WO2012002038A1 - 含フッ素重合体のオルガノゾル組成物 - Google Patents

含フッ素重合体のオルガノゾル組成物 Download PDF

Info

Publication number
WO2012002038A1
WO2012002038A1 PCT/JP2011/060661 JP2011060661W WO2012002038A1 WO 2012002038 A1 WO2012002038 A1 WO 2012002038A1 JP 2011060661 W JP2011060661 W JP 2011060661W WO 2012002038 A1 WO2012002038 A1 WO 2012002038A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
organic solvent
organosol
ptfe
polymer
Prior art date
Application number
PCT/JP2011/060661
Other languages
English (en)
French (fr)
Inventor
卓司 石川
田中 温子
拓 山中
津田 暢彦
一暢 内田
隆宏 北原
倫行 深谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP11800507.3A priority Critical patent/EP2447322B1/en
Priority to CN201180003120.1A priority patent/CN102471554B/zh
Priority to US13/383,771 priority patent/US9109095B2/en
Publication of WO2012002038A1 publication Critical patent/WO2012002038A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organosol composition in which the content of polytetrafluoroethylene (PTFE) particles is increased.
  • PTFE polytetrafluoroethylene
  • Organosols in which fibril-forming high molecular weight PTFE particles are dispersed in an organic solvent are useful as an electrode mixture for producing an electrode of an electricity storage device such as a lithium battery.
  • Patent Documents 1 to 4 As its directionality, a method using core-shell particles in which a fibril-forming high molecular weight PTFE is used as a core part and a shell part is used as a non-fibril-forming polymer (Patent Documents 1 to 4), an acrylic having a polyfluoroalkyl group is used. A method (Patent Document 5) in which a very small amount of a monomer is copolymerized and modified has been proposed.
  • the proportion of the modified PTFE particles in the organosol obtained in these patent documents is up to 30% by mass.
  • PTFE particles in combination with other fluororesins.
  • a method using a combination of unmodified PTFE and a tetrafluoroethylene (TFE) -hexafluoropropylene (HFP) copolymer (FEP) (Patent Document 6)
  • an aqueous dispersion of a mixture of high molecular weight PTFE and FEP or PFA And organosols (Patent Document 8)
  • Patent Document 8 in which crystalline fluoropolymer particles such as high molecular weight PTFE and amorphous fluororesin such as vinylidene fluoride (VdF) polymer are mixed.
  • VdF vinylidene fluoride
  • Patent Document 7 describes only 10% by mass or less of unmodified PTFE prepared as an organosol, and also describes a mixture of unmodified PTFE and PFA in a 50/50 (mass ratio). Can only exist in an aqueous dispersion.
  • the organosol described in Patent Document 8 is a latex mixing method in which PTFE particle latex and amorphous or low crystallinity fluororesin particle latex are mixed and then coagulated, dried and dispersed in an organic solvent, or PTFE particles And amorphous fluororesin particles are dry blended in a dry state and then dispersed in an organic solvent.
  • organosols with a solid content of PTFE exceeding 50% by mass are also produced, but because of dry blending, PTFE particles agglomerate or fiberize to increase the particle size and exist as primary particles. Not stable.
  • the ratio of PTFE particles is up to 20% by mass, as in the conventional case, where the generation rate of secondary particles is large and the sedimentation stability is excellent.
  • JP-A 62-109846 Japanese Patent Laid-Open No. 2-158651 JP-A-4-154842 International Publication No. 96/012764 Pamphlet JP-A-63-284201 Japanese Patent Publication No. 48-27549 JP-A-10-53682 Special table 2008-527081
  • the PTFE particle organosol is prepared by the conventional method, if the content of the PTFE particles exceeds 30% by mass, the PTFE particles aggregate and the organosol becomes unstable. Moreover, even if it is a stable PTFE organosol up to 30% by mass, for example, when it is shear mixed with an electrode active material or the like to form a slurry for an electrode mixture, or further mixed with an auxiliary binder solution, PTFE particles The problem of flocculation and fibrillation is inevitable.
  • An object of the present invention is to provide a stable organosol composition that contains PTFE particles in a high content.
  • the present invention is an organosol composition
  • an organosol composition comprising polytetrafluoroethylene particles (A), a polymer (B), and an organic solvent (S), (1)
  • the polymer (B) is soluble in the organic solvent (S), (2)
  • the content of the polytetrafluoroethylene particles (A) is 50% by mass or more of the total amount of the polytetrafluoroethylene particles (A) and the polymer (B), (3)
  • the present invention relates to an organosol composition of ethylene particles.
  • the present invention also provides an organosol composition comprising polytetrafluoroethylene particles (A), a polymer (B), and an organic solvent (S), (1) The polymer (B) is soluble in the organic solvent (S), (2)
  • the present invention relates to an organosol composition of polytetrafluoroethylene particles having an inclination of an ultrasonic attenuation spectrum of +0.50 or more.
  • the ultrasonic attenuation spectrum is obtained from the attenuation rate measured at a frequency of 3 to 100 MHz using an ultrasonic attenuation method for an organosol composition having a solid content concentration of 12% by mass.
  • the present invention also provides an organosol composition
  • an organosol composition comprising polytetrafluoroethylene particles (A), a polymer (B), and an organic solvent (S), (1)
  • the polymer (B) is soluble in the organic solvent (S), (2)
  • It relates to an organosol composition of polytetrafluoroethylene particles having a change rate of saturated infrared transmittance of 5.0% or less.
  • the change rate of the saturated infrared transmittance is an infrared measured by centrifuging at 25 ° C. with an optical path length of 2.2 mm and a centrifugal force of 2300 G for an organosol composition having a solid content concentration of 5 mass%. It is calculated from the light intensity.
  • the present invention also provides Step (I) of mixing an aqueous dispersion of fluororesin particles (X) insoluble in the organic solvent (S) and an aqueous dispersion of the polymer (B) soluble in the organic solvent (S), To the obtained mixed aqueous dispersion, a coagulation organic solvent (D) soluble in water is added to coagulate the fluororesin particles (X) and the polymer (B) insoluble in the organic solvent (S).
