ基、アシルアミノ基、脂肪族オキシ基、芳香族オキシ基、ヘテロ環オキシ基、脂肪族オキシカルボニル基、芳香族オキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、脂肪族スルホニル基、芳香族スルホニル基、ヘテロ環スルホニル基、脂肪族スルホニルオキシ基、芳香族スルホニルオキシ基、ヘテロ環スルホニルオキシ基、スルファモイル基、脂肪族スルホンアミド基、芳香族スルホンアミド基、ヘテロ環スルホンアミド基、アミノ基、脂肪族アミノ基、芳香族アミノ基、ヘテロ環アミノ基、脂肪族オキシカルボニルアミノ基、芳香族オキシカルボニルアミノ基、ヘテロ環オキシカルボニルアミノ基、脂肪族スルフィニル基、芳香族スルフィニル基、脂肪族チオ基、芳香族チオ基、ヒドロキシ基、シアノ基、スルホ基、カルボキシ基、脂肪族オキシアミノ基、芳香族オキシアミノ基、カルバモイルアミノ基、スルファモイルアミノ基、ハロゲン原子、スルファモイルカルバモイル基、カルバモイルスルファモイル基、ジ脂肪族オキシホスフィニル基、および、ジ芳香族オキシホスフィニル基を包含する。
 上記脂肪族基は、飽和であっても不飽和であってもよく、また、ヒドロキシ基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記脂肪族基としては、総炭素原子数1~8、好ましくは1~4のアルキル基、たとえば、メチル基、エチル基、ビニル基、シクロヘキシル基、カルバモイルメチル基などが挙げられる。
 上記芳香族基は、たとえば、ニトロ基、ハロゲン原子、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記芳香族基としては、炭素数6~12、好ましくは総炭素原子数6~10のアリール基、たとえば、フェニル基、4-ニトロフェニル基、4-アセチルアミノフェニル基、4-メタンスルホニルフェニル基などが挙げられる。
 上記ヘテロ環基は、ハロゲン原子、ヒドロキシ基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記ヘテロ環基としては、総炭素原子数2~12、好ましくは2~10の5~6員ヘテロ環、たとえば2-テトラヒドロフリル基、2-ピリミジル基などが挙げられる。
 上記アシル基は、脂肪族カルボニル基、アリールカルボニル基、ヘテロ環カルボニル基、ヒドロキシ基、ハロゲン原子、芳香族基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記アシル基としては、総炭素原子数2~8、好ましくは2~4のアシル基、たとえばアセチル基、プロパノイル基、ベンゾイル基、3-ピリジンカルボニル基などが挙げられる。
 上記アシルアミノ基は、脂肪族基、芳香族基、ヘテロ環基などを有していてもよく、たとえば、アセチルアミノ基、ベンゾイルアミノ基、2-ピリジンカルボニルアミノ基、プロパノイルアミノ基などを有していてもよい。上記アシルアミノ基としては、総炭素原子数2~12、好ましくは2~8のアシルアミノ基、総炭素原子数2~8のアルキルカルボニルアミノ基、たとえばアセチルアミノ基、ベンゾイルアミノ基、2-ピリジンカルボニルアミノ基、プロパノイルアミノ基などが挙げられる。
 上記脂肪族オキシカルボニル基は、飽和であっても不飽和であってもよく、また、ヒドロキシ基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記脂肪族オキシカルボニル基としては、総炭素原子数2~8、好ましくは2~4のアルコキシカルボニル基、たとえばメトキシカルボニル基、エトキシカルボニル基、(t)-ブトキシカルボニル基などが挙げられる。
 上記カルバモイル基は、脂肪族基、芳香族基、ヘテロ環基などを有していてもよい。上記カルバモイル基としては、無置換のカルバモイル基、総炭素数2~9のアルキルカルバモイル基、好ましくは無置換のカルバモイル基、総炭素原子数2~5のアルキルカルバモイル基、たとえばN-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N-フェニルカルバモイル基などが挙げられる。
 上記脂肪族スルホニル基は、飽和であっても不飽和であってもよく、また、ヒドロキシ基、芳香族基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記脂肪族スルホニル基としては、総炭素原子数1~6、好ましくは総炭素原子数1~4のアルキルスルホニル基、たとえばメタンスルホニル基などが挙げられる。
 上記芳香族スルホニル基は、ヒドロキシ基、脂肪族基、脂肪族オキシ基、カルバモイル基、脂肪族オキシカルボニル基、脂肪族チオ基、アミノ基、脂肪族アミノ基、アシルアミノ基、カルバモイルアミノ基などを有していてもよい。上記芳香族スルホニル基としては、総炭素原子数6~10のアリールスルホニル基、たとえばベンゼンスルホニル基などが挙げられる。
 上記アミノ基は、脂肪族基、芳香族基、ヘテロ環基などを有していてもよい。
 上記アシルアミノ基は、たとえば、アセチルアミノ基、ベンゾイルアミノ基、2-ピリジンカルボニルアミノ基、プロパノイルアミノ基などを有していてもよい。上記アシルアミノ基としては、総炭素原子数2~12、好ましくは総炭素原子数2~8のアシルアミノ基、より好ましくは総炭素原子数2~8のアルキルカルボニルアミノ基、たとえばアセチルアミノ基、ベンゾイルアミノ基、2-ピリジンカルボニルアミノ基、プロパノイルアミノ基などが挙げられる。
 上記脂肪族スルホンアミド基、芳香族スルホンアミド基、ヘテロ環スルホンアミド基は、たとえば、メタンスルホンアミド基、ベンゼンスルホンアミド基、2-ピリジンスルホンアミド基などであってもよい。
 上記スルファモイル基は、脂肪族基、芳香族基、ヘテロ環基などを有していてもよい。上記スルファモイル基としては、スルファモイル基、総炭素原子数1~9のアルキルスルファモイル基、総炭素原子数2~10のジアルキルスルファモイル基、総炭素原子数7~13のアリールスルファモイル基、総炭素原子数2~12のヘテロ環スルファモイル基、より好ましくはスルファモイル基、総炭素原子数1~7のアルキルスルファモイル基、総炭素原子数3~6のジアルキルスルファモイル基、総炭素原子数6~11のアリールスルファモイル基、総炭素原子数2~10のヘテロ環スルファモイル基、たとえば、スルファモイル基、メチルスルファモイル基、N,N-ジメチルスルファモイル基、フェニルスルファモイル基、4-ピリジンスルファモイル基などが挙げられる。
 上記脂肪族オキシ基は、飽和であっても不飽和であってもよく、また、メトキシ基、エトキシ基、i-プロピルオキシ基、シクロヘキシルオキシ基、メトキシエトキシ基などを有していてもよい。上記脂肪族オキシ基としては、総炭素原子数1~8、好ましくは1~6のアルコキシ基、たとえばメトキシ基、エトキシ基、i-プロピルオキシ基、シクロヘキシルオキシ基、メトキシエトキシ基などが挙げられる。
 上記芳香族アミノ基、ヘテロ環アミノ基は、脂肪族基、脂肪族オキシ基、ハロゲン原子、カルバモイル基、該アリール基と縮環したヘテロ環基、脂肪族オキシカルボニル基、好ましくは総炭素原子数1~4の脂肪族基、総炭素原子数1~4の脂肪族オキシ基、ハロゲン原子、総炭素原子数1~4のカルバモイル基、ニトロ基、総炭素原子数2~4の脂肪族オキシカルボニル基を有していてもよい。
 上記脂肪族チオ基は、飽和であっても不飽和であってもよく、また、総炭素原子数1~8、より好ましくは総炭素原子数1~6のアルキルチオ基、たとえばメチルチオ基、エチルチオ基、カルバモイルメチルチオ基、t-ブチルチオ基などが挙げられる。
 上記カルバモイルアミノ基は、脂肪族基、アリール基、ヘテロ環基などを有していてもよい。上記カルバモイルアミノ基としては、カルバモイルアミノ基、総炭素原子数2~9のアルキルカルバモイルアミノ基、総炭素原子数3~10のジアルキルカルバモイルアミノ基、総炭素原子数7~13のアリールカルバモイルアミノ基、総炭素原子数3~12のヘテロ環カルバモイルアミノ基、好ましくはカルバモイルアミノ基、総炭素原子数2~7のアルキルカルバモイルアミノ基、総炭素原子数3~6のジアルキルカルバモイルアミノ基、総炭素原子数7~11のアリールカルバモイルアミノ基、総炭素原子数3~10のヘテロ環カルバモイルアミノ基、たとえば、カルバモイルアミノ基、メチルカルバモイルアミノ基、N,N-ジメチルカルバモイルアミノ基、フェニルカルバモイルアミノ基、4-ピリジンカルバモイルアミノ基などが挙げられる。
 本開示において、端点によって表わされる範囲には、その範囲内に含まれるすべての数値が含まれる(たとえば、1~10には、1.4、1.9、2.33、5.75、9.98などが含まれる)。
 本開示において、「少なくとも1」の記載には、1以上の全ての数値が含まれる(たとえば、少なくとも2、少なくとも4、少なくとも6、少なくとも8、少なくとも10、少なくとも25、少なくとも50、少なくとも100など)。
 次に、本開示の製造方法を具体的に説明する。
 本開示の製造方法は、実質的に含フッ素界面活性剤(ただし、一般式(I)で表される単量体(I)を除く)の非存在下に、水性媒体中で一般式(I)で表される単量体(I)を重合することにより、単量体(I)の重合体を含有する粗組成物を得る工程、
 前記粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、前記粗組成物から除去することにより、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体(I)を得る工程、および、
 重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合することにより、フルオロポリマーを得る工程、を含む。
<重合体(I)>
 本開示の製造方法において用いる重合体(I)は、一般式(I)で表される単量体(I)の重合体であって、かつ、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体である。
   CX=CXR(-CZ-A   (I)
(式中、XおよびXは、それぞれ独立して、F、Cl、HまたはCFであり;Xは、H、F、アルキル基または含フッ素アルキル基であり;Aは、アニオン性基であり;Rは連結基であり;ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基であり;mは1以上の整数である。)
 Xとしては、F、Cl、H又はCFが好ましい。また、Z及びZとしては、FまたはCFが好ましい。
 本開示の製造方法において用いる重合体(I)は、単量体(I)のダイマーおよびトリマーを実質的に含有しない。単量体(I)のダイマーおよびトリマーは、通常、単量体(I)を重合して重合体(I)を得る際に生じる。重合体(I)中のダイマーおよびトリマーの含有量としては、重合体(I)に対して、1.0質量%以下であり、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下であり、さらに好ましくは0.001質量%以下であり、特に好ましくは0.0001質量%以下である。
 重合体(I)中のダイマーおよびトリマーの含有量は、重合体(I)のゲル浸透クロマトグラフィ(GPC)分析を行い、GPC分析により得られるクロマトグラムの各ピークの総面積に対する、ダイマーおよびトリマーのピーク面積の合計の割合(面積百分率)を算出することにより、特定することができる。
 また、重合体(I)中のダイマーおよびトリマーの含有量が、重合体(I)に対して、0.5質量%未満の場合には、液体クロマトグラフィ-質量分析法(LC/MS/MS)による測定により、特定することができる。
 具体的には、単量体(I)の5水準以上の含有量の水溶液を作成し、それぞれの含有量のLC/MS/MS分析を行ない、含有量と、その含有量に対するエリア面積(ピークの積分値)との関係をプロットし、単量体(I)の検量線を作成する。さらに、単量体(I)の検量線から、単量体(I)のダイマーおよびトリマーの検量線を作成する。
 重合体(I)にメタノールを加えて混合物を調製し、遠心分離により混合物から抽出液(上澄み液)を回収し、得られた抽出液をLC/MS/MS分析する。
 そして、検量線を用いて、単量体(I)のダイマーおよびトリマーのクロマトグラムのエリア面積(ピークの積分値)を、ダイマーおよびトリマーの含有量に換算することができる。
 水性媒体中でのフルオロモノマーの重合の際に、ダイマーおよびトリマーを実質的に含有しない重合体(I)を用いることによって、単量体(I)のダイマーおよびトリマーを実質的に含有しないフルオロポリマーを製造できる。重合体(I)を構成する単量体(I)のダイマーおよびトリマーが、重合体(I)中に含まれていることは、従来知られていなかった。本開示において重合体(I)中の単量体(I)のダイマーおよびトリマーの存在が初めて明らかにされ、本開示によりこれらの除去方法が初めて提供される。
 重合体(I)は、単量体(I)に基づく重合単位(I)を含む重合体である。本開示で用いる重合体(I)は、2以上の重合単位(I)を含む重合体(I)から、ダイマー(2つの重合単位(I)を含む重合体)およびトリマー(3つの重合単位(I)を含む重合体)が実質的に除去された重合体である。
 単量体(I)の分子量は、500以下であることが好ましく、400以下であることが好ましい。すなわち、重合体(I)は、分子量が1500以下のダイマーおよびトリマーを実質的に含有しないことが好ましく、分子量が1200以下のダイマーおよびトリマーを実質的に含有しないことがより好ましい。低分子量の単量体(I)のダイマーおよびトリマーが、重合体(I)中に含まれていることは、従来知られていなかった。本開示において重合体(I)中の低分子量の単量体(I)のダイマーおよびトリマーの存在が初めて明らかにされ、本開示によりこれらの除去方法が初めて提供される。
 本開示において、アニオン性基には、サルフェート基、カルボキシレート基などのアニオン性基に加えて、-COOHのような酸基、-COONHのような酸塩基などのアニオン性基を与える官能基が含まれる。アニオン性基としては、サルフェート基、カルボキシレート基、ホスフェート基、ホスホネート基、スルホネート基、または、-C(CFOM(式中、Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)が好ましい。
 本開示の製造方法において、一般式(I)で表される単量体(I)として、1種または2種以上の単量体を用いることができる。
 単量体(I)のダイマーおよびトリマーは、一般式(I)で表される単量体(I)として、1種の単量体(I)から形成される重合体であってもよいし、構造の異なる2種以上の単量体(I)から形成される共重合体であってもよい。
 重合体(I)は、一般式(I)で表される1種の単量体(I)に基づく重合単位(I)のみを含むものであってもよいし、一般式(I)で表される2種以上の単量体(I)に基づく重合単位(I)を含むものであってもよい。
 本開示において重合体(I)中の低分子量の単量体(I)のダイマーおよびトリマーの存在が初めて明らかにされ、本開示によりこれらの除去方法が初めて提供される。
 Rは、連結基である。本開示において「連結基」は、(m+1)価連結基であり、mが1の場合は二価連結基である。連結基は、単結合であってもよく、少なくとも1個の炭素原子を含むことが好ましく、炭素原子の数は、2以上であってよく、4以上であってよく、8以上であってよく、10以上であってよく、20以上であってもよい。上限は限定されないが、たとえば、100以下であってよく、50以下であってよい。
 連結基は、鎖状または分岐鎖状、環状または非環状構造、飽和または不飽和、置換または非置換であってよく、所望により硫黄、酸素、および窒素からなる群から選択される1つ以上のヘテロ原子を含み、所望によりエステル、アミド、スルホンアミド、カルボニル、カーボネート、ウレタン、尿素およびカルバメートからなる群から選択される1つ以上の官能基を含んでよい。上記連結基は、炭素原子を含まず、酸素、硫黄または窒素等のカテナリーヘテロ原子であってもよい。
 mは1以上の整数であり、好ましくは1または2であり、より好ましくは1である。mが2以上の整数である場合、Z、ZおよびAは、同一であっても、異なっていてもよい。
 次に、一般式(I)においてmが1である場合の好適な構成について説明する。
 Rは、たとえば、酸素、硫黄、窒素等のカテナリーヘテロ原子、または、2価の有機基であることが好ましい。
 Rが2価の有機基である場合、炭素原子に結合する水素原子は、フッ素以外のハロゲン、たとえば塩素等で置き換えられてもよく、二重結合を含んでも含まなくてもよい。また、Rは、鎖状および分岐鎖状のいずれでもよく、環状および非環状のいずれでもよい。また、Rは、官能基(たとえば、エステル、エーテル、ケトン(ケト基)、アミン、ハロゲン化物等)を含んでもよい。
 Rはまた、非フッ素の2価の有機基であってもよいし、部分フッ素化または過フッ素化された2価の有機基であってもよい。
 Rとしては、たとえば、炭素原子にフッ素原子が結合していない炭化水素基、炭素原子に結合する水素原子の一部がフッ素原子で置換された炭化水素基、または、炭素原子に結合する水素原子の全てがフッ素原子で置換された炭化水素基であってもよく、これらは酸素原子を含んでいてもよく、二重結合を含んでいてもよく、官能基を含んでいてもよい。
 Rは、エーテル結合またはケト基を含んでいてもよい炭素数1~100の炭化水素基であることが好ましく、該炭化水素基は、炭素原子に結合する水素原子の一部または全部がフッ素に置換されていてもよい。
 Rとして好ましくは、-(CH-、-(CF-、-O-(CF-、-(CF-O-(CF-、-O(CF-O-(CF-、-(CF-[O-(CF-、-O(CF-[O-(CF-、-[(CF-O]-[(CF-O]-、-O[(CF-O]-[(CF-O]-、-O-[CFCF(CF)O]-(CF-、-[CFCF(CF)O]-、-[CF(CF)CFO]-、-(CF-O-[CF(CF)CFO]-、-(CF-O-[CF(CF)CFO]-(CF-、-[CFCF(CF)]-CO-(CF-、および、これらの組み合わせから選択される少なくとも1種である。
 式中、a、b、cおよびdは独立して少なくとも1以上である。a、b、cおよびdは独立して、2以上であってよく、3以上であってよく、4以上であってよく、10以上であってよく、20以上であってよい。a、b、cおよびdの上限は、たとえば、100である。
 Rとしては、一般式(r1):
   -CF-O-(CX -{O-CF(CF)}-(O)-   (r1)
(式中、Xはそれぞれ独立してH、FまたはCFであり、eは0~3の整数であり、fは0~3の整数であり、gは0または1である)で表される2価の基が好ましく、一般式(r2):
   -CF-O-(CX -(O)-   (r2)
(式中、Xはそれぞれ独立してH、FまたはCFであり、eは0~3の整数であり、gは0または1である)で表される2価の基がより好ましい。
 Rとして好適な具体的としては、-CF-O-、-CF-O-CF-、-CF-O-CH-、-CF-O-CHCF-、-CF-O-CFCF-、-CF-O-CFCH-、-CF-O-CFCFCH-、-CF-O-CF(CF)-、-CF-O-CF(CF)CF-、-CF-O-CF(CF)CF-O-、-CF-O-CF(CF)CF-O-CF-、-CF-O-CF(CF)CH-等が挙げられる。なかでも、Rは、酸素原子を含んでもよい、パーフルオロアルキレン基が好ましく、具体的には、-CF-O-、-CF-O-CF-、-CF-O-CFCF-、-CF-O-CF(CF)-、-CF-O-CF(CF)CF-、または、-CF-O-CF(CF)CF-O-が好ましい。
 一般式(I)の-R-CZ-としては、一般式(s1):
   -CF-O-(CX -{O-CF(CF)}-(O)-CZ-   (s1)
(式中、Xはそれぞれ独立してH、FまたはCFであり、eは0~3の整数であり、fは0~3の整数であり、gは0または1であり、ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基である)で表されるものが好ましく、式(s1)において、ZおよびZは、FまたはCFがより好ましく、一方がFで他方がCFであることがさらに好ましい。
 また、一般式(I)において、-R-CZ-としては、一般式(s2):
   -CF-O-(CX -(O)-CZ-   (s2)
(式中、Xはそれぞれ独立してH、FまたはCFであり、eは0~3の整数であり、gは0または1であり、ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基である)で表されるものが好ましく、式(s2)において、ZおよびZは、FまたはCFがより好ましく、一方がFで他方がCFであることがさらに好ましい。
 一般式(I)の-R-CZ-としては、-CF-O-CF-、-CF-O-CF(CF)-、-CF-O-C(CF-、-CF-O-CF-CF-、-CF-O-CF-CF(CF)-、-CF-O-CF-C(CF-、-CF-O-CFCF-CF-、-CF-O-CFCF-CF(CF)-、-CF-O-CFCF-C(CF-、-CF-O-CF(CF)-CF-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)-C(CF-、-CF-O-CF(CF)-CF-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)-C(CF-、-CF-O-CF(CF)CF-CF-、-CF-O-CF(CF)CF-CF(CF)-、-CF-O-CF(CF)CF-C(CF-、-CF-O-CF(CF)CF-O-CF-、-CF-O-CF(CF)CF-O-CF(CF)-、または、-CF-O-CF(CF)CF-O-C(CF-が好ましく、-CF-O-CF(CF)-、-CF-O-CF-CF(CF)-、-CF-O-CFCF-CF(CF)-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)CF-CF(CF)-、または、-CF-O-CF(CF)CF-O-CF(CF)-がより好ましい。
 重合体(I)は、高度にフッ素化されていることも好ましい。たとえば、ホスフェート基部分(たとえば、CHOP(O)(OM))およびサルフェート基部分(たとえば、CHOS(O)OM)のようなアニオン性基(A)を除き、重合体(I)中のC-H結合の80%以上、90%以上、95%以上、または100%がC-F結合で置換されていることが好ましい。
 単量体(I)および重合体(I)は、アニオン性基(A)を除いて、C-F結合を有し、C-H結合を有していないことも好ましい。すなわち、一般式(I)において、X、X、およびXの全てがFであり、Rは炭素数が1以上のパーフルオロアルキレン基であることが好ましく、上記パーフルオロアルキレン基は、鎖状および分岐鎖状のいずれでもよく、環状および非環状のいずれでもよく、少なくとも1つのカテナリーヘテロ原子を含んでもよい。上記パーフルオロアルキレン基の炭素数は、2~20であってよく、4~18であってもよい。
 単量体(I)および重合体(I)は、部分フッ素化されたものであってもよい。すなわち、単量体(I)および重合体(I)は、アニオン性基(A)を除いて、炭素原子に結合した少なくとも1つの水素原子を有し、炭素原子に結合した少なくとも1つのフッ素原子を有することも好ましい。
 アニオン性基(A)は、-SOM、-OSOM、-COOM、-SONR’CHCOOM、-CHOP(O)(OM)、[-CHO]P(O)(OM)、-CHCHOP(O)(OM)、[-CHCHO]P(O)(OM)、-CHCHOSOM、-P(O)(OM)、-SONR’CHCHOP(O)(OM)、[-SONR’CHCHO]P(O)(OM)、-CHOSOM、-SONR’CHCHOSOM、または、-C(CFOMであってよい。なかでも、-SOM、-OSOM、-COOM、-P(O)(OM)または-C(CFOMが好ましく、-COOM、-SOM、-OSOMまたは-C(CFOMがより好ましく、-SOM、-COOMまたは-P(O)(OM)がさらに好ましく、-SOMまたは-COOMが特に好ましく、-COOMが最も好ましい。
 Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。
 金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、KまたはLiが好ましい。
 Mとしては、-H、金属原子またはNR が好ましく、-H、アルカリ金属(1族)、アルカリ土類金属(2族)またはNR がより好ましく、-H、-Na、-K、-LiまたはNHが更に好ましく、-H、-Na、-KまたはNHが更により好ましく、-H、-NaまたはNHが特に好ましく、-Hまたは-NHが最も好ましい。
 単量体(I)のダイマーおよびトリマーにおいて、重合単位(I)で異なるアニオン性基を有してもよいし、同じアニオン性基を有してもよい。
 重合体(I)において、各重合単位(I)で異なるアニオン性基を有してもよいし、同じアニオン性基を有してもよい。
 単量体(I)は、一般式(Ia)で示される単量体であることも好ましい。
 重合体(I)は、一般式(Ia)で示される単量体に基づく重合単位(Ia)を含む重合体であることも好ましい。
   CF=CF-O-Rf-A   (Ia)
(式中、Aはアニオン性基であり、Rfは、過フッ素化されており、鎖状または分岐鎖状、環状または非環状構造、飽和または不飽和、置換または非置換であってもよく、硫黄、酸素、および窒素からなる群から選択される1つ以上のヘテロ原子を任意追加的に含有する過フッ素化二価連結基である。)
 単量体(I)は、一般式(Ib)で示される単量体であることも好ましい。
 重合体(I)は、一般式(Ib)で示される単量体に基づく重合単位(Ib)を含む重合体であることも好ましい。
   CH=CH-O-Rf-A  (Ib)
(式中、Aはアニオン性基であり、Rfは式Iaで定義される過フッ素化二価連結基である。)
 一般式(I)において、Aはサルフェート基であることが好ましい形態の一つである。Aは、たとえば、-CHOSOM、-CHCHOSOM、または、-SONR’CHCHOSOMであり、式中、R’はH、または炭素数1~4のアルキル基であり、Mは上記と同じである。
 Aがサルフェート基である場合、一般式(I)で表される単量体としては、たとえば、CF=CF(OCFCFCHOSOM)、CH=CH((CFCHOSOM)、CF=CF(O(CFCHOSOM)、CF=CF(OCFCF(CF)CHOSOM)、CF=CF(OCFCF(CF)OCFCFCHOSOM)、CH=CH((CFCHOSOM)、CF=CF(OCFCFSON(CH)CHCHOSOM)、CH=CH(CFCFCHOSOM)、CF=CF(OCFCFCFCFSON(CH)CHCHOSOM)、CH=CH(CFCFCFCHOSOM)等が挙げられる。上記式中、Mは上記と同じである。
 一般式(I)において、Aはスルホネート基であることも好ましい形態の一つである。Aとしてはたとえば、-SOMであり、式中、Mは上記と同じである。
 Aがスルホネート基である場合、一般式(I)で表される単量体としては、CF=CF(OCFCFSOM)、CF=CF(O(CFSOM)、CF=CF(O(CFSOM)、CF=CF(OCFCF(CF)SOM)、CF=CF(OCFCF(CF)OCFCFSOM)、CH=CH(CFCFSOM)、CF=CF(OCFCF(CF)OCFCFCFCFSOM)、CH=CH((CFSOM)、CH=CH((CFSOM)等が挙げられる。上記式中、Mは上記と同じである。
 一般式(I)において、Aはカルボキシレート基であることも好ましい形態の一つである。Aとしては、たとえばCOOMまたはSONR’CHCOOMであり、式中、R’はHまたは炭素数1~4のアルキル基であり、Mは上記と同じである。Aがカルボキシレート基である場合、一般式(I)で表される単量体としては、CF=CF(OCFCFCOOM)、CF=CF(O(CFCOOM)、CF=CF(O(CFCOOM)、CF=CF(OCFCF(CF)COOM)、CF=CF(OCFCF(CF)O(CFCOOM)(nは1より大きい)、CH=CH(CFCFCOOM)、CH=CH((CFCOOM)、CH=CH((CFCOOM)、CF=CF(OCFCFSONR’CHCOOM)、CF=CF(O(CFSONR’CHCOOM)、CF=CF(OCFCF(CF)SONR’CHCOOM)、CF=CF(OCFCF(CF)OCFCFSONR’CHCOOM)、CH=CH(CFCFSONR’CHCOOM)、CF=CF(OCFCF(CF)OCFCFCFCFSONR’CHCOOM)、CH=CH((CFSONR’CHCOOM)、CH=CH((CFSONR’CHCOOM)等が挙げられる。上記式中、R’はHまたは炭素数1~4のアルキル基であり、Mは上記と同じである。
 一般式(I)において、Aはホスフェート基であることも好ましい形態の一つである。Aとしては、たとえば、-CHOP(O)(OM)、[-CHO]P(O)(OM)、-CHCHOP(O)(OM)、[-CHCHO]P(O)(OM)、[-SONR’CHCHO]P(O)(OM)またはSONR’CHCHOP(O)(OM)であり、式中、R’は炭素数1~4のアルキル基であり、Mは上記と同じである。
 Aがホスフェートである場合、一般式(I)で表される単量体としては、CF=CF(OCFCFCHOP(O)(OM))、CF=CF(O(CFCHOP(O)(OM))、CF=CF(OCFCF(CF)CHOP(O)(OM))、CF=CF(OCFCF(CF)OCFCFCHOP(O)(OM))、CF=CF(OCFCFSON(CH)CHCHOP(O)(OM))、CF=CF(OCFCFCFCFSON(CH)CHCHOP(O)(OM))、CH=CH(CFCFCHOP(O)(OM))、CH=CH((CFCHOP(O)(OM))、CH=CH((CFCHOP(O)(OM))等が挙げられる。上記式中、Mは上記と同じである。
 一般式(I)において、Aはホスホネート基であることも好ましい形態の一つである。Aがホスホネート基である場合、一般式(I)で表される単量体としては、CF=CF(OCFCFP(O)(OM))、CF=CF(O(CFP(O)(OM))、CF=CF(OCFCF(CF)P(O)(OM))、CF=CF(OCFCF(CF)OCFCFP(O)(OM))、CH=CH(CFCFP(O)(OM))、CH=CH((CFP(O)(OM))、CH=CH((CFP(O)(OM))が挙げられ、式中、Mは上記と同じである。
 単量体(I)は、一般式(1)で表される単量体(1)であることが好ましい。
 重合体(I)は、一般式(1)で表される単量体に基づく重合単位(1)を含む重合体(1)であることが好ましい。
   CX=CY(-CZ-O-Rf-A)  (1)
(式中、Xは、同一または異なって、-HまたはFであり、Yは-H、-F、アルキル基または含フッ素アルキル基であり、Zは、同一または異なって、-H、-F、アルキル基またはフルオロアルキル基である。Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である。但し、X、YおよびZの少なくとも1つはフッ素原子を含む。)
 本開示の製造方法において、一般式(1)で表される単量体(1)と、他の単量体とを共重合してもよい。
 重合体(1)は、一般式(1)で表されるフルオロアリルエーテル化合物の単独重合体であってもよいし、他の単量体との共重合体であってもよい。
 上記炭素数2~100のエーテル結合を有する含フッ素アルキレン基は、酸素原子が末端である構造を含まず、炭素炭素間にエーテル結合を含んでいるアルキレン基である。
 一般式(1)において、Xは-HまたはFである。Xは、両方が-Fであってもよいし、少なくとも1つが-Hであってよい。たとえば、片方が-Fで他方が-Hであってもよいし、両方が-Hであってもよい。
 一般式(1)において、Yは-H、-F、アルキル基または含フッ素アルキル基である。上記アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。上記含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。上記Yとしては、-H、-FまたはCFが好ましく、-Fがより好ましい。
 一般式(1)において、Zは、同一または異なって、-H、-F、アルキル基またはフルオロアルキル基である。上記アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。上記含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。上記Zとしては、-H、-FまたはCFが好ましく、-Fがより好ましい。
 一般式(1)において、上記X、YおよびZの少なくとも1つはフッ素原子を含む。たとえば、Xが-Hであり、YおよびZが-Fであってよい。
 一般式(1)において、上記Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。
 上記含フッ素アルキレン基の炭素数は2以上が好ましい。また、上記含フッ素アルキレン基の炭素数は、30以下が好ましく、20以下がより好ましく、10以下が更に好ましく、6以下が特に好ましく、3以下が最も好ましい。上記含フッ素アルキレン基としては、-CF-、-CHCF-、-CFCF-、-CFCH-、-CFCFCF-、-CFCFCH-、-CF(CF)-、-CF(CF)CF-、-CF(CF)CH-等が挙げられる。上記含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 上記エーテル結合を有する含フッ素アルキレン基の炭素数は3以上が好ましい。また、上記エーテル結合を有する含フッ素アルキレン基の炭素数は、60以下が好ましく、30以下がより好ましく、12以下が更に好ましく、9以下が特に好ましく、6以下が最も好ましい。上記エーテル結合を有する含フッ素アルキレン基は、たとえば、一般式:
Figure JPOXMLDOC01-appb-C000001
 
(式中、ZはFまたはCF;ZおよびZはそれぞれHまたはF;ZはH、FまたはCF;p1+q1+r1が1~10の整数;s1は0または1;t1は0~5の整数)で表される2価の基であることも好ましい。
 上記エーテル結合を有する含フッ素アルキレン基として具体的には、-CF(CF)CF-O-CF(CF)-、-(CF(CF)CF-O)-CF(CF)-(式中、nは1~10の整数)、-CF(CF)CF-O-CF(CF)CH-、-(CF(CF)CF-O)-CF(CF)CH-(式中、nは1~10の整数)、-CHCFCFO-CHCFCH-、-CFCFCFO-CFCF-、-CFCFCFO-CFCFCH-、-CFCFO-CF-、-CFCFO-CFCH-等が挙げられる。上記エーテル結合を有する含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 一般式(1)において、Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基)である。
 Rとしては、HまたはC1-10の有機基が好ましく、HまたはC1-4の有機基がより好ましく、HまたはC1-4のアルキル基が更に好ましい。
 金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、KまたはLiが好ましい。
 Mとしては、H、金属原子またはNR が好ましく、H、アルカリ金属(1族)、アルカリ土類金属(2族)またはNR がより好ましく、H、Na、K、LiまたはNHが更に好ましく、H、Na、KまたはNHが更により好ましく、H、NaまたはNHが特に好ましく、HまたはNHが最も好ましい。
 Aとしては、-COOMまたは-SOMが好ましく、-COOMがより好ましい。
 一般式(1)で表される単量体としては、たとえば、一般式(1a):
   CX=CFCF-O-(CF(CF)CFO)n5-CF(CF)-A   (1a)
(式中、各Xは、同一であり、FまたはHを表す。n5は0または1~10の整数を表し、Aは、上記定義と同じ。)で表されるフルオロアリルエーテル化合物が好適なものとして例示される。
 一般式(1a)において、n5は、一次粒子径が小さい粒子を得ることができる点で、0または1~5の整数であることが好ましく、0、1または2であることがより好ましく、0または1であることが更に好ましい。
 本開示の製造方法において、一般式(1a)で表される単量体と、他の単量体とを共重合してもよい。
 重合体(1)は、一般式(1a)で表されるフルオロアリルエーテル化合物の単独重合体であってもよいし、他の単量体との共重合体であってもよい。
  単量体(1)は、一般式(1A)で表される単量体であることが好ましい。
 重合単位(1)は、一般式(1A)で表される単量体に基づく重合単位(1A)であることが好ましい。
   CH=CF(-CF-O-Rf-A)   (1A)
(式中、RfおよびAは前記と同じ。)
 本開示の製造方法において、一般式(1A)で表される単量体と、他の単量体とを共重合してもよい。
 重合体(1)は、一般式(1A)で表される単量体の単独重合体であってもよいし、他の単量体との共重合体であってもよい。
 式(1A)で表される単量体として具体的には、一般式
Figure JPOXMLDOC01-appb-C000002
 
(式中、ZはFまたはCF;ZおよびZはそれぞれHまたはF;ZはH、FまたはCF;p1+q1+r1が0~10の整数;s1は0または1;t1は0~5の整数、ただし、ZおよびZがともにHの場合、p1+q1+r1+s1が0でない;Aは上記定義と同じ)で表される単量体が挙げられる。より具体的には、
Figure JPOXMLDOC01-appb-C000003
 
などが好ましく挙げられ、なかでも
Figure JPOXMLDOC01-appb-C000004
 
であることが好ましい。
 一般式(1A)で表される単量体としては、式(1A)中のAが-COOMであることが好ましく、特に、CH=CFCFOCF(CF)COOM、および、CH=CFCFOCF(CF)CFOCF(CF)COOM(式中、Mは上記定義と同じ。)からなる群より選択される少なくとも1種が好ましく、CH=CFCFOCF(CF)COOMがより好ましい。
 また、一般式(1)で表される単量体としては、下記式で表される単量体等も挙げられる。
   CF=CFCF-O-Rf-A
(式中、RfおよびAは上記と同じ)
 より具体的には、
Figure JPOXMLDOC01-appb-C000005
 
等が挙げられる。
 単量体(I)は、一般式(2)で表される単量体(2)であることも好ましい。
 重合体(I)は、一般式(2)で表される単量体に基づく重合単位(2)を含む重合体(2)であることも好ましい。
   CX=CY(-O-Rf-A)  (2)
(式中、Xは、同一または異なって、-HまたはFであり、Yは-H、-F、アルキル基または含フッ素アルキル基であり、Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合もしくはケト基を有する含フッ素アルキレン基である。Aは、前記と同じである。)
 本開示の製造方法において、一般式(2)で表される単量体(2)と、他の単量体とを共重合してもよい。
 重合体(2)は、一般式(2)で表される単量体の単独重合体であってもよいし、他の単量体との共重合体であってもよい。
 一般式(2)において、Xは-HまたはFである。Xは、両方が-Fであってもよいし、少なくとも1つが-Hであってよい。たとえば、片方が-Fで他方が-Hであってもよいし、両方が-Hであってもよい。
 一般式(2)において、Yは-H、-F、アルキル基または含フッ素アルキル基である。アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。Yとしては、-H、-FまたはCFが好ましく、-Fがより好ましい。
 一般式(2)において、上記XおよびYの少なくとも1つはフッ素原子を含むことが好ましい。たとえば、Xが-Hであり、YおよびZが-Fであってよい。
 一般式(2)において、上記Rfは炭素数1~40の含フッ素アルキレン基、炭素数2~100のエーテル結合を有する含フッ素アルキレン基、または、炭素数2~100のケト基を有する含フッ素アルキレン基である。なお、上記炭素数2~100のエーテル結合を有する含フッ素アルキレン基は、酸素原子が末端である構造を含まず、炭素炭素間にエーテル結合を含んでいるアルキレン基である。
 Rfの含フッ素アルキレン基の炭素数は2以上が好ましい。また、30以下が好ましく、20以下がより好ましく、10以下が更に好ましく、5以下が特に好ましい。含フッ素アルキレン基としては、-CF-、-CHCF-、-CFCF-、-CFCH-、-CFCFCH-、-CF(CF)-、-CF(CF)CF-、-CF(CF)CH-、-CFCFCF-、CFCFCFCF-等が挙げられる。含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましく、分岐していない直鎖状のパーフルオロアルキレン基であることがより好ましい。
 上記エーテル結合を有する含フッ素アルキレン基の炭素数は3以上が好ましい。また、上記エーテル結合を有する含フッ素アルキレン基の炭素数は、60以下が好ましく、30以下がより好ましく、12以下が更に好ましく、5以下が特に好ましい。上記エーテル結合を有する含フッ素アルキレン基は、たとえば、一般式:
Figure JPOXMLDOC01-appb-C000006
 
(式中、ZはFまたはCF;ZおよびZはそれぞれHまたはF;ZはH、FまたはCF;p1+q1+r1が1~10の整数;s1は0または1;t1は0~5の整数)で表される2価の基であることも好ましい。
 上記エーテル結合を有する含フッ素アルキレン基として具体的には、-CFCF(CF)OCFCF-、-CF(CF)CF-O-CF(CF)-、-(CF(CF)CF-O)-CF(CF)-(式中、nは1~10の整数)、-CF(CF)CF-O-CF(CF)CH-、-(CF(CF)CF-O)-CF(CF)CH-(式中、nは1~10の整数)、-CHCFCFO-CHCFCH-、-CFCFCFO-CF-、-CFCFCFO-CFCF-、-CFCFCFO-CFCFCF-、-CFCFCFO-CFCFCH-、-CFCFO-CF-、-CFCFO-CFCH-等が挙げられる。上記エーテル結合を有する含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 上記ケト基を有する含フッ素アルキレン基の炭素数は3以上が好ましい。また、上記ケト基を有する含フッ素アルキレン基の炭素数は、60以下が好ましく、30以下がより好ましく、12以下が更に好ましく、5以下が特に好ましい。
 上記ケト基を有する含フッ素アルキレン基として具体的には、-CFCF(CF)CO-CF-、-CFCF(CF)CO-CFCF-、-CFCF(CF)CO-CFCFCF-、-CFCF(CF)CO-CFCFCFCF-等が挙げられる。上記ケト基を有する含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 一般式(2)で表される単量体は、一般式(2a)、(2b)、(2c)、(2d)および(2e)で表される単量体からなる群より選択される少なくとも1種が好ましい。
   CF=CF-O-(CFn1-A    (2a)
(式中、n1は、1~10の整数を表し、Aは前記と同じ。)
   CF=CF-O-(CFC(CF)F)n2-A    (2b)
(式中、n2は、1~5の整数を表し、Aは、前記定義と同じ。)
   CF=CF-O-(CFXn3-A    (2c)
(式中、Xは、FまたはCFを表し、n3は、1~10の整数を表し、Aは、前記定義と同じ。)
   CF=CF-O-(CFCFXO)n4-(CFn6-A  (2d)
(式中、n4は、1~10の整数を表し、n6は、1~3の整数を表し、AおよびXは、前記定義と同じ。)
   CF=CF-O-(CFCFCFXO)n5-CFCFCF-A  (2e)
(式中、n5は、0~10の整数を表し、AおよびXは、前記定義と同じ。)
 一般式(2a)において、上記n1は、5以下の整数であることが好ましく、2以下の整数であることがより好ましい。
 一般式(2a)で表される単量体としては、たとえば、CF=CF-O-CFCOOM、CF=CF(OCFCFCOOM)、CF=CF(O(CFCOOM)、CF=CF(OCFCFSOM)(式中、Mは上記定義と同じ。)が挙げられる。
 一般式(2b)において、n2は、得られる組成物の分散安定性の点で、3以下の整数であることが好ましい。
 一般式(2c)において、n3は、水溶性の点で5以下の整数であることが好ましく、上記Aは、-COOMであることが好ましく、上記Mは、HまたはNHであることが好ましい。
 一般式(2d)において、Xは、組成物の分散安定性の点で、-CFであることが好ましく、n4は、水溶性の点で5以下の整数であることが好ましく、Aは、-COOMであることが好ましく、Mは、HまたはNHであることが好ましい。
 一般式(2d)で表される単量体としては、たとえば、CF=CFOCFCF(CF)OCFCFCOOM、CF=CFOCFCF(CF)OCFCOOM、CF=CFOCFCF(CF)OCFCFCFCOOM(式中、Mは、H、NHまたはアルカリ金属を表す。)が挙げられる。
 一般式(2e)において、n5は、水溶性の点で5以下の整数であることが好ましく、Aは、-COOMであることが好ましく、Mは、HまたはNHであることが好ましい。
 一般式(2e)で表される単量体としては、たとえば、CF=CFOCFCFCFCOOM(式中、Mは、H、NHまたはアルカリ金属を表す。)が挙げられる。
 単量体(I)は、一般式(3)で表される単量体(3)であることも好ましい。
 重合体(I)は、一般式(3)で表される単量体に基づく重合単位(3)を含む重合体(3)であることも好ましい。
   CX=CY(-Rf-A)  (3)
(式中、Xは、同一または異なって、-HまたはFであり、Yは-H、-F、アルキル基または含フッ素アルキル基であり、Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、前記と同じである。)
 本開示の製造方法において、一般式(3)で表される単量体(3)と、他の単量体とを共重合してもよい。
 重合体(3)は、一般式(3)で表される単量体の単独重合体であってもよいし、他の単量体との共重合体であってもよい。
 なお、炭素数2~100のエーテル結合を有する含フッ素アルキレン基は、酸素原子が末端である構造を含まず、炭素炭素間にエーテル結合を含んでいるアルキレン基である。
 一般式(3)において、Rfは、炭素数1~40の含フッ素アルキレン基であることが好ましい。一般式(3)において、XおよびYの少なくとも1つはフッ素原子を含むことが好ましい。
 一般式(3)で表される単量体は、一般式(3a):
   CF=CF-(CFn1-A   (3a)
(式中、n1は、1~10の整数を表し、Aは、前記定義と同じ。)で表される単量体、および、一般式(3b):
   CF=CF-(CFC(CF)F)n2-A   (3b)
(式中、n2は、1~5の整数を表し、Aは、前記定義と同じ。)で表される単量体からなる群より選択される少なくとも1種が好ましい。
 一般式(3a)および一般式(3b)において、Aは、-SOMまたはCOOMが好ましく、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであることが好ましい。Rは、Hまたは有機基を表す。
 一般式(3a)において、n1は、5以下の整数であることが好ましく、2以下の整数であることがより好ましい。Aは、-COOMであることが好ましく、Mは、HまたはNHであることが好ましい。
 一般式(3a)で表される単量体としては、たとえば、CF=CFCFCOOM(式中、Mは上記定義と同じ。)が挙げられる。
 一般式(3b)において、n2は、得られる組成物の分散安定性の点で、3以下の整数であることが好ましく、Aは、-COOMであることが好ましく、Mは、HまたはNHであることが好ましい。
 次に、一般式(I)においてmが2以上の整数である場合の好適な構成について説明する。
 単量体(I)は、一般式(4a)および一般式(4b)で表される単量体からなる群より選択される少なくとも1種であることも好ましい。
 重合体(I)は、一般式(4a)および一般式(4b)で表される単量体からなる群より選択される少なくとも1種の単量体に基づく重合単位(4)を含む重合体(4)であることも好ましい。
   CF=CF-CF-O-QF1-CF(-QF2-CZ-A)  (4a)
(式中、Z、ZおよびAは上記定義と同じ、QF1およびQF2は、同一又は異なって、単結合、炭素炭素間にエーテル結合を含んでいてもよい含フッ素アルキレン基または炭素炭素間にエーテル結合を含んでいてもよい含フッ素オキシアルキレン基である)
   CF=CF-O-QF1-CF(-QF2-CZ-A)  (4b)
(式中、Z、Z、A、QF1およびQF2は上記定義と同じ)
 一般式(4a)および一般式(4b)で表される単量体としては、
Figure JPOXMLDOC01-appb-C000007
 
等が挙げられる。
 単量体(I)としては、単量体(1)、単量体(2)および単量体(3)からなる群より選択される少なくとも1種が好ましく、単量体(1)がより好ましく、単量体(1A)がさらに好ましい。
 重合体(I)は、重合体(1)、重合体(2)および重合体(3)からなる群より選択される少なくとも1種が好ましく、重合体(1)がより好ましい。
 本開示の製造方法において、単量体(I)と、他の単量体とを共重合してもよい。
 重合体(I)は、重合単位(I)のみからなる単独重合体であってもよいし、重合単位(I)と、一般式(I)で表される単量体と共重合可能な他の単量体に基づく重合単位とを含む共重合体であってもよい。水性媒体への溶解性の観点からは、重合単位(I)のみからなる単独重合体が好ましい。重合単位(I)は、各出現において、同一または異なっていてもよく、重合体(I)は、2種以上の異なる一般式(I)で表される単量体に基づく重合単位(I)を含んでいてもよい。
 上記他の単量体としては、一般式CFR=CR(式中、Rは、独立に、H、Fまたは炭素数1~4のパーフルオロアルキル基である)で表される単量体が好ましい。また、他の単量体としては、炭素数2または3の含フッ素エチレン性単量体が好ましい。他の単量体としては、たとえば、CF=CF、CF=CFCl、CH=CF、CFH=CH、CFH=CF、CF=CFCF、CH=CFCF、CH=CHCF、CHF=CHCF(E体)、CHF=CHCF(Z体)などが挙げられる。
 なかでも、共重合性が良好である点で、テトラフルオロエチレン(CF=CF)、クロロトリフルオロエチレン(CF=CFCl)およびフッ化ビニリデン(CH=CF)からなる群より選択される少なくとも1種が好ましく、テトラフルオロエチレンがより好ましい。従って、上記他の単量体に基づく重合単位は、テトラフルオロエチレンに基づく重合単位であることが好ましい。上記他の単量体に基づく重合単位は、各出現において、同一または異なっていてもよく、重合体(I)は、2種以上の異なる他の単量体に基づく重合単位を含んでいてもよい。
 上記他の単量体としては、また、一般式(n1-2):
Figure JPOXMLDOC01-appb-C000008
 
(式中、X、Xは同じかまたは異なりHまたはF;XはH、F、Cl、CHまたはCF;X、Xは同じかまたは異なりHまたはF;aおよびcは同じかまたは異なり0または1である。Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表される単量体が挙げられる。
 具体的には、CH=CFCF-O-Rf、CF=CF-O-Rf、CF=CFCF-O-Rf、CF=CF-Rf、CH=CH-Rf、CH=CH-O-Rf(式中、Rfは前記式(n1-2)と同じ)などが好ましく挙げられる。
 上記他の単量体としては、式(n2-1):
Figure JPOXMLDOC01-appb-C000009
 
(式中、XはH、FまたはCH;Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表される含フッ素アクリレート単量体も挙げられる。上記Rf基は、
Figure JPOXMLDOC01-appb-C000010
 
(式中、d3は1~4の整数;e3は1~10の整数)などが挙げられる。
 上記他の単量体としては、式(n2-2):
   CH=CHO-Rf   (n2-2)
(式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表される含フッ素ビニルエーテルも挙げられる。
 一般式(n2-2)の単量体として具体的には、
Figure JPOXMLDOC01-appb-C000011
 
(式中、e6は1~10の整数)などが好ましく挙げられる。
 より具体的には、
Figure JPOXMLDOC01-appb-C000012
 
などが挙げられる。
 その他、一般式(n2-3):
   CH=CHCHO-Rf   (n2-3)
(式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表される含フッ素アリルエーテル、一般式(n2-4):
CH=CH-Rf   (n2-4)
(式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表される含フッ素ビニル単量体等も挙げられる。
 一般式(n2-3)および(n2-4)で表される単量体として具体的には、
Figure JPOXMLDOC01-appb-C000013
 
などの単量体が挙げられる。
 重合体(I)は、通常、末端基を有する。末端基は、重合時に生成する末端基であり、代表的な末端基は、水素、ヨウ素、臭素、鎖状または分岐鎖状のアルキル基、および、鎖状または分岐鎖状のフルオロアルキル基から独立に選択され、任意追加的に少なくとも1つのカテナリーヘテロ原子を含有してもよい。アルキル基またはフルオロアルキル基は、炭素数が1~20であることが好ましい。これらの末端基は、一般的には、重合体(I)の形成に使用される開始剤または連鎖移動剤から生成するか、または連鎖移動反応中に生成する。
 重合体(I)において、重合単位(I)の含有量としては、全重合単位に対して、好ましい順に、1.0モル%以上、3.0モル%以上、5.0モル%以上、10モル%以上、20モル%以上、30モル%以上、40モル%以上、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上である。重合単位(I)の含有量は、実質的に100モル%であることが特に好ましく、重合体(I)は、重合単位(I)のみからなることが最も好ましい。
 重合体(I)において、一般式(I)で表される単量体と共重合可能な他の単量体に基づく重合単位の含有量としては、全重合単位に対して、好ましい順に、99.0モル%以下、97.0モル%以下、95.0モル%以下、90モル%以下、80モル%以下、70モル%以下、60モル%以下、50モル%以下、40モル%以下、30モル%以下、20モル%以下、10モル%以下である。一般式(I)で表される単量体と共重合可能な他の単量体に基づく重合単位の含有量は、実質的に0モル%であることが特に好ましく、重合体(I)は、他の単量体に基づく重合単位を含まないことが最も好ましい。
 重合体(I)の数平均分子量は、0.1×10以上が好ましく、0.2×10以上がより好ましく、0.3×10以上が更に好ましく、0.4×10以上が更により好ましく、0.5×10以上が殊更に好ましく、1.0×10以上が特に好ましく、3.0×10以上が殊更特に好ましく、3.1×10以上が最も好ましい。また、75.0×10以下が好ましく、50.0×10以下がより好ましく、40.0×10以下が更に好ましく、30.0×10以下が殊更に好ましく、20.0×10以下が特に好ましい。数平均分子量および重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、単分散ポリスチレンを標準として分子量を算出する値である。また、GPCによる測定ができない場合には、NMR、FT-IR等により得られた末端基数から計算された数平均分子量とメルトフローレートとの相関関係により、重合体(I)の数平均分子量を求めることができる。メルトフローレートは、JIS K 7210に準拠して測定できる。
 重合体(I)の重量平均分子量の下限としては、好ましい順に、0.2×10以上、0.4×10以上、0.6×10以上、0.8×10以上、1.0×10以上、2.0×10以上、5.0×10以上、10.0×10以上、15.0×10以上、20.0×10以上、25.0×10以上である。また、重合体(I)の重量平均分子量の上限としては、好ましい順に、150.0×10以下、100.0×10以下、60.0×10以下、50.0×10以下、40.0×10以下である。
 重合体(I)は、53以下のイオン交換率(IXR)を有することが好ましい。上記IXRは、イオン性基に対するポリマー主鎖中の炭素原子数と定義される。加水分解によりイオン性となる前駆体基(たとえば、-SOF)は、IXRを決定する目的ではイオン性基と見なされない。
 IXRは、0.5以上が好ましく、1以上がより好ましく、3以上が更に好ましく、4以上が更により好ましく、5以上が殊更に好ましく、8以上が特に好ましい。また、IXRは43以下がより好ましく、33以下が更に好ましく、23以下が特に好ましい。
 重合体(I)のイオン交換容量としては、好ましい順に、0.80meq/g以上、1.50meq/g以上、1.75meq/g以上、2.00meq/g以上、2.50meq/g以上、2.60meq/g以上、3.00meq/g以上、3.50meq/g以上である。イオン交換容量は、重合体(I)のイオン性基(アニオン性基)の含有量であり、重合体(I)の組成から計算により求められる。
 重合体(I)において、イオン性基(アニオン性基)は、典型的に、ポリマー主鎖に沿って分布している。上記重合体(I)は、ポリマー主鎖を、この主鎖に結合された繰り返し側鎖とともに含み、この側鎖はイオン性基を有することが好ましい。
 重合体(I)は、10未満、より好ましくは7未満のpKaを有するイオン性基を含むことが好ましい。重合体(I)のイオン性基は、好ましくは、スルホナート、カルボキシラート、ホスホナート、および、ホスファートからなる群から選択される。
 用語「スルホナート、カルボキシラート、ホスホナート、およびホスファート」は、それぞれの塩、または塩を形成し得るそれぞれの酸をいうことが意図される。塩が用いられる場合、好ましくは、その塩はアルカリ金属塩またはアンモニウム塩である。好ましいイオン性基は、スルホナート基である。
 重合体(I)は、水溶性を有していることが好ましい。水溶性とは、容易に水性媒体に溶解または分散する性質を意味する。水溶性を有する重合体(I)は、たとえば、動的光散乱法(DLS)によって、粒子径を測定できない。一方、非水溶性を有する重合体(I)は、たとえば、動的光散乱法(DLS)によって、粒子径を測定することができる。
 重合体(I)として、一般式(11)で表される単量体(11)の重合体(11)であって、単量体(11)に基づく重合単位(11)の含有量が、重合体(11)を構成する全重合単位に対して、50モル%以上であり、重量平均分子量(Mw)が、38.0×10以上以上である重合体(11)を用いることもできる。重合体(11)は、新規な重合体である。
   一般式(11):CX=CY-CF-O-Rf-A
(式中、XおよびYは、独立に、H、F、CHまたはCFであり、XおよびYのうち、少なくとも1つはFである。Rfは、炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である)である。)
 一般式(11)中、XおよびYは、独立に、H、F、CHまたはCFであり、XおよびYのうち、少なくとも1つはFである。Xとしては、HまたはFが好ましく、Hがより好ましい。Yとしては、HまたはFが好ましく、Fがより好ましい。
 一般式(11)中のRfおよびAについては、重合体(1)を構成する単量体を表す一般式(1)中のRfおよびAと同様である。
 重合体(11)は、単量体(11)に基づく重合単位(11)のみからなる単独重合体であってもよいし、重合単位(11)と、単量体(11)と共重合可能な他の単量体に基づく重合単位とを含む共重合体であってもよい。他の単量体については、上述したとおりである。重合単位(11)は、各出現において、同一または異なっていてもよく、重合体(11)は、2種以上の異なる一般式(11)で表される単量体に基づく重合単位(11)を含んでいてもよい。
 重合体(11)における重合単位(11)の含有量としては、重合体(11)を構成する全重合単位に対して、好ましい順に、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上、99モル%以上である。重合単位(11)の含有量は、実質的に100モル%であることが特に好ましく、重合体(11)は、重合単位(11)のみからなることが最も好ましい。
 重合体(11)において、単量体(11)と共重合可能な他の単量体に基づく重合単位の含有量としては、重合体(11)を構成する全重合単位に対して、好ましい順に、99.0モル%以下、97.0モル%以下、95.0モル%以下、90モル%以下、80モル%以下、70モル%以下、60モル%以下、50モル%以下である。単量体(11)と共重合可能な他の単量体に基づく重合単位の含有量は、実質的に0モル%であることが特に好ましく、重合体(11)は、他の単量体に基づく重合単位を含まないことが最も好ましい。
 重合体(11)の重量平均分子量の下限としては、好ましい順に、38.0×10以上、40.0×10以上である。重合体(11)の重量平均分子量の上限としては、好ましい順に、150.0×10以下、100.0×10以下、60.0×10である。
 重合体(11)の数平均分子量の下限としては、好ましい順に、5.0×10、8.0×10、10.0×10以上、12.0×10以上である。重合体(11)の数平均分子量の上限としては、好ましい順に、75.0×10以下、50.0×10以下、40.0×10以下、30.0×10以下である。
 重合体(I)として、一般式(12)で表される単量体(12)の重合体(12)であって、単量体(12)に基づく重合単位(12)の含有量が、重合体(12)を構成する全重合単位に対して、50モル%以上であり、重量平均分子量(Mw)が、1.4×10以上である重合体(12)を用いることもできる。重合体(12)は、新規な重合体である。
   一般式(12):CX=CX-O-Rf-A
(式中、Xは、独立に、FまたはCFであり、Rfは、炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合もしくはケト基を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である)である。)
 一般式(12)中、Xは、独立に、FまたはCFである。少なくとも1以上のXがFであることが好ましく、XがいずれもFであることがより好ましい。
 一般式(12)中のRfおよびAについては、重合体(2)を構成する単量体を表す一般式(2)中のRfおよびAと同様である。
 重合体(12)は、単量体(12)に基づく重合単位(12)のみからなる単独重合体であってもよいし、重合単位(12)と、単量体(12)と共重合可能な他の単量体に基づく重合単位とを含む共重合体であってもよい。他の単量体については、上述したとおりである。重合単位(12)は、各出現において、同一または異なっていてもよく、重合体(12)は、2種以上の異なる一般式(12)で表される単量体に基づく重合単位(12)を含んでいてもよい。
 重合体(12)における重合単位(12)の含有量としては、重合体(12)を構成する全重合単位に対して、好ましい順に、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上、99モル%以上である。重合単位(12)の含有量は、実質的に100モル%であることが特に好ましく、重合体(12)は、重合単位(12)のみからなることが最も好ましい。
 重合体(12)において、単量体(12)と共重合可能な他の単量体に基づく重合単位の含有量としては、重合体(12)を構成する全重合単位に対して、好ましい順に、50モル%以下、40モル%以下、30モル%以下、20モル%以下、10モル%以下、1モル%以下である。単量体(12)と共重合可能な他の単量体に基づく重合単位の含有量は、実質的に0モル%であることが特に好ましく、重合体(12)は、他の単量体に基づく重合単位を含まないことが最も好ましい。
 重合体(12)の重量平均分子量(Mw)の下限としては、好ましい順に、1.4×10以上、1.7×10以上、1.9×10以上、2.1×10以上、2.3×10以上、2.7×10以上、3.1×10以上、3.5×10以上、3.9×10以上、4.3×10以上、4.7×10以上、5.1×10以上である。重合体(12)の重量平均分子量(Mw)の上限としては、好ましい順に、150.0×10以下、100.0×10以下、60.0×10以下、50.0×10以下、40.0×10以下である。
 重合体(12)の数平均分子量(Mn)の下限としては、好ましい順に、0.7×10以上、0.9×10以上、1.0×10以上、1.2×10以上、1.4×10以上、1.6×10以上、1.8×10以上である。重合体(12)の数平均分子量(Mn)の上限としては、好ましい順に、75.0×10以下、50.0×10以下、40.0×10以下、30.0×10以下、20.0×10以下である。
 重合体(12)の分子量分布(Mw/Mn)は、好ましくは3.0以下であり、より好ましくは2.4以下であり、さらに好ましくは2.2以下であり、特に好ましくは2.0以下であり、最も好ましくは1.9以下である。
 本開示の製造方法は、実質的に含フッ素界面活性剤(ただし、一般式(I)で表される単量体(I)を除く)の非存在下に、水性媒体中で一般式(I)で表される単量体(I)を重合することにより、単量体(I)の重合体を含有する粗組成物を得る工程、および、
 前記粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、前記粗組成物から除去することにより、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体(I)を得る工程を含む。
 本開示において「実質的に含フッ素界面活性剤の非存在下に」とは、水性媒体に対する含フッ素界面活性剤の量が10質量ppm以下であることを意味する。水性媒体に対する含フッ素界面活性剤の量としては、好ましくは1質量ppm以下であり、より好ましくは100質量ppb以下であり、更に好ましくは10質量ppb以下であり、更により好ましくは1質量ppb以下である。
 含フッ素界面活性剤については、フルオロモノマーの重合に関する説明において後述する。
 単量体(I)の重合は、公知の方法により行うことができる。このような方法により粗組成物を製造することにより、重合体(I)が水性媒体に分散または溶解した粗組成物を得ることができる。
 重合体(I)のうち、重合体(11)は、新規な重合体であり、水性媒体中で、一般式(11)で表される単量体(11)の重合を行うことにより、単量体(11)の重合体(11)を製造する重合体(11)の製造方法であって、重合の反応系中の酸素濃度を500体積ppm以下に維持する製造方法(11)により製造することができる。
 製造方法(11)において、重合の反応系中の酸素濃度は、500体積ppm以下である。製造方法(11)においては、単量体(11)の重合の全期間にわたって、反応系中の酸素濃度が500体積ppm以下に維持される。反応系中の酸素濃度は、好ましくは350体積ppm以下であり、より好ましくは300体積ppm以下であり、さらに好ましくは100体積ppm以下であり、特に好ましくは50体積ppm以下である。また、反応系中の酸素濃度は、通常、0.01体積ppm以上である。
 製造方法(11)において、単量体(11)の重合温度は、分子量が一層高い重合体(11)を容易に製造できることから、59℃以下であることが好ましく、57℃以下であることがより好ましく、55℃以下であることがさらに好ましく、53℃以下であることが特に好ましく、20℃以上であることが好ましく、25℃以上であることがより好ましく、30℃以上であることがさらに好ましく、35℃以上であることが特に好ましい。
 製造方法(11)において、単量体(11)と、上述した他の単量体とを共重合してもよい。
 製造方法(11)において、重合圧力は、通常、大気圧~10MPaGである。重合圧力は、使用する単量体の種類、目的とする重合体の分子量、反応速度によって適宜決定される。
 製造方法(11)において、重合時間は、通常、1~200時間であり、5~100時間であってよい。
 重合体(I)のうち、重合体(12)は、新規な重合体であり、水性媒体中で、一般式(12)で表される単量体(12)の重合を行うことにより、単量体(12)の重合体(12)を製造する重合体(12)の製造方法であって、重合の反応系中の酸素濃度を1500体積ppm以下に維持する製造方法(12)により製造することができる。
 製造方法(12)において、重合の反応系中の酸素濃度は、1500体積ppm以下である。製造方法(12)においては、単量体(12)の重合の全期間にわたって、反応系中の酸素濃度が1500体積ppm以下に維持される。反応系中の酸素濃度は、好ましくは500体積ppm以下であり、より好ましくは100体積ppm以下であり、さらに好ましくは50体積ppm以下である。また、反応系中の酸素濃度は、通常、0.01体積ppm以上である。
 製造方法(12)において、単量体(12)の重合温度は、分子量が一層高い重合体(12)を容易に製造できることから、70℃以下であることが好ましく、65℃以下であることがより好ましく、60℃以下であることがさらに好ましく、55℃以下であることが特に好ましく、50℃以下であることが殊更好ましく、45℃以下であることが特に好ましく、40℃以下であることが最も好ましく、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることがさらに好ましい。
 製造方法(12)において、単量体(12)と、上述した他の単量体とを共重合してもよい。
 製造方法(12)において、重合圧力は、通常、大気圧~10MPaGである。重合圧力は、使用する単量体の種類、目的とする重合体の分子量、反応速度によって適宜決定される。
 製造方法(12)において、重合時間は、通常、1~200時間であり、5~100時間であってよい。
 製造方法(11)および製造方法(12)において、重合の反応系中の酸素濃度は、たとえば、窒素、アルゴンなどの不活性気体、または、気体状の単量体を用いる場合には当該気体状の単量体を、反応器中の液相または気相に流通させることにより、制御することができる。重合の反応系中の酸素濃度は、重合系の排ガスラインから出てきたガスを、低濃度酸素分析計で測定および分析することにより、求めることができる。
 製造方法(11)および製造方法(12)において、水性媒体は、重合を行わせる反応媒体であって、水を含む液体を意味する。水性媒体は、水を含むものであれば特に限定されず、水と、たとえば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。水性媒体として、好ましくは水である。
 製造方法(11)および製造方法(12)において、単量体の重合を、重合開始剤の存在下に行うことができる。重合開始剤としては、上記重合温度範囲でラジカルを発生しうるものであれば特に限定されず、公知の油溶性及び/又は水溶性の重合開始剤を使用することができる。更に、還元剤等と組み合わせてレドックスとして重合を開始することもできる。重合開始剤の濃度は、単量体の種類、目的とする重合体の分子量、反応速度によって適宜決定される。
 重合開始剤としては、過硫酸塩(例えば、過硫酸アンモニウム)や、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等の有機過酸化物を、単独で又はこれらの混合物の形で使用することができる。また、亜硫酸ナトリウム等の還元剤と共用し、レドックス系にして用いてもよい。更に、重合中に、ヒドロキノン、カテコール等のラジカル捕捉剤を添加したり、亜硫酸アンモニウム等のパーオキサイドの分解剤を添加し、系内のラジカル濃度を調整したりすることもできる。
 重合開始剤としては、分子量が一層高い重合体を容易に製造できることから、なかでも、過硫酸塩が好ましい。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムなどが挙げられ、過硫酸アンモニウムが好ましい。
 重合開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱で除熱を行ないながら、反応温度を上昇させてもよい範囲であり、より好ましい上限は、装置面から重合反応熱を除熱できる範囲である。
 製造方法(11)および製造方法(12)においては、重合開始剤を重合開始時に添加するとともに、重合中にも添加することができる。重合開始時に添加する重合開始剤の添加量と、重合中に添加する重合開始剤の添加量との割合としては、好ましくは95/5~5/95であり、より好ましくは60/40~10/90であり、さらに好ましくは30/70~15/85である。重合中に添加する重合開始剤の添加方法は、特に限定されず、一回で全量を添加してもよいし、2回以上に分割して添加してもよいし、連続的に添加してもよい。
 製造方法(11)および製造方法(12)においては、分子量が一層高い重合体を容易に製造できることから、重合に用いる重合開始剤の総添加量が、水性媒体に対して、0.00001~10質量%であることが好ましい。重合に用いる重合開始剤の総添加量としては、より好ましくは0.0001質量%以上であり、さらに好ましくは0.001質量%以上であり、特に好ましくは0.01質量%以上であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下である。
 製造方法(11)および製造方法(12)においては、分子量が一層高いフルオロポリマーを容易に製造できることから、重合に用いる重合開始剤の総添加量が、単量体に対して、0.001~10モル%であることが好ましい。重合に用いる重合開始剤の総添加量としては、より好ましくは0.005モル%以上であり、さらに好ましくは0.01モル%以上であり、より好ましくは5モル%以下であり、さらに好ましくは2.5モル%以下であり、特に好ましくは2.2モル%以下であり、最も好ましくは2.0モル%以下である。
 製造方法(11)および製造方法(12)においては、分子量が一層高い単量体を容易に製造できることから、重合開始時の単量体(11)または単量体(12)を含有する単量体の存在量が、水性媒体の存在量に対して、30質量%以上であることが好ましい。単量体の存在量としては、より好ましくは35質量%以上であり、さらに好ましくは40質量%以上である。単量体の存在量の上限は特に限定されないが、重合を円滑に進行させる観点から、200質量%以下であってよい。重合開始時の単量体の存在量とは、重合開始時の反応器内に存在する、単量体(11)または単量体(12)、および、存在する場合は他の単量体の合計の存在量である。
 製造方法(11)および製造方法(12)においては、pH調整剤の存在下に重合を行ってもよい。pH調整剤は、重合開始前に添加してもよいし、重合開始後に添加してもよい。
 pH調整剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、リン酸ナトリウム、リン酸カリウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸アンモニウム、グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸アンモニウム等を用いることができる。
 製造方法(11)および製造方法(12)において、単量体(11)または単量体(12)の重合は、反応器に、水性媒体、単量体(11)または単量体(12)、および、必要に応じて他の単量体、必要に応じて他の添加剤を仕込み、反応器の内容物を撹拌し、そして反応器を所定の重合温度に保持し、次に所定量の重合開始剤を加え、重合反応を開始することにより行うことができる。重合反応開始後に、目的に応じて、単量体、重合開始剤、他の添加剤を添加してもよい。
 このようにして得られる粗組成物には、単量体(I)の重合体として、通常、単量体(I)の重合体の質量に対して、合計で1.0質量%超のダイマーおよびトリマーが含まれる。単量体(I)の重合体中のダイマーおよびトリマーの含有量としては、たとえば、単量体(I)の重合体に対して、2.0質量%以上であってもよく、3.0質量%以上であってもよく、30.0質量%以下であってもよく、20.0質量%以下であってもよい。粗組成物中のダイマーおよびトリマーの含有量は、粗組成物のゲル浸透クロマトグラフィ(GPC)分析を行い、GPC分析により得られるクロマトグラムの各ピークの総面積に対する、ダイマーおよびトリマーのピーク面積の合計の割合(面積百分率)を算出することにより、特定することができる。
 次に、単量体(I)の重合により得られた粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、粗組成物から除去する。ダイマーおよびトリマーを除去する手段は、特に限定されないが、限外濾過、精密濾過、透析膜処理、分液および再沈殿からなる群より選択される少なくとも1種の手段が好ましく、限外濾過、精密濾過および透析膜処理からなる群より選択される少なくとも1種の手段がより好ましく、限外濾過がさらに好ましい。
 単量体(I)の重合により単量体(I)のダイマーおよびトリマーが生成し、結果として、単量体(I)のダイマーおよびトリマーが、重合体(I)中に含まれてしまうことは、従来知られていなかった。単量体(I)のダイマーおよびトリマーが生成される機構は必ずしも明らかではないが、特に、重合系に存在する単量体のうち、単量体(I)が大半を占める重合系における重合反応によって、単量体(I)の二量化および三量化が無視できない頻度で生じているものと推測される。本開示において重合体(I)中の単量体(I)のダイマーおよびトリマーの存在が初めて明らかにされ、重合体(I)中の単量体(I)のダイマーおよびトリマーが、限外濾過、精密濾過および透析膜処理からなる群より選択される少なくとも1種の手段により、重合体(I)(粗組成物)から高効率で除去されることが初めて見出された。
 ダイマーおよびトリマーを除去する際には、通常、未反応の単量体(I)も同時に粗組成物から除去される。重合により未反応の単量体(I)がフルオロポリマーに取り込まれた場合でも、フルオロポリマーの機能に必ずしも悪影響を与えるわけではないので、未反応の単量体(I)は、必ずしも除去する必要はない。しかし、未反応の単量体(I)を、ダイマーおよびトリマーと同時に除去しておくことにより、未反応の単量体(I)の存在を考慮することなく、重合に供するモノマーの量を計算することができ、所望のモノマー組成を有するフルオロポリマーが容易に製造できるという利点がある。なお、重合体(I)中に単量体(I)が残留している場合でも、あるいは、単量体(I)を共単量体として新たに添加する場合でも、重合系に存在する単量体のうち、フルオロモノマー(ただし、単量体(I)を除く)が重合系の大半を占める重合系における重合反応によっては、単量体(I)の二量化および三量化がほとんど進行せず、単量体(I)のダイマーおよびトリマーは、得られるフルオロポリマー中にほとんど残留しない。
 単量体(I)の重合により得られた粗組成物は、重合で得られた重合上がりの組成物であってもよいし、重合で得られた重合上がりの組成物を希釈又は濃縮したものであってもよいし、分散安定化処理等を行ったものであってもよい。限外濾過、精密濾過又は透析膜処理を円滑に進めるために、これらの処理によって、粗組成物の粘度を調整することも好ましい。
 粗組成物中の単量体(I)の重合体の含有量としては、特に限定されず、たとえば、0.1~20質量%であってよい。粗組成物中の単量体(I)の重合体の含有量としては、ダイマーおよびトリマーの除去効率の観点から、好ましくは18.0質量%以下であり、より好ましくは15.0質量%以下であり、更に好ましくは12.0質量%以下であり、特に好ましくは10.0質量%以下であり、好ましくは0.5質量%以上であり、より好ましくは1.0質量%以上であり、さらに好ましくは1.2質量%以上であり、特に好ましくは1.5質量%以上であり、最も好ましくは2.0質量%以上である。粗組成物中の単量体(I)の重合体の含有量は、たとえば、単量体(I)の重合により得られた粗組成物に水を添加する方法、単量体(I)の重合により得られた粗組成物を濃縮する方法などにより調整することができる。
 粗組成物のpHとしては、好ましくは0~11であり、より好ましくは0.5~8.0であり、さらに好ましくは1.0~7.0である。粗組成物のpHは、単量体(I)の重合により得られた粗組成物に、pH調整剤を添加することにより調整することができる。pH調整剤としては、酸又はアルカリであってよく、例えば、リン酸塩、水酸化ナトリウム、水酸化カリウム、アンモニア水等が挙げられる。
 粗組成物の粘度は、限外濾過、精密濾過又は透析膜処理が円滑に進むことから、25mPa・s以下が好ましい。粗組成物の粘度は、たとえば、単量体(I)の重合体の数平均分子量を調整する方法、粗組成物中の単量体(I)の重合体の濃度を調整する方法、粗組成物の温度を調整する方法などにより、調整することができる。
 上記限外濾過又は精密濾過は、クロスフロー方式でもデッドエンド方式でもよく限定されないが、膜の目詰まりを低減する観点からクロスフロー方式が好ましい。
 上記限外濾過は、限外濾過膜を用いて行うことができる。限外濾過は、例えば、限外濾過膜を有する限外濾過装置を用いて行うことができ、遠心式限外濾過法、回分式限外濾過法、循環式限外濾過法等を採用できる。
 上記限外濾過膜の分画分子量は、通常、0.1×10~30×10Da程度である。上記限外濾過膜は、膜の目詰まりを抑制し、効率的にダイマーおよびトリマーを低減できることから、分画分子量は1.5×10Da以上であることが好ましい。上記分画分子量は、2.0×10Da以上がより好ましく、3.0×10Da以上が特に好ましく、5.0×10Da以上が最も好ましい。上記分画分子量は、8.0×10Da以上であってもよい。また、上記分画分子量は、ダイマーおよびトリマーの除去効率の観点から、20×10Da以下が好ましく、10×10Da以下がより好ましい。
 上記限外濾過膜の分画分子量は、例えば、重量平均分子量が既知のポリスチレンを膜に通水し、90%阻止できる分子量を分画分子量とすることができる。ポリスチレンの定量は、ゲル透過クロマトグラフィを用いて行うことができる。
 上記限外濾過膜の形状としては従来公知のものが挙げられ限定されるものではないが、例えば、中空糸型、平膜型、スパイラル型、チューブラー型等が挙げられる。目詰まり抑止の観点からは、中空糸型が好ましい。
 中空糸型限外濾過膜の内径は限定されないが、例えば、0.1~2mmであってよい。好ましくは、0.8~1.4mmである。
中空糸型限外濾過膜の長さは限定されないが、例えば、0.05~3mであってよい。好ましくは、0.05~2mである。
 限外濾過膜の材質としては、特に限定されるものではないが、セルロース、セルロースエステル、ポリスルホン、スルホン化ポリスルホン、ポリエーテルスルホン、スルホン化ポリエーテルスルホン、塩素化ポリエチレン、ポリプロピレン、ポリオレフィン、ポリビニルアルコール、ポリメチルメタクリレート、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の有機材料、ステンレス等の金属、又はセラミック等の無機材料が挙げられる。
 限外濾過膜の材質は、有機材料であることが好ましく、塩素化ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリルニトリル、ポリスルホン、又は、ポリエーテルスルホンであることがより好ましく、ポリアクリルニトリル、ポリスルホン又はポリフッ化ビニリデンが更に好ましい。
 上記限外濾過膜として具体的には、DESAL社のG-5タイプ、G-10タイプ、G-20タイプ、G-50タイプ、PWタイプ、HWS UFタイプ;KOCH社のHFM-180、HFM-183、HFM-251、HFM-300、HFM-116、HFM-183、HFM-300、HFK-131、HFK-328、MPT-U20、MPS-U20P、MPS-U20S;Synder社のSPE1、SPE3、SPE5、SPE10、SPE30、SPV5、SPV50、SOW30;旭化成社製のマイクローザ(登録商標)UFシリーズ;日東電工社製のNTR7410などが挙げられる。
 上記限外濾過は、ダイマーおよびトリマーの除去効率の観点から、0.01MPa以上の圧力で行うことが好ましい。より好ましくは、0.03MPa以上であり、更に好ましくは0.05MPa以上である。また、上記圧力は、耐圧の観点から、0.5MPa以下が好ましく、0.25MPa以下がより好ましく、0.2MPa以下が更に好ましい。
 上記限外濾過は、ダイマーおよびトリマーの除去効率の観点から、10mL/分以上の流速で行うことが好ましく、50mL/分以上の流速で行うことがより好ましく、また、5000mL/分以下の流速で行うことが好ましく、1000mL/分以下の流速で行うことがより好ましい。
 上記精密濾過は、精密濾過膜を用いて行うことができる。精密濾過膜は、通常、0.05~1.0μmの平均細孔径を有する。
 上記精密濾過膜は、効率的にダイマーおよびトリマーの除去効率できることから、平均細孔径が0.1μm以上であることが好ましい。より好ましくは0.075μm以上であり、更に好ましくは0.1μm以上である。また、平均細孔径が1.00μm以下であることが好ましい。より好ましくは平均細孔径が0.50μm以下であり、更に好ましくは0.25μm以下である。
 上記精密濾過膜の平均細孔径は、ASTM F 316-03(バブルポイント法)に準拠して測定することが可能である。
 上記精密濾過膜の形状としては従来公知のものが挙げられ限定されず、例えば、中空糸型、平膜型、スパイラル型、チューブラー型等が挙げられる。目詰まり抑止の観点からは、中空糸型が好ましい。
 中空糸型精密濾過膜の内径は限定されないが、例えば、0.1~2mmであってよい。好ましくは、0.8~1.4mmである。
 中空糸型精密濾過膜の長さは限定されないが、例えば、0.05~3mであってよい。好ましくは、0.05~2mである。
 上記精密濾過膜の材質としては、例えばセルロース系、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、ポリプロピレン、ポリカーボネート、ポリテトラフルオロエチレン、セラミックス、金属等が挙げられる。中でも、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、ポリプロピレン、ポリカーボネート、又は、ポリテトラフルオロエチレンが好ましく、ポリアクリルニトリル又はポリフッ化ビニリデンが特に好ましい。
 精密濾過膜として具体的には、日本ガイシ社製のCefilt;旭化成社製マイクローザUシリーズ、マイクローザPシリーズ;住友電工社製のポアフロンSPMW、ポアフロンOPMW、ポアフロンPM;東レ社製のトレフィル;マイクロダイン・ナディア社製のNADIR MP005、NADIR MV020;Norit社製のX-flow等が挙げられる。
 上記精密濾過は、ダイマーおよびトリマーの除去効率の観点から、0.01MPa以上の圧力で行うことが好ましい。より好ましくは、0.03MPa以上であり、更に好ましくは0.05MPa以上である。また、上記圧力は、耐圧の観点から、0.5MPa以下が好ましく、0.25MPa以下がより好ましく、0.2MPa以下が更に好ましい。
 上記精密濾過は、ダイマーおよびトリマーの除去効率の観点から、10mL/分以上の流速で行うことが好ましく、50mL/分以上の流速で行うことがより好ましく、また、5000mL/分以下の流速で行うことが好ましく、1000mL/分以下の流速で行うことがより好ましい。
 上記透析膜処理は、透析膜を用いて行う。透析膜は、通常、0.05×10~100×10Daの分画分子量を有する。
 上記透析膜は、膜の目詰まりを抑制し、効率的にダイマーおよびトリマーを除去できることから、分画分子量が0.3×10Da以上であることが好ましい。上記分画分子量は、0.5×10Da以上がより好ましく、1.0×10Da以上が更に好ましく、1.5×10Da以上が更により好ましく、2.0×10Da以上が殊更に好ましく、3.0×10Da以上が特に好ましく、5.0×10Da以上が最も好ましい。上記分画分子量は8.0×10Da以上であってもよい。
 また、上記分画分子量は、ダイマーおよびトリマーの除去効率の観点から、20×10Da以下が好ましく、10×10Da以下がより好ましい。
 上記透析膜の分画分子量は、例えば、限外濾過膜と同じ方法で測定することができる。
 上記透析膜の材質としては、特に限定されるものではないが、セルロース、ポリアクリロニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリスルホン、ポリアミド、ポリエステル系ポリマーアロイ等が挙げられる。
 透析膜として具体的には、スペクトラムラボラトリーズ社製のSpectra/Por(登録商標)Float-A-Lyzer、Tube-A-Lyzer、Dialysis tubing、6Dialysis tubing、7Dialysis tubing等が例示される。
 上記限外濾過、精密濾過又は透析膜処理は、10℃以上の温度で行うことが好ましい。より好ましくは、15℃以上であり、更に好ましくは、20℃以上であり、特に好ましくは、30℃以上である。温度を上記範囲にすることでより効率的にダイマーおよびトリマーを低減することができる。上記温度は、90℃以下が好ましく、80℃以下がより好ましく、70℃以下が更に好ましく、60℃以下が特に好ましい。
 限外濾過、精密濾過又は透析膜処理は、粗組成物に水を添加しながら、または、粗組成物のpHを調整しながら、行うことができる。水は、粗組成物に間欠的に添加してもよいし、粗組成物に連続的に添加してもよい。
 限外濾過、精密濾過又は透析膜処理の終点は、適宜決定すればよく限定されない。また、上記限外濾過、精密濾過又は透析膜処理は、濾過膜の耐久性向上のため、1~24時間の濾過時間を目安に一回程度水で逆洗浄してもよい。
 分液は、たとえば、組成物に対して、有機溶媒を添加し、水相と有機溶媒相との2相に分離させ、水相を回収することにより、実施することができる。
 再沈殿は、たとえば、組成物を貧溶媒に滴下して、重合体を沈殿させ、沈殿した重合体を回収し、回収した重合体を良溶媒に溶解させ、得られた溶液を貧溶媒に滴下して、重合体を再び沈殿させ、沈殿した重合体を回収することにより、実施することができる。
 単量体(I)の重合体を含有する粗組成物から単量体(I)のダイマーおよびトリマーを除去することにより、通常、ダイマーおよびトリマーを実質的に含有しない重合体(I)を含む水溶液が得られる。本開示の製造方法で用いる重合体(I)は、得られた水溶液に含まれる重合体(I)であってもよいし、水溶液から分離させて得られる重合体(I)であってもよい。水溶液から重合体(I)を分離させる方法は、特に限定されない。たとえば、水溶液中の重合体(I)の凝析、洗浄、乾燥などの方法により、重合体(I)を分離することができる。
 重合体(I)として、重合体(I)を含有する水溶液を用いることができる。水溶液中の重合体(I)に対する単量体(I)のダイマーおよびトリマーの好ましい含有量は、重合体(I)中のダイマーおよびトリマーの含有量として、上述したとおりである。
<フルオロモノマーの重合>
 本開示の製造方法においては、水性媒体中でフルオロモノマーを重合する。フルオロモノマーとしては、二重結合を少なくとも1つ有するものが好ましい。上記フルオロモノマーとしては、テトラフルオロエチレン[TFE]、ヘキサフルオロプロピレン[HFP]、クロロトリフルオロエチレン[CTFE]、フッ化ビニル、フッ化ビニリデン[VDF]、トリフルオロエチレン、フルオロアルキルビニルエーテル、フルオロアルキルエチレン、フルオロアルキルアリルエーテル、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、一般式(100):CHX101=CX102Rf101(式中、X101およびX102は、一方がHであり、他方がFであり、Rf101は炭素数1~12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマー、フッ素化ビニルヘテロ環状体、及び、架橋部位を与えるモノマーからなる群より選択される少なくとも1種であることが好ましい。
 上記フルオロアルキルビニルエーテルとしては、例えば、
   一般式(110):CF=CF-ORf111
(式中、Rf111は、パーフルオロ有機基を表す。)で表されるフルオロモノマー、
   一般式(120):CF=CF-OCH-Rf121
(式中、Rf121は、炭素数1~5のパーフルオロアルキル基)で表されるフルオロモノマー、
   一般式(130):CF=CFOCFORf131
(式中、Rf131は炭素数1~6の直鎖又は分岐状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖又は分岐状パーフルオロオキシアルキル基である。)で表されるフルオロモノマー、
   一般式(140):CF=CFO(CFCF(Y141)O)(CF
(式中、Y141はフッ素原子又はトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるフルオロモノマー、及び、
   一般式(150):CF=CF-O-(CFCFY151-O)-(CFY152-A151
(式中、Y151は、フッ素原子、塩素原子、-SOF基又はパーフルオロアルキル基を表す。パーフルオロアルキル基は、エーテル性の酸素及び-SOF基を含んでもよい。nは、0~3の整数を表す。n個のY151は、同一であってもよいし異なっていてもよい。Y152は、フッ素原子、塩素原子又は-SOF基を表す。mは、1~5の整数を表す。m個のY152は、同一であってもよいし異なっていてもよい。A151は、-SO151、-COZ151又は-POZ152153を表す。X151は、F、Cl、Br、I、-OR151又は-NR152153を表す。Z151、Z152及びZ153は、同一又は異なって、-NR154155又は-OR156を表す。R151、R152、R153、R154、R155及びR156は、同一又は異なって、H、アンモニウム、アルカリ金属、フッ素原子を含んでも良いアルキル基、アリール基、若しくはスルホニル含有基を表す。)で表されるフルオロモノマー
からなる群より選択される少なくとも1種であることが好ましい。
 本開示において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
 一般式(110)で表されるフルオロモノマーとしては、Rf111が炭素数1~10のパーフルオロアルキル基であるフルオロモノマーが挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
 一般式(110)におけるパーフルオロ有機基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
 一般式(110)で表されるフルオロモノマーとしては、更に、上記一般式(110)において、Rf111が炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rf111が下記式:
Figure JPOXMLDOC01-appb-C000014
 