  • Step (II) A step (III) of separating the hydrous coagulate (E) and the liquid layer of the fluororesin particles (X) and the polymer (B) insoluble in the obtained organic solvent (S); From the step (IV) of mixing the obtained water-containing coagulated product (E) and the organic solvent (S) and stirring to disperse the water-containing coagulated product (E), and the obtained water-containing organic dispersion (F) Step of removing moisture (V)
  • the present invention also relates to a method for producing an organosol composition of fluororesin particles (X) insoluble in an organic solvent (S) containing.
  • the PTFE organosol composition of the present invention contains PTFE particles stably, and when the coating film is formed using the PTFE organosol composition of the present invention as a binder, the adhesion to the substrate can also be improved. It has excellent characteristics.
  • the PTFE organosol composition of the present invention is an organosol containing PTFE particles (A), a polymer (B), and an organic solvent (S), (1)
  • the polymer (B) is soluble in the organic solvent (S), (2)
  • the content of PTFE particles (A) is 50% by mass or more of the total amount of PTFE particles (A) and polymer (B), (3)
  • An organosol composition of PTFE particles in which the settling rate of PTFE particles after 48 hours is 60% or less in a state where the total solid concentration of PTFE particles (A) and polymer (B) is 5% by mass.
  • PTFE particles PTFE preferably has a standard specific gravity (SSG) of 2.130 to 2.230, and may be fibril-forming or non-fibril-forming.
  • SSG standard specific gravity
  • PTFE Since PTFE cannot be melt-processed and fibrillates, its molecular weight cannot be measured by ordinary molecular weight measurement methods such as gel permeation chromatography (GPC). Therefore, conventionally, standard specific gravity (SSG) has been used as a measure of molecular weight.
  • the standard specific gravity is defined by ASTM D 4895-89, and the molecular weight increases as the numerical value decreases.
  • the standard specific gravity of unmodified PTFE described in Patent Document 6 is 2.20 to 2.29.
  • the standard specific gravity of PTFE used in the present invention is preferably 2.230 or less, more preferably 2.130 to 2.200. When the standard specific gravity exceeds 2.230, that is, when the molecular weight is low, fibrillation becomes difficult.
  • a high molecular weight PTFE having a standard specific gravity of less than 2.130 does not lose the fibril forming properties inherent to the high molecular weight PTFE, but is difficult to manufacture and impractical.
  • the fibril forming property may be evaluated by a specific melt viscosity (ASTM 1238-52T) at 380 ° C., which is another viewpoint.
  • ASTM 1238-52T specific melt viscosity
  • the standard of “non-fibril forming property” is that the specific melt viscosity at 380 ° C. is 1 ⁇ 10 7 poises or less, and further 1 ⁇ 10 6 poises or less. The lower limit is usually 5 ⁇ 10 2 poise.
  • the fibril forming property may be evaluated from the melt extrusion pressure which is still another viewpoint. When this value is large, it can be evaluated that the fibril forming property is high, and when it is small, it can be evaluated that the fibril forming property is low.
  • the standard of “non-fibril forming property” is preferably such that the column extrusion pressure at the reduction ratio 1600 is 70 MPa or less, 60 MPa or less, and further 50 MPa or less because aggregation hardly occurs during the production of the organosol composition.
  • the lower limit is usually 5 MPa, but may be appropriately selected depending on the application and purpose, and is not particularly limited.
  • Fibril-forming PTFE A typical example is a TFE homopolymer having a high molecular weight (usually SSG of 2.230 or less) and not modified (hereinafter sometimes referred to as “unmodified PTFE”). As described above, fibril-forming PTFE is a PTFE particle that has heretofore been difficult to put into an organosol with a high content.
  • Non-fibril forming PTFE Whether it is non-fibril-forming can be evaluated according to the above criteria. Specifically, monomer-modified PTFE copolymerized with 2% by mass or less of a modifying monomer described in Patent Document 5, etc., low molecular weight (high SSG) PTFE, Patent Documents 1 to 4, etc. Examples include core-shell composite particles composed of the described fibril-forming PTFE core and a non-fibril-forming resin shell.
  • the PTFE particles are present in the organosol in the form of primary particles regardless of whether they are fibril-forming or non-fibril-forming. “Present in the organosol in the form of primary particles” does not require that all PTFE particles are primary particles, but the content of PTFE particles (A) (PTFE particles (A) and polymer) It is sufficient that the content of PTFE particles (A) in the total amount of (B) (the same applies hereinafter) should be stably present in the organosol in a state of 50% by mass or more (described later, “settling rate of PTFE particles after 48 hours”).
  • Is 60 mass% or less which is not clear, but means that almost no aggregated PTFE particles (PTFE particles having a particle diameter of 5 ⁇ m or more) are present. In other words, it means a composition having an average particle size of 5 ⁇ m or less, more preferably 1 ⁇ m or less in the particle size measurement by the light scattering method. In addition, it is considered that 30% by mass or more, further 50% by mass or more of all PTFE particles may be primary particles.
  • the average primary particle diameter of the PTFE particles of the PTFE aqueous dispersion to be used is preferably in the range of 50 to 500 nm from the viewpoint of good organosol stability and redispersibility. More preferably, it is 50 to 400 nm, and still more preferably 100 to 350 nm.
  • the average primary particle diameter of the PTFE particles is preferably smaller from the viewpoint of easy mixing and uniform dispersion, and is preferably in the range of 50 to 400 nm. More preferably, it is 50 to 300 nm, and still more preferably 50 to 250 nm.
  • the average primary particle diameter of PTFE particles is preferably smaller in that a more uniform electrode mixture slurry can be prepared, and the range is from 50 to 400 nm. It is preferable that it exists in. More preferably, it is 50 to 300 nm, and still more preferably 50 to 250 nm.
  • the PTFE aqueous dispersion can produce the above organosols with or without a dispersion stabilizer, and the following commercially available PTFE aqueous dispersions can also be used.
  • DYNEON registered trademark
  • TF 5032 PTFE DYNEON (registered trademark) TF 5033 PTFE
  • DYNEON registered trademark
  • TF 5035 PTFE DYNEON (registered trademark)
  • DION DYNON) from Dyneon, LLC.
  • TF 5050 PTFE (Registered trademark) TF 5050 PTFE
  • Teflon registered trademark
  • TEFLON Teflon PTFE GRADE from EI du Pont de Nemours & Co.
  • the fibril-forming PTFE particles that have been difficult to be contained in the organosol at a high content can be stably contained at a high content.