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rf111が下記式:
Figure JPOXMLDOC01-appb-C000015
 
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
 一般式(110)で表されるフルオロモノマーとしては、なかでも、
   一般式(160):CF=CF-ORf161
(式中、Rf161は、炭素数1~10のパーフルオロアルキル基を表す。)で表されるフルオロモノマーが好ましい。Rf161は、炭素数が1~5のパーフルオロアルキル基であることが好ましい。
 フルオロアルキルビニルエーテルとしては、一般式(160)、(130)及び(140)で表されるフルオロモノマーからなる群より選択される少なくとも1種であることが好ましい。
 一般式(160)で表されるフルオロモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、及び、パーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種が好ましく、パーフルオロ(メチルビニルエーテル)、及び、パーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種がより好ましい。
 一般式(130)で表されるフルオロモノマーとしては、CF=CFOCFOCF、CF=CFOCFOCFCF、及び、CF=CFOCFOCFCFOCFからなる群より選択される少なくとも1種であることが好ましい。
 一般式(140)で表されるフルオロモノマーとしては、CF=CFOCFCF(CF)O(CFF、CF=CFO(CFCF(CF)O)(CFF、及び、CF=CFO(CFCF(CF)O)(CFFからなる群より選択される少なくとも1種であることが好ましい。
 一般式(150)で表されるフルオロモノマーとしては、CF=CFOCFCFSOF、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCF(CFCFSOF)OCFCFSOF及びCF=CFOCFCF(SOF)からなる群より選択される少なくとも1種が好ましい。
 一般式(100)で表されるフルオロモノマーとしては、Rf101が直鎖のフルオロアルキル基であるフルオロモノマーが好ましく、Rf101が直鎖のパーフルオロアルキル基であるフルオロモノマーがより好ましい。Rf101の炭素数は1~6であることが好ましい。一般式(100)で表されるフルオロモノマーとしては、CH=CFCF、CH=CFCFCF、CH=CFCFCFCF、CH=CFCFCFCFH、CH=CFCFCFCFCF、CHF=CHCF(E体)、CHF=CHCF(Z体)などが挙げられ、なかでも、CH=CFCFで示される2,3,3,3-テトラフルオロプロピレンが好ましい。
 フルオロアルキルエチレンとしては、
   一般式(170):CH=CH-(CF-X171
(式中、X171はH又はFであり、nは3~10の整数である。)で表されるフルオロアルキルエチレンが好ましく、CH=CH-C、及び、CH=CH-C13からなる群より選択される少なくとも1種であることがより好ましい。
 上記フルオロアルキルアリルエーテルとしては、例えば、
   一般式(180):CF=CF-CF-ORf111
(式中、Rf111は、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
 一般式(180)のRf111は、一般式(110)のRf111と同じである。Rf111としては、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。一般式(180)で表されるフルオロアルキルアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFがさらに好ましい。
 上記フッ素化ビニルヘテロ環状体としては、一般式(230):
Figure JPOXMLDOC01-appb-C000016
 
(式中、X231及びX232は、独立に、F、Cl、メトキシ基又はフッ素化メトキシ基であり、Y231は式Y232又は式Y233である。
Figure JPOXMLDOC01-appb-C000017
 
(式中、Z231及びZ232は、独立に、F又は炭素数1~3のフッ素化アルキル基である。))で表されるフッ素化ビニルヘテロ環状体が挙げられる。
 架橋部位を与えるモノマーとしては、
   一般式(180):CX181 =CX182-R 181CHR181183
(式中、X181及びX182は、独立に、水素原子、フッ素原子又はCH、R 181は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基又はパーフルオロ(ポリ)オキシアルキレン基、R181は、水素原子又はCH、X183は、ヨウ素原子又は臭素原子である。)で表されるフルオロモノマー、
   一般式(190):CX191 =CX192-R 191193
(式中、X191及びX192は、独立に、水素原子、フッ素原子又はCH、R 191は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基、X193は、ヨウ素原子又は臭素原子である。)で表されるフルオロモノマー、
   一般式(200):CF=CFO(CFCF(CF)O)(CF-X201
(式中、mは0~5の整数、nは1~3の整数、X201は、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は、-CHIである。)で表されるフルオロモノマー、及び、
   一般式(210):CH=CFCFO(CF(CF)CFO)(CF(CF))-X211
(式中、mは0~5の整数、nは1~3の整数、X211は、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は-CHOHである。)で表されるフルオロモノマー、及び、
   一般式(220):CR221222=CR223-Z221-CR224=CR225226
(式中、R221、R222、R223、R224、R225及びR226は、同一又は異なって、水素原子又は炭素数1~5のアルキル基である。Z221は、直鎖又は分岐状で酸素原子を有していてもよい、炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基、少なくとも部分的にフッ素化している炭素数1~10のアルキレン基若しくはオキシアルキレン基、又は、
   -(Q)-CFO-(CFCFO)(CFO)-CF-(Q)
(式中、Qはアルキレン基又はオキシアルキレン基である。pは0又は1である。m/nが0.2~5である。)で表され、分子量が500~10000である(パー)フルオロポリオキシアルキレン基である。)で表されるモノマー
からなる群より選択される少なくとも1種であることが好ましい。
 X183及びX193は、ヨウ素原子であることが好ましい。R 181及びR 191は炭素数が1~5のパーフルオロアルキレン基であることが好ましい。R181は、水素原子であることが好ましい。X201は、シアノ基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は、-CHIであることが好ましい。X211は、シアノ基、アルコキシカルボニル基、ヨウ素原子、臭素原子、又は-CHOHであることが好ましい。
 架橋部位を与えるモノマーとしては、CF=CFOCFCF(CF)OCFCFCN、CF=CFOCFCF(CF)OCFCFCOOH、CF=CFOCFCF(CF)OCFCFCHI、CF=CFOCFCFCHI、CH=CFCFOCF(CF)CFOCF(CF)CN、CH=CFCFOCF(CF)CFOCF(CF)COOH、CH=CFCFOCF(CF)CFOCF(CF)CHOH、CH=CHCFCFI、CH=CH(CFCH=CH、CH=CH(CFCH=CH、及び、CF=CFO(CFCNからなる群より選択される少なくとも1種であることが好ましく、CF=CFOCFCF(CF)OCFCFCN及びCF=CFOCFCFCHIからなる群より選択される少なくとも1種であることがより好ましい。
 上記重合において、上記フルオロモノマーとフッ素非含有モノマーとを重合してもよい。上記フッ素非含有モノマーとしては、上記フルオロモノマーと反応性を有する炭化水素系モノマー等が挙げられる。上記炭化水素系モノマーとしては、例えば、エチレン、プロピレン、ブチレン、イソブチレン等のアルケン類;エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、イソ酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニル、モノクロル酢酸ビニル、アジピン酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル、ウンデシレン酸ビニル、ヒドロキシ酢酸ビニル、ヒドロキシプロピオイン酸ビニル、ヒドロキシ酪酸ビニル、ヒドロキシ吉草酸ビニル、ヒドロキシイソ酪酸ビニル、ヒドロキシシクロヘキサンカルボン酸ビニル等のビニルエステル類;エチルアリルエーテル、プロピルアリルエーテル、ブチルアリルエーテル、イソブチルアリルエーテル、シクロヘキシルアリルエーテル等のアルキルアリルエーテル類;エチルアリルエステル、プロピルアリルエステル、ブチルアリルエステル、イソブチルアリルエステル、シクロヘキシルアリルエステル等のアルキルアリルエステル類等が挙げられる。
 上記フッ素非含有モノマーとしては、また、官能基含有炭化水素系モノマー(但し、架橋部位を与えるモノマーを除く)であってもよい。上記官能基含有炭化水素系モノマーとしては、例えば、ヒドロキシエチルビニルエーテル、ヒドロキシプロピルビニルエーテル、ヒドロキシブチルビニルエーテル、ヒドロキシイソブチルビニルエーテル、ヒドロキシシクロヘキシルビニルエーテル等のヒドロキシアルキルビニルエーテル類;イタコン酸、コハク酸、無水コハク酸、フマル酸、無水フマル酸、クロトン酸、マレイン酸、無水マレイン酸、パーフルオロブテン酸等のカルボキシル基を有するフッ素非含有モノマー;グリシジルビニルエーテル、グリシジルアリルエーテル等のグリシジル基を有するフッ素非含有モノマー;アミノアルキルビニルエーテル、アミノアルキルアリルエーテル等のアミノ基を有するフッ素非含有モノマー;(メタ)アクリルアミド、メチロールアクリルアミド等のアミド基を有するフッ素非含有モノマー等が挙げられる。
 上記重合において、上記フルオロモノマーの1種又は2種以上を重合することにより、所望のフルオロポリマーの粒子を得ることができる。
 上記重合における重合体(I)の添加量としては、水性媒体に対して、好ましくは0.0001~10質量%であり、より好ましい下限は0.001質量%以上であり、より好ましい上限は1質量%以下である。重合体(I)の添加量を上記範囲内とすることにより、水性媒体中でのフルオロモノマーの重合を円滑に進行させることができる。重合体(I)の添加量は、上記重合において添加する重合体(I)の合計添加量である。
 上記重合においては、重合体(I)を一括して添加してもよいし、重合体(I)を連続的に添加してもよい。重合体(I)を連続的に添加するとは、例えば、重合体(I)を一括ではなく、経時的に、かつ、間断なく又は分割して、添加することである。上記重合においては、重合体(I)と水を含む水溶液を調製して、該水溶液を添加してもよい。
 上記重合においては、水性媒体中に形成されるフルオロポリマーの固形分含有量が0.5質量%に達する前に、重合体(I)の添加を開始し、その後も重合体(I)を連続的に添加することが好ましい。重合体(I)の添加開始時期としては、好ましくはフルオロポリマーの固形分含有量が0.3質量%に達する前であり、より好ましくは0.2質量%に達する前であり、さらに好ましくは0.1質量%に達する前であり、特に好ましくは重合開始と同時である。上記固形分含有量は、水性媒体およびフルオロポリマーの合計に対するフルオロポリマーの含有量である。
 上記重合においては、重合体(I)を少なくとも1種用いれば、フルオロポリマーを効率よく製造することが可能である。また、重合体(I)に包含される化合物を2種以上同時に用いてもよいし、揮発性を有するもの又はフルオロポリマーからなる成形体等に残存してもよいものであれば、重合体(I)以外のその他の界面活性能を有する化合物を同時に使用してもよい。
 上記重合において、核形成剤を使用してもよい。核形成剤の添加量は、核形成剤の種類により適宜選択できる。核形成剤の添加量としては、水性媒体に対して、5000質量ppm以下であってよく、好ましくは1000質量ppm以下であり、より好ましくは500質量ppm以下であり、さらに好まくは100p質量pm以下であり、特に好ましくは50質量ppm以下であり、最も好ましくは10質量ppm以下である。
 上記重合においては、重合開始前、又は、水性媒体中に形成されるフルオロポリマーの固形分含有量が5.0質量%に達する前に、核形成剤を水性媒体中に添加することが好ましい。重合初期に核形成剤を添加することによって、平均一次粒子径が小さく、安定性に優れる水性分散液を得ることができる。
 重合初期に添加する核形成剤の量としては、得られるフルオロポリマーに対して、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.05質量%以上であり、特に好ましくは0.1質量%以上である。重合初期に添加する核形成剤の量の上限は限定されるものではないが、たとえば、2000質量%である。
 核形成剤を使用することにより、上記核形成剤の非存在下で重合を行うのと比較して、小さい一次粒子径を有するフルオロポリマーが得られる。
 上記核形成剤としては、ジカルボン酸、パーフルオロポリエーテル(PFPE)酸またはその塩、炭化水素含有界面活性剤等が挙げられる。上記核形成剤は、芳香環を含まないことが好ましく、脂肪族化合物であることが好ましい。
 上記核形成剤は、重合開始剤の添加より前、もしくは、重合開始剤の添加と同時に加えることが好ましいが、重合途中に加えることにより、粒度分布を調整することもできる。
 上記ジカルボン酸の好ましい量として、上記水性媒体に対し、1000質量ppm以下であり、より好ましい量として500質量ppm以下であり、更に好ましい量として100質量ppm以下である。
 上記パーフルオロポリエーテル(PFPE)酸またはその塩は、分子の主鎖中の酸素原子が、1~3個の炭素原子を有する飽和フッ化炭素基によって隔てられる任意の鎖構造を有してよい。また、2種以上のフッ化炭素基が、分子中に存在してよい。代表的な構造は、下式に表される繰り返し単位を有する:
  (-CFCF-CF-O-)  (VII)
  (-CF-CF-CF-O-)  (VIII)
  (-CF-CF-O-)-(-CF-O-)  (IX)
  (-CF-CFCF-O-)n-(-CF-O-)  (X)
 これらの構造は、Kasaiによって、J.Appl.Polymer Sci.57,797(1995)に記載されている。この文献に開示されているように、上記PFPE酸又はその塩は、一方の末端または両方の末端にカルボン酸基またはその塩を有してよい。上記PFPE酸又はその塩は、また、一方の末端または両方の末端に、スルホン酸、ホスホン酸基又はこれらの塩を有してよい。また、上記PFPE酸又はその塩は、各末端に異なる基を有してよい。単官能性のPFPEについては、分子の他方の末端は、通常、過フッ素化されているが、水素または塩素原子を含有してよい。上記PFPE酸又はその塩は、少なくとも2つのエーテル酸素、好ましくは少なくとも4つのエーテル酸素、さらにより好ましくは少なくとも6つのエーテル酸素を有する。好ましくは、エーテル酸素を隔てるフッ化炭素基の少なくとも1つ、より好ましくは、このようなフッ化炭素基の少なくとも2つは、2または3個の炭素原子を有する。さらにより好ましくは、エーテル酸素を隔てるフッ化炭素基の少なくとも50%は、2または3個の炭素原子を有する。また、好ましくは、上記PFPE酸又はその塩は、合計で少なくとも15個の炭素原子を有し、例えば、上記の繰返し単位構造中のnまたはn+mの好ましい最小値は、少なくとも5である。1つの末端または両方の末端に酸基を有する2つ以上の上記PFPE酸又はその塩が、本開示の製造方法に使用され得る。上記PFPE酸又はその塩は、好ましくは、6000g/モル未満の数平均分子量を有する。
 上記炭化水素含有界面活性剤の添加量は、上記水性媒体に対して、好ましくは40質量ppm以下、より好ましくは30質量ppm以下、更に好ましくは質量20ppm以下である。上記水性媒体中に存在する親油性核形成部位のppm量は、上記添加量よりも少ないと推測される。したがって、上記親油性核形成部位の量は、それぞれ上記の40質量ppm、30質量ppm、20質量ppmよりも小さい。上記親油性核形成部位は分子として存在すると考えられるので、ごく少量の上記炭化水素含有界面活性剤でも、大量の親油性核形成部位を生成することができる。したがって、上記炭化水素含有界面活性剤を水性媒体に1質量ppm程度加えるだけでも、有益な効果が得られる。好ましい下限値は0.01質量ppm、より好ましい下限値は0.1質量ppmである。
 上記炭化水素含有界面活性剤には、米国特許第7897682号明細書(Brothers et al.)および米国特許第7977438号明細書(Brothers et al.)に開示されるものなどのシロキサン界面活性剤を含む、非イオン性界面活性剤およびカチオン性界面活性剤が含まれる。
 上記炭化水素含有界面活性剤としては、非イオン性界面活性剤(例えば、非イオン性炭化水素界面活性剤)が好ましい。すなわち、核形成剤としては、非イオン性界面活性剤が好ましい。上記非イオン性界面活性剤は、好ましくは芳香族部分を含まない。
 上記非イオン性界面活性剤としては、例えば、下記一般式(i)
   R-O-A-H    (i)
(式中、Rは、炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、ポリオキシアルキレン鎖である。)により表される化合物が挙げられる。
 Rの炭素数は10~16が好ましく、12~16がより好ましい。Rの炭素数が18以下であると水性分散液の良好な分散安定性が得られやすい。またRの炭素数が18を超えると流動温度が高いため取扱い難い。Rの炭素数が8より小さいと水性分散液の表面張力が高くなり、浸透性やぬれ性が低下しやすい。
 ポリオキシアルキレン鎖はオキシエチレンとオキシプロピレンとからなるものであってもよい。オキシエチレン基の平均繰り返し数5~20およびオキシプロピレン基の平均繰り返し数0~2からなるポリオキシアルキレン鎖であり、親水基である。オキシエチレン単位数は、通常提供される広いまたは狭い単峰性分布、またはブレンドすることによって得られるより広いまたは二峰性分布のいずれかを含み得る。オキシプロピレン基の平均繰り返し数が0超の場合、ポリオキシアルキレン鎖におけるオキシエチレン基とオキシプロピレン基はブロック状に配列しても、ランダム状に配列してもよい。
 水性分散液の粘度および安定性の点からは、オキシエチレン基の平均繰り返し数7~12およびオキシプロピレン基の平均繰り返し数0~2より構成されるポリオキシアルキレン鎖が好ましい。特にAがオキシプロピレン基を平均して0.5~1.5有すると低起泡性が良好であり好ましい。
 より好ましくは、Rは、(R’)(R’’)HC-であり、ここで、R’及びR’’は、同じか又は異なる直鎖、分岐鎖、又は環式のアルキル基であり、炭素原子の合計量は、少なくとも5個、好ましくは7~17個である。好ましくは、R’またはR’’のうちの少なくとも一つは、分岐状または環状炭化水素基である。
 上記ポリオキシエチレンアルキルエーテルの具体例としては、C1327-O-(CO)10-H、C1225-O-(CO)10-H、C1021CH(CH)CH-O-(CO)-H、C1327-O-(CO)-(CH(CH)CHO)-H、C1633-O-(CO)10-H、HC(C11)(C15)-O-(CO)-H等が挙げられる。上記ポリオキシエチレンアルキルエーテルの市販品としては、例えば、Genapol X080(製品名、クラリアント社製)、ノイゲンTDS-80(商品名)を例とするノイゲンTDSシリーズ(第一工業製薬社製)、レオコールTD-90(商品名)を例とするレオコールTDシリーズ(ライオン社製)、ライオノール(登録商標)TDシリーズ(ライオン社製)、T-Det A138(商品名)を例とするT-Det Aシリーズ(Harcros Chemicals社製)、タージトール(登録商標)15Sシリーズ(ダウ・ケミカル社製)等が挙げられる。
 上記非イオン性界面活性剤は、平均約4~約18個のエチレンオキシド単位を有する2,6,8-トリメチル-4-ノナノールのエトキシレート、平均約6~約12個のエチレンオキシド単位を有する2,6,8-トリメチル-4-ノナノールのエトキシレート、またはその混合物であることも好ましい。この種類の非イオン性界面活性剤は、例えば、TERGITOL TMN-6、TERGITOL TMN-10、及びTERGITOL TMN-100X(いずれも製品名、ダウ・ケミカル社製)としても市販されている。
 また、非イオン性界面活性剤の疎水基は、アルキルフェノール基、直鎖アルキル基及び分岐アルキル基の何れかであってもよい。
 例えば、ポリオキシエチレンアルキルフェニルエーテル系非イオン性化合物としては、例えば、下記一般式(ii)
   R-C-O-A-H    (ii)
(式中、Rは、炭素数4~12の直鎖状又は分岐鎖状の1級若しくは2級のアルキル基であり、Aは、ポリオキシアルキレン鎖である。)で示される化合物が挙げられる。記ポリオキシエチレンアルキルフェニルエーテル系非イオン性化合物として具体的には、トライトンX-100(商品名、ダウ・ケミカル社製)等が挙げられる。
 上記非イオン性界面活性剤としてはポリオール化合物も挙げられる。具体的には、国際公開第2011/014715号に記載されたもの等が挙げられる。
 ポリオール化合物の典型例としては、ポリオール単位として1個以上の糖単位を有する化合物が挙げられる。糖単位は、少なくとも1個の長鎖を含有するように変性されてもよい。少なくとも1つの長鎖部分を含有する好適なポリオール化合物としては、例えば、アルキルグリコシド、変性アルキルグリコシド、糖エステル、及びこれらの組み合わせが挙げられる。糖としては、単糖、オリゴ糖、及びソルビタンが挙げられるが、これらに限定されない。単糖としては、五炭糖及び六炭糖が挙げられる。単糖の典型例としては、リボース、グルコース、ガラクトース、マンノース、フルクトース、アラビノース、キシロースが挙げられる。オリゴ糖としては、2~10個の同一又は異なる単糖のオリゴマーが挙げられる。オリゴ糖の例としては、サッカロース、マルトース、ラクトース、ラフィノース、及びイソマルトースが挙げられるが、これらに限定されない。
 典型的に、ポリオール化合物として使用するのに好適な糖としては、4個の炭素原子と1個のヘテロ原子(典型的に、酸素又は硫黄であるが、好ましくは酸素原子)との五員環を含有する環状化合物、又は5個の炭素原子と上述のような1個のヘテロ原子、好ましくは酸素原子との六員環を含有する環状化合物が挙げられる。これらは、炭素環原子に結合している少なくとも2個の又は少なくとも3個のヒドロキシ基(-OH基)を更に含有する。典型的に、糖は、エーテル又はエステル結合が長鎖残基と糖部分との間に作製されるように、炭素環原子に結合しているヒドロキシ基(及び/又はヒドロキシアルキル基)の水素原子のうちの1個以上が、長鎖残基によって置換されているという点で変性されている。
 糖系ポリオールは、1個の糖単位又は複数の糖単位を含有してもよい。1個の糖単位又は複数の糖単位は、上述のような長鎖部分で変性されてもよい。糖系ポリオール化合物の特定の例としては、グリコシド、糖エステル、ソルビタンエステル、並びにこれらの混合物及び組み合わせが挙げられる。
 ポリオール化合物の好ましい種類は、アルキル又は変性アルキルグルコシドである。これらの種類の界面活性剤は、少なくとも1個のグルコース部分を含有する。
Figure JPOXMLDOC01-appb-C000018
 
(式中、xは、0、1、2、3、4、又は5を表し、R及びRは、独立して、H又は少なくとも6個の炭素原子を含有する長鎖単位を表すが、但しR及びRのうちの少なくとも1個はHではない)によって表される化合物が挙げられる。R及びRの典型例としては、脂肪族アルコール残基が挙げられる。脂肪族アルコールの例としては、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール(ラウリルアルコール)、テトラデカノール、ヘキサデカノール(セチルアルコール)、ヘプタデカノール、オクタデカノール(ステアリルアルコール)、エイコサン酸、及びこれらの組み合わせ挙げられる。
 上記の式は、ピラノース形態のグルコースを示すアルキルポリグルコシドの特定の例を表すが、他の糖又は同じ糖であるが異なる鏡像異性体又はジアステレオマー形態である糖を用いてもよいことが理解される。
 アルキルグルコシドは、例えば、グルコース、デンプン、又はn-ブチルグルコシドと脂肪族アルコールとの酸触媒反応によって入手可能であり、これからは、典型例に、様々なアルキルグルコシドの混合物が得られる(Alkylpolygylcoside,Rompp,Lexikon Chemie,Version 2.0,Stuttgart/New York,Georg Thieme Verlag,1999)。脂肪族アルコールの例としては、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール(ラウリルアルコール)、テトラデカノール、ヘキサデカノール(セチルアルコール)、ヘプタデカノール、オクタデカノール(ステアリルアルコール)、エイコサン酸、及びこれらの組み合わせ挙げられる。また、アルキルグルコシドは、Cognis GmbH,Dusseldorf,Germanyから商品名GLUCOPON又はDISPONILとして市販されている。
 その他の非イオン性界面活性剤として、BASF社からPluronic(登録商標)Rシリーズとして供給される二官能基ブロックコポリマー、BASF社からIconol(登録商標)TDAシリーズとして供給されるトリデシルアルコールアルコキシレート、炭化水素含有シロキサン界面活性剤、好ましくは炭化水素界面活性剤であり、ここで、上記のヒドロカルビル基は、フッ素などのハロゲンによって置換され得る場合に、水素原子によって完全に置換され、それによって、これらのシロキサン界面活性剤は、炭化水素界面活性剤とみなすこともでき、すなわち、ヒドロカルビル基上の一価置換基は水素である。
 上記重合において、重合体(I)とともに、ラジカル重合で反応可能な官能基と親水基とを有する化合物を使用してもよい。ラジカル重合で反応可能な官能基と親水基とを有する化合物としては、後述する変性モノマー(A)と同じ化合物を使用できる。
 上記重合において、重合体(I)と、所望により用いるその他の界面活性能を有する化合物に加え、各化合物を安定化するため添加剤を使用することができる。上記添加剤としては、緩衝剤、pH調整剤、安定化助剤、分散安定剤などが挙げられる。
 安定化助剤としては、パラフィンワックス、フッ素系オイル、フッ素系溶剤、シリコーンオイルなどが好ましい。安定化助剤は、1種単独で又は2種以上を組み合わせて用いてもよい。安定化助剤としては、パラフィンワックスがより好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40~65℃が好ましく、50~65℃がより好ましい。
 安定化助剤の使用量は、使用する水性媒体の質量基準で0.1~12質量%が好ましく、0.1~8質量%がより好ましい。安定化助剤は十分に疎水的で、重合後に水性分散液と完全に分離されて、コンタミ成分とならないことが望ましい。
 上記重合は、重合反応器に、水性媒体、上記重合体(I)、モノマー及び必要に応じて他の添加剤を仕込み、反応器の内容物を撹拌し、そして反応器を所定の重合温度に保持し、次に所定量の重合開始剤を加え、重合反応を開始することにより行う。重合反応開始後に、目的に応じて、モノマー、重合開始剤、連鎖移動剤及び重合体(I)等を追加添加してもよい。重合体(I)を重合反応が開始した後に添加してもよい。
 通常、重合温度は、5~120℃であり、重合圧力は、0.05~10MPaGである。重合温度、重合圧力は、使用するモノマーの種類、目的とするフルオロポリマーの分子量、反応速度によって適宜決定される。
 上記重合開始剤としては、上記重合温度範囲でラジカルを発生しうるものであれば特に限定されず、公知の油溶性及び/又は水溶性の重合開始剤を使用することができる。更に、還元剤等と組み合わせてレドックスとして重合を開始することもできる。上記重合開始剤の濃度は、モノマーの種類、目的とするフルオロポリマーの分子量、反応速度によって適宜決定される。
 上記重合開始剤としては、油溶性ラジカル重合開始剤、または水溶性ラジカル重合開始剤を使用できる。
 油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘキサノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロバレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとしてあげられる。
 水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等の有機過酸化物、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤も併せて含んでもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
 例えば、30℃以下の低温で重合を実施する場合等では、重合開始剤として、酸化剤と還元剤を組み合わせるレドックス開始剤を用いるのが好ましい。酸化剤としては、過硫酸塩、有機過酸化物、過マンガン酸カリウム、三酢酸マンガン、セリウム硝酸アンモニウム等が挙げられる。還元剤としては、亜硫酸塩、重亜硫酸塩、臭素酸塩、ジイミン、シュウ酸等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウムが挙げられる。亜硫酸塩としては、亜硫酸ナトリウム、亜硫酸アンモニウムが挙げられる。開始剤の分解速度を上げるため、レドックス開始剤の組み合わせには、銅塩、鉄塩を加えることも好ましい。銅塩としては、硫酸銅(II)、鉄塩としては硫酸鉄(II)が挙げられる。
 上記レドックス開始剤としては、例えば、過マンガン酸カリウム/シュウ酸、過硫酸アンモニウム/重亜硫酸塩/硫酸鉄、三酢酸マンガン/シュウ酸、セリウム硝酸アンモニウム/シュウ酸、臭素酸塩/重亜硫酸塩等が挙げられ、過マンガン酸カリウム/シュウ酸が好ましい。レドックス開始剤を用いる場合は、酸化剤又は還元剤のいずれかをあらかじめ重合槽に仕込み、ついでもう一方を連続的又は断続的に加えて重合を開始させてもよい。例えば、過マンガン酸カリウム/シュウ酸を用いる場合、重合槽にシュウ酸を仕込み、そこへ過マンガン酸カリウムを連続的に添加することが好ましい。
 重合開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱で除熱を行ないながら、反応温度を上昇させてもよい範囲であり、より好ましい上限は、装置面から重合反応熱を除熱できる範囲である。
 上記水性媒体は、重合を行わせる反応媒体であって、水を含む液体を意味する。上記水性媒体は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。
 上記重合において、更に、目的に応じて、公知の連鎖移動剤、ラジカル捕捉剤、分解剤を添加し、重合速度、分子量の調整を行うこともできる。
 上記連鎖移動剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、メタン、エタン、プロパン、メタノール、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素などの各種ハロゲン化炭化水素、シクロヘキサンなどがあげられる。
 連鎖移動剤として臭素化合物又はヨウ素化合物を使用してもよい。臭素化合物又はヨウ素化合物を使用して行う重合方法としては、たとえば、実質的に無酸素状態で、臭素化合物又はヨウ素化合物の存在下に、水性媒体中でフルオロモノマーの重合を行う方法があげられる(ヨウ素移動重合法)。使用する臭素化合物又はヨウ素化合物の代表例としては、たとえば、一般式:
   RBr
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1~3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物があげられる。臭素化合物又はヨウ素化合物を使用することによって、ヨウ素または臭素が重合体に導入され、架橋点として機能する。
 臭素化合物又はヨウ素化合物としては、たとえば1,3-ジヨードパーフルオロプロパン、2-ヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
 これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、2-ヨードパーフルオロプロパンを用いるのが好ましい。
 上記連鎖移動剤の使用量は、通常、供給されるフルオロモノマー全量に対して、1~50,000質量ppmであり、好ましくは1~20,000質量ppmである。
 上記連鎖移動剤は、重合開始前に一括して反応容器中に添加してもよいし、重合開始後に一括して添加してもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
 重合開始剤としては、過硫酸塩(例えば、過硫酸アンモニウム)や、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等の有機過酸化物を、単独で又はこれらの混合物の形で使用することができる。また、亜硫酸ナトリウム等の還元剤と共用し、レドックス系にして用いてもよい。更に、重合中に、ヒドロキノン、カテコール等のラジカル捕捉剤を添加したり、亜硫酸アンモニウム等のパーオキサイドの分解剤を添加し、系内のラジカル濃度を調整したりすることもできる。
 上記重合においては、重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合して、フルオロポリマー粒子の水性分散液を製造し、上記フルオロポリマー粒子の水性分散液中で、フルオロモノマーをフルオロポリマー粒子にシード重合することにより、フルオロポリマーを得てもよい。
 上記重合は、実質的に含フッ素界面活性剤の非存在下に、フルオロモノマーを重合するものであることが好ましい。
 従来、水性媒体中でのフルオロモノマーの重合には、含フッ素界面活性剤が使用されてきたが、本開示の製造方法によれば、含フッ素界面活性剤を使用しない場合であってもフルオロポリマーを得ることができる。
 本開示において「実質的に含フッ素界面活性剤の非存在下に」とは、水性媒体に対する含フッ素界面活性剤の量が10質量ppm以下であることを意味する。水性媒体に対する含フッ素界面活性剤の量としては、好ましくは1質量ppm以下であり、より好ましくは100質量ppb以下であり、更に好ましくは10質量ppb以下であり、更により好ましくは1質量ppb以下である。
 上記含フッ素界面活性剤としては、アニオン性含フッ素界面活性剤等が挙げられる。上記アニオン性含フッ素界面活性剤は、例えば、アニオン性基を除く部分の総炭素数が20以下のフッ素原子を含む界面活性剤であってよい。
 上記含フッ素界面活性剤としてはまた、アニオン性部分の分子量が800以下のフッ素を含む界面活性剤であってよい。
 なお、上記「アニオン性部分」は、上記含フッ素界面活性剤のカチオンを除く部分を意味する。例えば、後述する式(I)で表されるF(CFn1COOMの場合には、「F(CFn1COO」の部分である。
 上記含フッ素界面活性剤としてはまた、LogPOWが3.5以下の含フッ素界面活性剤が挙げられる。上記LogPOWは、1-オクタノールと水との分配係数であり、LogP[式中、Pは、含フッ素界面活性剤を含有するオクタノール/水(1:1)混合液が相分離した際のオクタノール中の含フッ素界面活性剤濃度/水中の含フッ素界面活性剤濃度比を表す]で表されるものである。
 上記LogPOWは、カラム;TOSOH ODS-120Tカラム(φ4.6mm×250mm、東ソー(株)製)、溶離液;アセトニトリル/0.6質量%HClO水=1/1(vol/vol%)、流速;1.0ml/分、サンプル量;300μL、カラム温度;40℃、検出光;UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
 上記含フッ素界面活性剤として具体的には、米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号、国際公開第2008/060461号、国際公開第2007/046377号、特開2007-119526号公報、国際公開第2007/046482号、国際公開第2007/046345号、米国特許出願公開第2014/0228531号、国際公開第2013/189824号、国際公開第2013/189826号に記載されたもの等が挙げられる。
 上記アニオン性含フッ素界面活性剤としては、下記一般式(N):
n0-Rfn0-Y   (N
(式中、Xn0は、H、Cl又は及びFである。Rfn0は、炭素数3~20で、鎖状、分枝鎖状または環状で、一部または全てのHがFにより置換されたアルキレン基であり、該アルキレン基は1つ以上のエーテル結合を含んでもよく、一部のHがClにより置換されていてもよい。Yはアニオン性基である。)で表される化合物が挙げられる。
 Yのアニオン性基は、-COOM、-SOM、又は、-SOMであってよく、-COOM、又は、-SOMであってよい。
 Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。
 上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、例えば、Na、K又はLiである。
 Rとしては、H又はC1-10の有機基であってよく、H又はC1-4の有機基であってよく、H又はC1-4のアルキル基であってよい。
 Mは、H、金属原子又はNR であってよく、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR であってよく、H、Na、K、Li又はNHであってよい。
 上記Rfn0は、Hの50%以上がフッ素に置換されているものであってよい。
 上記一般式(N)で表される化合物としては、
下記一般式(N):
   Xn0-(CFm1-Y   (N
(式中、Xn0は、H、Cl及びFであり、m1は3~15の整数であり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
   Rfn1-O-(CF(CF)CFO)m2CFXn1-Y   (N
(式中、Rfn1は、炭素数1~5のパーフルオロアルキル基であり、m2は、0~3の整数であり、Xn1は、F又はCFであり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
   Rfn2(CHm3-(Rfn3-Y  (N
(式中、Rfn2は、炭素数1~13のエーテル結合を含み得る、部分または完全フッ素化されたアルキル基であり、m3は、1~3の整数であり、Rfn3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基であり、qは0又は1であり、Yは、上記定義したものである。)で表される化合物、下記一般式(N): 
   Rfn4-O-(CYn1n2CF-Y   (N
(式中、Rfn4は、炭素数1~12のエーテル結合及び/又は塩素原子を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Yn1及びYn2は、同一若しくは異なって、H又はFであり、pは0又は1であり、Yは、上記定義したものである。)で表される化合物、及び、一般式(N):
Figure JPOXMLDOC01-appb-C000019
 
(式中、Xn2、Xn3及びXn4は、同一若しくは異なってもよく、H、F、又は、炭素数1~6のエーテル結合を含んでよい直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基である。Rfn5は、炭素数1~3のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキレン基であり、Lは連結基であり、Yは、上記定義したものである。但し、Xn2、Xn3、Xn4及びRfn5の合計炭素数は18以下である。)で表される化合物が挙げられる。
 上記一般式(N)で表される化合物としてより具体的には、下記一般式(I)で表されるパーフルオロカルボン酸(I)、下記一般式(II)で表されるω-Hパーフルオロカルボン酸(II)、下記一般式(III)で表されるパーフルオロポリエーテルカルボン酸(III)、下記一般式(IV)で表されるパーフルオロアルキルアルキレンカルボン酸(IV)、下記一般式(V)で表されるパーフルオロアルコキシフルオロカルボン酸(V)、下記一般式(VI)で表されるパーフルオロアルキルスルホン酸(VI)、下記一般式(VII)で表されるω-Hパーフルオロスルホン酸(VII)、下記一般式(VIII)で表されるパーフルオロアルキルアルキレンスルホン酸(VIII)、下記一般式(IX)で表されるアルキルアルキレンカルボン酸(IX)、下記一般式(X)で表されるフルオロカルボン酸(X)、下記一般式(XI)で表されるアルコキシフルオロスルホン酸(XI)、下記一般式(XII)で表される化合物(XII)、下記一般式(XIII)で表される化合物(XIII)などが挙げられる。
 上記パーフルオロカルボン酸(I)は、下記一般式(I)
   F(CFn1COOM    (I)
(式中、n1は、3~14の整数であり、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。)で表されるものである。
 上記ω-Hパーフルオロカルボン酸(II)は、下記一般式(II)
   H(CFn2COOM    (II)
(式中、n2は、4~15の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロポリエーテルカルボン酸(III)は、下記一般式(III)
   Rf-O-(CF(CF)CFO)n3CF(CF)COOM    (III)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、n3は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルアルキレンカルボン酸(IV)は、下記一般式(IV)
   Rf(CHn4RfCOOM        (IV)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、Rfは、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基、n4は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記アルコキシフルオロカルボン酸(V)は、下記一般式(V)
   Rf-O-CYCF-COOM    (V)
(式中、Rfは、炭素数1~12のエーテル結合及び/又は塩素原子を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルスルホン酸(VI)は、下記一般式(VI)
   F(CFn5SOM        (VI)
(式中、n5は、3~14の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記ω-Hパーフルオロスルホン酸(VII)は、下記一般式(VII)
   H(CFn6SOM    (VII)
(式中、n6は、4~14の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルアルキレンスルホン酸(VIII)は、下記一般式(VIII)
   Rf(CHn7SOM      (VIII)  
(式中、Rfは、炭素数1~13のパーフルオロアルキル基であり、n7は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記アルキルアルキレンカルボン酸(IX)は、下記一般式(IX)
   Rf(CHn8COOM      (IX)  
(式中、Rfは、炭素数1~13のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、n8は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記フルオロカルボン酸(X)は、下記一般式(X)
   Rf-O-Rf-O-CF-COOM    (X)
(式中、Rfは、炭素数1~6のエーテル結合及び/又は塩素原子を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Rfは、炭素数1~6の直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Mは、上記定義したものである。)で表されるものである。
 上記アルコキシフルオロスルホン酸(XI)は、下記一般式(XI)
   Rf-O-CYCF-SOM    (XI)
(式中、Rfは、炭素数1~12のエーテル結合を含み得る直鎖状または分枝鎖状であって、塩素を含んでもよい、部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
 上記化合物(XII)は、下記一般式(XII):
Figure JPOXMLDOC01-appb-C000020
 
(式中、X、X及びXは、同一若しくは異なってもよく、H、F及び炭素数1~6のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、Rf10は、炭素数1~3のパーフルオロアルキレン基であり、Lは連結基であり、Yはアニオン性基である。)で表されるものである。
 Yは、-COOM、-SOM、又は、-SOMであってよく、-SOM、又は、COOMであってよい(式中、Mは上記定義したものである。)。
 Lとしては、例えば、単結合、炭素数1~10のエーテル結合を含みうる部分又は完全フッ素化されたアルキレン基が挙げられる。
 上記化合物(XIII)は、下記一般式(XIII):
   Rf11-O-(CFCF(CF)O)n9(CFO)n10CFCOOM   (XIII)
(式中、Rf11は、塩素を含む炭素数1~5のフルオロアルキル基であり、n9は、0~3の整数であり、n10は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。化合物(XIII)としては、CFClO(CFCF(CF)O)n9(CFO)n10CFCOONH(平均分子量750の混合物、式中、n9およびn10は上記定義したものである。)が挙げられる。
 上述したように上記アニオン性含フッ素界面活性剤としては、カルボン酸系界面活性剤、スルホン酸系界面活性剤等が挙げられる。
 含フッ素界面活性剤は、1種の含フッ素界面活性剤であってもよいし、2種以上の含フッ素界面活性剤を含有する混合物であってもよい。
 含フッ素界面活性剤としては、以下の式で表される化合物が挙げられる。含フッ素界面活性剤は、これらの化合物の混合物であってよい。上記重合の一実施形態においては、実質的に以下の式で表される化合物の非存在下に、フルオロモノマーを重合する。
F(CFCOOM、
F(CFCOOM、
H(CFCOOM、
CFO(CFOCHFCFCOOM、
OCF(CF)CFOCF(CF)COOM、
CFCFCFOCF(CF)COOM、
CFCFOCFCFOCFCOOM、
OCF(CF)CFOCF(CF)COOM、
CFOCF(CF)CFOCF(CF)COOM、
CFClCFCFOCF(CF)CFOCFCOOM、
CFClCFCFOCFCF(CF)OCFCOOM、
CFClCF(CF)OCF(CF)CFOCFCOOM、
CFClCF(CF)OCFCF(CF)OCFCOOM、
Figure JPOXMLDOC01-appb-C000021
 
(各式中、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムである。Rは、Hまたは有機基である。)
 上記重合により、上記フルオロポリマーを含む水性分散液を得ることができる。上記フルオロポリマーは、通常、上記重合を行うことにより得られる水性分散液の8~50質量%の濃度である。上記水性分散液中において、フルオロポリマーの濃度の好ましい下限は10質量%、より好ましい下限は15質量%、好ましい上限は40質量%、より好ましい上限は35質量%である。
<フルオロポリマー>
 フルオロポリマーとしては、ポリマーにおけるモノマーのモル分率が最も多いモノマー(以下、「最多単量体」)がTFEであるTFE重合体、最多単量体がVDFであるVDF重合体、最多単量体がCTFEであるCTFE重合体等が挙げられる。
 上記フルオロポリマーは、53より高いイオン交換率(IXR)を有することが好ましい。好ましいフルオロポリマーは、イオン性基を全く有さないか、または約100より高いイオン交換率をもたらす限られた数のイオン性基を有する。好ましいフルオロポリマーのイオン交換率は、1000以上が好ましく、2000以上がより好ましく、5000以上が更に好ましい。
 TFE重合体としては、好適には、TFE単独重合体であってもよいし、(1)TFE、(2)炭素原子2~8個を有する1つ又は2つ以上のTFE以外のフッ素含有モノマー、特にVDF、HFP若しくはCTFE、及び、(3)その他のモノマーからなる共重合体であってもよい。上記(3)その他のモノマーとしては、例えば、炭素原子1~5個、特に炭素原子1~3個を有するアルキル基を持つフルオロ(アルキルビニルエーテル);フルオロジオキソール;パーフルオロアルキルエチレン;ω-ヒドロパーフルオロオレフィン等が挙げられる。
 TFE重合体としては、また、TFEと、1つ又は2つ以上のフッ素非含有モノマーとの共重合体であってもよい。上記フッ素非含有モノマーとしては、例えば、エチレン、プロピレン等のアルケン類;ビニルエステル類;ビニルエーテル類が挙げられる。TFE重合体としては、また、TFEと、炭素原子2~8個を有する1つ又は2つ以上のフッ素含有モノマーと、1つ又は2つ以上のフッ素非含有モノマーとの共重合体であってもよい。
 VDF重合体としては、好適には、VDF単独重合体[PVDF]であってもよいし、(1)VDF、(2)炭素原子2~8個を有する1つ又は2つ以上のVDF以外のフルオロオレフィン、特にTFE、HFP若しくはCTFE、及び、(3)炭素原子1~5個、特に炭素原子1~3個を有するアルキル基を持つパーフルオロ(アルキルビニルエーテル)からなる共重合体等であってもよい。
 CTFE重合体としては、好適には、CTFE単独重合体であってもよいし、(1)CTFE、(2)炭素原子2~8個を有する1つ又は2つ以上のCTFE以外のフルオロオレフィン、特にTFE若しくはHFP、及び、(3)炭素原子1~5個、特に炭素原子1~3個を有するアルキル基を持つパーフルオロ(アルキルビニルエーテル)からなる共重合体であってもよい。
 CTFE重合体としては、また、CTFEと、1つ又は2つ以上のフッ素非含有モノマーとの共重合体であってもよく、上記フッ素非含有モノマーとしては、エチレン、プロピレン等のアルケン類;ビニルエステル類;ビニルエーテル類等が挙げられる。
 上記フルオロポリマーは、ガラス状、可塑性又はエラストマー性であり得る。これらのものは非晶性又は部分的に結晶性であり、圧縮焼成加工、溶融加工又は非溶融加工に供することができる。
 本開示の製造方法では、例えば、(I)非溶融加工性フッ素樹脂として、テトラフルオロエチレン重合体[TFE重合体(PTFE)]が、(II)溶融加工性フッ素樹脂として、エチレン/TFE共重合体[ETFE]、TFE/HFP共重合体[FEP]、TFE/パーフルオロ(アルキルビニルエーテル)共重合体[PFA、MFA等]、TFE/パーフルオロアリルエーテル共重合体、TFE/VDF共重合体、電解質ポリマー前駆体が、(III)フッ素ゴムとして、TFE/プロピレン共重合体、TFE/プロピレン/第3モノマー共重合体(上記第3モノマーは、VDF、HFP、CTFE、フルオロアルキルビニルエーテル類等)、TFEとフルオロアルキルビニルエーテル類とからなる共重合体;HFP/エチレン共重合体、HFP/エチレン/TFE共重合体;PVDF;VDF/HFP共重合体、HFP/エチレン共重合体、VDF/TFE/HFP共重合体等の熱可塑性エラストマー;及び、特公昭61-49327号公報に記載の含フッ素セグメント化ポリマー等が好適に製造されうる。
 上記フルオロポリマーとしては、フッ素樹脂が好ましく、なかでも下記式により算出されるフッ素置換率が50%以上のフッ素樹脂がより好ましく、上記フッ素置換率が50%を超えるフッ素樹脂が更に好ましく、上記フッ素置換率が55%以上のフッ素樹脂が更により好ましく、上記フッ素置換率が60%以上のフッ素樹脂が更により好ましく、上記フッ素置換率が75%以上のフッ素樹脂が更により好ましく、上記フッ素置換率が80%以上のフッ素樹脂が特に好ましく、上記フッ素置換率が90~100%のフッ素樹脂、すなわちパーフルオロ樹脂が最も好ましい。
(式)
フッ素置換率(%)=(フルオロポリマーを構成する炭素原子に結合するフッ素原子の個数)/((フルオロポリマーを構成する炭素原子に結合する水素原子の個数)+(フルオロポリマーを構成する炭素原子に結合するフッ素原子及び塩素原子の個数))×100
 上記パーフルオロ樹脂としては、上記フッ素置換率が95~100%のフッ素樹脂がより好ましく、PTFE、FEP又はPFAが更に好ましく、PTFEが特に好ましい。
 上記フルオロポリマーは、コアシェル構造を有していてもよい。コアシェル構造を有するフルオロポリマーとしては、例えば、粒子中に高分子量のPTFEのコアと、より低分子量のPTFE又は変性のPTFEシェルとを含む変性PTFEが挙げられる。このような変性PTFEとしては、例えば、特表2005-527652号公報に記載されるPTFEが挙げられる。
 上記コアシェル構造としては、次の構造をとり得る。
   コア:TFE単独重合体 シェル:TFE単独重合体
   コア:変性PTFE   シェル:TFE単独重合体
   コア:変性PTFE   シェル:変性PTFE
   コア:TFE単独重合体 シェル:変性PTFE
   コア:低分子量PTFE シェル:高分子量PTFE
   コア:高分子量PTFE シェル:低分子量PTFE
 上記コアシェル構造を有するフルオロポリマーにおいて、コアの比率の下限は、好ましくは0.5質量%、より好ましくは1.0質量%、更に好ましくは3.0質量%、特に好ましくは5.0質量%、最も好ましくは10.0質量%である。コアの比率の上限は、好ましくは99.5質量%、より好ましくは99.0質量%、更に好ましくは98.0質量%、更により好ましくは97.0質量%、特に好ましくは95.0質量%、最も好ましくは90.0質量%である。
 上記コアシェル構造を有するフルオロポリマーにおいて、シェルの比率の下限は、好ましくは0.5質量%、より好ましくは1.0質量%、更に好ましくは3.0質量%、特に好ましくは5.0質量%、最も好ましくは10.0質量%である。シェルの比率の上限は、好ましくは99.5質量%、より好ましくは99.0質量%、更に好ましくは98.0質量%、更により好ましくは97.0質量%、特に好ましくは95.0質量%、最も好ましくは90.0質量%である。
 上記コアシェル構造を有するフルオロポリマーにおいて、上記コア又は上記シェルを2層以上の構成とすることもできる。例えば、変性PTFEのコア中心部と、TFE単独重合体のコア外層部と、変性PTFEのシェルとを有する3層構造を有するフルオロポリマーであってよい。
 上記コアシェル構造を有するフルオロポリマーとしては、また、上記フルオロポリマーの1つの粒子が複数のコアを有するものも挙げられる。
 本開示の製造方法により好適に製造される上述の(I)非溶融加工性フッ素樹脂、(II)溶融加工性フッ素樹脂及び(III)フッ素ゴムは、以下の態様で製造することが好ましい。
(I)非溶融加工性フッ素樹脂
 本開示の製造方法において、TFEの重合は、通常、重合温度10~150℃、重合圧力0.05~5MPaGにて行われる。例えば、重合温度は、30℃以上がより好ましく、50℃以上が更に好ましい。また、120℃以下がより好ましく、100℃以下が更に好ましい。また、重合圧力は、0.3MPaG以上がより好ましく、0.5MPaG以上が更に好ましく、また、5.0MPaG以下がより好ましく、3.0MPaG以下が更に好ましい。特に、フルオロポリマーの得量を向上させる観点からは、1.0MPaG以上が好ましく、1.2MPaG以上がより好ましく、1.5MPaG以上が更に好ましく、2.0MPaG以上がより好ましい。
 一の態様において、上記重合は、攪拌機を備えた耐圧の反応容器に純水を仕込み、脱酸素後、TFEを仕込み、所定の温度にし、重合開始剤を添加して反応を開始する。反応の進行とともに圧力が低下する場合は、初期圧力を維持するように、追加のTFEを連続的又は間欠的に追加供給する。所定量のTFEを供給した時点で、供給を停止し、反応容器内のTFEをパージし、温度を室温に戻して反応を終了する。圧力が低下しないように、追加のTFEを連続的又は間欠的に追加供給してもよい。
 上記TFE重合体(PTFE)の製造において、知られている各種変性モノマーを併用することもできる。本開示において、上記TFE重合体は、TFE単独重合体のみならず、TFEと変性モノマーとの共重合体であって、非溶融加工性であるもの(以下、「変性PTFE」という。)をも含む概念である。
 上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、フルオロモノマーおよび非フルオロモノマーが挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
 非フルオロモノマーとしては、特に限定されず、一般式:
CH=CRQ1-LRQ2
(式中、RQ1は、水素原子またはアルキル基を表す。Lは、単結合、-CO-O-*、-O-CO-*または-O-を表す。*はRQ2との結合位置を表す。RQ2は、水素原子、アルキル基またはニトリル基を表す。)で表されるモノマーが挙げられる。
 非フルオロモノマーとしては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレートブチルアクリレート、ブチルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、ビニルメタクリレート、酢酸ビニル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、エチルビニルエーテル、シクロヘキシルビニルエーテルなどが挙げられる。非フルオロモノマーとしては、なかでも、ブチルメタクリレート、酢酸ビニル、アクリル酸が好ましい。
 フルオロモノマーとして、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;クロロトリフルオロエチレン等のパーハロオレフィン;パーフルオロビニルエーテル;(パーフルオロアルキル)エチレン;パーフルオロアリルエーテル等が挙げられる。
 上記パーフルオロビニルエーテルとしては特に限定されず、例えば、一般式(A):
   CF=CF-ORf    (A)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本開示において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
 上記パーフルオロビニルエーテルとしては、例えば、一般式(A)において、Rfが炭素数1~10のパーフルオロアルキル基であるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
 上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
 上記パーフルオロビニルエーテルとしては、更に、一般式(A)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000022
 
 (式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000023
 
 (式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
 水素含有フルオロオレフィンとしては、CH=CF、CFH=CH、CFH=CF、CF=CFCF、CH=CFCF、CH=CHCF、CHF=CHCF(E体)、CHF=CHCF(Z体)などが挙げられる。
 (パーフルオロアルキル)エチレン(PFAE)としては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
 パーフルオロアリルエーテルとしては、例えば、
   一般式:CF=CF-CF-ORf
(式中、Rfは、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
 上記一般式のRfは、一般式(A)のRfと同じである。Rfとしては、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。パーフルオロアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFがさらに好ましい。
 上記変性モノマーとしては、モノマー反応性比が0.1~8である変性モノマー(3)も好ましく例示される。変性モノマー(3)を存在させることによって、粒子径が小さいPTFE粒子を得ることができ、分散安定性の高い水性分散液を得ることができる。
 ここで、TFEとの共重合におけるモノマー反応性比とは、成長ラジカルがTFEに基づく繰り返し単位未満であるときに、該成長ラジカルがTFEと反応する場合の速度定数を、該成長ラジカルが変性モノマーと反応する場合の速度定数で除した値である。この値が低いほど、変性モノマーがTFEと高反応性であることを表す。モノマー反応性比は、TFEと変性モノマーとを共重合して開始直後の生成ポリマー中の組成を求め、ファインマン-ロスの式より算出できる。
 上記共重合は、内容積6.0Lのステンレス製オートクレーブに3600gの脱イオン脱気水、上記水に対して1000質量ppmのパーフルオロオクタン酸アンモニウム、100gのパラフィンワックスを使用して、圧力0.78MPaG、温度70℃で実施する。0.05g、0.1g、0.2g、0.5g、1.0gの変性モノマーをそれぞれ反応器に加え、0.072gの過硫酸アンモニウム(対水20質量ppm)を加えて、重合圧力0.78MPaGを維持させるため、TFEを連続的に供給する。TFE仕込量が1000gに到達したとき、撹拌を停止して、反応器が大気圧になるまで脱圧を行なう。冷却後、パラフィンワックスを分離することにより、生成ポリマーを含む水性分散液が得られる。上記水性分散液を撹拌して生成ポリマーを凝析させ、150℃で乾燥させる。得られた生成ポリマー中の組成を、NMR、FT-IR、元素分析、蛍光X線分析をモノマーの種類によって適宜組み合わせることで算出する。
 モノマー反応性比が0.1~8である変性モノマー(3)としては、式(3a)~(3d)で表される変性モノマーからなる群より選択される少なくとも1種であることが好ましい。
CH=CH-Rf    (3a)
(式中、Rfは炭素数が1~10のパーフルオロアルキル基である。)
CF=CF-O-Rf    (3b)
(式中、Rfは炭素数が1~2のパーフルオロアルキル基である。)
CF=CF-O-(CFCF=CF    (3c)
(式中、nは1又は2である。)
Figure JPOXMLDOC01-appb-C000024
 
(式中、X及びXはF、Cl又はメトキシ基であり、Yは式Y1又はY2である。)
Figure JPOXMLDOC01-appb-C000025
 
(式Y2中、Z及びZ’はF又は炭素数1~3のフッ素化アルキル基である。)
 変性モノマー(3)単位の含有量は、PTFEの全重合単位に対して0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.0005質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましい。上限としては、好ましい順に、0.90質量%、0.50質量%、0.40質量%、0.30質量%、0.20質量%、0.15質量%、0.10質量%、0.08質量%、0.05質量%、0.01質量%である。
 上記変性モノマーとしては、一次粒子の平均一次粒子径が小さく、一次粒子のアスペクト比が小さく、安定性に優れる水性分散液を得ることができることから、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、フッ化ビニリデン、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン、エチレン、及び、ラジカル重合で反応可能な官能基と親水基とを有する変性モノマーからなる群より選択される少なくとも1種が好ましい。上記変性モノマーを使用することで、より平均一次粒子径が小さく、一次粒子のアスペクト比が小さく、分散安定性に優れるPTFEの水性分散液を得ることができる。また、未凝析ポリマーが少ない水性分散液を得ることができる。
 上記変性モノマーは、TFEとの反応性の観点からは、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)及び(パーフルオロアルキル)エチレンからなる群より選択される少なくとも1種を含むことが好ましい。
 より好ましくは、ヘキサフルオロプロピレン、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、(パーフルオロブチル)エチレン、(パーフルオロヘキシル)エチレン、及び、(パーフルオロオクチル)エチレンからなる群より選択される少なくとも1種を含むことである。
 上記ヘキサフルオロプロピレン単位、パーフルオロ(アルキルビニルエーテル)単位及び(パーフルオロアルキル)エチレン単位の合計量は、PTFEの全重合単位に対して、0.00001~1質量%の範囲であることが好ましい。上記合計量の下限としては、0.0001質量%がより好ましく、0.0005質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更に好ましい。上限としては、好ましい順に、0.80質量%、0.70質量%、0.50質量%、0.40質量%、0.30質量%、0.20質量%、0.15質量%、0.10質量%、0.08質量%、0.05質量%、0.01質量%である。
 上記変性モノマーは、ラジカル重合で反応可能な官能基と親水基とを有する変性モノマー(以下「変性モノマー(A)」と記載する。)を含むことも好ましい。
 上記変性モノマー(A)を存在させることによって、一次粒子径が小さいPTFE粒子を得ることができ、分散安定性の高い水性分散液を得ることができる。また、未凝析ポリマー量を少なくすることもできる。更に、一次粒子のアスペクト比を小さくすることができる。
 上記変性モノマー(A)の使用量は、水性媒体の0.1質量ppmに相当する量を超える量であることが好ましく、0.5質量ppmを超える量であることがより好ましく、1.0質量ppmを超える量であることが更に好ましく、5質量ppm以上であることが更により好ましく、10質量ppm以上であることが特に好ましい。上記変性モノマー(A)の使用量が少なすぎると、得られるPTFEの平均一次粒子径が小さくならないおそれがある。
 上記変性モノマー(A)の使用量は、上記範囲であればよいが、例えば、上限を5000質量ppmとすることができる。また、上記製造方法では、反応中または反応後の水性分散液の安定性を向上させるために、反応途中で変性モノマー(A)を系中に追加してもよい。
 上記変性モノマー(A)は水溶性が高いので、未反応の変性モノマー(A)が水性分散液中に残存したとしても、濃縮工程、あるいは凝析・洗浄工程での除去は容易である。
 上記変性モノマー(A)は、重合の過程で生成ポリマー中に取り込まれるが、重合系中の変性モノマー(A)の濃度そのものが低く、ポリマーに取り込まれる量が少ないため、PTFEの耐熱性が低下したり焼成後に着色したりする問題はない。
 上記変性モノマー(A)における親水基としては、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mは、H、金属原子、NR7y 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7yは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)が挙げられる。上記親水基としては、なかでも、-SOM又は-COOMが好ましい。R7yにおける有機基としてはアルキル基が好ましい。R7yとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。
 上記金属原子としては、1、2価の金属原子が挙げられ、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
 上記変性モノマー(A)における「ラジカル重合で反応可能な官能基」としては、例えば、ビニル基、アリル基等のエチレン性不飽和結合を有する基が挙げられる。エチレン性不飽和結合を有する基は、下記式:
CX=CXR-
(式中、X、X及びXは、それぞれ独立して、F、Cl、H、CF、CFH、CFH、又は、CHであり;Rは連結基である。)で示すことができる。Rの連結基としては後述するRとしての連結基が挙げられる。好ましくは-CH=CH、-CF=CH2、-CH=CF2、-CF=CF、-CH-CH=CH、-CF-CF=CH、-CF-CF=CF、-(C=O)-CH=CH、-(C=O)-CF=CH、-(C=O)-CH=CF、-(C=O)-CF=CF、-(C=O)-C(CH)=CH、-(C=O)-C(CF)=CH、-(C=O)-C(CH)=CF、-(C=O)-C(CF)=CF、-O-CH-CH=CH、-O-CF-CF=CH、-O-CH-CH=CF、-O-CF-CF=CF等の不飽和結合を有する基が挙げられる。
 上記変性モノマー(A)は、ラジカル重合で反応可能な官能基を有するので、上記重合において使用すると、重合反応初期に含フッ素モノマーと反応し、上記変性モノマー(A)に由来する親水基を有し安定性が高い粒子が形成されると推測される。このため、上記変性モノマー(A)の存在下に重合を行うと、粒子数が多くなると考えられる。
 上記重合は、上記変性モノマー(A)を1種存在させるものであってもよいし、2種以上存在させるものであってもよい。
 上記重合において、上記変性モノマー(A)として、不飽和結合を有する化合物を使用することができる。
 変性モノマー(A)は、一般式(4):
CX=CX-(CZ-Y   (4)
(式中、X、X及びXは、それぞれ独立して、F、Cl、H又はCFであり;Yは、親水基であり;Rは連結基であり;Z及びZは、それぞれ独立して、H、F又はCFであり、kは0又は1である)で表される化合物が好ましい。
 上記親水基としては、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mは、H、金属原子、NR7y 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7yは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)が挙げられる。上記親水基としては、なかでも、-SOM又は-COOMが好ましい。R7yにおける有機基としてはアルキル基が好ましい。R7yとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。上記金属原子としては、1、2価の金属原子が挙げられ、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
 上記変性モノマー(A)を用いることによって、より平均一次粒子径が小さく、より安定性に優れる水性分散液を得ることができる。また、一次粒子のアスペクト比をより小さくすることもできる。
 上記Rは、連結基である。本開示において「連結基」は、二価連結基を指す。連結基は、単結合であってもよく、少なくとも1個の炭素原子を含むことが好ましく、炭素原子の数は、2以上であってよく、4以上であってよく、8以上であってよく、10以上であってよく、20以上であってもよい。上限は限定されないが、例えば、100以下であってよく、50以下であってよい。
 上記連結基は、鎖状又は分岐状、環状又は非環状構造、飽和又は不飽和、置換又は非置換であってよく、所望により硫黄、酸素、及び窒素からなる群から選択される1つ以上のヘテロ原子を含み、所望によりエステル、アミド、スルホンアミド、カルボニル、カーボネート、ウレタン、尿素及びカルバメートからなる群から選択される1つ以上の官能基を含んでよい。上記連結基は、炭素原子を含まず、酸素、硫黄又は窒素等のカテナリーヘテロ原子であってもよい。
 上記Rは、例えば、酸素、硫黄、窒素等のカテナリーヘテロ原子、又は、2価の有機基であることが好ましい。
 Rが2価の有機基である場合、炭素原子に結合する水素原子は、フッ素以外のハロゲン、例えば塩素等で置き換えられてもよく、二重結合を含んでも含まなくてもよい。また、Rは、鎖状及び分岐状のいずれでもよく、環状及び非環状のいずれでもよい。また、Rは、官能基(例えば、エステル、エーテル、ケトン、アミン、ハロゲン化物等)を含んでもよい。
 Rはまた、非フッ素の2価の有機基であってもよいし、部分フッ素化又は過フッ素化された2価の有機基であってもよい。
 Rとしては、例えば、炭素原子にフッ素原子が結合していない炭化水素基、炭素原子に結合する水素原子の一部がフッ素原子で置換された炭化水素基、炭素原子に結合する水素原子の全てがフッ素原子で置換された炭化水素基、-(C=O)-、-(C=O)-O-、又は、-(C=O)-を含有する炭化水素基であってもよく、これらは酸素原子を含んでいてもよく、二重結合を含んでいてもよく、官能基を含んでいてもよい。
 Rは、-(C=O)-、-(C=O)-O-、又は、エーテル結合を含んでいてもよく、カルボニル基を含んでいてもよい炭素数1~100の炭化水素基であることが好ましく、該炭化水素基は、炭素原子に結合する水素原子の一部又は全部がフッ素に置換されていてもよい。
 Rとして好ましくは、-(CH-、-(CF-、-O-(CF-、-(CF-O-(CF-、-O(CF-O-(CF-、-(CF-[O-(CF-、-O(CF-[O-(CF-、-[(CF-O]-[(CF-O]-、-O[(CF-O]-[(CF-O]-、-O-[CFCF(CF)O]-(CF-、-(C=O)-、-(C=O)-O-、-(C=O)-(CH-、-(C=O)-(CF-、-(C=O)-O-(CH-、-(C=O)-O-(CF-、-(C=O)-[(CH-O]-、-(C=O)-[(CF-O]-、-(C=O)-O[(CH-O]-、-(C=O)-O[(CF-O]-、-(C=O)-O[(CH-O]-(CH-、-(C=O)-O[(CF-O]-(CF-、-(C=O)-(CH-O-(CH-、-(C=O)-(CF-O-(CF-、-(C=O)-O-(CH-O-(CH-、-(C=O)-O-(CF-O-(CF-、-(C=O)-O-C-、及び、これらの組み合わせから選択される少なくとも1種である。
 式中、a、b、c及びdは独立して少なくとも1以上である。a、b、c及びdは独立して、2以上であってよく、3以上であってよく、4以上であってよく、10以上であってよく、20以上であってよい。a、b、c及びdの上限は、例えば、100である。
 Rとして好適な具体例としては、-CF-O-、-CF-O-CF-、-CF-O-CH-、-CF-O-CHCF-、-CF-O-CFCF-、-CF-O-CFCH-、-CF-O-CFCFCH-、-CF-O-CF(CF)-、-CF-O-CF(CF)CF-、-CF-O-CF(CF)CF-O-、-CF-O-CF(CF)CH-、-(C=O)-、-(C=O)-O-、-(C=O)-(CH)-、-(C=O)-(CF)-、-(C=O)-O-(CH)-、-(C=O)-O-(CF)-、-(C=O)-[(CH-O]-、-(C=O)-[(CF-O]-、-(C=O)-O[(CH-O]-、-(C=O)-O[(CF-O]-、-(C=O)-O[(CH-O]-(CH)-、-(C=O)-O[(CF-O]-(CF)-、-(C=O)-(CH-O-(CH)-、-(C=O)-(CF-O-(CF)-、-(C=O)-O-(CH-O-(CH)-、-(C=O)-O-(CF-O-(CF)-、-(C=O)-O-C-等が挙げられる。中でも、上記Rは、具体的には、-CF-O-、-CF-O-CF-、-CF-O-CFCF-、-CF-O-CF(CF)-、-CF-O-CF(CF)CF-、-CF-O-CF(CF)CF-O-、-(C=O)-、-(C=O)-O-、-(C=O)-(CH)-、-(C=O)-O-(CH)-、-(C=O)-O[(CH-O]-、-(C=O)-O[(CH-O]-(CH)-、-(C=O)-(CH-O-(CH)-、又は、-(C=O)-O-C-が好ましい。
 上記式中、nは1~10の整数である。
 一般式(4)における-R-(CZ-としては、-CF-O-CF-、-CF-O-CF(CF)-、-CF-O-C(CF-、-CF-O-CF-CF-、-CF-O-CF-CF(CF)-、-CF-O-CF-C(CF-、-CF-O-CFCF-CF-、-CF-O-CFCF-CF(CF)-、-CF-O-CFCF-C(CF-、-CF-O-CF(CF)-CF-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)-C(CF-、-CF-O-CF(CF)-CF-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)-C(CF-、-CF-O-CF(CF)CF-CF-、-CF-O-CF(CF)CF-CF(CF)-、-CF-O-CF(CF)CF-C(CF-、-CF-O-CF(CF)CF-O-CF-、-CF-O-CF(CF)CF-O-CF(CF)-、-CF-O-CF(CF)CF-O-C(CF-、-(C=O)-、-(C=O)-O-、-(C=O)-(CH)-、-(C=O)-(CF)-、-(C=O)-O-(CH)-、-(C=O)-O-(CF)-、-(C=O)-[(CH-O]-(CH)-、-(C=O)-[(CF-O]-(CF)-、-(C=O)-[(CH-O]-(CH)-(CH)-、-(C=O)-[(CF-O]-(CF)-(CF)-、-(C=O)-O[(CH-O]-(CF)-、-(C=O)-O[(CH-O]-(CH)-(CH)-、-(C=O)-O[(CF-O]-(CF)-、-(C=O)-O[(CF-O]-(CF)-(CF)-、-(C=O)-(CH-O-(CH)-(CH)-、-(C=O)-(CF-O-(CF)-(CF)-、-(C=O)-O-(CH-O-(CH)-(CH)-、-(C=O)-O-(CF-O-(CF)-(CF)-、-(C=O)-O-(CH-O-(CH)-C(CF-、-(C=O)-O-(CF-O-(CF)-C(CF-、又は、-(C=O)-O-C-C(CF-が好ましく、-CF-O-CF(CF)-、-CF-O-CF-CF(CF)-、-CF-O-CFCF-CF(CF)-、-CF-O-CF(CF)-CF(CF)-、-CF-O-CF(CF)CF-CF(CF)-、-CF-O-CF(CF)CF-O-CF(CF)-、-(C=O)-、-(C=O)-O-(CH)-、-(C=O)-O-(CH)-(CH)-、-(C=O)-O[(CH-O]-(CH)-(CH)-、-(C=O)-O-(CH-O-(CH)-C(CF-、又は、-(C=O)-O-C-C(CF-がより好ましい。
 上記式中、nは1~10の整数である。
 一般式(4)で表される化合物の具体例としては、
Figure JPOXMLDOC01-appb-C000026
 