  • the organosol composition of the present invention preferably does not contain tetrafluoroethylene (TFE) -hexafluoropropylene (HFP) copolymer (FEP).
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene copolymer
  • the polymer polymer (B) is not particularly limited as long as it is soluble in the organic solvent (S), which is one component of the organosol composition, and a fluorine-based resin or rubber (B1) is also a non-fluorine resin. Or rubber (B2), which can be appropriately selected according to the type of the organic solvent (S), the use of the organosol composition and the production conditions.
  • fluorine resin and rubber (B1) examples include VdF polymers, fluorine-containing acrylic or methacrylic polymer polymers.
  • VdF polymers fluorine-containing acrylic or methacrylic polymer polymers.
  • perfluoro polymer containing PTFE or FEP is not substantially dissolved in the organic solvent (S), it is not contained in the polymer (B).
  • the polymer (B) is preferably a resin, and more preferably a fluororesin.
  • a VdF polymer is preferable.
  • the VdF polymer may be a VdF homopolymer (PVdF) or a VdF copolymer.
  • a VdF copolymer is more preferable.
  • a copolymer containing 40 mol% or more of VdF is preferable because it dissolves in a non-fluorinated organic solvent.
  • the copolymer is used as a polymer for electrode mixture, oxidation resistance, This is preferable from the viewpoint of good adhesion to the current collector.
  • at least one copolymer selected from the group consisting of a VdF / TFE copolymer and a TFE / HFP / VdF copolymer is preferable.
  • fluorinated acrylic or methacrylic polymer examples include acrylic or methacrylic polymers containing a perfluoroalkyl group having 4 to 8 carbon atoms.
  • n is A copolymer of a non-fluorinated monomer copolymerizable with an integer of 1 to 4 and Rf being a C4 to C6 perfluoroalkyl group
  • CH 2 ⁇ C (CH 3 ) COO (CH 2 ) n —Rf where n is an integer of 1 to 4, Rf is a perfluoroalkyl group having 4 to 6 carbon atoms
  • a copolymer of a non-fluorine monomer that can be copolymerized with the non-fluorine monomer.
  • copolymerizable non-fluorine monomers include ⁇ such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, lauryl acrylate, stearyl acrylate, and benzyl acrylate.
  • ⁇ -ethylenically unsaturated carboxylic acid esters 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxyalkyl esters of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as 3-hydroxypropyl methacrylate, diethylene glycol methacrylate, etc.
  • non-fluorine-type resin and rubber gum (B2)
  • organic solvent (S) organic solvent
  • non-fluorinated resins include polyamide imide, polyimide, carboxymethyl cellulose or salt thereof, carboxyethyl cellulose or salt thereof, carboxybutyl cellulose or salt thereof, epoxy resin, urethane resin, polyethylene oxide or derivative thereof, polymethacrylic acid or derivative thereof. And polyacrylic acid or a derivative thereof.
  • the non-fluorine resin when there is a possibility that the non-fluorine resin may remain in the coating film in the drying / heat treatment process after coating, polyamideimide and polyimide which are resins having excellent heat resistance are preferable.
  • the non-fluororesin when it is preferably a resin that is easily decomposed, such as carboxymethylcellulose or a salt thereof, carboxyethylcellulose or a salt thereof, carboxybutylcellulose. Or its salt, urethane resin, polyethylene oxide or its derivative, polymethacrylic acid or its derivative, polyacrylic acid or its derivative are preferable.
  • Non-fluorinated rubbers include EPDM rubber, styrene-butadiene rubber, neoprene rubber, and acrylic rubber.
  • acrylic rubber is preferable when there is a possibility of remaining in the coating film, and styrene butadiene rubber is preferable when it can be removed.
  • the organic solvent (S) constituting the organosol composition of the present invention is not particularly limited as long as it is an organic solvent capable of dissolving the polymer (B). It is appropriately selected according to the use and manufacturing conditions.
  • the organic solvent (S) is composed of a fluorinated solvent and a non-fluorinated organic solvent (C).
  • the organic solvent (S) is particularly preferably a fluorinated solvent, and an organic solvent having a high fluorine content is preferable in that the polymer (B) can be dissolved.
  • fluorine solvents include fluorine-containing ether solvents, fluorine-containing ketone solvents, fluorine-containing alcohol solvents, fluorine-containing amide solvents, fluorine-containing ester solvents, fluorine-containing aliphatic hydrocarbon solvents, and fluorine-containing aromatics.
  • fluorine solvents include fluorine-containing ether solvents, fluorine-containing ketone solvents, fluorine-containing alcohol solvents, fluorine-containing amide solvents, fluorine-containing ester solvents, fluorine-containing aliphatic hydrocarbon solvents, and fluorine-containing aromatics.
  • hydrocarbon hydrocarbon solvents and fluorine-containing halogenated hydrocarbon solvents are preferred.
  • the organic solvent having a high fluorine content in the organic solvent (S) include fluorine-containing ether solvents, fluorine-containing alcohols, fluorine-containing aliphatic hydrocarbon solvents, and fluorine-containing halogenated hydrocarbon solvents.
  • Two or more fluorine-based solvents may be used in combination. This combination can be appropriately selected depending on the physical properties of the fluorinated solvent.
  • the fluorine-based solvent include fluorinated hydrocarbons having 4 to 10 carbon atoms, and heterocyclic compounds having at least one oxygen atom in which part or all of the hydrogen atoms are substituted with fluorine atoms as ring constituent atoms.
  • at least one fluorine-based solvent selected from fluoroalkylamines having 2 to 5 carbon atoms can be used.
  • fluorinated hydrocarbons with 4 to 10 carbon atoms include n-butane, isobutane, n-pentane, isopentane, neopentane, n-butane in which part or all of the hydrogen atoms are substituted with fluorine atoms.
  • heterocyclic compound having at least one oxygen atom in which part or all of the hydrogen atoms are substituted with fluorine atoms as ring constituent atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, Some or all of the hydrogen atoms such as 2-propyltetrahydrofuran, 2-butyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 2-ethyltetrahydropyran, 2-propyltetrahydropyran, 2-butyltetrahydropyran, etc. are replaced by fluorine atoms
  • the heterocyclic compound currently used is mentioned.
  • the fluoroalkylamine having 2 to 5 carbon atoms is a fluoroalkylamine in which some or all of the hydrogen atoms are substituted with fluorine atoms.
  • fluoroalkylamines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, trimethylamine, wherein some or all of the hydrogen atoms are replaced by fluorine atoms.
  • Examples include propylamine, butylamine, isobutylamine, dibutylamine, tributylamine, pentylamine, isopentylamine, dipentylamine, tripentylamine, tetrapentylamine, and tetrahexylamine.
  • the organic solvent (S) is preferably a non-fluorinated organic solvent (C).
  • the non-fluorinated organic solvent (C) is not particularly limited as long as it is an organic solvent that can dissolve the polymer (B), and is appropriately selected according to the type of the polymer (B), the use of the organosol composition and the production conditions.
  • Preferred examples include ether solvents, ketone solvents, alcohol solvents, amide solvents, ester solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ketones. At least one selected from the group consisting of a system solvent, an alcohol solvent, an amide solvent, an ester solvent, and an aliphatic hydrocarbon solvent is preferable from the viewpoint of good solubility of the polymer (B).
  • ketone solvents include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • alcohol solvents include methanol, ethanol, propanol, isopropanol, n-butanol, and s-butanol.
  • Amide solvents include N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF) and the like; ester solvents include ethyl acetate, isopropyl acetate, Butyl acetate, isobutyl acetate, etc .; Aliphatic hydrocarbon solvents such as hexane, petroleum ether; Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Halogenated hydrocarbon solvents Carbon tetrachloride, etc. trichlorethylene can be exemplified.
  • an organosol in the case of an organic solvent that hardly dissolves the polymer (B) alone, such as carbon tetrachloride, trichloroethylene, or diisobutyl ketone, an organosol can be obtained by adding a small amount of an oil-soluble surfactant.
  • an organic solvent that hardly dissolves the polymer (B) alone such as carbon tetrachloride, trichloroethylene, or diisobutyl ketone
  • an organosol can be obtained by adding a small amount of an oil-soluble surfactant.
  • N-methyl-2-pyrrolidone is particularly preferred for use in the production of battery electrodes.
  • Other preferred examples include dimethylacetamide. That is, the organic solvent (S) is preferably N-methyl-2-pyrrolidone or dimethylacetamide. More preferred is N-methyl-2-pyrrolidone.
  • the content of PTFE particles (A) in the solid content is not particularly limited, but is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, particularly preferably. It is 50 mass% or more.
  • an organosol in which PTFE particles are stably present at 50% by mass or more has not been known.
  • the more preferable content of PTFE particles is 60% by mass or more, and further 80% by mass or more, and from the point of preventing PTFE aggregation due to PTFE fiberization due to the shearing force of stirring during organosol production. , 95% by mass or less, and further 80% by mass or less.
  • the concentration of the solid content (total of PTFE particles (A) and polymer (B)) in the organosol composition of the present invention may be appropriately selected according to the use and production conditions of the organosol composition, but usually 1 to 40 masses. %, More preferably 5 to 20% by mass.
  • the PTFE organosol composition of the present invention requires that the settling rate of PTFE particles after 48 hours is 60% or less when the total solid content of PTFE particles (A) and polymer (B) is 5% by mass. To do.
  • the settling rate of PTFE particles after 48 hours means an organosol composition having a total solid content concentration of 5% by mass of PTFE particles (A) and a polymer (B), manufactured by Marmu Co., Ltd., transparent screw Tube No. 3 (capacity 10 ml), put 8 ml in glass, ultrasonic irradiation was performed for 30 minutes using an ultrasonic cleaner made by BRANSONIC registered trademark B-521, BRANSON CLEANING EQUIPENT COMPANY, and left still for 48 hours Thereafter, the supernatant is taken, the solid concentration of the supernatant is measured, and the sedimentation rate of the PTFE particles (A) is calculated according to the following formula. However, it is assumed that the polymer (B) is completely dissolved in the organic solvent (S) in the supernatant.
  • PTFE sedimentation rate (%) [ ⁇ initial concentration of PTFE ⁇ (solid content of supernatant after standing for 48 hours ⁇ initial concentration of polymer (B)) ⁇ ] / initial concentration of PTFE ⁇ 100
  • Initial concentration of PTFE From the solid content concentration of the organosol composition used in the sedimentation rate test and the composition ratio of PTFE particles (A) and polymer (B) in the organosol composition used in the sedimentation rate test measured by solid NMR Calculate and determine the initial concentration of PTFE.
  • Initial concentration of polymer (B) solid content concentration of organosol composition used for sedimentation rate test, and PTFE particles (A) and polymer (B) in organosol composition used for sedimentation rate test measured by solid NMR Calculate from the composition ratio to determine the initial concentration of the polymer (B).
  • the settling rate of PTFE particles after 48 hours is preferably low, and therefore 60% or less, more preferably 50% or less.
  • the organosol composition of the PTFE particles of the present invention is an organosol composition containing PTFE particles (A), a polymer (B), and an organic solvent (S), (1)
  • the polymer (B) is soluble in the organic solvent (S), (2)
  • the rate of change in saturated infrared transmittance is 5.0 (%) or less.
  • the change rate of the saturated infrared transmittance is an infrared measured by centrifuging at 25 ° C. with an optical path length of 2.2 mm and a centrifugal force of 2300 G for an organosol composition having a solid content concentration of 5 mass%. It is calculated from the light intensity.
  • the change rate of the saturated infrared transmittance is 5.0% or less, the dispersion stability is good, and a good storage state can be continued without the secondary aggregated PTFE particles being visibly precipitated.
  • centrifugation is performed with a centrifugal force of 2300 G, the PTFE particles that are secondarily aggregated are more likely to be centrifuged as the organosol composition has a lower dispersion stability of PTFE particles. Therefore, the rate of change of the saturated infrared transmittance of the organosol composition having low dispersion stability is increased.
  • the change rate of the saturated infrared transmittance is preferably low, more preferably 4.0% or less, still more preferably 3.0% or less, and particularly preferably 2.0% or less.
  • the PTFE particle organosol composition of the present invention preferably has an average change rate of infrared transmittance from the start to the end of centrifugation of 6.0% / hour or less.