(式中、X及びYは上記と同じ。nは1~10の整数である。)等が挙げられる。
 Rとしては、一般式(r1):
-(C=O)-(O)-CF-O-(CX -{O-CF(CF)}-(O)-    (r1)
(式中、Xはそれぞれ独立してH、F又はCFであり、eは0~3の整数であり、fは0~3の整数であり、gは0又は1であり、hは0又は1であり、iは0又は1である)で表される2価の基が好ましく、一般式(r2):
-(C=O)-(O)-CF-O-(CX -(O)-    (r2)
(式中、Xはそれぞれ独立してH、F又はCFであり、eは0~3の整数であり、gは0又は1であり、hは0又は1であり、iは0又は1である。)で表される2価の基も好ましい。
 一般式(4)の-R-(CZ-としてはまた、下記式(t1):
-(C=O)-(O)-CF-O-(CX -{O-CF(CF)}-(O)-CZ- (t1)
(式中、Xはそれぞれ独立してH、F又はCFであり、eは0~3の整数であり、fは0~3の整数であり、gは0又は1であり、hは0又は1であり、iは0又は1であり、Z及びZは、それぞれ独立して、F又はCFである)で表される2価の基も好ましく、式(t1)において、Z及びZは、一方がFで他方がCFであることがより好ましい。
 また、一般式(4)において、-R-(CZ-としては、下記式(t2):
-(C=O)-(O)-CF-O-(CX -(O)-CZ-  (t2)
(式中、Xはそれぞれ独立してH、F又はCFであり、eは0~3の整数であり、gは0又は1であり、hは0又は1であり、iは0又は1であり、Z及びZは、それぞれ独立して、F又はCFである)で表される2価の基も好ましく、式(t2)において、Z及びZは、一方がFで他方がCFであることがより好ましい。
 一般式(4)で表される化合物は、親水基(Y)を除いて、C-F結合を有し、C-H結合を有していないことも好ましい。すなわち、一般式(4)において、X、X、及びXの全てがFであり、Rは炭素数が1以上のパーフルオロアルキレン基であることが好ましく、上記パーフルオロアルキレン基は、鎖状及び分岐状のいずれでもよく、環状及び非環状のいずれでもよく、少なくとも1つのカテナリーヘテロ原子を含んでもよい。上記パーフルオロアルキレン基の炭素数は、2~20であってよく、4~18であってもよい。
 一般式(4)で表される化合物は、部分フッ素化されたものであってもよい。すなわち、一般式(4)で表される化合物は、親水基(Y)を除いて、炭素原子に結合した少なくとも1つの水素原子を有し、炭素原子に結合した少なくとも1つのフッ素原子を有することも好ましい。
 一般式(4)で表される化合物は、下記式(4a)で示される化合物であることも好ましい。
CF=CF-O-Rf-Y   (4a)
(式中、Yは親水基であり、Rfは、過フッ素化されており、鎖状又は分岐状、環状又は非環状構造、飽和又は不飽和、置換又は非置換であってもよく、硫黄、酸素、及び窒素からなる群から選択される1つ以上のヘテロ原子を任意追加的に含有する過フッ素化二価連結基である。)
 一般式(4)で表される化合物は、下記式(4b)で示される化合物であることも好ましい。
CH=CH-O-Rf-Y  (4b)
(式中、Yは親水基であり、Rfは式(4a)で定義される過フッ素化二価連結基である。)
 一般式(4)において、Yは-OSOMであることが好ましい形態の一つである。Yが-OSOMである場合、一般式(4)で表される化合物としては、CF=CF(OCFCFCHOSOM)、CH=CH((CFCHOSOM)、CF=CF(O(CFCHOSOM)、CF=CF(OCFCF(CF)CHOSOM)、CF=CF(OCFCF(CF)OCFCFCHOSOM)、CH=CH((CFCHOSOM)、CF=CF(OCFCFSON(CH)CHCHOSOM)、CH=CH(CFCFCHOSOM)、CF=CF(OCFCFCFCFSON(CH)CHCHOSOM)等が挙げられる。上記式中、Mは上記と同じである。
 一般式(4)において、Yは-SOMであることも好ましい形態の一つである。Yが-SOMである場合、一般式(4)で表される化合物としては、CF=CF(OCFCFSOM)、CF=CF(O(CFSOM)、CF=CF(OCFCF(CF)SOM)、CF=CF(OCFCF(CF)OCFCFSOM)、CH=CH(CFCFSOM)、CF=CF(OCFCF(CF)OCFCFCFCFSOM)、CH=CH((CFSOM)、CH=CH((CFSOM)等が挙げられる。上記式中、Mは上記と同じである。
 一般式(4)において、Yは-COOMであることも好ましい形態の一つである。Yが-COOMである場合、一般式(4)で表される化合物としては、CF=CF(OCFCFCOOM)、CF=CF(OCFCFCFCOOM)、CF=CF(O(CFCOOM)、CF=CF(OCFCF(CF)COOM)、CF=CF(OCFCF(CF)O(CFCOOM)(nは1より大きい)、CH=CH(CFCFCOOM)、CH=CH((CFCOOM)、CH=CH((CFCOOM)、CF=CF(OCFCFSONR’CHCOOM)、CF=CF(O(CFSONR’CHCOOM)、CF=CF(OCFCF(CF)SONR’CHCOOM)、CF=CF(OCFCF(CF)OCFCFSONR’CHCOOM)、CH=CH(CFCFSONR’CHCOOM)、CF=CF(OCFCF(CF)OCFCFCFCFSONR’CHCOOM)、CH=CH((CFSONR’CHCOOM)、CH=CH((CFSONR’CHCOOM)等が挙げられる。上記式中、R’はH又はC1-4アルキル基であり、Mは上記と同じである。
 一般式(4)において、Yは-OPOMまたは-OP(O)(OM)であることも好ましい形態の一つである。Yが-OPOMまたは-OP(O)(OM)である場合、一般式(4)で表される化合物としては、CF=CF(OCFCFCHOP(O)(OM))、CF=CF(O(CFCHOP(O)(OM))、CF=CF(OCFCF(CF)CHOP(O)(OM))、CF=CF(OCFCF(CF)OCFCFCHOP(O)(OM))、CF=CF(OCFCFSON(CH)CHCHOP(O)(OM))、CF=CF(OCFCFCFCFSON(CH)CHCHOP(O)(OM))、CH=CH(CFCFCHOP(O)(OM)、CH=CH((CFCHOP(O)(OM))、CH=CH((CFCHOP(O)(OM))等が挙げられる。上記式中、Mは上記と同じである。
 一般式(4)において、Yは-POMまたは-P(O)(OM)であることも好ましい形態の一つである。Yが-POMまたは-P(O)(OM)である場合、一般式(4)で表される化合物としては、CF=CF(OCFCFP(O)(OM))、CF=CF(O(CFP(O)(OM))、CF=CF(OCFCF(CF)P(O)(OM))、CF=CF(OCFCF(CF)OCFCFP(O)(OM))、CH=CH(CFCFP(O)(OM))、CH=CH((CFP(O)(OM))、CH=CH((CFP(O)(OM))等が挙げられ、式中、Mは上記と同じである。
 一般式(4)で表される化合物としては、一般式(5):
CX=CY(-CZ-O-Rf-Y)  (5)
(式中、Xは、同一又は異なって、-H又は-Fであり、Yは-H、-F、アルキル基又は含フッ素アルキル基であり、Zは、同一又は異なって、-H、-F、アルキル基又は含フッ素アルキル基である。Rfは炭素数1~40の含フッ素アルキレン基、又は、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Yは、前記と同じである。)で表される化合物、一般式(6):
CX=CY(-O-Rf-Y)  (6)
(式中、Xは、同一又は異なって、-H又は-Fであり、Yは-H、-F、アルキル基又は含フッ素アルキル基であり、Rfは炭素数1~40の含フッ素アルキレン基、又は、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Yは、前記と同じである。)で表される化合物、及び、一般式(7):
CX=CY(-Rf-Y)  (7)
(式中、Xは、同一又は異なって、-H又は-Fであり、Yは-H、-F、アルキル基又は含フッ素アルキル基であり、Rfは炭素数1~40の含フッ素アルキレン基、又は、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Yは、前記と同じである。)で表される化合物、からなる群より選択される少なくとも1種であることが好ましい。
 なお、上記炭素数2~100のエーテル結合を有する含フッ素アルキレン基は、酸素原子が末端である構造を含まず、炭素炭素間にエーテル結合を含んでいるアルキレン基である。
 一般式(5)において、Xは-H又は-Fである。Xは、両方が-Fであってもよいし、少なくとも1つが-Hであってよい。例えば、片方が-Fで他方が-Hであってもよいし、両方が-Hであってもよい。
 一般式(5)において、Yは-H、-F、アルキル基又は含フッ素アルキル基である。
 上記アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記Yとしては、-H、-F又は-CFが好ましく、-Fがより好ましい。
 一般式(5)において、Zは、同一又は異なって、-H、-F、アルキル基又はフルオロアルキル基である。
 上記アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記Zとしては、-H、-F又は-CFが好ましく、-Fがより好ましい。
 一般式(5)において、上記X、Y及びZの少なくとも1つはフッ素原子を含むことが好ましい。例えば、Xが-Hであり、Y及びZが-Fであってよい。
 一般式(5)において、上記Rfは炭素数1~40の含フッ素アルキレン基、又は、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。
上記含フッ素アルキレン基の炭素数は2以上が好ましい。また、30以下が好ましく、20以下がより好ましく、10以下が更に好ましい。上記含フッ素アルキレン基としては、-CF-、-CHCF-、-CFCF-、-CFCH-、-CFCFCH-、-CF(CF)-、-CF(CF)CF-、-CF(CF)CH-等が挙げられる。上記含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 上記エーテル結合を有する含フッ素アルキレン基の炭素数は3以上が好ましい。また、エーテル結合を有する含フッ素アルキレン基の炭素数は、60以下が好ましく、30以下がより好ましく、12以下が更に好ましい。
エーテル結合を有する含フッ素アルキレン基としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000027
 
(式中、ZはFまたはCF;Z及びZはそれぞれHまたはF;ZはH、FまたはCF;p1+q1+r1が1~10の整数;s1は0または1;t1は0~5の整数)で表される2価の基であることも好ましい。
 上記エーテル結合を有する含フッ素アルキレン基として具体的には、-CF(CF)CF-O-CF(CF)-、-(CF(CF)CF-O)-CF(CF)-(式中、nは1~10の整数)、-CF(CF)CF-O-CF(CF)CH-、-(CF(CF)CF-O)-CF(CF)CH-(式中、nは1~10の整数)、-CHCFCFO-CHCFCH-、-CFCFCFO-CFCF-、-CFCFCFO-CFCFCH-、-CFCFO-CF-、-CFCFO-CFCH-等が挙げられる。上記エーテル結合を有する含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 一般式(5)において、Yは、-COOM、-SOM又は-OSOM(Mは、H、金属原子、NR7y 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7yは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)であることが好ましい。
 R7yにおける有機基としてはアルキル基が好ましい。
 R7yとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。
 上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
 Mとしては、-H、金属原子またはNR が好ましく、-H、アルカリ金属(1族)、アルカリ土類金属(2族)またはNR がより好ましく、-H、-Na、-K、-LiまたはNHが更に好ましく、-H、-Na、-KまたはNHが更により好ましく、-H、-NaまたはNHが特に好ましく、-Hまたは-NHが最も好ましい。
上記Yとしては、-COOM又は-SOMが好ましく、-COOMがより好ましい。
 一般式(5)で表される化合物は、一般式(5a)で表される化合物(5a)であることが好ましい。
CH=CF(-CF-O-Rf-Y)   (5a)
(式中、Rf及びYは前記と同じ。)
 一般式(5a)で表される化合物として具体的には、下記式
Figure JPOXMLDOC01-appb-C000028
 
(式中、ZはFまたはCF;Z及びZはそれぞれHまたはF;ZはH、FまたはCF;p1+q1+r1が0~10の整数;s1は0または1;t1は0~5の整数、Yは前記と同じ。ただし、Z及びZがともにHの場合、p1+q1+r1+s1が0でない)で表される化合物が挙げられる。より具体的には、
Figure JPOXMLDOC01-appb-C000029
 
などが好ましく挙げられ、なかでも
Figure JPOXMLDOC01-appb-C000030
 
であることが好ましい。
 一般式(5a)で表される化合物としては、式(5a)中のYが-COOMであることが好ましく、特に、CH=CFCFOCF(CF)COOM、及び、CH=CFCFOCF(CF)CFOCF(CF)COOM(式中、Mは上記定義と同じ。)からなる群より選択される少なくとも1種が好ましく、CH=CFCFOCF(CF)COOMがより好ましい。
 一般式(5)で表される化合物は、一般式(5b)で表される化合物(5b)であることが好ましい。
CX =CFCF-O-(CF(CF)CFO)n5-CF(CF)-Y 
   (5b)
(式中、各Xは、同一であり、F又はHを表す。n5は、0又は1~10の整数を表し、Yは、前記定義と同じ。)
 上記式(5b)において、上記n5は、得られる水性分散液の安定性の点で0又は1~5の整数であることが好ましく、0、1又は2であることがより好ましく、0又は1であることが更に好ましい。上記Yは、適度な水溶性と水性分散液の安定性が得られる点で-COOMであることが好ましく、上記Mは、不純物として残留しにくく、得られた成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
 上記式(5b)で表される化合物としては、例えば、CH=CFCFOCF(CF)COOM、CH=CFCFOCF(CF)CFOCF(CF)COOM(式中、Mは上記定義と同じ。)が挙げられる。
 また、一般式(5)で表される化合物としては、一般式(5c)で表される化合物等も挙げられる。
 CF=CFCF-O-Rf-Y   (5c)
(式中、Rf及びYは上記と同じ)
 より具体的には、
Figure JPOXMLDOC01-appb-C000031
 