  • the average change rate of infrared transmittance is 6.0% / hour or less, the dispersion stability is good, and the secondary agglomerated PTFE particles are not visibly precipitated, and a good storage state can be continued.
  • It is more preferably 5.0% / hour or less, and further preferably 4.0% / hour or less. A specific method for calculating the average change rate of the infrared transmittance will be described later.
  • the dispersion state and particle distribution state of the PTFE particles in the organosol can be grasped by using the infrared transmittance when the organosol is subjected to centrifugal separation as a scale.
  • infrared transmittance When infrared transmittance is used as a scale, it is useful because the dispersibility of PTFE particles in the organosol can be accurately quantified, and it is useful for a concentrated solution having a solid content of 1% by mass or more without being extremely diluted. Since it can be evaluated, it is also useful for evaluating the storage stability of the composition.
  • the infrared transmittance measurement method, the saturated infrared transmittance change rate calculation method, and the like will be specifically described below.
  • Infrared transmittance calculation method Infrared transmittance is measured by measuring infrared light intensity I1 transmitted through the organosol composition by injecting infrared light (intensity: I0) having a wavelength of 870 nm into the organosol composition having a solid content concentration of 5% by mass. It is the value obtained (I1 / I0 ⁇ 100).
  • the infrared transmittance is calculated by the following method.
  • the organosol composition of the PTFE particles of the present invention is prepared so that the total solid content (PTFE particles (A) and polymer (B)) is 5% by weight.
  • An organosol composition having a total solid concentration of 5% by weight can be prepared by adding an organic solvent (S) to the organosol composition of the present invention.
  • sample having a total solid content of 5% by weight in a polyamide cell having an optical path length of 2.2 mm (manufactured by Nippon Lucas Co., Ltd., model number: 110-13429, polyamide cell having an optical path length of 2.2 mm).
  • the sample is filled (with a sample of about 20 mm from the bottom of the cell), and the cell is set in a dispersion stability analyzer (trade name “Lumizer 611” manufactured by Nippon Lucas Co., Ltd.) that can measure infrared transmittance while centrifuging.
  • the infrared light intensity I1 at which the total solid concentration is transmitted through the sample in the range of 0 to 25 mm from the bottom (lower part) of the cell is measured, and incident infrared light (wavelength: 870 nm, Infrared transmittance [I1 / I0 ⁇ 100] for intensity: I0) is calculated.
  • the infrared transmittance is measured 400 times at 10 second intervals from the start of measurement for a total of 4000 seconds. Centrifugation is performed while applying a centrifugal force of 2300 G at 25 ° C.
  • change rate of saturated infrared transmittance is a change rate representing how much the infrared transmittance has changed before and after measurement for 4000 seconds.
  • change rate of saturated infrared transmittance (%) (
  • the infrared light intensity is a value measured at the center of the cell (position at a distance of 120 mm from the rotation center of the dispersion stability analyzer).
  • the average change rate of the infrared transmittance is the distance from the rotation center on the X axis and the infrared transmittance on the Y axis at each measurement time from the start to the end of the measurement based on the measurement result of the infrared light intensity.
  • Each plotted graph is created, and the area of the portion enclosed from the beginning to the end of the measurement of the portion from the upper part to the lower part of the sample is calculated and summed up. This is the amount of change in the amount of infrared transmitted light for 4000 seconds from the start to the end of measurement, and the value calculated as the amount of change per hour is the average rate of change in infrared transmittance (% / hour).
  • the organosol composition of the PTFE particles of the present invention is an organosol composition containing PTFE particles (A), a polymer (B), and an organic solvent (S), (1)
  • the polymer (B) is soluble in the organic solvent (S), (2)
  • the inclination of the ultrasonic attenuation spectrum is +0.5 or more.
  • the ultrasonic attenuation spectrum is obtained from the attenuation rate measured at a frequency of 3 to 100 MHz using an ultrasonic attenuation method for an organosol composition having a solid content concentration of 12% by mass.
  • the dispersion stability is good, and a good storage state can be continued without causing secondary aggregated PTFE particles to visibly precipitate. If there are a large number of secondary particles in which the primary particles of PTFE are aggregated, the particle distribution becomes wide and the attenuation rate on the low frequency side increases, so that the slope of the ultrasonic attenuation spectrum decreases. On the other hand, when the number of secondary particles of PTFE is small and the number of primary particles is large, the attenuation rate on the low frequency side is relatively lowered and the attenuation rate on the high frequency side is increased, so that the slope of the ultrasonic attenuation spectrum is increased.
  • the inclination of the ultrasonic attenuation spectrum is preferably higher, more preferably +0.55 or more, further preferably +0.60 or more, and particularly preferably +0.65 or more.
  • the ultrasonic attenuation method when ultrasonic waves are applied to a suspension, the particles in the suspension cause relative movement with respect to the solvent.
  • the particle size distribution is determined from the characteristics of the measurement.
  • the ultrasonic attenuation method is an optimal method for measuring the average particle diameter and distribution pattern of a concentrated solution. Examples of the particle size distribution measuring apparatus using the ultrasonic attenuation method include trade name DT-1200 manufactured by Nippon Lucas Co., Ltd.
  • the ultrasonic attenuation method is performed while pouring a suspension for measurement from the upper part of the measurement chamber and basically circulating the suspension, and the circulation speed can be changed as necessary. Moreover, in the slurry which hardly generates sediment, the circulation is stopped and measured.
  • ultrasonic waves of 3 to 100 MHz are irradiated to the suspension in the chamber from the vibrator installed on one side, and this is received by the vibrator installed on the other side.
  • An attenuation rate curve is obtained by measuring the rate (attenuation rate) attenuated during propagation in the turbid liquid for each of a plurality of set frequencies. This curve is called an ultrasonic attenuation spectrum.
  • the specific measurement method of the ultrasonic attenuation method can be measured in the same manner as described in “Coloring Materials, 75 [11], 530-537 (2002) Shinichi Takeda, Okayama University”.
  • the slope of the ultrasonic attenuation spectrum is calculated according to the following method.
  • an organosol composition (sample) having a total solid content (PTFE particles (A) and polymer (B)) of 12% by weight is prepared.
  • An organosol composition having a total solid content of 12% by weight can be prepared by adding an organic solvent (S) to the organosol composition of the present invention.
  • a sample is poured from the upper part of the measurement chamber of an ultrasonic particle size distribution measuring apparatus (for example, product name DT-1200, manufactured by Nippon Lucas Co., Ltd.), and the attenuation rate is measured for each frequency set below between 3 and 100 MHz. To do.
  • an ultrasonic particle size distribution measuring apparatus for example, product name DT-1200, manufactured by Nippon Lucas Co., Ltd.
  • the set frequencies are 3.0 MHz, 3.7 MHz, 4.5 MHz, 5.6 MHz, 6.8 MHz, 8.4 MHz, 10.3 MHz, 12.7 MHz, 15.6 MHz, 19.2 MHz, 23.5 MHz, 28. 9 MHz, 35.5 MHz, 43.7 MHz, 53.6 MHz, 81.0 MHz, and 99.5 MHz.
  • a degassed sample is used. In the degassing operation, the sample may be left to stand for several hours after being repeatedly depressurized to normal pressure in an apparatus that can be depressurized, or degassed while applying ultrasonic waves to the sample under stirring or stirring. Later, it may be allowed to stand for several hours.
  • Measurement is performed a plurality of times, and if the error from the previous measurement is within 5% at each measurement point, the measurement is terminated and the last measured value is adopted.
  • a graph is created by plotting log 10 (frequency (MHz)) on the x-axis and attenuation rate (dB / cm / MHz) on the y-axis from the values at each measurement point.
  • a first-order approximate curve (regression line) is calculated from each measurement point by the least square method, and the value of the slope of this straight line is defined as the slope (dB / cm / (MHz) 2 ) of the ultrasonic attenuation spectrum.
  • the content of PTFE particles (A) in the solid content is not particularly limited, but is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, Especially preferably, it is 50 mass% or more.
  • a more preferable content of PTFE particles is 60% by mass or more, and further 80% by mass or more. Moreover, 95 mass% or less and also 80 mass% or less are preferable from the point which prevents the aggregation of PTFE by PTFE fiberization by the shearing force of stirring at the time of organosol manufacture.
  • the concentration of the solid content (total of PTFE particles (A) and polymer (B)) in the organosol composition of the present invention may be appropriately selected according to the use and production conditions of the organosol composition. It is preferable to select from the range of 40% by mass, more preferably 5 to 20% by mass.
  • the PTFE particles (A), the polymer (B), and the organic solvent (S) are the same as those described above.
  • the organosol composition of the present invention preferably has an ultrasonic attenuation spectrum with a slope of +0.50 or more and a change rate of saturated infrared transmittance of 5.0% or less.
  • the settling rate of PTFE particles after 48 hours is 60% or less in a state where the total solid concentration of PTFE particles (A) and the polymer (B) is 5% by mass. It is preferable.
  • any of the organosol compositions of the present invention is preferably substantially anhydrous when used for fields and purposes that dislike the presence of moisture, particularly when used in the production of lithium battery electrodes.
  • the water content (for example, can be measured by the Karl-Fischer method) is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 500 ppm or less, particularly preferably 350 ppm or less, and most preferably It is preferably 100 ppm or less.
  • Example 1 (A) PTFE particles SSG: 2.130-2.200 Presence or absence of modification: No fibril formation: No (B) polymer Type: From VdF polymer, especially PVdF, tetrafluoroethylene / vinylidene fluoride copolymer (VT) and TFE-HFP-VdF copolymer (THV) At least one resin selected from the group consisting of More preferably, it is at least one resin selected from the group consisting of VT and THV. (C) Non-fluorinated organic solvent Type: Amide solvent, especially NMP, DMAC Solid content concentration: 5-20% by mass Water content: 100ppm or less
  • the present invention also relates to a method for producing an organosol composition of fluororesin particles (X) that is insoluble in the organic solvent (S).
  • the organosol composition of the PTFE particles (A) of the present invention described above is preferably produced by the production method.
  • the production method of the present invention comprises: Step (I) of mixing an aqueous dispersion of fluororesin particles (X) insoluble in the organic solvent (S) and an aqueous dispersion of the polymer (B) soluble in the organic solvent (S), To the obtained mixed aqueous dispersion, a coagulation organic solvent (D) soluble in water is added to coagulate the fluororesin particles (X) and the polymer (B) insoluble in the organic solvent (S).
  • Step (II) A step (III) of separating the hydrous coagulate (E) and the liquid layer of the fluororesin particles (X) and the polymer (B) insoluble in the obtained organic solvent (S); From the step (IV) of mixing the obtained water-containing coagulated product (E) and the organic solvent (S) and stirring to disperse the water-containing coagulated product (E), and the obtained water-containing organic dispersion (F) Step of removing moisture (V) It is a manufacturing method of the organosol composition of the fluorine-type resin particle (X) insoluble in the organic solvent (S) containing this.
  • Fluorine resin particles (X) insoluble in the organic solvent (S) include PTFE particles, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) particles, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer Examples include coalescence (PFA) particles. Of these, PTFE particles are preferred.
  • the aqueous dispersion of PTFE particles (A) is preferably an aqueous dispersion of PTFE primary particles (particle diameter 50 to 500 nm) obtained by emulsion polymerization, and the solid content concentration is 10 to 40% by mass. The range of is preferable.
  • the aqueous dispersion of polymer (B) is preferably an aqueous dispersion having a particle size of about 50 to 500 nm, and the solid content concentration is preferably in the range of 10 to 40% by mass.
  • the mixing of the two aqueous dispersions may be performed by a normal mixing method except that strong stirring is not performed so that the PTFE particles (A) become fibers.
  • the water-soluble organic solvent for coagulation (D) used in the coagulation step (II) may be the same as or different from the organic solvent (S).
  • the coagulation organic solvent (D) include ketone solvents and alcohol solvents.
  • the ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone
  • Preferred examples of the alcohol-based solvent include methanol, ethanol, propanol, isopropanol, n-butanol, s-butanol, and t-butanol.
  • organic solvent (S) is used as the coagulation organic solvent (D)
  • specific organic solvents used in the coagulation step (II) and the dispersion step (IV) are different.
  • An organic solvent may be employed.
  • Preferable organic solvents for coagulation (D) include, for example, ketone solvents and alcohol solvents, and among them, ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, and methyl isobutyl ketone.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, and methyl isobutyl ketone.