等が挙げられる。
 一般式(6)において、Xは-H又は-Fである。Xは、両方が-Fであってもよいし、少なくとも1つが-Hであってよい。例えば、片方が-Fで他方が-Hであってもよいし、両方が-Hであってもよい。
 一般式(6)において、Yは-H、-F、アルキル基又は含フッ素アルキル基である。
 上記アルキル基は、フッ素原子を含有しないアルキル基であり、炭素数は1以上であればよい。上記アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記含フッ素アルキル基は、フッ素原子を少なくとも1つ含有するアルキル基であり、炭素数は1以上であればよい。上記含フッ素アルキル基の炭素数は6以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 上記Yとしては、-H、-F又は-CFが好ましく、-Fがより好ましい。
 一般式(6)において、上記X及びYの少なくとも1つはフッ素原子を含むことが好ましい。例えば、Xが-Hであり、Y及びZが-Fであってよい。
 一般式(6)において、上記Rfは炭素数1~40の含フッ素アルキレン基、又は、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。
 上記含フッ素アルキレン基の炭素数は2以上が好ましい。また、含フッ素アルキレン基の炭素数は、30以下が好ましく、20以下がより好ましく、10以下が更に好ましい。上記含フッ素アルキレン基としては、-CF-、-CHCF-、-CFCF-、-CFCH-、-CFCFCH-、-CF(CF)-、-CF(CF)CF-、-CF(CF)CH-等が挙げられる。上記含フッ素アルキレン基は、パーフルオロアルキレン基であることが好ましい。
 上記一般式(6)において、Yは、-COOM、-SOM又は-OSOM(Mは、H、金属原子、NR7y 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、R7yは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)であることが好ましい。
 R7yの有機基としてはアルキル基が好ましい。R7yとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。
 上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
 Mとしては、-H、金属原子またはNR が好ましく、-H、アルカリ金属(1族)、アルカリ土類金属(2族)またはNR がより好ましく、-H、-Na、-K、-LiまたはNHが更に好ましく、-H、-Na、-KまたはNHが更により好ましく、-H、-NaまたはNHが特に好ましく、-Hまたは-NHが最も好ましい。
 上記Yとしては、-COOM又は-SOMが好ましく、-COOMがより好ましい。
 一般式(6)で表される化合物は、一般式(6a)、(6b)、(6c)、(6d)および(6e)で表される化合物からなる群より選択される少なくとも1種が好ましい。
CF=CF-O-(CFn1-Y    (6a)
(式中、n1は、1~10の整数を表し、Yは、前記定義と同じ。)
CF=CF-O-(CFC(CF)F)n2-Y    (6b)
(式中、n2は、1~5の整数を表し、Yは、前記定義と同じ。)
CF=CF-O-(CFXn3-Y    (6c)
(式中、Xは、F又はCFを表し、n3は、1~10の整数を表し、Yは、前記定義と同じ。)
CF=CF-O-(CFCFXO)n4-(CFn6-Y    (6d)
(式中、n4は、1~10の整数を表し、n6は、1~3の整数を表し、Y及びXは、前記定義と同じ。)
CF=CF-O-(CFCFCFXO)n5-CFCFCF-Y   (6e)
(式中、n5は、0~10の整数を表し、Y及びXは、前記定義と同じ。)
 上記式(6a)において、上記n1は、5以下の整数であることが好ましく、2以下の整数であることがより好ましい。上記Yは、適度な水溶性及び水性分散液の安定性を得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
 上記式(6a)で表される化合物としては、例えば、CF=CF-O-CFCOOM、CF=CF(OCFCFCOOM)、CF=CF(OCFCFCFCOOM)(式中、Mは上記定義と同じ。)が挙げられる。
 上記式(6b)において、上記n2は、得られる水性分散液の安定性の点で、3以下の整数であることが好ましく、Yは、適度な水溶性及び水性分散液の安定性が得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
 上記式(6c)において、上記n3は、水溶性の点で5以下の整数であることが好ましく、上記Yは、適度な水溶性及び水性分散液の安定性が得られる点で、-COOMであることが好ましく、上記Mは、分散安定性がよくなる点で、H又はNHであることが好ましい。
 上記式(6d)において、上記Xは、水性分散液の安定性の点で、-CFであることが好ましく、上記n4は、水溶性の点で5以下の整数であることが好ましく、上記Yは、適度な水溶性と水性分散液の安定性が得られる点で-COOMであることが好ましく、上記Mは、H又はNHであることが好ましい。
 上記式(6d)で表される化合物としては、例えば、CF=CFOCFCF(CF)OCFCFCOOM、CF=CFOCFCF(CF)OCFCOOM、CF=CFOCFCF(CF)OCFCFCFCOOM(式中、Mは、H、NH又はアルカリ金属を表す。)が挙げられる。
 一般式(6e)において、上記n5は、水溶性の点で5以下の整数であることが好ましく、上記Yは、適度な水溶性と水性分散液の安定性が得られる点で-COOMであることが好ましく、上記Mは、H又はNHであることが好ましい。
一般式(6e)で表される化合物としては、例えば、CF=CFOCFCFCFCOOM(式中、Mは、H、NH又はアルカリ金属を表す。)が挙げられる。
 一般式(7)において、Rfは、炭素数1~40の含フッ素アルキレン基であることが好ましい。一般式(7)において、X及びYの少なくとも1つはフッ素原子を含むことが好ましい。
 一般式(7)で表される化合物は、一般式(7a):
CF=CF-(CFn1-Y    (7a)
(式中、n1は、1~10の整数を表し、Yは、前記定義と同じ。)で表される化合物、及び、一般式(7b):
CF=CF-(CFC(CF)F)n2-Y    (7b)
(式中、n2は、1~5の整数を表し、Yは、前記定義と同じ。)で表される化合物からなる群より選択される少なくとも1種が好ましい。
 上記Yは、-SOM又は-COOMが好ましく、Mは、H、金属原子、NR7y 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであることが好ましい。上記R7yは、H又は有機基を表す。
 上記式(7a)において、上記n1は、5以下の整数であることが好ましく、2以下の整数であることがより好ましい。上記Yは、適度な水溶性及び水性分散液の安定性を得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
上記式(7a)で表される化合物としては、例えば、CF=CFCFCOOM(式中、Mは上記定義と同じ。)が挙げられる。
 上記式(7b)において、上記n2は、得られる水性分散液の安定性の点で、3以下の整数であることが好ましく、Yは、適度な水溶性及び水性分散液の安定性が得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
 上記変性モノマーは、変性モノマー(A)を含むことが好ましく、一般式(5a)、一般式(5c)、一般式(6a)、一般式(6b)、一般式(6c)、及び、一般式(6d)で表される化合物からなる群より選択される少なくとも1種を含むことが好ましく、一般式(5a)または一般式(5c)で表される化合物を含むことがより好ましい。
 変性モノマーとして変性モノマー(A)を用いる場合、変性モノマー(A)単位の含有量は、上記TFE重合体(PTFE)の全重合単位に対して、0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.0005質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましい。上限としては、好ましい順に、0.90質量%、0.50質量%、0.40質量%、0.30質量%、0.20質量%、0.15質量%、0.10質量%、0.08質量%、0.05質量%、0.01質量%である。
 上記TFE重合体の製造において、重合体(I)は、上述した本開示の製造方法における使用範囲で用いることができる。重合体(I)の濃度は、上記範囲であれば特に限定されない。添加量が多すぎるとアスペクト比の大きい針状粒子が生成し、水性分散液がゲル状となり安定性が損なわれる。重合体(I)の使用量の下限は、水性媒体に対して、好ましくは0.0001質量%、より好ましくは0.001質量%、更に好ましくは0.01質量%、特に好ましくは0.02質量%である。上記重合体(I)の使用量の上限は、水性媒体に対して、好ましくは10質量%、より好ましくは5質量%である。
 重合体(I)は、重合開始前に一括して反応容器中に添加してもよいし、重合開始後に一括して添加してもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
 上記TFE重合体の製造において、重合開始剤としては、過硫酸塩(例えば、過硫酸アンモニウム)や、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等の有機過酸化物を、単独で又はこれらの混合物の形で使用することができる。また、亜硫酸ナトリウム等の還元剤と共用し、レドックス系にして用いてもよい。更に、重合中に、ヒドロキノン、カテコール等のラジカル捕捉剤を添加したり、亜硫酸アンモニウム等のパーオキサイドの分解剤を添加し、系内のラジカル濃度を調整したりすることもできる。
 上記レドックス系の重合開始剤としては、酸化剤と還元剤を組み合わせるレドックス開始剤を用いるのが好ましい。酸化剤としては、過硫酸塩、有機過酸化物、過マンガン酸カリウム、三酢酸マンガン、セリウム硝酸アンモニウム等が挙げられる。還元剤としては、亜硫酸塩、重亜硫酸塩、臭素酸塩、ジイミン、シュウ酸等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウムが挙げられる。亜硫酸塩としては、亜硫酸ナトリウム、亜硫酸アンモニウムが挙げられる。開始剤の分解速度を上げるため、レドックス開始剤の組み合わせには、銅塩、鉄塩を加えることも好ましい。銅塩としては、硫酸銅(II)、鉄塩としては硫酸鉄(II)が挙げられる。
 上記レドックス開始剤としては、例えば、過マンガン酸カリウム/シュウ酸、過硫酸アンモニウム/重亜硫酸塩/硫酸鉄、三酢酸マンガン/シュウ酸、セリウム硝酸アンモニウム/シュウ酸、臭素酸塩/重亜硫酸塩等が挙げられ、過マンガン酸カリウム/シュウ酸が好ましい。レドックス開始剤を用いる場合は、酸化剤又は還元剤のいずれかをあらかじめ重合槽に仕込み、ついでもう一方を連続的又は断続的に加えて重合を開始させてもよい。例えば、過マンガン酸カリウム/シュウ酸を用いる場合、重合槽にシュウ酸を仕込み、そこへ過マンガン酸カリウムを連続的に添加することが好ましい。
 上記TFE重合体の製造において、連鎖移動剤としては、公知のものが使用できるが、例えば、メタン、エタン、プロパン、ブタン等の飽和炭化水素、クロロメタン、ジクロロメタン、ジフルオロエタン等のハロゲン化炭化水素類、メタノール、エタノール、イソプロパノール等のアルコール類、水素等が挙げられるが、常温常圧で気体状態のものが好ましい。
 上記連鎖移動剤の使用量は、通常、供給されるTFE全量に対して、1~10000質量ppmであり、好ましくは1~5000質量ppmである。
 上記TFE重合体の製造において、更に、反応系の分散安定剤として、実質的に反応に不活性であって、上記反応条件で液状となる炭素数が12以上の飽和炭化水素を、水性媒体100質量部に対して2~10質量部で使用することもできる。また、反応中のpHを調整するための緩衝剤として、炭酸アンモニウム、リン酸アンモニウム等を添加してもよい。
 TFEの重合が終了した時点で、固形分濃度が1.0~70質量%、平均一次粒子径が50~500nmの水性分散液を得ることができる。
 上記固形分濃度の下限は5質量%が好ましく、8質量%がより好ましい。上限は特に限定されないが40質量%であってもよく、35質量%であってもよい。
 上記平均一次粒子径の下限は100nmが好ましく、150nmがより好ましい。上限は400nmが好ましく、350nmがより好ましい。
 上記平均一次粒子径は、動的光散乱法により測定することができる。上記平均一次粒子径は、固形分濃度約1.0質量%に調整した水性分散液を作成し、動的光散乱法を使用して、25℃、溶媒(水)の屈折率は1.3328、溶媒(水)の粘度は0.8878mPa・s、積算70回にて測定できる。動的光散乱法としては、例えばELSZ-1000S(大塚電子社製)が使用できる。
 上記水性分散液を凝析することによりファインパウダーを製造できる。上記TFE重合体の水性分散液は、凝析、洗浄、乾燥を経てファインパウダーとして各種用途に使用することができる。上記TFE重合体の水性分散液に対して凝析を行う場合、通常、ポリマーラテックス等の重合により得た水性分散液を、水を用いて5~20質量%のポリマー濃度になるように希釈し、場合によっては、pHを中性又はアルカリ性に調整した後、撹拌機付きの容器中で反応中の撹拌よりも激しく撹拌して行う。上記凝析は、メタノール、アセトン等の水溶性有機化合物、硝酸カリウム、炭酸アンモニウム等の無機塩や、塩酸、硫酸、硝酸等の無機酸等を凝析剤として添加しながら撹拌を行ってもよい。上記凝析は、また、インラインミキサー等を使用して連続的に行ってもよい。
 上記凝集により生じる排水中の未凝集の上記TFE重合体濃度は、生産性の観点から低いことが好ましく、0.4質量%未満がより好ましく、0.3質量%未満が特に好ましい。
 上記凝析前や凝析中に、着色のための顔料や機械的性質を改良するための各種充填剤を添加することにより、顔料や充填剤が均一に混合した顔料入り又は充填剤入りのTFE重合体ファインパウダーを得ることができる。
 上記TFE重合体の水性分散液を凝析して得られた湿潤粉末の乾燥は、通常、上記湿潤粉末をあまり流動させない状態、好ましくは静置の状態を保ちながら、真空、高周波、熱風等の手段を用いて行う。粉末同士の、特に高温での摩擦は、一般にファインパウダー型のTFE重合体に好ましくない影響を与える。これは、この種のTFE重合体からなる粒子が小さな剪断力によっても簡単にフィブリル化して、元の安定な粒子構造の状態を失う性質を持っているからである。
 上記乾燥は、10~300℃、好ましくは100~300℃の乾燥温度で行う。
 得られるTFE重合体ファインパウダーは、成形用として好ましく、好適な用途としては、航空機及び自動車等の油圧系、燃料系のチューブ等が挙げられ、薬液、蒸気等のフレキシブルホース、電線被覆用途等が挙げられる。
 上記重合により得られたTFE重合体の水性分散液は、また、非イオン性界面活性剤を加えることにより、安定化して更に濃縮し、目的に応じ、有機又は無機の充填剤を加えた組成物として各種用途に使用することも好ましい。上記組成物は、金属又はセラッミクスからなる基材上に被覆することにより、非粘着性と低摩擦係数を有し、光沢や平滑性、耐摩耗性、耐候性及び耐熱性に優れた塗膜表面とすることができ、ロールや調理器具等の塗装、ガラスクロスの含浸加工等に適している。
 上記水性分散液からTFE重合体のオルガノゾルを調製することもできる。上記オルガノゾルは、上記TFE重合体及び有機溶剤を含むことができ、上記有機溶剤としては、エーテル系溶媒、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エステル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、ハロゲン化炭化水素系溶剤が挙げられ、N-メチル-2-ピロリドン、ジメチルアセトアミド等を好適に使用できる。上記オルガノゾルの調製は、例えば、国際公開第2012/002038号に記載の方法により実施できる。
 上記TFE重合体の水性分散液又は上記TFE重合体ファインパウダーは、加工助剤として使用することも好ましい。加工助剤として使用する場合、上記水性分散液又は上記ファインパウダーをホストポリマー等に混合することにより、ホストポリマー溶融加工時の溶融強度向上や、得られたポリマーの機械的強度、電気特性、難燃性、燃焼時の滴下防止性、摺動性を向上することができる。
 上記TFE重合体の水性分散液又は上記TFE重合体ファインパウダーは、電池用結着剤、防塵用途として使用することも好ましい。
 上記TFE重合体の水性分散液又は上記TFE重合体ファインパウダーは、また、TFE重合体以外の樹脂と複合させてから加工助剤として使用することも好ましい。上記水性分散液又は上記ファインパウダーは、例えば、特開平11-49912号公報、米国特許第5804654号明細書、特開平11-29679号公報、特開2003-2980号公報に記載されたPTFEの原料として好適である。上記水性分散液又は上記ファインパウダーを使用した加工助剤は、上記各刊行物に記載された加工助剤に比べてもなんら劣るものではない。
 上記TFE重合体の水性分散液は、溶融加工性フッ素樹脂の水性分散液と混合して凝析させることにより、共凝析粉末とすることも好ましい。上記共凝析粉末は、加工助剤として好適である。
 上記溶融加工性フッ素樹脂としては、例えば、FEP、PFA、TFE/パーフルオロアリルエーテル共重合体、ETFE、エチレン/TFE/HFP共重合体[EFEP]等が挙げられるが、中でもFEPが好ましい。
 上記水性分散液は、上記溶融加工性フッ素樹脂を含むことも好ましい。上記溶融加工性フッ素樹脂としては、例えば、FEP、PFA、TFE/パーフルオロアリルエーテル共重合体、ETFE、EFEP等が挙げられる。上記溶融加工性フッ素樹脂を含む上記水性分散液は、塗料として使用できる。上記溶融加工性フッ素樹脂は、上記TFE重合体の粒子同士を充分に融着させることができるので、造膜性を向上させ、得られる被膜に光沢を出すことができる。
 上記共凝析粉末を添加するフッ素非含有樹脂は、パウダー状であってもよいし、ペレット状であってもよいし、エマルションであってもよい。上記添加は、各樹脂を充分に混合する点で、押出混練、ロール混練等の公知の方法により剪断力を与えながら行うことが好ましい。
 上記TFE重合体の水性分散液は、塵埃抑制処理剤として使用することも好ましい。上記塵埃抑制処理剤は、発塵性物質と混合し、該混合物に20~200℃の温度で圧縮-せん断作用を施すことによりTFE重合体をフィブリル化して発塵性物質の塵埃を抑制する方法、例えば特許第2827152号公報、特許第2538783号公報等の方法において、用いることができる。
 上記TFE重合体の水性分散液は、例えば、国際公開第2007/004250号に記載の塵埃抑制処理剤組成物に好適に用いることができ、国際公開第2007/000812号に記載の塵埃抑制処理方法にも好適に用いることができる。
 上記塵埃抑制処理剤は、建材分野、土壌安定材分野、固化材分野、肥料分野、焼却灰及び有害物質の埋立処分分野、防爆分野、化粧品分野、猫砂に代表されるペット排泄用の砂等の塵埃抑制処理に好適に用いられる。
 上記TFE重合体の水性分散液は、分散紡糸法(Dispersion Spinning method)によりTFE重合体繊維を得る原料として使用することも好ましい。上記分散紡糸法とは、上記TFE重合体の水性分散液とマトリックス高分子の水性分散液とを混合し、当該混合物を押出加工して中間体繊維構造物を形成し、該中間体繊維構造物を焼成することによって上記マトリックス高分子を分解及びTFE重合体粒子の焼結を行ってTFE重合体繊維を得る方法である。
 重合により得られる高分子量PTFE粉末は、延伸性及び非溶融加工性を有し、延伸体(多孔体)の原料としても有用である。
 この延伸体が膜である場合(PTFE延伸膜またはPTFE多孔膜)、公知のPTFE延伸方法によって延伸することができる。延伸することにより高分子量PTFEは容易にフィブリル化し、結節と繊維からなるPTFE多孔体(膜)となる。
 好ましくは、シート状または棒状のペースト押出物を押出方向にロール延伸することで、一軸延伸膜を得ることができる。
 更に、テンター等により幅方向に延伸して、二軸延伸膜も得ることができる。
延伸前に半焼成処理を行うことも好ましい。
 このPTFE延伸体は、高い空孔率を持つ多孔体であり、エアフィルター、薬液フィルター等の各種精密濾過フィルターの濾材、高分子電解質膜の支持材等として好適に利用できる。
 また、繊維分野、医療分野、エレクトロケミカル分野、シール材分野、空気濾過分野、換気/内圧調整分野、液濾過分野、一般消費材分野等で使用する製品の素材としても有用である。
 以下に、具体的な用途を例示する。
エレクトロケミカル分野
 誘電材料プリプレグ、EMI遮蔽材料、伝熱材料等。より詳細には、プリント配線基板、電磁遮蔽シールド材、絶縁伝熱材料、絶縁材料等。
シール材分野
 ガスケット、パッキン、ポンプダイアフラム、ポンプチューブ、航空機用シール材等。
空気濾過分野
 ULPAフィルター(半導体製造用)、HEPAフィルター(病院・半導体製造用)、円筒カートリッジフィルター(産業用)、バグフィルター(産業用)、耐熱バグフィルタ-(排ガス処理用)、耐熱プリーツフィルター(排ガス処理用)、SINBRANフィルター(産業用)、触媒フィルター(排ガス処理用)、吸着剤付フィルター(HDD組込み)、吸着剤付ベントフィルター(HDD組込み用)、ベントフィルター(HDD組込み用他)、掃除機用フィルター(掃除機用)、汎用複層フェルト材、GT用カートリッジフィルター(GT向け互換品用)、クーリングフィルター(電子機器筐体用)等。
換気/内圧調整分野
 凍結乾燥用の容器等の凍結乾燥用材料、電子回路やランプ向けの自動車用換気材料、容器キャップ向け等の容器用途、タブレット端末や携帯電話端末等の小型端末を含む電子機器向け等の保護換気用途、医療用換気用途等。
液濾過分野
 半導体液ろ過フィルター(半導体製造用)、親水性PTFEフィルター(半導体製造用)、化学薬品向けフィルター(薬液処理用)、純水製造ライン用フィルター(純水製造用)、逆洗型液ろ過フィルター(産業排水処理用)等。
一般消費材分野
 衣類、ケーブルガイド(バイク向け可動ワイヤ)、バイク用衣服、キャストライナー(医療サポーター)、掃除機フィルター、バグパイプ(楽器)、ケーブル(ギター用信号ケーブル等)、弦(弦楽器用)等。
繊維分野
 PTFE繊維(繊維材料)、ミシン糸(テキスタイル)、織糸(テキスタイル)、ロープ等。
医療分野
 体内埋設物(延伸品)、人工血管、カテーテル、一般手術(組織補強材料)、頭頸部製品(硬膜代替)、口内健康(組織再生医療)、整形外科(包帯)等。
 本開示の製造方法により、低分子量PTFEを製造することもできる。
 低分子量PTFEは、重合により製造しても良いし、重合で得られた高分子量PTFEを公知の方法(熱分解、放射線照射分解等)で低分子量化して製造することもできる。
 分子量60万以下の低分子量PTFE(PTFEマイクロパウダーとも呼ばれる)は、化学的安定性に優れ、表面エネルギーが極めて低いことに加え、フィブリル化が生じにくいので、滑り性や塗膜表面の質感を向上させること等を目的とした添加剤として、プラスチック、インク、化粧品、塗料、グリース、オフィスオートメーション機器部材、トナー等の製造に好適である(例えば、特開平10-147617号公報参照。)。
 また、更に連鎖移動剤の存在下、水性媒体中に重合開始剤及び重合体(I)を分散させ、TFE、又は、TFEと共重合し得るモノマーとTFEを重合させることによって、低分子量PTFEを得てもよい。この場合、連鎖移動剤としては、炭素数2~4のアルカンからなる群より選択される少なくとも1種が好ましい。具体的には、メタン、エタン、プロパン、ブタン、イソブタンがより好ましく、エタン、プロパンが更に好ましい。この場合、連鎖移動剤の量としては、水性媒体に対して、10質量ppm以上または10質量ppm超が好ましい。
 上記重合により得られる低分子量PTFEを粉末として用いる場合、上記水性分散液を凝析させることで粉末粒子とすることができる。
 本開示において、高分子量PTFEとは、非溶融加工性及びフィブリル化性を有するPTFEを意味する。他方、低分子量PTFEとは、溶融加工性を有し、フィブリル化性を有しないPTFEを意味する。
 上記非溶融加工性とは、ASTM D 1238及びD 2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質を意味する。
 フィブリル化性の有無は、TFEの重合体から作られた粉末である「高分子量PTFE粉末」を成形する代表的な方法である「ペースト押出し」で判断できる。通常、ペースト押出しが可能であるのは、高分子量のPTFEがフィブリル化性を有するからである。ペースト押出しで得られた未焼成の成形物に実質的な強度や伸びがない場合、例えば伸びが0%で引っ張ると切れるような場合はフィブリル化性がないとみなすことができる。
 上記高分子量PTFEは、標準比重(SSG)が2.130~2.280であることが好ましい。上記標準比重は、ASTM D4895-89に準拠して成形されたサンプルを用い、ASTM D 792に準拠した水置換法により測定する。本開示において、「高分子量」とは、上記標準比重が上記の範囲内にあることを意味する。
 上記低分子量PTFEは、340℃における複素粘度(溶融粘度)が1×10~7×10Pa・sである。本開示において、「低分子量」とは、上記複素粘度が上記の範囲内にあることを意味する。溶融粘度は、ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定する値である。
 上記高分子量PTFEは、上記低分子量PTFEよりも複素粘度(溶融粘度)が極めて高く、その正確な複素粘度を測定することは困難である。他方、上記低分子量PTFEの複素粘度は測定可能であるが、上記低分子量PTFEからは、標準比重の測定に使用可能な成形品を得ることが難しく、その正確な標準比重を測定することが困難である。従って、本開示では、上記高分子量PTFEの分子量の指標として、標準比重を採用し、上記低分子量PTFEの分子量の指標として、複素粘度を採用する。なお、上記高分子量PTFE及び上記低分子量PTFEのいずれについても、直接に分子量を特定できる測定方法は知られていない。
 上記高分子量PTFEは、ピーク温度が333~347℃であることが好ましく、335~345℃であることがより好ましい。上記低分子量PTFEは、ピーク温度が322~333℃であることが好ましく、324~332℃であることがより好ましい。ピーク温度は、TG/DTA(示差熱熱重量同時測定装置)を用いて、300℃以上の温度に加熱した履歴のないPTFEを10℃/分の条件で昇温させることにより得られる示差熱(DTA)曲線に現れる極大値に対応する温度として、特定できる。
 PTFEのピーク温度は、322~347℃であってよい。
 PTFEが高分子量PTFEである場合のPTFEのピーク温度の上限は、347℃以下、346℃以下、345℃以下、344℃以下、343℃以下、342℃以下、341℃以下、340℃以下であってよい。
 PTFEが高分子量PTFEである場合のPTFEのピーク温度の下限は、333℃以上、335℃以上であってよい。
 PTFEが低分子量PTFEである場合のPTFEのピーク温度の上限は、333℃以下、332℃以下であってよい。
 PTFEが低分子量PTFEである場合のPTFEのピーク温度の下限は、322℃以上、324℃以上であってよい。
 低分子量PTFEの一次粒子の平均一次粒子径は、好ましくは10~200nmであり、より好ましくは20nm以上であり、より好ましくは140nm以下であり、さらに好ましくは150nm以下であり、特に好ましくは90nm以下である。一次粒子の比較的小さい平均一次粒子径は、たとえば、TFEの重合初期に、変性モノマーを重合系に添加することにより、得ることができる。
 低分子量PTFEの一次粒子の平均一次粒子径は、動的光散乱法により測定することができる。まず、ポリマー固形分濃度を約1.0質量%に調整した低分子量PTFE水性分散液を作製し、動的光散乱法を使用して、測定温度を25℃、溶媒(水)の屈折率を1.3328、溶媒(水)の粘度を0.8878mPa・s、積算回数を70回として、測定できる。動的光散乱法においては、たとえば、ELSZ-1000S(大塚電子社製)が使用できる。
 上記高分子量PTFEは、300℃以上の温度に加熱した履歴がないPTFEについて示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線において、333~347℃の範囲に少なくとも1つ以上の吸熱ピークが現れ、上記融解熱曲線から算出される290~350℃の融解熱量が62mJ/mg以上であることが好ましい。
 上記で得られたPTFEファインパウダーから、未焼成テープ(生テープ)を得ることもできる。
(II)溶融加工性フッ素樹脂
 (1)本開示の製造方法において、FEPの重合は、重合温度10~150℃、重合圧力0.3~6.0MPaGにて行うことが好ましい。
 FEPの好ましい単量体組成(質量%)は、TFE:HFP=(60~95):(5~40)、より好ましくは(85~92):(8~15)である。上記FEPとしては、また、更に第3成分としてパーフルオロ(アルキルビニルエーテル)類を用い、全単量体の0.1~2質量%である範囲内で変性させたものであってもよい。
 上記FEPの重合において、重合体(I)は、本開示の製造方法における使用範囲で用いることができるが、通常、水性媒体100質量%に対して0.0001~10質量%の量を添加する。
 上記FEPの重合において、連鎖移動剤としては、シクロヘキサン、メタノール、エタノール、プロパノール、エタン、プロパン、ブタン、ペンタン、ヘキサン、四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等を使用することが好ましく、pH緩衝剤としては、炭酸アンモニウム、燐酸水素二ナトリウム等を使用することが好ましい。
 本開示の製造方法で得られるFEPの水性分散液を必要に応じて濃縮等の後処理した後、乾燥、粉末にし、次いで溶融押出することによってペレットにしても良い。FEPの水性分散液中の水性媒体は、必要に応じて非イオン性界面活性剤などの添加剤を含むものであってもよいが、水溶性アルコール等の水溶性有機溶媒を含むものであってもよいし、水溶性有機溶媒を含まないものであってもよい。
 また、溶融押出は、一般にペレット化可能な押出条件であれば、押出条件を適宜設定して行うことができる。 
 本開示の製造方法では、得られるFEPが、ポリマー主鎖及びポリマー側鎖の少なくとも一方の部位に、-CF、-CFH等の末端基を有しているものであってよいが、-COOH、-CHOH、-COF、-CF=CF-、-CONH、-COOCH等の熱的に不安定な基(以下「不安定末端基」という)は含有量が低いか、ないことが好ましい。  
 上記不安定末端基は、化学的に不安定であることから、樹脂の耐熱性を低下させるだけでなく、得られた電線の減衰量が増大する原因となる。
 本開示の製造方法では、重合終了時のポリマーを、不安定末端基と-CFH末端基とを合計した数が炭素数1×10個当たり50個以下となるように製造することが好ましい。より好ましくは炭素原子1×10個あたり20個未満であることが好ましく、さらに好ましくは5個以下であることが好ましい。上記不安定末端基および-CFH末端基が存在せず全て-CF末端基であってもよい。 
 不安定末端基および-CFH末端基はフッ素化処理により-CF末端基に変換させて安定化させることができる。フッ素化処理方法は特に限定されないが、重合体を、フッ素化処理条件下にてフッ素ラジカルを発生するフッ素ラジカル源にさらす方法を挙げることができる。上記フッ素ラジカル源としては、フッ素ガスや、CoF、AgF、UF、OF、N、CFOF、及び、フッ化ハロゲン、例えば、IF、ClF等が挙げられる。なかでも、フッ素ガスと本開示の製造方法によって得られるFEPを直接接触させる方法が好ましく、上記接触は、反応制御の点で、フッ素ガス濃度10~50質量%の希釈フッ素ガスを用いて行うことが好ましい。上記希釈フッ素ガスは、窒素ガス、アルゴンガス等の不活性ガスでフッ素ガスを希釈することにより得ることができる。上記フッ素ガス処理は、例えば、100~250℃の温度で行うことができる。なお、処理温度は、先の範囲に限定されることなく、状況に応じて適宜設定することができる。上記フッ素ガス処理は、希釈フッ素ガスを連続的又は間欠的に反応器内に供給して行うことが好ましい。このフッ素化処理は重合後の乾燥粉末でも溶融押出したペレットでもよい。 
 本開示の製造方法で得られるFEPは、成形性がよく、成形不良が生じにくいことに加え、良好な耐熱性、耐薬品性、耐溶剤性、絶縁性、電気特性等を有する。
 上記FEPの粉末の製造方法は、上述した本開示の製造方法で得られたFEPを乾燥させて粉体化することによって粉末を得る方法である。
 上記粉末は、フッ素化されていてもよい。上記のフッ素化された粉末の製造方法は、上述した粉末の製造方法で得られた粉末にフッ素ガスを供給することでフッ素化させることによってフッ素化された粉末を得る方法である。
 上記FEPのペレットの製造方法は、上述した本開示の製造方法で得られたFEPをペレット化することによってペレットを得る方法である。
 上記ペレットは、フッ素化されていてもよい。上記のフッ素化されたペレットの製造方法は、上述したペレットの製造方法で得られたペレットにフッ素ガスを供給することでフッ素化させることによってフッ素化されたペレットを得る方法である。
 このため、このFEPは、例えば、電線、発泡電線、ケーブル、ワイヤ等の被覆材、チューブ、フィルム、シート、フィラメント等の種々の成形品の製造に供することができる。
 (2)本開示の製造方法において、PFA、MFA等のTFE/パーフルオロ(アルキルビニルエーテル)共重合体およびTFE/パーフルオロアリルエーテル共重合体の重合は、通常、重合温度10~100℃、重合圧力0.3~6.0MPaGで行うことが好ましい。
 TFE/パーフルオロ(アルキルビニルエーテル)共重合体の好ましい単量体組成(モル%)は、TFE:パーフルオロ(アルキルビニルエーテル)=(90~99.7):(0.3~10)、より好ましくは(97~99):(1~3)である。上記パーフルオロ(アルキルビニルエーテル)としては、式:CF=CFORf(式中、Rfは炭素数1~6のパーフルオロアルキル基)で表されるものを使用することが好ましい。
 TFE/パーフルオロアリルエーテル共重合体の好ましい単量体組成(モル%)は、TFE:パーフルオロアリルエーテル=(90~99.7):(0.3~10)、より好ましくは(97~99):(1~3)である。上記パーフルオロアリルエーテルとしては、式:CF=CFCFORf(式中、Rfは炭素数1~6のパーフルオロアルキル基)で表されるものを使用することが好ましい。
 上記TFE/パーフルオロ(アルキルビニルエーテル)共重合体およびTFE/パーフルオロアリルエーテル共重合体の重合において、重合体(I)は、本開示の製造方法における使用範囲で用いることができるが、通常、水性媒体100質量%に対して0.0001~10質量%の量で添加することが好ましい。
 上記TFE/パーフルオロ(アルキルビニルエーテル)共重合体およびTFE/パーフルオロアリルエーテル共重合体の重合において、連鎖移動剤としてシクロヘキサン、メタノール、エタノール、プロパノール、プロパン、ブタン、ペンタン、ヘキサン、四塩化炭素、クロロホルム、塩化メチレン、塩化メチル、メタン、エタン等を使用することが好ましく、pH緩衝剤として、炭酸アンモニウム、燐酸水素二ナトリウム等を使用することが好ましい。
 本開示の製造方法で得られるPFA、MFA等のTFE/パーフルオロ(アルキルビニルエーテル)共重合体およびTFE/パーフルオロアリルエーテル共重合体の水性分散液を必要に応じて濃縮等の後処理した後、乾燥、粉末にし、次いで溶融押出することによってペレットにしても良い。上記の水性分散液中の水性媒体は、必要に応じて非イオン性界面活性剤などの添加剤を含むものであってもよいが、水溶性アルコール等の水溶性有機溶媒を含むものであってもよいし、水溶性有機溶媒を含まないものであってもよい。
 また、溶融押出は、一般にペレット化可能な押出条件であれば、押出条件を適宜設定して行うことができる。
 上記の共重合体は、その耐熱性を向上させ、さらに成形品の薬液透過抑制効果をさらに強化する目的でフッ素ガス処理を施すことが好ましい。
 フッ素ガス処理は、フッ素ガスを薬液透過抑制剤に接触させることにより行なう。しかし、フッ素との反応は非常に発熱性であるから、フッ素を窒素のような不活性ガスで希釈することが好適である。フッ素ガス/不活性ガス混合物中のフッ素量は1~100質量%、好ましくは10~25質量%である。処理温度は150~250℃、好ましくは200~250℃であり、フッ素ガス処理時間は3~16時間、好ましくは4~12時間である。フッ素ガス処理のガス圧は1~10気圧の範囲であるが、好ましくは大気圧が使用される。反応器を大気圧で用いる場合、フッ素ガス/不活性ガス混合物を反応器中へ連続的に通過させればよい。その結果、上記共重合体の不安定な末端は-CF末端に転化され、熱的に安定となる。
 上記共重合体およびその組成物の成形方法としては、従来のPFAと同様に圧縮成形、トランスファ成形、押出成形、射出成形、ブロー成形などの成形法が適用できる。
 このような成形法により所望の成形品を得ることができるが、成形品の例をあげると、シート、フィルム、パッキン、丸棒、角棒、パイプ、チューブ、丸槽、角槽、タンク、ウェハーキャリア、ウェハーボックス、ビーカー、フィルターハウジング、流量計、ポンプ、バルブ、コック、コネクター、ナット、電線、耐熱電線などがある。
 これらのうち、特に薬液の不透過性が要求される各種の化学反応装置、半導体製造装置、さらには酸系またはアルカリ系の薬液供給装置などに使用するチューブ、パイプ、タンク、コネクターなどに好適に使用できる。
 更に、PFA、MFA等のTFE/パーフルオロ(アルキルビニルエーテル)共重合体およびTFE/パーフルオロアリルエーテル共重合体の水性分散液に、非イオン性界面活性剤を適宜加え、必要に応じて、ポリエーテルスルホン、ポリアミドイミドおよび/またはポリイミド、並びに金属粉末を、有機溶媒中に溶解または分散させることで、プライマー組成物を得ることができる。このプライマー組成物を金属表面に施し、かくして形成されたプライマー層上に溶融加工性フッ素樹脂組成物を施し、プライマー層と共に溶融加工性フッ素樹脂組成物層を焼成することからなる金属表面へのフッ素樹脂の被覆方法にも用いることができる。
 (3)本開示の製造方法において、ETFEの重合は、重合温度10~100℃、重合圧力0.3~2.0MPaGで行うことが好ましい。
 ETFEの好ましい単量体組成(モル%)は、TFE:エチレン=(50~99):(50~1)である。上記ETFEとしては、また、更に第3モノマーを用い、全単量体の0~20質量%である範囲内で変性させたものであってもよい。好ましくは、TFE:エチレン:第3モノマー=(63~94):(27~2):(1~10)である。上記第3モノマーとしては、パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタ-1-エン、2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(CH=CFCFCFCFH)、2-トリフルオロメチル-3,3,3-トリフルオロプロペン((CFC=CH)が好ましい。
 上記ETFEの重合において、重合体(I)は、本開示の製造方法における使用範囲で用いることができるが、通常、水性媒体100質量%に対して0.0001~10質量%の量で添加する。
 上記ETFEの重合において、連鎖移動剤として、シクロヘキサン、メタノール、エタノール、プロパノール、エタン、プロパン、ブタン、ペンタン、ヘキサン、四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等を使用することが好ましい。
 本開示の製造方法で得られるETFEの水性分散液を必要に応じて濃縮等の後処理した後、乾燥、粉末にし、次いで溶融押出することによってペレットにしても良い。上記の水性分散液中の水性媒体は、必要に応じて非イオン性界面活性剤などの添加剤を含むものであってもよいが、水溶性アルコール等の水溶性有機溶媒を含むものであってもよいし、水溶性有機溶媒を含まないものであってもよい。
 また、溶融押出は、一般にペレット化可能な押出条件であれば、押出条件を適宜設定して行うことができる。
 上記ETFEのシートは、押出成形してシートにすることができる。すなわち、ETFE粉末、またはペレットを溶融させ、ダイから連続的に押し出し、冷却して得られるシート状の成形品にすることができる。ETFEには添加剤が添加されていてもよい。
 添加剤としては、公知のものを適宜用いることができる。具体例としては、紫外線吸収剤、光安定剤、酸化防止剤、赤外線吸収剤、難燃剤、難燃フィラー、有機顔料、無機顔料、染料等が挙げられる。耐候性が優れる点からは無機系添加剤が好ましい。
 上記ETFEのシートにおける添加剤の含有量は、ETFEのシートの総質量に対し、20質量%以下が好ましく、10質量%以下が特に好ましい。
 上記ETFEのシートは、機械的強度および外観に優れることから、膜構造建築物(運動施設、園芸施設、アトリウム等)用の膜材(屋根材、天井材、外壁材、内壁材、被覆材等)として好適である。 
 また、膜構造建築物の膜材だけではなく、たとえば、屋外使用板材(防音壁、防風フェンス、越波柵、車庫天蓋、ショッピングモール、歩行路壁、屋根材)、ガラス飛散防止フィルム、耐熱・耐水シート、建材等(テント倉庫のテント材、日よけ用膜材、明かり取り用の部分屋根材、ガラスに替わる窓材、防炎仕切り用膜材、カーテン、外壁補強、防水膜、防煙膜、不燃透明仕切り、道路補強、インテリア(照明、壁面、ブランド等)、エクステリア(テント、看板等)等)、生活レジャー用品(釣りざお、ラケット、ゴルフクラブ、映写幕等)、自動車用材料(幌、制振材、ボディ等)、航空機材料、船舶材料、家電外装、タンク、容器内壁、フィルタ、工事用膜材、電子材料(プリント基板、配線基板、絶縁膜、離型膜等)、太陽電池モジュールの表面材料、太陽熱発電用のミラー保護材、ソーラー温水器の表面材等に有用である。
 (4)本開示の製造方法を使用して、電解質ポリマー前駆体を製造することもできる。本開示の製造方法において、電解質ポリマー前駆体の重合は、重合温度10~100℃、重合圧力0.1~2.0MPaGで行うことが好ましい。電解質ポリマー前駆体とは、下記に示すようなビニルエーテルモノマーからなり、加水分解処理を経てイオン交換性ポリマーに変換しうるものである。
 電解質ポリマー前駆体に用いられるビニルエーテルモノマーとしては、
   一般式(150):CF=CF-O-(CFCFY151-O)-(CFY152-A151
(式中、Y151は、フッ素原子、塩素原子、-SOF基又はパーフルオロアルキル基を表す。パーフルオロアルキル基は、エーテル性の酸素及び-SOF基を含んでもよい。nは、0~3の整数を表す。n個のY151は、同一であってもよいし異なっていてもよい。Y152は、フッ素原子、塩素原子又は-SOF基を表す。mは、1~5の整数を表す。m個のY152は、同一であってもよいし異なっていてもよい。A151は、-SO151、-COZ151又は-POZ152153を表す。X151は、F、Cl、Br、I、-OR151又は-NR152153を表す。Z151、Z152及びZ153は、同一又は異なって、-NR154155又は-OR156を表す。R151、R152、R153、R154、R155及びR156は、同一又は異なって、H、アンモニウム、アルカリ金属、フッ素原子を含んでも良いアルキル基、アリール基、若しくはスルホニル含有基を表す。)で表されるフルオロモノマーを挙げることができる。電解質ポリマー前駆体の好ましい単量体組成(モル%)は、TFE:ビニルエーテル=(50~99):(50~1)であり、より好ましくは、TFE:ビニルエーテル=(50~93):(50~7)である。
 上記電解質ポリマー前駆体は、全単量体の0~20質量%である範囲内で第3モノマーで変性させたものであってもよい。第3モノマーとしては、CTFE、フッ化ビニリデン、パーフルオロアルキルビニルエーテル、ジビニルベンゼン等の多官能モノマー等を挙げることができる。
 このようにして得られた電解質ポリマー前駆体は、例えば膜状に成形した後、アルカリ溶液による加水分解及び、鉱酸による処理を経て、高分子電解質膜として燃料電池や電解装置及びレドックスフロー電池等に使用することができる。
 また、電解質ポリマー前駆体の分散状態を維持したまま、アルカリ溶液による加水分解を施すことにより電解質ポリマー分散液を得ることができる。
 引き続き、加圧容器内で、120℃以上に加熱することで、例えば、水/アルコール混合溶媒に溶解させ、溶液状態にすることが出来る。
 このようにして得られた溶液は、例えば電極のバインダーとして使用したり、種々の添加剤と複合してキャスト製膜し、例えば防汚塗膜や有機アクチュエーター等に使用することができる。
(5)TFE/VDF共重合体
 本開示の製造方法において、TFE/VDF共重合体の重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。
 TFE/VDF共重合体の好ましい単量体組成(モル%)は、TFE:VDF=(5~90):(95~10)である。TFE/VDF共重合体としては、また、更に第3モノマーを用い、全単量体の0~50モル%である範囲内で変性させたものであってもよい。好ましくは、TFE:エチレン:第3モノマー=(30~85):(10~69.9):(0.1~10)である。
 上記第3モノマーとしては、
   式: CX1112=CX13(CX1415n1116
(式中、X11~X16は同一又は異なってH、F又はClを表し、n11は0~8の整数を表す。但し、TFE及びVDFを除く。)で示されるモノマー、又は、
   式: CX2122=CX23-O(CX2425n2126
(式中、X21~X26は同一又は異なってH、F又はClを表し、n21は0~8の整数を表す。)で示されるモノマーが好ましい。
 また、第3モノマーはフッ素非含有エチレン性単量体でもよい。上記フッ素非含有エチレン性単量体は、耐熱性や耐薬品性を維持する点で、炭素数6以下のエチレン性単量体から選ばれることが好ましい。例えば、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル(メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等)、マレイン酸、イタコン酸、3-ブテン酸、4-ペンテン酸ビニルスルホン酸、アクリル酸、メタクリル酸等が挙げられる。
 TFE/VDF共重合体の重合において、重合体(I)は、本開示の製造方法における使用範囲で用いることができるが、通常、水性媒体100質量%に対して0.0001~5質量%の量で添加する。
 重合により得られたTFE/VDF共重合体を、アンモニア水、アンモニアガス又はアンモニアを生成しうる窒素化合物と接触させることによりアミド化処理してもよい。
 上述した方法により得たTFE/VDF共重合体は、紡糸延伸方法によりTFE/VDF共重合体繊維を得る原料として使用することも好ましい。上記紡糸延伸方法とは、TFE/VDF共重合体を溶融紡糸してから冷却固化して未延伸糸を得た後、該未延伸糸を加熱筒状体中に走行させて延伸することによりTFE/VDF共重合体繊維を得る方法である。
 上記TFE/VDF共重合体を、有機溶剤に溶解させて、上記TFE/VDF共重合体の溶液を得ることもできる。上記有機溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;更に、それらの混合溶剤等の低沸点の汎用有機溶剤を挙げることができる。上記溶液は、電池用結着剤として使用できる。
 上記TFE/VDF共重合体の水性分散液をポリオレフィン樹脂からなる多孔性基材上にコーティングし複合多孔膜として使用することも好ましい。水性分散液に無機粒子、及びまたは有機系粒子を分散させ、多孔性基材上にコーティングし複合多孔膜として使用することも好ましい。このようにして得られた複合多孔膜はリチウム二次電池のセパレーターなどの使用することができる。
 上記溶融加工性フッ素樹脂の粉末は、粉体塗料として好適に利用できる。上記溶融加工性フッ素樹脂粉末からなる粉体塗料を基材に適用すると、表面が平滑な皮膜を得ることができる。平均粒径が1μm以上100μm未満である溶融加工性フッ素樹脂粉末は、特に静電塗装に使用する粉体塗料として好適であり、平均粒径が100μm以上1000μm以下である溶融加工性フッ素樹脂粉末は、特に回転塗装又は回転成形に使用する粉体塗料として好適である。 
 上記溶融加工性フッ素樹脂粉末は、上述した本開示の製造方法で得られた溶融加工性フッ素樹脂を乾燥させて粉体化することによって粉末を得る方法により製造できる。上記溶融加工性フッ素樹脂粉末を製造するための製造方法も本開示の一つである。
(III)フッ素ゴム
 本開示の製造方法において、上記フッ素ゴムの重合は、攪拌機を備えた耐圧の反応容器に純水及び重合体(I)を仕込み、脱酸素後、モノマーを仕込み、所定の温度にし、重合開始剤を添加して、反応を開始する。反応の進行とともに圧力が低下するので、初期圧力を維持するように、追加のモノマーを連続的又は間欠的に追加供給する。所定量のモノマーを供給した時点で、供給を停止し、反応容器内のモノマーをパージし、温度を室温に戻して反応を終了する。この場合、ポリマーラテックスを連続的に反応容器より取り出すことができる。
 特に、上記フッ素ゴムとして、熱可塑性エラストマーを製造する場合、国際公開第00/01741号に開示されているように、一旦フルオロポリマー微粒子を高い上記濃度で合成してから希釈して更に重合を行うことで、通常の重合に比べて、最終的な重合速度を速くできる方法を使用することも可能である。
 上記フッ素ゴムの重合は、目的とするポリマーの物性、重合速度制御の観点から適宜条件を選択するが、重合温度は通常-20~200℃、好ましくは5~150℃、重合圧力は通常0.5~10MPaG、好ましくは1~7MPaGにて行われる。また、重合媒体中のpHは、公知の方法等により、後述するpH調整剤等を用いて、通常2.5~13に維持することが好ましい。
 上記フッ素ゴムの重合に用いるモノマーとしては、フッ化ビニリデンの他に、炭素原子と少なくとも同数のフッ素原子を有しフッ化ビニリデンと共重合し得る含フッ素エチレン性不飽和モノマーが挙げられる。上記含フッ素エチレン性不飽和モノマーとしては、トリフルオロプロペン、ペンタフルオロプロペン、へキサフルオロブテン、オクタフルオロブテンが挙げられる。なかでも、へキサフルオロプロペンは、それが重合体の結晶成長を遮断した場合に得られるエラストマーの特性のために特に好適である。上記含フッ素エチレン性不飽和モノマーとしては、また、トリフルオロエチレン、TFE及びCTFE等が挙げられるし、1種若しくは2種以上の塩素及び/又は臭素置換基をもった含フッ素モノマーを用いることもできる。パーフルオロ(アルキルビニルエーテル)、例えばパーフルオロ(メチルビニルエーテル)も用いることができる。TFE及びHFPは、フッ素ゴムを製造するのに好ましい。
 フッ素ゴムの好ましい単量体組成(質量%)は、フッ化ビニリデン:HFP:TFE=(20~70):(30~48):(0~32)である。この組成のフッ素ゴムは、良好なエラストマー特性、耐薬品性、及び、熱的安定性を示す。
 上記フッ素ゴムの重合において、重合体(I)は、本開示の製造方法における使用範囲で用いることができるが、通常、水性媒体100質量%に対して0.0001~20質量%の量で添加する。好ましくは10質量%以下であり、より好ましくは2質量%以下である。
 上記フッ素ゴムの重合において、重合開始剤としては、公知の無機ラジカル重合開始剤を使用することができる。上記無機ラジカル重合開始剤としては、従来公知の水溶性無機過酸化物、例えば、ナトリウム、カリウム及びアンモニウムの過硫酸塩、過リン酸塩、過硼酸塩、過炭素塩又は過マンガン酸塩が特に有用である。上記ラジカル重合開始剤は、更に、還元剤、例えば、ナトリウム、カリウム又はアンモニウムの亜硫酸塩、重亜硫酸塩、メタ重亜硫酸塩、ハイポ亜硫酸塩、チオ硫酸塩、亜リン酸塩若しくはハイポ亜リン酸塩により、又は、容易に酸化される金属化合物、例えば第一鉄塩、第一銅塩若しくは銀塩により、更に活性化することができる。好適な無機ラジカル重合開始剤は、過硫酸アンモニウムであり、過硫酸アンモニウムと重亜硫酸ナトリウムと共にレドックス系において使用することが、より好ましい。
 上記重合開始剤の添加濃度は、目的とするフルオロポリマーの分子量や、重合反応速度によって適宜決定されるが、モノマー全量100質量%に対して0.0001~10質量%、好ましくは0.01~5質量%の量に設定する。
 上記フッ素ゴムの重合において、連鎖移動剤としては、公知のものを使用することができるが、炭化水素、エステル、エーテル、アルコール、ケトン、塩素化合物、カーボネート等を用いることができ、熱可塑性エラストマーでは、炭化水素、エステル、エーテル、アルコール、塩素化合物、ヨウ素化合物等を用いることができる。なかでも、アセトン、イソプロピルアルコールが好ましく、熱可塑性エラストマーの重合では、イソペンタン、マロン酸ジエチル及び酢酸エチルは、反応速度が低下しにくいという観点から好ましく、I(CFI、I(CFI、ICHI等のジヨウ素化合物は、ポリマー末端のヨウ素化が可能で、反応性ポリマーとして使用できる観点から好ましい。
 上記連鎖移動剤の使用量は、供給されるモノマー全量に対して、通常0.5×10-3~5×10-3モル%、好ましくは1.0×10-3~3.5×10-3モル%であることが好ましい。
 上記フッ素ゴムの重合において、乳化安定剤としてパラフィンワックス等を好ましく用いることができ、熱可塑性エラストマーの重合では、pH調整剤として、リン酸塩、水酸化ナトリウム、水酸化カリウム等を好ましく用いることができる。
 本開示の製造方法によって得られるフッ素ゴムは、重合が終了した時点で、固形分濃度が1.0~40質量%、平均粒子径が0.03~1μm、好ましくは0.05~0.5μm、数平均分子量が1,000~2,000,000のものである。
 本開示の製造方法によって得られるフッ素ゴムは、必要に応じて、炭化水素系界面活性剤等の分散安定剤の添加、濃縮等をすることにより、ゴム成形加工に適したディスパージョンにすることができる。上記ディスパージョンは、pH調節、凝固、加熱等を行い処理される。各処理は次のように行われる。
 上記pH調節は、硝酸、硫酸、塩酸若しくはリン酸等の鉱酸、及び/又は、炭素数5以下でpK=4.2以下のカルボン酸等を加え、pHを2以下とすることからなる。
 上記凝固は、アルカリ土類金属塩を添加することにより行われる。上記アルカリ土類金属塩としては、カルシウム又はマグネシウムの硝酸塩、塩素酸塩及び酢酸塩が挙げられる。
 上記pH調節及び上記凝固は、いずれを先に行ってもよいが、先にpH調節を行うことが好ましい。
 フッ素ゴムのうち、パーフルオロゴムは、重合体(I)の存在下に、水性媒体中でパーフルオロモノマーを重合することにより、得られる。
 パーフルオロモノマーとしては、
テトラフルオロエチレン〔TFE〕、
ヘキサフルオロプロピレン〔HFP〕、
一般式:CF=CF-ORf13
(式中、Rf13は、炭素数1~8のパーフルオロアルキル基を表す。)で表されるフルオロモノマー、
一般式:CF=CFOCFORf14
(式中、Rf14は炭素数1~6の直鎖状または分岐鎖状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖状または分岐鎖状パーフルオロオキシアルキル基である)で表されるフルオロモノマー、および、
一般式:CF=CFO(CFCF(Y15)O)(CF
(式中、Y15はフッ素原子またはトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるフルオロモノマー
からなる群より選択される少なくとも1種が好ましい。
 また、パーフルオロモノマーの重合においては、パーフルオロモノマーとともに、架橋部位を与えるモノマーを重合させてもよい。
 パーフルオロエラストマーの製造方法において用いる重合体(I)は、イオン交換容量が、1.50meq/g以上であることが好ましい。重合体(I)のイオン交換容量としては、より好ましくなる順に、1.50meq/g以上、1.75meq/g以上、2.00meq/g以上、2.40meq/g以上、2.50meq/g以上、2.60meq/g以上、3.00meq/g以上、3.50meq/g以上である。イオン交換容量は、重合体(I)のイオン性基(アニオン性基)の含有量であり、重合体(I)の組成から計算により求められる。加水分解によりイオン性となる前駆体基(たとえば、-COOCH)は、イオン交換容量を決定する目的ではイオン性基と見なされない。重合体(I)のイオン交換容量はより高い方が重合体(I)のアニオン性基が多く、安定性の高い粒子が形成される上、粒子形成力が高いため単位水量当たりの粒子数が多くなり、より高い重合速度となると推測される。重合体(I)のイオン交換容量が低すぎると、重合により生じたパーフルオロエラストマーが重合槽に付着したり、十分な重合速度が得られなかったり、発生するパーフルオロエラストマー粒子の数が少なかったりする。
 重合体(I)の添加量は、水性媒体100質量%に対して、0.01~20質量%であることが好ましい。上記重合における重合体(I)の添加量(存在量)を、上記の範囲内とすることによって、パーフルオロモノマーの重合反応が円滑に進行し、パーフルオロエラストマーを効率よく製造することができる。重合体(I)の添加量が少なすぎると、十分な重合速度が得られなかったり、十分な収率が得られなかったりする。
 重合体(I)の添加量としては、一層円滑にパーフルオロモノマーの重合反応が進行することから、水性媒体100質量%に対して、より好ましくは0.1質量%以上であり、さらに好ましくは0.5質量%以上であり、特に好ましくは0.75質量%以上であり、最も好ましくは1.0質量%以上である。
 また、重合体(I)の添加量としては、添加量が多すぎると、添加量に見合った効果が得られず、経済的に不利であり、また、重合終了後の後処理が煩雑になる可能性があることから、水性媒体100質量%に対して、より好ましくは15質量%以下であり、さらに好ましくは10質量%以下であり、特に好ましくは5質量%以下である。
 重合開始剤の存在下にパーフルオロモノマーの重合を行ってもよい。重合開始剤については、上述したとおりである。重合開始剤の添加量としては、パーフルオロモノマー100質量%に対して、好ましくは0.0001~10質量%であり、より好ましくは0.01~5質量%である。上記重合における重合開始剤の添加量(存在量)を、上記の範囲内とすることによって、パーフルオロモノマーの重合反応が円滑に進行し、パーフルオロエラストマーを効率よく製造することができる。重合開始剤の添加量が少なすぎると、十分な重合速度が得られなかったり、十分な収率が得られなかったりする。
 パーフルオロモノマーの重合を、pH調整剤の存在下に行ってもよい。pH調整剤の存在下に重合を行うことにより、重合槽へのパーフルオロエラストマーの付着を一層抑制しながら、十分な重合速度で十分な数のパーフルオロエラストマー粒子を発生させることができる。pH調整剤は、重合開始前に添加してもよいし、重合開始後に添加してもよい。
 pH調整剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、リン酸ナトリウム、リン酸カリウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸アンモニウム、グルコン酸ナトリウム、グルコン酸カリウム、グルコン酸アンモニウム等を用いることができる。
 フッ素ゴムのうち、部分フッ素化ゴムは、重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合することにより、得られる。
 部分フッ素化ゴムを得るためのフルオロモノマーとしては、フッ化ビニリデン(ビニリデンフルオライド)(VdF)、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、ヨウ素含有フッ素化ビニルエーテル、一般式:CHX=CXRf(式中、XおよびXは、一方がHであり、他方がFであり、Rfは炭素数1~12の直鎖または分岐したフルオロアルキル基)で表される含フッ素単量体(2)からなる群より選択される少なくとも1種が好ましい。
 部分フッ素化ゴムの製造方法においては、フルオロモノマーとして、少なくともビニリデンフルオライドまたはテトラフルオロエチレンを重合することが好ましく、ビニリデンフルオライドを重合することがより好ましい。
 重合体(I)の添加量としては、水性媒体100質量%に対して、0.01~20質量%であることが好ましい。上記重合における重合体(I)の添加量(存在量)を、上記の範囲内とすることによって、フルオロモノマーの重合反応が円滑に進行し、部分フッ素化ゴムを効率よく製造することができる。重合体(I)の添加量が少なすぎると、十分な重合速度が得られなかったり、十分な収率が得られなかったりする。
 重合体(I)の添加量としては、一層円滑にフルオロモノマーの重合反応が進行することから、水性媒体100質量%に対して、より好ましくは0.0001質量%以上であり、さらに好ましくは0.0005質量%以上であり、尚さらに好ましくは0.001質量%以上であり、特に好ましくは0.005質量%以上であり、最も好ましくは0.01質量%以上である。
 また、重合体(I)の添加量としては、添加量が多すぎると、添加量に見合った効果が得られず、経済的に不利であることから、水性媒体100質量%に対して、より好ましくは2質量%以下であり、さらに好ましくは1質量%以下であり、特に好ましくは0.5質量%以下である。
 重合開始剤の存在下にフルオロモノマーの重合を行ってもよい。重合開始剤については、上述したとおりである。重合開始剤の量は、単量体の種類、目的とする部分フッ素化ゴムの分子量、反応速度によって適宜決定される。重合開始剤の量は、目的とする部分フッ素化ゴムの分子量や、重合反応速度によって適宜決定されるが、単量体全量100質量%に対して、好ましくは0.00001~10質量%であり、より好ましくは0.0001~1質量%である。
 各操作の後、フッ素ゴムと同容量の水で洗浄を行い、フッ素ゴム内に存在する少量の緩衝液や塩等の不純物を除去し、乾燥を行う。乾燥は、通常、乾燥炉内で、高温下、空気を循環させながら、約70~200℃で行われる。
 上記フッ素ゴムとしては、部分フッ素化ゴムであってもよいし、パーフルオロゴムであってもよい。
 部分フッ素化ゴムは、主鎖にメチレン基(-CH-)を含むことが好ましい。主鎖に-CH-を含む部分フッ素化ゴムとしては、-CH-で表される化学構造を含むものであれば特に限定されず、例えば、-CH-CF-、-CH-CH(CH)-、-CH-CH-等の構造を含む部分フッ素化ゴムが挙げられ、これらは、例えば、ビニリデンフルオライド、プロピレン、エチレン等を重合することにより、部分フッ素化ゴムの主鎖に導入することができる。部分フッ素化ゴムにおけるテトラフルオロエチレン単位の含有量(部分フッ素化ゴムの全重合単位に対するテトラフルオロエチレンに基づく重合単位の含有量)は、40モル%未満であってよい。
 部分フッ素化ゴムとしては、たとえばテトラフルオロエチレン(TFE)、フッ化ビニリデン(VdF)および一般式:CF=CF-Rf(式中、Rfは-CFまたは-ORf(Rfは炭素数1~5のパーフルオロアルキル基))で表されるパーフルオロエチレン性不飽和化合物(たとえばヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)など)からなる群より選ばれる少なくとも1種の単量体に基づく単量体単位を含有することが好ましい。部分フッ素化ゴムとしては、なかでも、VdF単位またはTFE単位を含有することが好ましい。
 部分フッ素化ゴムとしては、ビニリデンフルオライド(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン(Pr)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム等が挙げられる。なかでも、ビニリデンフルオライド系フッ素ゴム及びテトラフルオロエチレン/プロピレン系フッ素ゴムからなる群より選択される少なくとも1種であることが好ましい。
 上記ビニリデンフルオライド系フッ素ゴムは、ビニリデンフルオライド45~85モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー55~15モル%とからなる共重合体であることが好ましい。より好ましくは、ビニリデンフルオライド50~80モル%と、ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマー50~20モル%とからなる共重合体である。
 上記ビニリデンフルオライドと共重合可能な少なくとも1種の他のモノマーとしては、テトラフルオロエチレン〔TFE〕、ヘキサフルオロプロピレン〔HFP〕、フルオロアルキルビニルエーテル、クロロトリフルオロエチレン〔CTFE〕、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、一般式(100):CHX101=CX102Rf101(式中、X101およびX102は、一方がHであり、他方がFであり、Rf101は炭素数1~12の直鎖又は分岐したフルオロアルキル基)で表されるフルオロモノマー、一般式(170):CH=CH-(CF-X171(式中、X171はH又はFであり、nは3~10の整数である。)で表されるフルオロモノマー、架橋部位を与えるモノマー等のモノマー;エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化モノマーが挙げられる。これらをそれぞれ単独で、又は、任意に組み合わせて用いることができる。これらのなかでも、TFE、HFP、フルオロアルキルビニルエーテル及びCTFEからなる群より選択される少なくとも1種を用いることが好ましい。フルオロアルキルビニルエーテルとしては、一般式(160)で表されるフルオロモノマーが好ましい。
 ビニリデンフルオライド系フッ素ゴムの具体例としては、VdF/HFP系ゴム、VdF/HFP/TFE系ゴム、VdF/CTFE系ゴム、VdF/CTFE/TFE系ゴム、VDF/一般式(100)で表されるフルオロモノマー系ゴム、VDF/一般式(100)で表されるフルオロモノマー/TFE系ゴム、VDF/パーフルオロ(メチルビニルエーテル)〔PMVE〕系ゴム、VDF/PMVE/TFE系ゴム、VDF/PMVE/TFE/HFP系ゴム等が挙げられる。VDF/一般式(100)で表されるフルオロモノマー系ゴムとしては、VDF/CH=CFCF系ゴムが好ましく、VDF/一般式(100)で表されるフルオロモノマー/TFE系ゴムとしては、VDF/TFE/CH=CFCF系ゴムが好ましい。
 ビニリデンフルオライド系フッ素ゴムとしては、VdF/HFP共重合体またはVdF/HFP/TFE共重合体がより好ましく、VdF/HFP/TFEの組成が(32~85)/(10~34)/(0~40)(モル%)であるものが特に好ましい。VdF/HFP/TFEの組成としては、(32~85)/(15~34)/(0~34)(モル%)がより好ましく、(47~81)/(17~32)/(0~26)(モル%)が更に好ましい。
 例えば、上記VdF/HFP共重合体において、VdF/HFPの組成としては、好ましくは(45~85)/(15~55)(モル%)であり、より好ましくは(50~83)/(17~50)(モル%)であり、さらに好ましくは(55~81)/(19~45)(モル%)であり、特に好ましくは(60~80)/(20~40)(モル%)である。
 上記VDF/CH=CFCF系ゴムは、VDF40~99.5モル%、及び、CH=CFCF0.5~60モル%からなる共重合体であることが好ましく、VDF50~85モル%、及び、CH=CFCF20~50モル%からなる共重合体であることがより好ましい。
 上記テトラフルオロエチレン/プロピレン系フッ素ゴムは、テトラフルオロエチレン45~70モル%、プロピレン55~30モル%、及び、架橋部位を与えるフルオロモノマー0~5モル%からなる共重合体であることが好ましい。
 上記フッ素ゴムは、パーフルオロゴムであってもよい。上記パーフルオロゴムとしては、TFEを含むパーフルオロゴム、例えばTFE/一般式(160)、(130)又は(140)で表されるフルオロモノマー共重合体及びTFE/一般式(160)、(130)又は(140)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体からなる群より選択される少なくとも1種が好ましい。
 その組成は、TFE/PMVE共重合体の場合、好ましくは、45~90/10~55(モル%)であり、より好ましくは、55~80/20~45であり、更に好ましくは、55~70/30~45である。
 TFE/PMVE/架橋部位を与えるモノマー共重合体の場合、好ましくは、45~89.9/10~54.9/0.01~4(モル%)であり、より好ましくは、55~77.9/20~49.9/0.1~3.5であり、更に好ましくは、55~69.8/30~44.8/0.2~3である。
 TFE/炭素数が4~12の一般式(160)、(130)又は(140)で表されるフルオロモノマー共重合体の場合、好ましくは、50~90/10~50(モル%)であり、より好ましくは、60~88/12~40であり、更に好ましくは、65~85/15~35である。
 TFE/炭素数が4~12の一般式(160)、(130)又は(140)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体の場合、好ましくは、50~89.9/10~49.9/0.01~4(モル%)であり、より好ましくは、60~87.9/12~39.9/0.1~3.5であり、更に好ましくは、65~84.8/15~34.8/0.2~3である。
 これらの組成の範囲を外れると、ゴム弾性体としての性質が失われ、樹脂に近い性質となる傾向がある。
 上記パーフルオロゴムとしては、TFE/一般式(140)で表されるフルオロモノマー/架橋部位を与えるフルオロモノマー共重合体、TFE/一般式(140)で表されるパーフルオロビニルエーテル共重合体、TFE/一般式(160)で表されるフルオロモノマー共重合体、及び、TFE/一般式(160)で表されるフルオロモノマー/架橋部位を与えるモノマー共重合体からなる群より選択される少なくとも1種であることが好ましい。
 上記パーフルオロゴムとしては、国際公開第97/24381号、特公昭61-57324号公報、特公平4-81608号公報、特公平5-13961号公報等に記載されているパーフルオロゴムも挙げることができる。
 上記フッ素ゴムは、高温における圧縮永久歪みに優れる点から、ガラス転移温度が-70℃以上であることが好ましく、-60℃以上であることがより好ましく、-50℃以上であることが更に好ましい。また、耐寒性が良好であるという点から、5℃以下であることが好ましく、0℃以下であることがより好ましく、-3℃以下であることが更に好ましい。
 上記ガラス転移温度は、示差走査熱量計(メトラー・トレド社製、DSC822e)を用い、試料10mgを10℃/minで昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との2つの交点の中点を示す温度として求めることができる。
 上記フッ素ゴムは、耐熱性が良好な点で、170℃におけるムーニー粘度ML(1+20)が30以上であることが好ましく、40以上であることがより好ましく、50以上であることが更に好ましい。また、加工性が良好な点で、150以下であることが好ましく、120以下であることがより好ましく、110以下であることが更に好ましい。
 上記フッ素ゴムは、耐熱性が良好な点で、140℃におけるムーニー粘度ML(1+20)が30以上であることが好ましく、40以上であることがより好ましく、50以上であることが更に好ましい。また、加工性が良好な点で、180以下であることが好ましく、150以下であることがより好ましく、110以下であることが更に好ましい。
 上記フッ素ゴムは、耐熱性が良好な点で、100℃におけるムーニー粘度ML(1+10)が10以上であることが好ましく、20以上であることがより好ましく、30以上であることが更に好ましい。また、加工性が良好な点で、120以下であることが好ましく、100以下であることがより好ましく、80以下であることが更に好ましい。
 上記ムーニー粘度は、ALPHA TECHNOLOGIES社製 ムーニー粘度計MV2000E型を用いて、170℃又は140℃、100℃において、JIS K6300に従い測定することができる。
 本開示の製造方法により得られるフッ素ゴムは、上記重合から得られるものであれば何れの形態にあってもよく、重合上がりの水性分散液であってもよいし、上記重合上がりの水性分散液から従来公知の方法で凝析、乾燥等することにより得られるガム(gum)又はクラム(crumb)として使用することもできる。本開示の製造方法で用いる重合体(I)は水性分散液の安定性を向上させることが可能であり、上記のように重合途中で有機パーオキサイドのような開始剤、ヨウ素または臭素化合物のような連鎖移動剤など難水溶性物質を添加する重合方法においてより好ましく使用される。
 上記ガム(gum)は、フッ素ゴムからなる粒状の小さな塊であり、上記クラム(crumb)とは、フッ素ゴムが、室温でガムとして小粒状の形を保つことができず互いに融着した結果、不定形な塊状の形態となったものである。
 上記フッ素ゴムは、硬化剤、充填剤等を加え、フッ素ゴム組成物に加工することができる。
 上記硬化剤としては、ポリオール、ポリアミン、有機過酸化物、有機スズ、ビス(アミノフェノール)テトラアミン、又は、ビス(チオアミノフェノール)等が挙げられる。
 上記フッ素ゴム組成物は、上述のフッ素ゴムからなるものであるので、乳化剤を実質的に含有せず、成形加工時に架橋し易い点で優れている。
 上記フッ素ゴムを用いて成形加工することによりフッ素ゴム成形体を得ることができる。上記成形加工する方法としては、特に限定されず、上述の硬化剤を用いて行う公知の方法が挙げられる。成形方法としては、圧縮成形法、注入成形法、インジェクション成形法、押出し成形法、ロートキュアーによる成形法などが例示できるが、これらに限定されるものではない。
 フッ素ゴム組成物が硬化剤(架橋剤)を含有する場合、フッ素ゴム組成物を架橋することにより、フッ素ゴム成形体として、架橋物を得ることができる。架橋方法としては、スチーム架橋法、加熱による架橋法、放射線架橋法等が採用でき、なかでも、スチーム架橋法、加熱による架橋法が好ましい。限定されない具体的な架橋条件としては、通常、140~250℃の温度範囲、1分間~24時間の架橋時間内で、架橋促進剤、架橋剤および受酸剤などの種類により適宜決めればよい。
 上記フッ素ゴム成形体は、シール、ガスケット、電線被覆、ホース、チューブ、積層体、アクセサリー等として好適であり、特に半導体製造装置用部品、自動車部品、等に好適である。
 本開示の製造方法において、フルオロポリマーの凝析、洗浄、乾燥などを行った場合は、排水やオフガスが発生する。上記凝析、又は、洗浄により発生した排水、及び/又は、乾燥により発生するオフガスから、上記重合体(I)、上記重合体(I)から副生する上記重合体(I)の分解物や副生成物、残留モノマー等を回収し、精製することにより、上記重合体(I)、上記重合体(I)から副生する上記重合体(I)の分解物や副生成物、残留モノマー等を再利用してもよい。上記回収、及び、精製を行う方法としては特に限定されるものではないが、公知の方法により行うことができる。例えば、特表2011-520020号公報に記載の方法により、米国特許出願公開第2007/15937号明細書、米国特許出願公開第2007/25902号明細書、米国特許出願公開第2007/27251号明細書に記載の方法が挙げられ、具体的には以下の方法が挙げられる。
 上記排水から重合体(I)、上記重合体(I)から副生する上記重合体(I)の分解物や副生成物、残留モノマー等を回収する方法としては、排水にイオン交換樹脂、活性炭、シリカゲル、クレイ、ゼオライト等の吸着粒子を接触させて上記重合体(I)等を吸着させた後、排水と吸着粒子とを分離する方法が挙げられる。上記重合体(I)等を吸着した吸着粒子を焼却すれば、上記重合体(I)等の環境への放出を防ぐことができる。
 また、上記重合体(I)等を吸着したイオン交換樹脂粒子から公知の方法により上記重合体(I)等を脱離・溶出させて回収することもできる。例えば、イオン交換樹脂粒子が陰イオン交換樹脂粒子である場合、鉱酸を陰イオン交換樹脂に接触させるにより重合体(I)等を溶出させることができる。続いて得られる溶出液に水溶性有機溶媒を添加すると通常2相に分離するので、重合体(I)等を含む下相を回収して中和することにより、重合体(I)等を回収できる。上記水溶性有機溶媒としては、アルコール、ケトン、エーテル等の極性溶媒が挙げられる。
 上記重合体(I)等をイオン交換樹脂粒子から回収する別の方法としては、アンモニウム塩と水溶性有機溶媒を使用する方法、アルコールと所望により酸とを使用する方法が挙げられる。後者の方法では重合体(I)等のエステル誘導体が生成するので、蒸留することによりアルコールと容易に分離できる。
 上記排水にフルオロポリマー粒子や他の固形分が含まれる場合、排水と吸着粒子とを接触させる前にこれらを除去しておくことが好ましい。フルオロポリマー粒子や他の固形分を除去する方法としては、アルミニウム塩等を添加することによりこれらを沈殿させた後、排水と沈殿物とを分離させる方法、電気凝固法等が挙げられる。また、機械的な方法により除去してもよく、例えば、交差流ろ過法、深層ろ過法、プレコートろ過法が挙げられる。
 上記排水中の未凝集の上記フルオロポリマー濃度は、生産性の観点から低いことが好ましく、0.4質量%未満がより好ましく、0.3質量%未満が特に好ましい。
 上記オフガスから重合体(I)等を回収する方法としては、スクラバーを使用して、脱イオン水、アルカリ水溶液、グリコールエーテル溶媒等の有機溶媒等と接触させて、重合体(I)等を含むスクラバー溶液を得る方法が挙げられる。アルカリ水溶液として高濃度アルカリ水溶液を使用すると、重合体(I)等が相分離した状態でスクラバー溶液が回収できるので、重合体(I)等の回収と再利用が容易である。アルカリ化合物としてはアルカリ金属水酸化物、第4級アンモニウム塩等が挙げられる。
 上記重合体(I)等を含むスクラバー溶液を逆浸透膜等を使用して濃縮してもよい。濃縮したスクラバー溶液は通常フッ素イオンを含むが、濃縮後更にアルミナを添加して該フッ素イオンを除去することにより、上記重合体(I)等の再利用を容易にすることもできる。また、スクラバー溶液に吸着粒子を接触させて重合体(I)等を吸着させて、上述した方法により重合体(I)等を回収してもよい。
 上記のいずれかの方法により回収した重合体(I)等は、フルオロポリマーの製造に再利用することができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)の測定方法>
 重合体(重合体D,E,Fなど)のMw、Mnは、ゲルパーミエーションクロマトグラフィ(GPC)により、東ソー社製のGPC HLC-8020を用い、Shodex社製のカラム(GPC KF-801を1本、GPC KF-802を1本、GPC KF-806Mを2本直列に接続)を使用し、溶媒としてテトラハイドロフラン(THF)を流速1ml/分で流して測定し、単分散ポリスチレンを標準として分子量を算出した。
<重合体(重合体D,E,Fなど)中の単量体(単量体D,E,Fなど)のダイマーおよびトリマーの含有量の測定方法>
(1)水溶液からの抽出
 重合体の水溶液の固形分を測定し、重合体の固形分0.2gに相当する量の水溶液を秤量した。その後、水溶液中に含まれている水と合わせ、水とメタノールとの体積比が50/50(体積%)となるように、水とメタノールを加え、重合体ならびに水およびメタノールを含有する混合液を得た。その後、得られた混合液を用いて、4000rpmで1時間遠心分離を行い、重合体を含む上澄み液を抽出液として回収した。
 液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用いて、抽出液の分析を行い、抽出液のクロマトグラムを得た。
 抽出液に含まれる単量体のダイマーおよびトリマーの含有量は、抽出液のクロマトグラムに現れる単量体のダイマーおよびトリマーに由来するピークの積分値を、検量線を用いて、単量体のダイマーおよびトリマーの含有量に換算することにより求めた。
(2)単量体の検量線
 1ng/mL~100ng/mLの含有量既知の単量体のメタノール標準溶液を5水準調製し、液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用いて測定を行った。それぞれの単量体の含有量と、その含有量に対するピークの積分値との関係をプロットし、各単量体の検量線(一次近似)を作成した。次に、各単量体の検量線(一次近似)を用いて、各単量体のダイマーおよびトリマーの検量線を作成した。
測定機器構成とLC-MS測定条件
Figure JPOXMLDOC01-appb-T000032
 