  • Alcohol solvents such as methanol, ethanol, propanol, isopropanol, and n-butanol are particularly preferable because they have a relatively low boiling point and can be easily removed by distillation or the like.
  • the addition amount of the organic solvent for coagulation (D) is not particularly limited as long as the total amount of the PTFE particles (A) and the polymer (B) coagulates.
  • the amount may be about 10 to 1000 parts by mass with respect to 100 parts by mass of the aqueous dispersion mixture of PTFE particles (A) and polymer (B).
  • the hydrocarbon solvent (G) in order to easily perform the next separation step (III).
  • the hydrocarbon solvent (G) include hydrocarbon solvents having a relatively low boiling point such as benzene, toluene, pentane, hexane and heptane.
  • the addition amount may be about 1 to 100 parts by mass with respect to 100 parts by mass of the aqueous dispersion mixture of PTFE particles (A) and polymer (B).
  • the separation method is not particularly limited, but since a highly accurate separation is not required as described above, a normal filtration method, a supernatant liquid removal method, or the like can be employed. Especially, since it is simple, the filtration method is preferable.
  • (IV) Dispersion Step This is a step of obtaining the water-containing organic dispersion (F) by dispersing the obtained water-containing coagulated product (E) in the organic solvent (S) which is one component of the organosol composition of the present invention.
  • the dispersion method may be a normal dispersion mixing method, except that strong stirring is not performed so that the PTFE particles (A) become fibers.
  • Examples of a preferable dispersion and mixing method include a mechanical stirring method and an ultrasonic stirring method.
  • drying dry removal of liquid including water
  • the collected coagulum is once dried and then dispersed in an organic solvent.
  • PTFE primary particles are fibrillated or secondary agglomerated, resulting in a high PTFE content. A stable organosol composition cannot be obtained.
  • the water removal step (V) is a step of removing water from the water-containing organic dispersion (F). It is preferable to use it when used in a field where moisture contamination is not desirable, such as the battery field.
  • the moisture is removed by a conventionally known method until the moisture content according to the application and purpose is reached. Specifically, a method of removing water together with the organic solvent (H) by adding and heating an organic solvent (H) azeotropic with water, a dispersion solvent having an organic solvent (S) having a boiling point higher than that of water And a method of removing moisture by distilling or concentrating it, and a method of removing moisture by dispersing and filtering a filterable solid that absorbs moisture.
  • a preferred method for removing moisture is a method in which an organic solvent (H) capable of azeotroping with water is added and heated.
  • organic solvent (H) include aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, and cumene; methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, and the like.
  • Ketone solvents such as ethyl acetate, isopropyl acetate, butyl acetate, and isobutyl acetate; ether solvents such as 1,4-dioxane, and the addition amount is not particularly limited, but the dispersion step ( It may be about 1 to 50 parts by mass with respect to 100 parts by mass of the solution obtained in IV).
  • the heating temperature may be appropriately selected depending on the azeotropic point of the organic solvent (H) and water.
  • the degree of moisture removal is preferably substantially anhydrous when used for fields and purposes that do not like the presence of moisture, particularly when used in the manufacture of lithium battery and capacitor electrodes.
  • the water content (for example, can be measured by the Karl-Fischer method) is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 500 ppm or less, particularly preferably 350 ppm or less, and most preferably It is preferably 100 ppm or less.
  • an aqueous dispersion of PTFE particles (A) and an aqueous dispersion of a polymer (B) soluble in an organic solvent (S) are mixed and then mixed.
  • a method of adjusting the resin solid content concentration after adding the solvent (S) and an organic solvent (H) capable of azeotroping with water and removing the water and the organic solvent (H) by distillation under heating can be considered.
  • the organic solvent (S) is the same as described above.
  • the organic solvent (S) is preferably a non-fluorine organic solvent (C).
  • organosol composition of the present invention has been described using PTFE particles as a representative. However, not only PTFE particles but also perfluoro particles that are substantially insoluble in organic solvents can be applied in the same manner. For example, FEP particles Similarly, an organosol composition can be produced using an aqueous dispersion containing PFA particles and the like.
  • the organosol composition of the present invention contains PTFE particles in a large amount and in a stable form, and is useful for many applications in a wide range of fields.
  • the organosol composition of the present invention is dispersed in NMP, as a binder component in an electrode mixture slurry for producing positive electrodes and negative electrodes of lithium secondary batteries and electric double layer capacitors, It is useful as a mixture that imparts water repellency to water.
  • thermoplastic and thermosetting polymers and elastomers In the field of resin molding, it is blended with thermoplastic and thermosetting polymers and elastomers to provide flame retardancy, slidability, water and oil repellency, stain resistance, corrosion resistance, weather resistance, electrical properties, and viscosity. It is useful as a modifier for modifying the above and as a white pigment.
  • resin additives, sealants, printed circuit board materials that require low dielectric constant and dielectric loss reduction
  • belts for OA equipment such as copiers and printers that require non-adhesiveness, especially transfer belts and transfer / fixing Useful for belts.
  • Solid content concentration of aqueous dispersion or organosol Collect 10 g of an aqueous dispersion or organosol such as PTFE in a petri dish, and after heating at 150 ° C. for about 3 hours, from the mass of the solid content weighed, the ratio of the mass of the aqueous dispersion or organosol and the mass of the solid content Calculate as
  • Centrifugation was performed at 25 ° C. at a rotation speed (4000 rpm) capable of giving a centrifugal force of 2300 G, and infrared transmittance was measured 400 times at 10 second intervals.
  • the change rate of the saturated infrared transmittance the infrared light is measured at a distance of 120 mm from the center of rotation, and from the infrared transmittance with an optical path length of 2.2 mm, an equation (infrared at the end of measurement) is obtained.
  • the average rate of change in infrared transmittance is plotted from the measurement result of infrared light intensity, the distance from the center of rotation on the X axis, and the infrared transmittance on the Y axis at each measurement time from the start to the end of measurement.
  • Each of the graphs is created, and the area of the portion enclosed from the start to the end of the measurement of the portion from the upper part to the lower part of the liquid level of the sample is calculated and summed. This is the amount of change in the amount of infrared transmitted light for 4000 seconds from the start to the end of measurement, and the value calculated as the amount of change per hour is the average rate of change in infrared transmittance (% / hour).