 この測定機器構成における定量限界は1ng/mLである。
<平均一次粒子径>
 動的光散乱法により測定した。フルオロポリマー固形分濃度約1.0質量%に調整したフルオロポリマー水性分散液を作成し、ELSZ-1000S(大塚電子社製)を使用して25℃、積算70回にて測定した。溶媒(水)の屈折率は1.3328、溶媒(水)の粘度は0.8878mPa・sとした。
<重合体(重合体Dなど)の濃度>
 重合体の水溶液約1gを、減圧乾燥機中で60℃、60分の条件で乾燥し、加熱残分の質量を測定し、重合体水溶液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
<PTFEを含む水性分散液の固形分濃度>
 PTFEを含む水性分散液1gを、送風乾燥機中で150℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
<ピーク温度>
 300℃以上の温度に加熱した履歴のないPTFEの粉末約10mgを精秤し、専用のアルミパンに収納して、TG/DTA(示差熱熱重量同時測定装置)を用いて測定した。ピーク温度は、アルミパンを大気雰囲気下、25℃から600℃までの温度範囲を10℃/分の条件で昇温させることにより示差熱(DTA)曲線を得て、得られた示差熱(DTA)曲線における極大値に対応する温度とした。
<変性モノマー単位の含有量>
 HFP単位の含有量は、PTFE粉末をプレス成形することで薄膜ディスクを作成し、薄膜ディスクをFT-IR測定した赤外線吸光度から、982cm-1における吸光度/935cm-1における吸光度の比に0.3を乗じて求めた。
 PMVE単位の含有量は、固体19F-MAS NMR測定により得られたスペクトルから、下記式を用いて求めた。
   X=(4B/3)/(A+(B/3))×100
   X:PMVE単位の含有量(mol%)
   A:-120ppmのシグナルの積分値
   B:-52ppmのCFシグナルの積分値
 ケミカルシフト値はPTFEの主鎖由来のシグナルのピークトップを-120ppmとした際のものを用いた。
<重合体D、Hの含有量>
 PTFE粉末中に含まれる重合体D、Hの含有量は、固体19F-MAS NMR測定により得られたスペクトルから、下記式を用いて求めた。
   Y=(4B/(5A+3B))×100
   Y:重合体D、Hの含有量(mol%)
   A:-120ppmのシグナルの積分値
   B:-83ppmのCF及びCFシグナルの積分値の合計
 ケミカルシフト値はPTFEの主鎖由来のシグナルのピークトップを-120ppmとした際のものを用いた。
 別途、フーリエ変換赤外分光光度計(FT-IR)でパーフロエラストマーの組成を測定し、上記式より得られたYの値との差分を取ることで、重合体Dの含有量を求めた。
<重合体E、F、I.Jの含有量>
 PTFE粉末中に含まれる重合体E、F、I、Jの含有量は、固体19F-MAS NMR測定により得られたスペクトルから求めた。
<標準比重(SSG)>
 ASTM D4895-89に準拠して成形されたサンプルを用い、ASTM D 792に準拠した水置換法により測定した。
<アスペクト比>
 固形分濃度が約1質量%となるように希釈したPTFE水性分散液を走査電子顕微鏡(SEM)で観察し、無作為に抽出した400個以上の粒子について画像処理を行い、その長径と短径の比の平均より求めた。
<PTFEの粒子数>
 粒子数は、上記の方法で測定した平均一次粒子径を直径とした球状粒子とし、球状粒子の比重を2.28とすると、ポリマー固形分濃度から計算することができる。一次粒子径をAnm、ポリマー固形分濃度をB質量%と置くと、PTFEの粒子の数Xは、次の式にて計算できる。
   X=((B/100)/(1-B/100))/(4/3×3.14×((A/2)×10-7×2.28)
<アスペクト比>
 固形分濃度が約1質量%となるように希釈した水性分散液を走査電子顕微鏡(SEM)で観察し、無作為に抽出した400個以上の粒子について画像処理を行い、その長径と短径の比の平均より求めた。
<溶融粘度>
 ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2Φ-8Lのダイを用い、予め340℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定を行った。
<パーフルオロエラストマーの組成>
 19F-NMR(固体NMR)およびフーリエ変換赤外分光光度計(FT-IR)により測定した。
<パーフルオロエラストマーのガラス転移温度>
 ガラス転移温度は、示差走査熱量計(メトラー・トレド社製、DSC822e)を用い、試料10mgを10℃/minで昇温することによりDSC曲線を得て、JIS K6240に規定される微分曲線のピークトップ温度をガラス転移温度とした。
<重合速度>
 下記式により算出した。
   重合速度={水性分散液重量×固形分濃度/100}/{(重合に使用した純水量+重合に使用した重合体(I)の水溶液に含まれる水の量)×重合時間}
式中の各量の単位は、下記の通りである。
   水性分散液重量:g
   固形分濃度:質量%
   重合に使用した純水量:kg
   重合に使用した重合体(I)の水溶液に含まれる水の量:kg
   重合時間:時間
   重合速度:g/(時間×kg)
<水性分散液中のパーフルオロエラストマー粒子数>
 下記式により算出した。
Figure JPOXMLDOC01-appb-M000033
 
 式中、ポリマー粒子の個数(パーフルオロエラストマー粒子の個数)は水1ccあたりであり、比重は、合成されるパーフルオロエラストマーの比重の実測値を用いた。
<パーフルオロエラストマーの比重>
 自動比重計DMA-220H(新光電子社製)を用いて測定した。
<反応器内の酸素濃度>
 反応器に接続された排ガスラインから排出されるガスについて、低濃度酸素分析計(商品名「PS-820-L」、飯島電子工業社製)を用いて測定および分析することにより、重合中の反応器内の酸素濃度を求めた。
1.ポリテトラフルオロエチレン(PTFE)の製造
 以下では、フルオロポリマーとして、PTFEを製造した実施例を示す。
実施例1
 CH=CFCFOCF(CF)COOHで表される単量体D220g、水513g、過硫酸アンモニウム(APS)(単量体Dに対して0.5mol%)を反応器に加え、窒素雰囲気下にて60℃で24時間加熱撹拌し、CH=CFCFOCF(CF)COOHの単独重合体である重合体Dを含む重合体D水溶液D-1を得た。得られた重合体D水溶液D-1のGPC分析した結果、重合体Dは、Mw18万、Mn8.6万、ダイマー、及びトリマーの含有量が、重合体Dに対して2.0質量%であった。
 得られた重合体D水溶液D-1に水を加えて、重合体Dの濃度を5.0質量%に調整したのちに、限外ろ過膜(分画分子量50000Da、ポリエチレン製)に、30℃で、0.1MPaの水圧で接触させ限外濾過を実施した。適宜注水を行いながら最終的に水溶液に対して7倍量の水の濾過液が溶出するまで限外濾過を継続し、重合体D水溶液D-2を得た。得られた重合体D水溶液D-2をGPC分析した結果、重合体Dは、Mw18万、Mn14万、ダイマー、及びトリマーの含有量が、重合体Dに対して1質量ppm未満であった。得られた重合体D水溶液D-2の濃度は、5.0質量%であった。
 内容量6Lの撹拌機付きSUS製反応器に、3457gの脱イオン水、180gのパラフィンワックス、107.4gの重合体D水溶液D-2及び、1.1gの1.0質量%濃度のイソプロパノール水溶液を入れた。アンモニア水を加えてpHを9.1に調整した。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFEでパージして反応器内の酸素を除き、内容物を攪拌した。反応器中に0.54gのPMVEを加えた後、0.73MPaGの圧力となるまでTFEを加えた。20gの脱イオン水に溶解した17.9mgの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。反応器にTFEを加えて圧力を0.78MPaG一定となるように保った。反応で消費したTFEが約180gに達した時点でTFEの供給と撹拌を停止した。続いて反応器の圧力が0.02MPaGに達するまで反応器内のガスをゆっくりと放出した。その後、反応器の圧力が0.78MPaGになるまでTFEを供給し、再び撹拌を開始して引き続き反応を行った。反応で消費したTFEが約540gに達した時点で20gの脱イオン水に溶解した14.3mgのハイドロキノンを反応器に注入し、引き続き反応を行った。反応で消費したTFEが約1200gに達した時点でTFEの供給を止め、撹拌を停止して反応を終了した。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
 得られたPTFE水性分散液の固形分濃度は24.5質量%であり、平均一次粒子径は372nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を150℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表2に示す。
実施例2
 CF=CFOCFCFCOOHで表される単量体E10g、水30g、APS(単量体Eに対して6.0mol%)を反応器に加え、窒素雰囲気下にて80℃で23時間加熱撹拌し、CF=CFOCFCFCOOHの単独重合体である重合体Eを含む重合体E水溶液E-1を得た。得られた重合体E水溶液E-1のGPC分析した結果、重合体Eは、Mw0.7万、Mn0.5万であった。
 得られた重合体E水溶液E-1に水を加えて、透析膜(分画分子量35000Da、ポリエチレン製)に、30℃で接触させ濾過を実施し、重合体E水溶液E-2を得た。得られた重合体E水溶液E-2をGPC分析した結果、重合体Eは、Mw0.7万、Mn0.6万、ダイマー、及びトリマーの含有量が、重合体Eに対して1質量ppm未満であった。得られた重合体E水溶液E-2の濃度は、3.6質量%であった。
 内容量1Lの撹拌機付きガラス製反応器に、515gの脱イオン水、30gのパラフィンワックス及び15.28gの重合体E水溶液E-2とアンモニア水を入れてpHを9.2に調整した。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFE単量体でパージして反応器内の酸素を除いた。その後、内容物を540rpmで攪拌した。反応器中に0.13gのPMVEを加えた後、0.73MPaGの圧力となるまでTFE単量体を加えた。
 20gの脱イオン水に溶解した2.75mgの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。TFE単量体を反応器に加えて圧力を保ち、約140gのTFE単量体が反応し終わるまで重合を続けた。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
 得られたPTFE水性分散液の固形分濃度は21.0質量%であり、平均一次粒子径は216nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させた。凝固した湿潤粉末を150℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表2に示す。
実施例3
 0.13gのPMVEを0.18gのHFPに変更し、反応で消費したTFE単量体を約70gに達した時点でTFE単量体の供給を止めた以外は、実施例2と同様に重合を行った。
 得られたPTFE水性分散液の固形分濃度は10.7質量%であり、平均一次粒子径は221nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させた。凝固した湿潤粉末を150℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表2に示す。
実施例4
 CF=CFOCFCF(CF)OCFCFCOOHで表される単量体F4.1gとCF=CF5.2g、APS(単量体Fに対して8.8モル%)を反応器に加え、窒素雰囲気下にて80℃で7時間加熱撹拌し、CF=CFOCFCF(CF)OCFCFCOOHで表される単量体FとCF=CFの共重合体(重合体F)を含む重合体F水溶液F-1を得た。得られた重合体F水溶液F-1のGPC分析した結果、重合体Fは、Mw0.7万、Mn0.4万あった。
 得られた重合体F水溶液F-1を、透析膜(分画分子量35000Da、ポリエチレン製)に、30℃で接触させ濾過を実施し、重合体F水溶液F-2を得た。得られた重合体F水溶液F-2をGPC分析した結果、重合体Fは、Mw0.9万、Mn0.6万、単量体Fのダイマー、及びトリマーの含有量が、重合体Fに対して1質量ppm未満であった。得られた重合体F水溶液F-2の濃度は、2.0質量%であった。
 515gの脱イオン水を500gの脱イオン水に変更し、15.28gの重合体E水溶液E-2を27.50gの重合体F水溶液F-2に変更した以外は実施例2と同様に重合を行った。得られたPTFE水性分散液の固形分濃度は20.8質量%であり、平均一次粒子径は200nmであった。
 また、実施例2と同様にして、PTFE粉末を得た後、得られたPTFE粉末の各種物性を測定した。結果を表2に示す。
実施例5
 515gの脱イオン水を500gの脱イオン水に変更し、15.28gの重合体E水溶液E-2を27.50gの重合体F水溶液F-2に変更し、0.13gのPMVEを0.18gのHFPに変更し、反応で消費したTFE単量体が約70gに達した時点でTFE単量体の供給を止めた以外は実施例2と同様に重合を行った。得られたPTFE水性分散液の固形分濃度は13.8質量%であり、平均一次粒子径は190nmであった。
 また、実施例2と同様にして、PTFE粉末を得た後、得られたPTFE粉末の各種物性を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000034
 
2.パーフルオロエラストマーの製造
 以下では、フルオロポリマーとして、パーフルオロエラストマーを製造した実施例を示す。
実施例6
 着火源をもたない内容積0.5リットルのステンレススチール製オートクレーブ(フルゾーンタイプの攪拌翼と邪魔板1枚が付属)に、脱イオン水5g、195gの重合体D水溶液D-2をいれた後、系内を窒素ガスで充分に置換した後、脱気し、1000rpmで撹拌しながら、54℃に昇温し、テトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)の混合ガス(TFE/PMVE=24/76モル%比)を、内圧が0.83MPa・Gになるように仕込んだ。ついで、CF=CFOCFCF(CF)OCFCFCN(CNVE)を0.259g窒素で圧入した後、過硫酸アンモニウム(APS)1.03gを水2.5gに溶解し、窒素で圧入して反応を開始した。
 重合の進行に伴い、槽内圧力が低下するので、圧力が0.735MPa・Gとなった時に、TFE2gおよびPMVE2.2gをオートクレーブに導入し、昇圧した。反応の進行にともない同様にTFEおよびPMVEを60/40モル%の比率で圧入し、0.735MPa・G~約0.89MPa・Gの間で、昇圧、降圧を繰り返し、重合終了までにTFEを10gとPMVEを11g圧入した。重合中にCF=CFOCFCF(CF)OCFCFCNを2回、TFEの総仕込み量が6、10gに達した時点で、0.259gずつ分割して窒素で圧入した。その後、オートクレーブを冷却し、未反応モノマーを放出して、固形分濃度8.1質量%の水性分散液214gを得た。重合時間は5.4時間であった。水性分散液には、凝集ポリマーは全く無く、水性分散液を取り出した後のオートクレーブの攪拌翼、槽内壁、邪魔板などの槽内には付着ポリマーは全く無かった。
 得られた水性分散液100gに純水100gを加え、混合希釈した。この混合希釈液を7.5%塩酸水溶液1750gに滴下した。滴下は、塩酸水溶液を攪拌しながら行なった。
 塩酸水溶液中に、パーフルオロエラストマー凝析されるので、凝析されたパーフルオロエラストマーをろ別し、純水100gに移し、5分間攪拌しながら、洗浄した。5分後、再びパーフルオロエラストマーをろ別し、純水100gに移し、5分間攪拌しながら洗浄した。この純水100gでの洗浄操作を3回繰り返した後、パーフルオロエラストマーをろ別した。ろ別されたパーフルオロエラストマーを、70℃で48時間、真空乾燥させた。乾燥後にパーフルオロエラストマーおよび重合体Dを含有する組成物(クラム)が得られた。得られた組成物の質量は6.2gであった。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
   パーフルオロエラストマーの組成: TFE/PMVE/CNVE=50.0/49.75/0.25(モル%)
   パーフルオロエラストマーのガラス転移温度:-3.7℃
 重合速度を上記式により算出したところ、17.1g/(時間×kg)であった。
 水性分散液中のパーフルオロエラストマー粒子の平均一次粒子径は631nmで
あった。水性分散液中のパーフルオロエラストマー粒子数を上記式により算出したところ、3.3×1011個/ccであった。パーフルオロエラストマーの比重は、2.030であった。また、得られた組成物を含フッ素溶剤R-318(ダイキン工業社製、主成分:CCl)に溶解させ、得られた溶液に脱イオン水を加え、重合体Dが含まれる上層(水層)を回収し、加熱乾燥させることにより得られた残分(重合体D)の質量を測定して、重合体Dの含有量を算出した。組成物中の重合体Dの含有量は、3.74質量%であった。
3.PTFEの製造
 以下では、フルオロポリマーとして、PTFEを製造した実施例を示す。
実施例7
 反応器に、1650gのパーフルオロ-(6,6-ジハイドロ-2-トリフルオロメチル-3-オキサ-5-ヘキセン酸)(単量体D)、3850gの水を加え、反応器内液をNバブリングしながら30分間室温で攪拌した。52℃で攪拌しながら、過硫酸アンモニウム(APS)を、単量体Dの量に対して0.5モル%に相当する量添加し、反応を開始した。23時間攪拌したところで反応を終了した。反応器内の酸素濃度は11体積ppmから20体積ppmの範囲で推移した。単量体Dの単独重合体である重合体Hを含む重合体H水溶液H-1を得た。
 得られた重合体H水溶液H-1に水を加えて、重合体Hの濃度を2.0質量%に調整したのちに、限外ろ過膜(分画分子量50000Da、ポリアクリロニトリル製)に、25℃で、0.1MPaの水圧で接触させ限外濾過を実施した。適宜注水を行いながら最終的に水溶液に対して7倍量の水の濾過液が溶出するまで限外濾過を継続し、重合体H水溶液H-2を得た。得られた重合体H水溶液H-2をGPC分析した結果、重合体Hは、Mw46.0×10、Mn12.2×10、ダイマー、及びトリマーの含有量が、重合体Hに対して0.1質量%以下であった。得られた重合体H水溶液H-2の濃度は、2.1質量%であった。
 反応器に、504gの脱イオン水、26,2gの重合体H水溶液H-2及び1.7mgのポリオキシエチレン(10)オクチルフェニルエーテルを入れ、0.12gのエタンの代わりに0.012gのプロパンを加え、20gの脱イオン水に溶解した143mgの過硫酸アンモニウム(APS)開始剤を反応器に注入し、実施例2と同様に重合した。約110gのTFE単量体が反応し終わるまで重合を続け、PTFE水性分散液を得た。得られたPTFE水性分散液の各種物性を測定した。結果を表3に示す。
 また、実施例1と同様にしてPTFE粉末を得て、得られたPTFE粉末の各種物性を測定した。結果を表3に示す。
 なお、得られたPTFEは低分子量PTFEであった。
Figure JPOXMLDOC01-appb-T000035
 
実施例8
 内容量6Lの撹拌機付きSUS製反応器に、3302gの脱イオン水、104gのパラフィンワックス、255.7gの重合体H水溶液H-2、1.1gの1.0質量%濃度のイソプロパノール水溶液および1.25gの0.1質量%濃度のTMN-100X(ダウ・ケミカル社製)水溶液を入れた。アンモニア水を加えてpHを8.7に調整した。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFEでパージして反応器内の酸素を除き、内容物を攪拌した。2.4gのHFPを加えた後の操作は、実施例1と同様に重合を行なった。得られたPTFE水性分散液の各種物性を測定した。結果を表4に示す。
 得られたPTFE水性分散液を実施例1と同様に凝固させた。凝固した湿潤粉末を240℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表4に示す。
実施例9
 TMN-100X(ダウ・ケミカル社製)水溶液の代わりに、T-Det A138(Harcros Chemicals社製)水溶液を用いた以外は実施例8と同様に重合を行なった。得られたPTFE水性分散液の各種物性を測定した。結果を表4に示す。
 また、実施例8と同様にして、PTFE粉末を得て、得られたPTFE粉末の各種物性を測定した。結果を表4に示す。
実施例10
 TMN-100X(ダウ・ケミカル社製)水溶液の代わりに、T-Det A1315(Harcros Chemicals社製)水溶液を用いた以外は実施例8と同様に重合を行なった。得られたPTFE水性分散液の各種物性を測定した。結果を表4に示す。
 また、実施例8と同様にして、PTFE粉末を得て、得られたPTFE粉末の各種物性を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000036
 
実施例11
 反応器に、10gのCF=CFOCFCFCOOH(単量体E)、20gの水、単量体Eの量に対して0.5モル%に相当する量の過硫酸アンモニウム(APS)を加え、Nフロー下にて52℃で攪拌した。APSを加えた時から24時間経過した時に、1.0モル%に相当する量のAPSを加え、48時間経過した時に、1.5モル%に相当する量のAPSをさらに加え、52℃で、合計で72時間攪拌することにより、単量体Eの単独重合体である重合体Iを含む重合体I水溶液I-1を得た。反応器内の酸素濃度は15体積ppmから40体積ppmの範囲で推移した。
 得られた重合体I水溶液I-1に水を加えて、重合体Iの濃度を2.0質量%に調整した後、限外ろ過膜(分画分子量6000Da、ポリスルフォン製)に、25℃で、0.1MPaの水圧で接触させ、限外濾過を実施した。適宜注水を行いながら最終的に水溶液に対して7倍量の水の濾過液が溶出するまで限外濾過を継続し、重合体I水溶液I-2を得た。得られた水溶液の濃度は2.1質量%であった。
 得られた重合体Iの重量平均分子量(Mw)は1.7×10、数平均分子量(Mn)は1.1×10であった。限外濾過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体Iに対して、0.1質量%以下であった。
 内容量1Lの撹拌機付きガラス製反応器に、504gの脱イオン水、30gのパラフィンワックス及び26.2gの重合体I水溶液I-2を入れた。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFE単量体でパージして反応器内の酸素を除いた。その後、内容物を540rpmで攪拌した。反応器中に0.54gのHFPを加えた後、TFE単量体を0.73MPaGの圧力となるまで加えた。20gの脱イオン水に溶解した2.75mgの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。TFE単量体を反応器に加えて圧力を保ち、約140gのTFE単量体が反応し終わるまで重合を続けた。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。
 得られたPTFE水性分散液の固形分濃度は21.6質量%であり、平均一次粒子径は176nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させた。凝固した湿潤粉末を210℃で18時間乾燥した。結果を表5に示す。
実施例12
 反応器に重合体I水溶液I-2を加えた後、反応器の内容物を加熱する前に、さらにアンモニア水を入れてpHを8.9に調整したこと以外は、実施例11と同様に重合を行なった。
 得られたPTFE水性分散液の固形分濃度は21.4質量%であり、平均一次粒子径は222nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させた。凝固した湿潤粉末を210℃で18時間乾燥した。結果を表5に示す。
実施例13
 内容量6Lの撹拌機付きSUS製反応器に、3223gの脱イオン水、104gのパラフィンワックス、341gの重合体I水溶液I-2、3.58gの0.1質量%濃度のイソプロパノール水溶液を入れた。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFEでパージして反応器内の酸素を除き、内容物を攪拌した。反応器中に3.2gのHFPを加えた後、0.73MPaGの圧力となるまでTFEを加えた。20gの脱イオン水に溶解した17.9mgの過硫酸アンモニウム(APS)開始剤を反応器に注入し、反応器を0.83MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。反応器にTFEを加えて圧力を0.78MPaG一定となるように保った。反応で消費したTFEが約180gに達した時点でTFEの供給と撹拌を停止した。
 続いて反応器の圧力が0.02MPaGに達するまで反応器内のガスをゆっくりと放出した。その後、反応器の圧力が0.78MPaGになるまでTFEを供給し、再び撹拌を開始して引き続き反応を行った。反応で消費したTFEが約540gに達した時点で20gの脱イオン水に溶解した14.3mgのハイドロキノンを反応器に注入し、引き続き反応を行った。反応で消費したTFEが約1250gに達した時点でTFEの供給を止め、撹拌を停止して反応を終了した。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。上澄みのパラフィンワックスをPTFE水性分散液から取り除いた。得られたPTFE水性分散液の固形分濃度は26.0質量%であり、平均一次粒子径は175nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を210℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表5に示す。
 また、得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を240℃で18時間乾燥した。得られたPTFE粉末の各種物性を測定した。結果を表6に示す。
実施例14
 反応器に、30gのCF=CFOCFCF(CF)OCFCFCOOH(単量体F)、60gの水、単量体Fの量に対して0.5モル%に相当する量のアンモニア、単量体Fの量に対して、2.0モル%に相当する過硫酸アンモニウム(APS)を加え、Nフロー下にて52℃で72時間攪拌した。反応器内の酸素濃度は20体積ppmから50体積ppmの範囲で推移した。単量体Fの単独重合体である重合体Jを含む重合体J水溶液J-1を得た。
 得られた重合体J水溶液J-1に水と単量体Fの量に対して0.4当量に相当する量のアンモニアを加えて、単量体Jの濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)に、室温で、0.1MPaの水圧で接触させ、限外濾過を実施し、重合体J水溶液J-2を得た。
 得られた重合体Jの重量平均分子量(Mw)は1.4×10、数平均分子量(Mn)は0.9×10であった。限外濾過を実施することにより得られた重合体J水溶液J-2中の重合体Jの濃度は1.9質量%であった。限外濾過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体Jに対して、0.1質量%以下であった。
 26.2gの重合体I水溶液I-2を57.9gの重合体J水溶液J-2とし、504gを473gの脱イオン水とし、約140gのTFE単量体を約80gのTFE単量体とした以外は実施例11と同様に重合を行った。得られたPTFE水性分散液の固形分濃度は13.0質量%であり、平均一次粒子径は119nmであった。
 得られたPTFE水性分散液を脱イオン水で固形分濃度が約10質量%となるように希釈し、高速撹拌条件下で凝固させた。凝固した湿潤粉末を210℃で18時間乾燥した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000037
 
Figure JPOXMLDOC01-appb-T000038
 
4.部分フッ素化ゴムの製造
 以下では、フルオロポリマーとして、部分フッ素化ゴムを製造した実施例を示す。
 これらの実施例の各数値は、特記しない限り、上記した方法により測定した。上記した方法以外で測定される数値は、以下の方法により測定した。
<部分フッ素化ゴムを含む水性分散液の固形分濃度>
 部分フッ素化ゴムを含む水性分散液1gを、送風乾燥機中で150℃、180分の条件で乾燥し、加熱残分の質量を測定し、水性分散液の質量(1g)に対する、加熱残分の質量の割合(質量%)を求めた。
<部分フッ素化ゴムの組成>
 NMR分析により求めた。
<部分フッ素化ゴムのムーニー粘度>
 ムーニー粘度は、ALPHA TECHNOLOGIES社製ムーニー粘度計MV2000E型を用いて、100℃において、JIS K 6300-1.2013に従い測定した。
<ポリマー付着率>
 重合終了後に重合槽に付着したポリマー付着物の質量の、重合終了後のポリマー(部分フッ素化ゴム)の総量に対する比率(重合槽への付着率)を次の式により求めた。
   ポリマー付着率(質量%)=ポリマー付着物の質量/得られたポリマー(ポリマー付着物込み)の質量×100
   得られたポリマーの質量=水性分散液の質量×水性分散液の固形分濃度(質量%)/100+ポリマー付着物の質量
 ポリマー付着物には、重合終了後に水性分散液を重合槽から抜き出した後に、重合槽内壁や撹拌翼などの重合槽内部に付着しているポリマーと、凝集により水性分散液から遊離し、水性分散液中に分散せずに、浮遊または沈殿しているポリマーとが含まれる。ポリマー付着物の質量は、ポリマー付着物に含まれる水分を120℃で乾燥し除去した後の質量である。
<重合速度>
 下記式により算出した。
   重合速度={水性分散液重量×固形分濃度/100}/{(重合に使用した純水量+重合に使用した重合体(1)の水溶液に含まれる水の量)×重合時間}
式中の各量の単位は、下記の通りである。
   水性分散液重量:g
   固形分濃度:質量%
   重合に使用した純水量:kg
   重合に使用した重合体(1)の水溶液に含まれる水の量:kg
   重合時間:時間
   重合速度:g/(時間×kg)
<平均粒子径>
 水性分散液中の部分フッ素化ゴム粒子の平均粒子径(キュムラント平均径)は、ELSZ-1000S(大塚電子社製)を用い、動的光散乱法により測定を行い、キュムラント法により算出した。
<水性分散液中の部分フッ素化ゴム粒子数>
 下記式により算出した。
Figure JPOXMLDOC01-appb-M000039
 
 式中、平均粒子径は、上記した方法で算出したキュムラント平均径であり、ポリマー粒子の個数(部分フッ素化ゴム粒子数)は水1ccあたりの個数であり、実施例の全ての部分フッ素化ゴムの比重を1.8とした。
調製例21
 CF=CFOCFCFCOOHで表される単量体E110g、水220gに過硫酸アンモニウム(APS)を加え、窒素雰囲気下52℃で96時間攪拌し、CF=CFOCFCFCOOHの単独重合体である重合体QAを含む重合体QA水溶液QA-1を得た。APSは反応中適宜追添し合計5mol%用いた。反応器内の酸素濃度は11体積ppmから61体積ppmの範囲で推移した。
 得られた重合体QA水溶液QA-1に水を加え、濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)を用いて室温、0.1MPaの水圧で適宜注水を行いながら、ろ過前の水溶液に対して4倍量のろ過液が流出するまで限外ろ過を実施した。得られた重合体QA水溶液QA-2をGPC分析した結果、重合体QAはMw=1.5万、Mn=1.0万であった。得られた重合体QA水溶液QA-2の濃度は2.2質量%であった。限外ろ過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体に対して、0.1質量%以下であった。
調製例22
 CF=CFOCFCF(CF)OCFCFCOOHで表される単量体F30g、水60g、NH0.5eq(単量体Fに対して0.5当量に相当する量)、APS2mol%を加え、窒素雰囲気下52℃で72時間攪拌し、CF=CFOCFCF(CF)OCFCFCOOHの単独重合体である重合体QBを含む重合体QB水溶液QB-1を得た。反応器内の酸素濃度は20体積ppmから50体積ppmの範囲で推移した。
 得られた重合体QB水溶液QB-1に水、NH0.4eq(重合に用いた単量体Fに対して0.4当量に相当する量)を加え、濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)を用いて室温、0.1MPaの水圧で、適宜注水を行いながら、ろ過前の水溶液に対して4倍量のろ過液が流出するまで限外ろ過を実施した。得られた重合体QB水溶液QB-2をGPC分析した結果、重合体QBはMw=1.4万、Mn=0.9万であった。得られた重合体QB水溶液QB-2の濃度は1.9質量%であった。限外ろ過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体に対して、0.1質量%以下であった。
実施例21
 内容積3LのSUS製の重合槽に1466gの脱イオン水、34.09gの重合体QA水溶液QA-2(2.2質量%)を加え、重合槽を密閉し、系内を窒素で置換し酸素を取り除いた。重合槽を80℃に昇温し、攪拌しながら、フッ化ビニリデン〔VDF〕/テトラフルオロエチレン〔TFE〕/ヘキサフルオロプロピレン〔HFP〕(=19/11/70モル%)のモル比で、重合槽の内圧が1.47MPaGとなるように、単量体(初期単量体)を圧入した。
 ついで、過硫酸アンモニウム(APS)0.026gを脱イオン水に溶解した重合開始剤水溶液を窒素ガスで圧入し重合を開始した。重合の進行に伴い、内圧が1.45MPaGに降下した時点で、VDF/TFE/HFP(=50/20/30モル%)の混合単量体を内圧が1.47MPaGで一定となるように仕込んだ。
 混合単量体が14g追加された時に、ジヨウ素化合物I(CFI 2.19gを窒素ガスで圧入した。
 重合開始から3.0時間後、6.0時間後、9.0時間後に、それぞれ、APS0.026gの重合開始剤水溶液を窒素ガスで圧入した。
 混合単量体を477g追加した時点で、撹拌を停止し、重合槽が大気圧になるまで脱圧を行った。重合槽を冷却して、水性分散液を得た。結果を表7に示す。
 上記水性分散液に硫酸アルミニウム水溶液を添加して凝析を行った。得られた凝析物を水洗し、乾燥して、部分フッ素化ゴムを得た。部分フッ素化ゴムのムーニー粘度はML1+10(100℃)=54.9であった。NMR分析により共重合組成を調べたところ、VDF/TFE/HFP=50/20/30(モル%)であった。
実施例22
 34.09gの重合体QA水溶液QA-2(2.2質量%)をアンモニア水で中和してpHを5.6にしてから重合槽に加えたこと以外、実施例21と同条件で実験を行った。
 重合槽を冷却して、水性分散液を得た。結果を表7に示す。
 上記水性分散液に硫酸アルミニウム水溶液を添加して凝析を行った。得られた凝析物を水洗し、乾燥して、部分フッ素化ゴムを得た。部分フッ素化ゴムのムーニー粘度はML1+10(100℃)=54.7であった。NMR分析により共重合組成を調べたところ、VDF/TFE/HFP=50/20/30(モル%)であった。
実施例23
 脱イオン水を1460gとし、34.09gの重合体QA水溶液QA-2(2.2質量%)に代えて、40.32gの重合体QB水溶液QB-2(1.9質量%)を重合槽に加え、重合開始から3.0時間後、6.0時間後に、それぞれ、APS0.026gの重合開始剤水溶液を窒素ガスで圧入したこと以外、実施例21と同条件で実験を行った。
 重合槽を冷却して、水性分散液を得た。結果を表7に示す。
 上記水性分散液に硫酸アルミニウム水溶液を添加して凝析を行った。得られた凝析物を水洗し、乾燥して、部分フッ素化ゴムを得た。部分フッ素化ゴムのムーニー粘度はML1+10(100℃)=63.9であった。NMR分析により共重合組成を調べたところ、VDF/TFE/HFP=50/20/30(モル%)であった。
Figure JPOXMLDOC01-appb-T000040
 
<架橋特性>
 実施例21~23で得られた部分フッ素化ゴムを、表8に示す配合で混練し、部分フッ素化ゴム組成物を得た。得られた部分フッ素化ゴム組成物について、プレス架橋時にゴム用加硫試験機MDRH2030(エムアンドケー社製)を用い、架橋曲線を求め、最低粘度(ML)、最大トルクレベル(MH)、誘導時間(T10)および最適架橋時間(T90)を求めた。また、プレス架橋およびプレス架橋に続くオーブン架橋により、部分フッ素化ゴム組成物を架橋することにより、架橋成形品シートを得た。
   混練方法  :ロール練り
   プレス架橋 :160℃で10分間
   オーブン架橋:180℃で4時間
 表8に示す材料は以下の通りである。
   MTカーボン:Thermax N-990 Cancarb社製
   TAIC:トリアリルイソシアヌレート、タイク 日本化成社製
   パーヘキサ25B:2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、日油社製
<常態物性>
 架橋成形品シートを用いて、JIS K6251に準じて、ダンベル6号形状の試験片を作製し、作製した試験片の常態での100%モジュラス(M100)、破断時引張強度(TB)、破断時伸び(EB)を測定した。
<硬さ>
 上記と同様にしてダンベル6号形状の試験片を作製し、JIS K6253に準じて、作製した試験片の硬さ(Shore A)を測定した(ピーク値、1sec、3sec)。
<圧縮永久歪み>
 部分フッ素化ゴム組成物を用いて、上記した条件でプレス架橋およびオーブン架橋を行い、Oリング(P24サイズ)を作製し、JIS K6262に準じて、200℃、72時間、圧縮率25%の条件で、作製したOリングの圧縮永久歪みを測定した。
 以上の結果を表8に示す。
Figure JPOXMLDOC01-appb-T000041
 
5.パーフルオロエラストマーの製造
 以下では、フルオロポリマーとして、パーフルオロエラストマーを製造した実施例を示す。
 これらの実施例の各数値は、特記しない限り、上記した方法により測定した。上記した方法以外で測定される数値は、以下の方法により測定した。
<パーフルオロエラストマーを含む水性分散液の固形分濃度>
 パーフルオロエラストマーを含む水性分散液1gを、送風乾燥機中で150℃、60分の条件で乾燥し、水性分散液の質量(1g)に対する、加熱残分の質量の割合を百分率で表した値を採用した。
<パーフルオロエラストマーの組成>
 19F-NMR(固体NMR)およびフーリエ変換赤外分光光度計(FT-IR)により測定した。
<ヨウ素含有量>
 元素分析により測定した。
<パーフルオロエラストマーのガラス転移温度>
 ガラス転移温度は、示差走査熱量計(メトラー・トレド社製、DSC822e)を用い、試料10mgを10℃/minで昇温することによりDSC曲線を得て、JIS K6240に規定される微分曲線のピークトップ温度をガラス転移温度とした。
<パーフルオロエラストマーのムーニー粘度>
 ALPHA TECHNOLOGIES社製 ムーニー粘度計MV2000E型を用いて、170℃または100℃において、JIS K6300に従い測定した。
<ポリマー付着率>
 重合終了後に重合槽に付着したポリマー付着物の質量の、重合終了後のポリマー(パーフルオロエラストマー)の総量に対する比率(重合槽への付着率)を次の式により求めた。
   ポリマー付着率(質量%)=ポリマー付着物の質量/得られたポリマー(ポリマー付着物込み)の質量×100
   得られたポリマーの質量=水性分散液の質量×水性分散液の固形分濃度(質量%)/100+ポリマー付着物の質量
 ポリマー付着物には、重合終了後に水性分散液を重合槽から抜き出した後に、重合槽内壁や撹拌翼などの重合槽内部に付着しているポリマーと、凝集により水性分散液から遊離し、水性分散液中に分散せずに、浮遊または沈殿しているポリマーとが含まれる。ポリマー付着物の質量は、ポリマー付着物に含まれる水分を120℃で乾燥し除去した後の質量である。
<重合速度>
 下記式により算出した。
   重合速度={水性分散液重量×固形分濃度/100}/{(重合に使用した純水量+重合に使用した重合体(1)の水溶液に含まれる水の量)×重合時間}
式中の各量の単位は、下記の通りである。
   水性分散液重量:g
   固形分濃度:質量%
   重合に使用した純水量:kg
   重合に使用した重合体(1)の水溶液に含まれる水の量:kg
   重合時間:時間
   重合速度:g/(時間×kg)
<平均粒子径>
 水性分散液中のパーフルオロエラストマー粒子の平均粒子径(キュムラント平均径)は、ELSZ-1000S(大塚電子社製)を用い、動的光散乱法により測定を行い、キュムラント法により算出した。
<水性分散液中のパーフルオロエラストマー粒子数>
 下記式により算出した。
Figure JPOXMLDOC01-appb-M000042
 
 式中、平均粒子径は、上記した方法で算出したキュムラント平均径であり、ポリマー粒子の個数(パーフルオロエラストマー粒子数)は水1ccあたりの個数であり、比重として、パーフルオロエラストマーの比重の実測値を用いた。
調製例31
 CF=CFOCFCFCOOHで表される単量体E 110g、水 220gに過硫酸アンモニウム(APS)を加え、窒素雰囲気下52℃で96時間攪拌し、CF=CFOCFCFCOOHの単独重合体である重合体XAを含む重合体XA水溶液XA-1を得た。APSは反応中適宜追添し合計5mol%用いた。反応器内の酸素濃度は11体積ppmから61体積ppmの範囲で推移した。
 重合体XA水溶液XA-1に水を加え、濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)を用いて室温、0.1MPaの水圧で適宜注水を行いながら、ろ過前の水溶液に対して4倍量のろ過液が流出するまで限外ろ過を実施した。得られた重合体XA水溶液XA-2をGPC分析した結果、重合体XAはMw=1.5万、Mn=1.0万であった。得られた重合体XA水溶液XA-2の濃度は2.2質量%であった。限外ろ過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体に対して、0.1質量%以下であった。
調製例32
 CF=CFOCFCFCOOHで表される単量体E 150g、水 300gにAPSを加え、窒素雰囲気下52℃で96時間攪拌し、CF=CFOCFCFCOOHの単独重合体である重合体XBを含む重合体XB水溶液XB-1を得た。APSは反応中適宜追添し合計4mol%用いた。反応器内の酸素濃度は30体積ppmから65体積ppmの範囲で推移した。
 得られた重合体XB水溶液XB-1に水を加え、濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)を用いて室温、0.1MPaの水圧で適宜注水を行いながら、ろ過前の水溶液に対して4倍量のろ過液が流出するまで限外ろ過を実施した。得られた重合体XB水溶液XB-2をGPC分析した結果、重合体XBはMw=1.7万、Mn=1.1万であった。得られた重合体XB水溶液XB-2の濃度は2.2質量%であった。限外ろ過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体に対して、0.1質量%以下であった。
調製例33
 CF=CFOCFCF(CF)OCFCFCOOHで表される単量体F 30g、水60g、NH 0.5eq(単量体Fに対して0.5当量に相当する量)、APS 2mol%を加え、窒素雰囲気下52℃で72時間攪拌し、CF=CFOCFCF(CF)OCFCFCOOHの単独重合体である重合体XCを含む重合体XC水溶液XC-1を得た。反応器内の酸素濃度は20体積ppmから50体積ppmの範囲で推移した。
 得られた重合体XC水溶液XC-1に水、NH 0.4eq(重合に用いた単量体Fに対して0.4当量に相当する量)を加え、濃度を3.0質量%に調整した後、限外ろ過膜(分画分子量6000、ポリスルフォン製)を用いて室温、0.1MPaの水圧で、適宜注水を行いながら、ろ過前の水溶液に対して4倍量のろ過液が流出するまで限外ろ過を実施した。得られた重合体XC水溶液XC-2をGPC分析した結果、重合体XCはMw=1.4万、Mn=0.9万であった。得られた重合体XC水溶液XC-2の濃度は2.8質量%であった。限外ろ過を実施することにより得られた水溶液中のダイマーおよびトリマーの含有量は、重合体に対して、0.1質量%以下であった。
実施例31
(CN基含有パーフルオロエラストマーの重合)
 着火源をもたない内容積0.5リットルのステンレススチール製オートクレーブ(SUS316製、フルゾーンタイプの攪拌翼と邪魔板1枚が付属)に、脱イオン水108.2g、88.6gの重合体XA水溶液XA-2(固形分濃度:2.2質量%)を入れた後、系内を窒素ガスで充分に置換した後、脱気し、1000rpmで撹拌しながら、54℃に昇温し、テトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)の混合ガス(TFE/PMVE=24/76モル%比)を、内圧が0.83MPa・Gになるように仕込んだ。次いで、CF=CFOCFCF(CF)OCFCFCN(CNVE)0.259gを脱イオン水0.8gと共に窒素で圧入した後、過硫酸アンモニウム(APS)1.03gを脱イオン水2.5gに溶解し、窒素で圧入して反応を開始した。
 重合の進行に伴い、槽内圧力が低下するので、圧力が0.735MPa・Gとなった時に、TFE2gおよびPMVE2.2gをオートクレーブに導入し、昇圧した。反応の進行に伴い同様にTFE及びPMVEを60/40モル%の比率で圧入し、0.735MPa・G~約0.89MPa・Gの間で、昇圧、降圧を繰り返し、重合終了までにTFEを28gとPMVEを30.8g圧入した。重合中にCF=CFOCFCF(CF)OCFCFCNを5回、TFEの総仕込み量が6、10、14、18、24gに達した時点で、0.259gずつ分割して脱イオン水0.8gと共に窒素で圧入した。
 その後、オートクレーブを冷却し、未反応モノマーを放出して、固形分濃度19.7質量%の水性分散液248gを得た。重合時間は7.3時間であった。水性分散液を取り出した後のオートクレーブの攪拌翼、槽内壁、邪魔板に付着したポリマーを採取し、加熱により水分を除去すると5.7gであった。付着率を上記式により算出したところ、10.4質量%であった。
(CN基含有パーフルオロエラストマーの後処理)
 得られた水性分散液100gに脱イオン水75gを加え、混合希釈した。この混合希釈液を10%塩酸水溶液700gに滴下した。滴下は、塩酸水溶液を攪拌しながら行なった。
 塩酸水溶液中にパーフルオロエラストマーが凝析されるので、凝析されたパーフルオロエラストマーをろ別し、脱イオン水100gに移し、5分間攪拌しながら洗浄した。5分後、再びパーフルオロエラストマーをろ別し、脱イオン水100gに移し、5分間攪拌しながら洗浄した。この後、脱イオン水100gでの洗浄操作を繰り返し、水洗後の洗浄水のpHが6以上になった時点で、パーフルオロエラストマーをろ別した。ろ別されたパーフルオロエラストマーは、70℃で48時間、真空乾燥させた。得られたパーフルオロエラストマーは19.3gであった。
(CN基含有パーフルオロエラストマーの分析)
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=58.4/41.1/0.53モル%
ガラス転移温度:-3.4℃
 重合速度を上記式により算出したところ、34.2g/(時間×kg)であった。
 水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は49.7nmであった。水性分散液中のパーフルオロエラストマー粒子数を上記式により算出したところ、1.9×1015個/ccであった。
実施例32
 最初に仕込む脱イオン水の量を86.5gに、重合体XA水溶液XA-2(固形分濃度:2.2質量%)の量を110.8gに、それぞれ変更したこと以外は実施例31と同様に重合を行い、固形分濃度21.2質量%の水性分散液255gを得た。
 重合時間は6.8時間であった。槽内の付着ポリマーを採取し、加熱により水分を除去すると2.8gで、付着率は5.0質量%であった。
 得られた水性分散液について、実施例31と同様に後処理を行い、19.6gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=57.7/41.7/0.58モル%
ガラス転移温度:-3.4℃
 重合速度は40.7g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は45.4nm、水性分散液中のパーフルオロエラストマー粒子数は2.7×1015個/ccであった。
実施例33
 最初に仕込む脱イオン水の量を64.8gに、重合体XA水溶液XA-2(固形分濃度:2.2質量%)の量を133.0gに、それぞれ変更したこと以外は、実施例31と同様に重合を行い、固形分濃度21.4質量%の水性分散液257gを得た。
 重合時間は6.9時間であった。槽内の付着ポリマーを採取し、加熱により水分を除去すると0.7gで、付着率は1.3質量%であった。
 得られた水性分散液について、実施例31と同様に後処理を行い、19.6gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=57.3/42.1/0.64モル%
ガラス転移温度:-3.3℃
 重合速度は41.2g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は44.3nm、水性分散液中のパーフルオロエラストマー粒子数は3.0×1015個/ccであった。
実施例34
(CN基含有パーフルオロエラストマーの製造)
 着火源をもたない内容積6リットルのステンレススチール製オートクレーブ(SUS316製、マックスブレンドタイプの攪拌翼と邪魔板1枚が付属)に、脱イオン水1255.3g、1083.3gの重合体XB水溶液XB-2(固形分濃度:2.2質量%)を入れた後、系内を窒素ガスで充分に置換した後、脱気し、400rpmで撹拌しながら、54.5℃に昇温し、テトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)の混合ガス(TFE/PMVE=24/76モル%比)を、内圧が0.83MPa・Gになるように仕込んだ。次いで、CF=CFOCFCF(CF)OCFCFCN(CNVE)を1.21gを脱イオン水1.5gと共に窒素で圧入した後、過硫酸アンモニウム(APS)14.7gを脱イオン水30gに溶解し、窒素で圧入して反応を開始した。
 重合の進行に伴い、圧力が0.735MPa・Gとなった時に、TFE12gおよびPMVE13.3gをオートクレーブに導入し、昇圧した。反応の進行にともない同様にTFE及びPMVEを60/40モル%の比率で圧入し、0.735MPa・G~約0.85MPa・Gの間で、昇圧、降圧を繰り返した。混合モノマーが202.4g追加された時に10%アンモニア水溶液16.44gを窒素で圧入し、重合終了までに前記のTFE12gとPMVE13.3gを含めて、TFEを328gとPMVEを363.1g圧入した。重合中にCNVEを17回、1.21gずつ途中添加で脱イオン水1.5gとともに重合槽内に圧入した。CNVEのx回目(1≦x≦17)の途中添加は、TFEの仕込量が{(328/18)×x}gを超えた時に行った。
 その後、オートクレーブを冷却し、未反応モノマーを放出して、固形分濃度23.1質量%の水性分散液3127gを得た。重合時間は6.6時間であった。水性分散液を取り出した後の槽内の付着ポリマーを採取し、加熱により水分を除去すると20.1gで、付着率は2.7質量%であった。
 得られた水性分散液1000gについて、加える脱イオン水を750g、希釈液を滴下する10%塩酸水溶液を7000g、洗浄用の脱イオン水を1000gとしたこと以外は実施例31と同様に後処理を行い、221.3gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=58.1/41.3/0.53モル%
ムーニー粘度:ML1+20(170℃)=71
ガラス転移温度:-3.4℃
 重合速度は46.6g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は54.6nm、水性分散液中のパーフルオロエラストマー粒子数は1.8×1015個/ccであった。
 後処理を行うことにより得られたパーフルオロエラストマー100質量部に対し、架橋剤として2,2-ビス[3-アミノ-4-(N-フェニルアミノ)フェニル]ヘキサフルオロプロパン(AFTA-Ph)を2.0質量部、充填剤として酸化カルシウム(CML#35、近江化学工業社製)を5質量部を配合したものをオープンロールにて混練して、架橋可能なパーフルオロエラストマー組成物を調製した。
 得られたパーフルオロエラストマー組成物を200℃で40分間プレスして架橋を行った後、さらに290℃で24時間オーブン架橋を施し、厚さ2mmの架橋物およびOリング(P-24)を作製した。以下の方法により、パーフルオロエラストマー組成物および架橋物の各種物性を測定した。結果を表9に示す。
<架橋性>
 パーフルオロエラストマー組成物について、ALPHA TECHNOLOGIES社製RPA2000を用いて、200℃における架橋曲線を求め、最低トルク(ML)、最大トルク(MH)、誘導時間(T10)および最適架橋時間(T90)を求めた。
<常態物性>
 厚さ2mmの架橋物を用いて、JIS-K6251に準じて、100%モジュラス(MPa)、引張破断強度(MPa)および引張破断伸び(%)を測定した。
<硬度>
 厚さ2mmの架橋物を用いて、JIS-K6253に準じて硬度(Shore A)を測定した(ピーク値)。
<架橋物の比重>
 厚さ2mmの架橋物を用いて、自動比重計DMA-220H(新光電子社製)を用いて、架橋物の比重を測定した。
 さらに、以下の方法により、Oリング(P-24)の圧縮永久歪みを測定した。Oリングの圧縮永久歪みは、24.4%であった。
<圧縮永久歪み>
 圧縮永久歪みは、ASTM D395またはJIS K6262に記載の方法に準じて測定した。Oリングを、圧縮装置を用いて、常温で、圧縮率25%まで圧縮(厚さ(線径)3.5mmのOリングを、厚さ2.625mmまで圧縮)した。
 次に、圧縮されたOリングが固定された圧縮装置を、電気炉内に静置し、300℃で70時間放置した後、電気炉から圧縮装置を取り出した。その後、圧縮されたOリングが固定された圧縮装置を、別の電気炉に静置し、70℃で24時間放置した。圧縮装置からOリングを取り外し、取り外したOリングを恒温室に静置し、23℃で30分放置し、Oリングの厚さ(t2)を測定した。次式により、圧縮永久歪みを求めた。圧縮永久歪みが小さいことは、架橋物を過酷な条件で使用した後でも、圧縮永久歪みが小さく、圧縮永久歪み特性に優れることを意味する。
   圧縮永久歪み(%)=(t-t)/(t-t)×100
      t:Oリングの元の厚さ(mm)
      t:スペーサの厚さ(mm)
      t:圧縮試験後のOリングの厚さ(mm)
 上記の試験においては、t=3.5mm、t=2.625mmである。
実施例35
 最初に仕込む脱イオン水の量を84.9gに、重合体XA水溶液XA-2(固形分濃度:2.2質量%)の量を110.8gにそれぞれ変更し、次いでアンモニア水を入れてpHを7.1に調整したこと以外は実施例31と同様に重合を行い、固形分濃度21.1質量%の水性分散液256gを得た。
 重合時間は11.5時間であった。槽内の付着ポリマーを採取し、加熱により水分を除去すると0.5gで、付着率は0.8質量%であった。
 得られた水性分散液について、実施例31と同様に後処理を行い、20.0gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=57.6/41.8/0.60モル%
ガラス転移温度:-3.1℃
 重合速度は24.2g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は82.3nm、水性分散液中のパーフルオロエラストマー粒子数は4.5×1014個/ccであった。
実施例36
 最初に仕込む脱イオン水の量を128.1gに、重合体XA水溶液XA-2(固形分濃度:2.2質量%)の量を66.5gにそれぞれ変更し、重合開始後、混合モノマーが16.8g追加された時に10%アンモニア水溶液1.03gを窒素で圧入したこと以外は実施例31と同様に重合を行い、固形分濃度19.6質量%の水性分散液248gを得た。
 重合時間は7.5時間であった。槽内の付着ポリマーを採取し、加熱により水分を除去すると6.3gで、付着率は11.5質量%であった。
 得られた水性分散液100gについて、加える脱イオン水を75g、希釈液を滴下する10%塩酸水溶液を500g、洗浄用の脱イオン水を100gとしたこと以外は実施例31と同様に後処理を行い、19.0gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=57.7/41.9/0.48モル%
ガラス転移温度:-3.2℃
 重合速度は33.4g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は54.8nm、水性分散液中のパーフルオロエラストマー粒子数は1.4×1015個/ccであった。
実施例37
(ヨウ素含有パーフルオロエラストマーの重合)
 着火源をもたない内容積0.5リットルのステンレススチール製オートクレーブ(SUS316製、フルゾーンタイプの攪拌翼と邪魔板1枚が付属)に、脱イオン水113.2g、101.6gの重合体XB水溶液XB-2(固形分濃度:2.2質量%)を入れた後、系内を窒素ガスで充分に置換した後、脱気し、1000rpmで撹拌しながら、50℃に昇温し、テトラフルオロエチレン(TFE)とパーフルオロメチルビニルエーテル(PMVE)の混合ガス(TFE/PMVE=25.6/74.4モル%比)を、内圧が0.83MPa・Gになるように仕込んだ後、過硫酸アンモニウム(APS)0.0424gを脱イオン水1.5gに溶解し、窒素で圧入して反応を開始した。
 重合の進行に伴い、圧力が0.783MPa・Gまで降下した時点で、連鎖移動剤としてジヨウ素化合物 I(CFI 0.416gを脱イオン水1.5gと共に圧入した。次いで圧力が0.735MPa・Gとなった時に、TFE2gおよびPMVE1.8gをオートクレーブに導入し、昇圧した。反応の進行にともない同様にTFE及びPMVEを64.8/35.2モル%の比率で圧入し、0.735MPa・G~約0.89MPa・Gの間で、昇圧、降圧を繰り返した。反応開始後、12時間毎にAPS 0.00294gを脱イオン水1.5gと共に窒素で圧入して反応を継続した。混合モノマーが26.6g追加された時に10%アンモニア水溶液1.54gを窒素で圧入し、重合終了までにTFEを44gとPMVEを39.6g圧入した。
 その後、オートクレーブを冷却し、未反応モノマーを放出して、固形分濃度23.8質量%の水性分散液298gを得た。重合時間は34.2時間であった。水性分散液を取り出した後の槽内の付着ポリマーを採取し、加熱により水分を除去すると0.5gで、付着率は0.7質量%であった。
(ヨウ素含有パーフルオロエラストマーの後処理)
 得られた水性分散液200gについて、加える脱イオン水を150g、希釈液を滴下する10%塩酸水溶液を1300g、洗浄用の脱イオン水を200gとしたこと以外は実施例31と同様に後処理を行い、46.6gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE=61.1/38.9モル%
ヨウ素含有量:0.19質量%
ムーニー粘度:ML1+10(100℃)=69
ガラス転移温度:-3.8℃
 重合速度は9.1g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は119.9nm、水性分散液中のパーフルオロエラストマー粒子数は1.7×1014個/ccであった。
 後処理を行うことにより得られたパーフルオロエラストマー100質量部に対し、架橋剤であるトリアリルイソシアヌレート(TAIC、日本化成社製)を2.0質量部、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B、日油社製)を1.0質量部、充填剤としてカーボンブラック(Thermax N-990、Cancarb社製)を15質量部を配合したものをオープンロールにて混練して、架橋可能なパーフルオロエラストマー組成物を調製した。
 得られたパーフルオロエラストマー組成物を160℃で10分間プレスして架橋を行った後、さらに180℃で4時間オーブン架橋を施し、厚さ2mmの架橋物およびOリング(P-24)を作製した。実施例34と同様にして、パーフルオロエラストマー組成物および架橋物の各種物性を測定した。結果を表9に示す。
実施例38
 最初に仕込む脱イオン水の量を46.9gに、重合体XA水溶液XA-2を重合体XC水溶液XC-2(固形分濃度:2.8質量%)152.2gにそれぞれ変更したこと以外は実施例31と同様に重合を行い、固形分濃度21.8質量%の水性分散液253gを得た。
 重合時間は9.2時間であった。槽内の付着ポリマーを採取し、加熱により水分を除去すると4.3gで、付着率は7.2質量%であった。
 得られた水性分散液100gについて、加える脱イオン水を75g、希釈液を滴下する10%塩酸水溶液を800g、洗浄用の脱イオン水を100gとしたこと以外は実施例31と同様に後処理を行い、16.6gのパーフルオロエラストマーを得た。
 得られたパーフルオロエラストマーを分析したところ、以下の結果が得られた。
パーフルオロエラストマーの組成:TFE/PMVE/CNVE=58.3/41.2/0.51モル%
ガラス転移温度:-3.0℃
 重合速度は30.9g/(時間×kg)、水性分散液中のパーフルオロエラストマー粒子のキュムラント平均径は105.2nm、水性分散液中のパーフルオロエラストマー粒子数は2.3×1014個/ccであった。
Figure JPOXMLDOC01-appb-T000043
 

Claims (8)

  1.  実質的に含フッ素界面活性剤(ただし、一般式(I)で表される単量体(I)を除く)の非存在下に、水性媒体中で一般式(I)で表される単量体(I)を重合することにより、単量体(I)の重合体を含有する粗組成物を得る工程、
     前記粗組成物に含まれる単量体(I)のダイマーおよびトリマーを、前記粗組成物から除去することにより、単量体(I)のダイマーおよびトリマーの含有量が、重合体(I)に対して、1.0質量%以下である重合体(I)を得る工程、および、
     重合体(I)の存在下に、水性媒体中でフルオロモノマーを重合することにより、フルオロポリマーを得る工程
    を含むフルオロポリマーの製造方法。
       CX=CXR(-CZ-A   (I)
    (式中、XおよびXは、それぞれ独立して、F、Cl、HまたはCFであり;Xは、H、F、アルキル基または含フッ素アルキル基であり;Aは、アニオン性基であり;Rは連結基であり;ZおよびZは、それぞれ独立して、H、F、アルキル基または含フッ素アルキル基であり;mは1以上の整数である。)
  2.  単量体(I)の分子量が500以下である請求項1に記載の製造方法。
  3.  Aが、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である請求項1または2に記載の製造方法。
  4.  Aが、-COOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である請求項1~3のいずれかに記載の製造方法。
  5.  単量体(I)が、一般式(1)で表される単量体である請求項1~4のいずれかに記載の製造方法。
      CX=CY(-CZ-O-Rf-A)  (1)
    (式中、Xは、同一または異なって、-HまたはFであり、Yは-H、-F、アルキル基または含フッ素アルキル基であり、Zは、同一または異なって、-H、-F、アルキル基またはフルオロアルキル基である。Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である。但し、X、YおよびZの少なくとも1つはフッ素原子を含む。)
  6.  単量体(I)が、一般式(1A)で表される単量体である請求項1~5のいずれかに記載の製造方法。
       CH=CF(-CF-O-Rf-A)   (1A)
    (式中、Rfは炭素数1~40の含フッ素アルキレン基、または、炭素数2~100のエーテル結合を有する含フッ素アルキレン基である。Aは、-COOM、-SOM、-OSOMまたは-C(CFOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である。)
  7.  Aが、-COOM(Mは、-H、金属原子、-NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウムまたは置換基を有していてもよいホスホニウムであり、Rは、Hまたは有機基である。)である請求項5または6に記載の製造方法。
  8.  前記粗組成物の限外濾過により、前記粗組成物から単量体(I)のダイマーおよびトリマーを除去する請求項1~7のいずれかに記載の製造方法。
PCT/JP2020/043294 2019-11-19 2020-11-19 フルオロポリマーの製造方法 WO2021100835A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20888916.2A EP4063403A4 (en) 2019-11-19 2020-11-19 METHOD FOR PRODUCING FLUORPOLYMER
JP2021558461A JP7360058B2 (ja) 2019-11-19 2020-11-19 フルオロポリマーの製造方法
CN202080078031.2A CN114651019A (zh) 2019-11-19 2020-11-19 含氟聚合物的制造方法
US17/747,547 US20220282007A1 (en) 2019-11-19 2022-05-18 Method for producing fluoropolymer
JP2023161585A JP2023166629A (ja) 2019-11-19 2023-09-25 フルオロポリマーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-209154 2019-11-19
JP2019209154 2019-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,547 Continuation US20220282007A1 (en) 2019-11-19 2022-05-18 Method for producing fluoropolymer

Publications (1)

Publication Number Publication Date
WO2021100835A1 true WO2021100835A1 (ja) 2021-05-27

Family

ID=75981601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043294 WO2021100835A1 (ja) 2019-11-19 2020-11-19 フルオロポリマーの製造方法

Country Status (5)

Country Link
US (1) US20220282007A1 (ja)
EP (1) EP4063403A4 (ja)
JP (2) JP7360058B2 (ja)
CN (1) CN114651019A (ja)
WO (1) WO2021100835A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107891A1 (ja) * 2020-11-19 2022-05-27 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法および組成物
WO2023277140A1 (ja) * 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023210820A1 (ja) * 2022-04-28 2023-11-02 ダイキン工業株式会社 フッ素樹脂を含有する組成物の製造方法およびフッ素樹脂を含有する組成物
EP4249525A4 (en) * 2020-11-19 2024-10-16 Daikin Ind Ltd METHOD FOR PREPARING AN AQUEOUS PERFLUOROLASTOMER DISPERSION, COMPOSITION, CROSS-LINKABLE COMPOSITION AND CROSS-LINKED PRODUCT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024145331A1 (en) * 2022-12-29 2024-07-04 Celanese International Corporation Thermoplastic vulcanizate gasket for use in an electrolyzer

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
JPS6149327A (ja) 1984-08-16 1986-03-11 松下電器産業株式会社 温度過昇防止装置
JPS6157324A (ja) 1984-05-26 1986-03-24 ヴエルネル・ウント・プフライデレル スクリユ−式押出し機のためのフイルタ装置
JPH0481608A (ja) 1990-07-24 1992-03-16 Furuno Electric Co Ltd 傾斜センサおよび傾斜角測定装置
JPH0513961A (ja) 1991-06-28 1993-01-22 Toshiba Corp 多層配線板
JP2538783B2 (ja) 1987-09-24 1996-10-02 村樫石灰工業 株式会社 防塵処理剤組成物
WO1997024381A1 (fr) 1995-12-28 1997-07-10 Daikin Industries, Ltd. Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
US5804654A (en) 1995-04-28 1998-09-08 General Electric Company Tetrafluoroethylene-containing powder, process for making same, articles molded therefrom and compositions containing such powder
JP2827152B2 (ja) 1994-07-11 1998-11-18 村樫石灰工業株式会社 塵埃抑制方法
JPH1129679A (ja) 1996-07-31 1999-02-02 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有混合粉体、その製造方法、それを含む熱可塑性樹脂組成物およびその成形体
JPH1149912A (ja) 1997-04-17 1999-02-23 General Electric Co <Ge> 水性フルオロポリマー分散物およびフルオロポリマー含有熱可塑性樹脂組成物の製造方法
JPH11181009A (ja) * 1997-12-22 1999-07-06 Asahi Glass Co Ltd ポリテトラフルオロエチレンの棒状微粒子を含む水性分散液の製造方法
WO2000001741A1 (fr) 1998-07-07 2000-01-13 Daikin Industries, Ltd. Procede de production de fluoropolymere
JP2003002980A (ja) 2001-06-20 2003-01-08 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有粉体の製造方法
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2005027652A1 (en) 2003-09-22 2005-03-31 Nestec Sa Method for manufacturing a granular type food preparation by agglomeration
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
WO2007000812A1 (ja) 2005-06-29 2007-01-04 Nippo Corporation 塵埃抑制処理方法
WO2007004250A1 (ja) 2005-06-29 2007-01-11 Du Pont-Mitsui Fluorochemicals Co., Ltd. 塵埃処理剤組成物
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
JP2007119526A (ja) 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
JP2008545873A (ja) * 2005-06-10 2008-12-18 スリーエム イノベイティブ プロパティズ カンパニー 乳化剤としての部分フッ素化されたオリゴマーの存在下におけるフッ素化モノマーの水性エマルション重合
JP2009029854A (ja) * 2007-07-24 2009-02-12 Daikin Ind Ltd 含フッ素(メタ)アクリルポリマー及びフルオロポリマーの製造方法
JP2009102490A (ja) * 2007-10-22 2009-05-14 Daikin Ind Ltd 含フッ素ポリマー分散体及び含フッ素ポリマー分散体製造方法
WO2010075494A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
WO2011014715A2 (en) 2009-07-31 2011-02-03 3M Innovative Properties Company Fluoropolymer compositions containing a polyol compound and methods of making them
US7897682B2 (en) 2006-11-09 2011-03-01 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and hydrocarbon surfactant
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
WO2012002038A1 (ja) 2010-06-30 2012-01-05 ダイキン工業株式会社 含フッ素重合体のオルガノゾル組成物
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2015020020A1 (ja) 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及びポリイミド樹脂-繊維複合材
WO2019168183A1 (ja) * 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020105650A1 (ja) * 2018-11-19 2020-05-28 ダイキン工業株式会社 組成物及び延伸体
WO2020105651A1 (ja) * 2018-11-19 2020-05-28 ダイキン工業株式会社 変性ポリテトラフルオロエチレンの製造方法及び組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045227A1 (ja) * 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
WO2021045165A1 (ja) * 2019-09-05 2021-03-11 ダイキン工業株式会社 パーフルオロエラストマーの製造方法および組成物

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JPS6157324A (ja) 1984-05-26 1986-03-24 ヴエルネル・ウント・プフライデレル スクリユ−式押出し機のためのフイルタ装置
JPS6149327A (ja) 1984-08-16 1986-03-11 松下電器産業株式会社 温度過昇防止装置
JP2538783B2 (ja) 1987-09-24 1996-10-02 村樫石灰工業 株式会社 防塵処理剤組成物
JPH0481608A (ja) 1990-07-24 1992-03-16 Furuno Electric Co Ltd 傾斜センサおよび傾斜角測定装置
JPH0513961A (ja) 1991-06-28 1993-01-22 Toshiba Corp 多層配線板
JP2827152B2 (ja) 1994-07-11 1998-11-18 村樫石灰工業株式会社 塵埃抑制方法
US5804654A (en) 1995-04-28 1998-09-08 General Electric Company Tetrafluoroethylene-containing powder, process for making same, articles molded therefrom and compositions containing such powder
WO1997024381A1 (fr) 1995-12-28 1997-07-10 Daikin Industries, Ltd. Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres
JPH1129679A (ja) 1996-07-31 1999-02-02 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有混合粉体、その製造方法、それを含む熱可塑性樹脂組成物およびその成形体
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JPH1149912A (ja) 1997-04-17 1999-02-23 General Electric Co <Ge> 水性フルオロポリマー分散物およびフルオロポリマー含有熱可塑性樹脂組成物の製造方法
JPH11181009A (ja) * 1997-12-22 1999-07-06 Asahi Glass Co Ltd ポリテトラフルオロエチレンの棒状微粒子を含む水性分散液の製造方法
WO2000001741A1 (fr) 1998-07-07 2000-01-13 Daikin Industries, Ltd. Procede de production de fluoropolymere
JP2003002980A (ja) 2001-06-20 2003-01-08 Mitsubishi Rayon Co Ltd ポリテトラフルオロエチレン含有粉体の製造方法
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2005027652A1 (en) 2003-09-22 2005-03-31 Nestec Sa Method for manufacturing a granular type food preparation by agglomeration
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
JP2008545873A (ja) * 2005-06-10 2008-12-18 スリーエム イノベイティブ プロパティズ カンパニー 乳化剤としての部分フッ素化されたオリゴマーの存在下におけるフッ素化モノマーの水性エマルション重合
WO2007000812A1 (ja) 2005-06-29 2007-01-04 Nippo Corporation 塵埃抑制処理方法
WO2007004250A1 (ja) 2005-06-29 2007-01-11 Du Pont-Mitsui Fluorochemicals Co., Ltd. 塵埃処理剤組成物
US20070015937A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Process for recovery of fluorinated carboxylic acid surfactants from exhaust gas
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070025902A1 (en) 2005-07-15 2007-02-01 3M Innovative Properties Company Recovery of fluorinated carboxylic acid from adsorbent particles
US20070027251A1 (en) 2005-07-15 2007-02-01 3M Innovative Properties Company Method of removing fluorinated carboxylic acid from aqueous liquid
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
JP2007119526A (ja) 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
US7897682B2 (en) 2006-11-09 2011-03-01 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and hydrocarbon surfactant
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
JP2009029854A (ja) * 2007-07-24 2009-02-12 Daikin Ind Ltd 含フッ素(メタ)アクリルポリマー及びフルオロポリマーの製造方法
JP2009102490A (ja) * 2007-10-22 2009-05-14 Daikin Ind Ltd 含フッ素ポリマー分散体及び含フッ素ポリマー分散体製造方法
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2010075494A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
WO2011014715A2 (en) 2009-07-31 2011-02-03 3M Innovative Properties Company Fluoropolymer compositions containing a polyol compound and methods of making them
WO2012002038A1 (ja) 2010-06-30 2012-01-05 ダイキン工業株式会社 含フッ素重合体のオルガノゾル組成物
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2015020020A1 (ja) 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及びポリイミド樹脂-繊維複合材
WO2019168183A1 (ja) * 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020105650A1 (ja) * 2018-11-19 2020-05-28 ダイキン工業株式会社 組成物及び延伸体
WO2020105651A1 (ja) * 2018-11-19 2020-05-28 ダイキン工業株式会社 変性ポリテトラフルオロエチレンの製造方法及び組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KASAI, J. APPL. POLYMER SCI., vol. 57, 1995, pages 797
ROMPP: "Lexikon Chemie", 1999, GEORG THIEME VERLAG, article "Alkyl polygylcoside"
See also references of EP4063403A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107891A1 (ja) * 2020-11-19 2022-05-27 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法および組成物
EP4249517A4 (en) * 2020-11-19 2024-10-16 Daikin Ind Ltd PROCESS FOR PRODUCING AN AQUEOUS DISPERSION OF FLUORINE-CONTAINING ELASTOMER, AND COMPOSITION
EP4249525A4 (en) * 2020-11-19 2024-10-16 Daikin Ind Ltd METHOD FOR PREPARING AN AQUEOUS PERFLUOROLASTOMER DISPERSION, COMPOSITION, CROSS-LINKABLE COMPOSITION AND CROSS-LINKED PRODUCT
WO2023277140A1 (ja) * 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023210820A1 (ja) * 2022-04-28 2023-11-02 ダイキン工業株式会社 フッ素樹脂を含有する組成物の製造方法およびフッ素樹脂を含有する組成物

Also Published As

Publication number Publication date
EP4063403A4 (en) 2024-01-24
US20220282007A1 (en) 2022-09-08
EP4063403A1 (en) 2022-09-28
JPWO2021100835A1 (ja) 2021-05-27
JP7360058B2 (ja) 2023-10-12
JP2023166629A (ja) 2023-11-21
CN114651019A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7315863B2 (ja) フルオロポリマーの製造方法
JP7360058B2 (ja) フルオロポリマーの製造方法
JP7352110B2 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
WO2020218620A1 (ja) フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
JP7193747B2 (ja) フルオロポリマーの製造方法
JP7201948B2 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
JP6939916B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
JP2021011581A (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2023277139A1 (ja) フルオロポリマー組成物の製造方法およびフルオロポリマー組成物
JP2023085494A (ja) フルオロポリマー粉末の製造方法
JP2023062153A (ja) フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2022191286A1 (ja) フルオロポリマー水性分散液の製造方法
WO2022244784A1 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2020218618A1 (ja) フルオロポリマー水性分散液の製造方法
WO2023182229A1 (ja) フルオロポリマーの製造方法および組成物
WO2023210819A1 (ja) フルオロポリマーの製造方法
WO2022196804A1 (ja) フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2023277140A1 (ja) 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888916

Country of ref document: EP

Effective date: 20220620