  • the set frequencies are 3.0 MHz, 3.7 MHz, 4.5 MHz, 5.6 MHz, 6.8 MHz, 8.4 MHz, 10.3 MHz, 12.7 MHz, 15.6 MHz, 19.2 MHz, 23.5 MHz, 28 .9 MHz, 35.5 MHz, 43.7 MHz, 53.6 MHz, 81.0 MHz, 99.5 MHz.
  • the measurement was performed a plurality of times using a degassed sample. When the error from the previous measurement was within 5% at each measurement point, the measurement was terminated and the last measured value was adopted. The deaeration was performed by placing the sample in a device capable of reducing the pressure, allowing the sample to stand for several hours after repeating the reduced pressure-normal pressure several times.
  • a graph was created by plotting log 10 (frequency) on the x-axis and attenuation rate (dB / cm / MHz) on the y-axis from the values at each measurement point.
  • a first-order approximate curve (regression line) was obtained by the least square method using the values of the respective measurement points, and “the inclination of the ultrasonic attenuation spectrum” was calculated from the inclination of this line.
  • Preparation Example 1 (Preparation of aqueous dispersion of PTFE particles) 3500 g of pure water and 100 g of granular paraffin wax in which the emulsifier CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 was adjusted to a concentration of 0.15% by mass were placed in a 6-liter SUS polymerization tank equipped with a stirrer. Sealed. After vacuum nitrogen substitution, the inside of the tank was evacuated. Thereafter, tetrafluoroethylene (TFE) was charged to 0.7 MPaG in the tank while stirring at 85 ° C. and 265 rpm.
  • TFE tetrafluoroethylene
  • TFE aqueous dispersion of PTFE (hereinafter referred to as “PTFE-1”) particles.
  • PTFE-1 aqueous dispersion of PTFE particles.
  • the solid content concentration of the aqueous dispersion by the dry mass method was 31.4% by mass.
  • the average primary particle diameter of the aqueous dispersion was 0.29 ⁇ m.
  • a mixed gas monomer having a VdF / TFE / HFP composition ratio of 50/38/12 mol% was charged to 0.39 MPaG in the tank. Then, the reaction was started by injecting an aqueous solution obtained by dissolving 137.2 mg of APS in 10 g of water with nitrogen. 10 g of water was again injected with nitrogen so that no liquid remained in the middle of the reaction tube.
  • a mixed monomer having a VdF / TFE / HFP composition ratio of 60/38/2 mol% was additionally charged so as to maintain the pressure in the tank.
  • stirring was slowed down and the gas in the tank was blown to complete the reaction.
  • the inside of the tank was cooled, and 1708 g of an aqueous dispersion of VdF / TFE / HFP copolymer (hereinafter referred to as “THV-1”) particles was collected in a container.
  • the solid content concentration of the aqueous dispersion by the dry mass method was 20.4% by mass.
  • Preparation Example 3 (Preparation of aqueous dispersion of PTFE particles) 3500 g of pure water and 100 g of granular paraffin wax in which the emulsifier CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 was adjusted to a concentration of 0.15% by mass were placed in a 6-liter SUS polymerization tank equipped with a stirrer. Sealed. While repeating the vacuum-nitrogen replacement several times while stirring at 265 rpm, the inside of the tank was set to a nitrogen pressure of 0.3 MPaG.
  • Example 1 (Preparation of PTFE-1 / THV-1 Organosol) 40.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 as PTFE particles (A), and 61.5 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 as polymers (B), 16 g of hexane was taken in a 200 mL beaker and stirred with a mechanical stirrer. While stirring, 60 g of acetone was added, and then stirred for 3 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration.
  • Example 2 (Preparation of PTFE-1 / THV-1 Organosol) Organosol as in Example 1 except that 40.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 41.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were used. 145 g of organosol in which PTFE-1 particles were uniformly dispersed in NMP was obtained. The solid content concentration of the organosol was measured and found to be 12.5% by mass. The water concentration measured by the Karl Fischer method was 100 ppm or less. Moreover, when this organosol was allowed to stand and visually observed, no separated layers or particles were observed even after 10 days or more.
  • Example 3 (Preparation of PTFE-1 / THV-1 Organosol) Similar to Example 1, except that 40.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 15.4 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were used. 72 g of an organosol in which PTFE-1 particles were uniformly dispersed in NMP was obtained. The solid content concentration of the organosol was measured and found to be 19.5% by mass. The water concentration measured by the Karl Fischer method was 100 ppm or less. The mass ratio of PTFE-1 / THV-1 as measured by solid state NMR was 81/19. Moreover, when this organosol was allowed to stand and visually observed, no separated layers or particles were observed even after 10 days or more.
  • Example 4 (Preparation of PTFE-1 / THV-1 Organosol) Organosol as in Example 1 except that 40.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 10.4 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were used. 50 g of an organosol in which PTFE-1 particles were uniformly dispersed in NMP was obtained. When the solid content concentration of this organosol was measured, it was 27.1% by mass. The water concentration measured by the Karl Fischer method was 100 ppm or less. Moreover, when this organosol was allowed to stand and visually observed, no separated layers or particles were observed even after 10 days or more.
  • Example 5 (Preparation of PTFE-1 / THV-1 Organosol) An organosol was prepared in the same manner as in Example 2 except that about 150 g of DMAC was used instead of NMP, and 110 g of an organosol in which PTFE-1 particles were uniformly dispersed in DMAC was obtained. When the solid content concentration of this organosol was measured, it was 16.7% by mass. The water concentration measured by the Karl Fischer method was 100 ppm or less. Further, when this organosol was allowed to stand and visually observed, no separated layers or particles were observed even after 10 days or more.
  • Example 6 (Preparation of PTFE-2 / THV-1 Organosol) 40.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 41.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 16 g of hexane were placed in a 200 mL beaker, and a mechanical stirrer. And stirred. While stirring, 90 g of acetone was added, and then stirred for 4 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 190 g of dimethylacetamide (DMAC) was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • DMAC dimethylacetamide
  • Example 7 (Preparation of PTFE-2 / THV-1 Organosol) 41.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 41.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 200 mL beaker, and a mechanical stirrer. And stirred. While stirring, 95 g of acetone was added, followed by stirring for 4 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 190 g of DMAC was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Example 8 (Preparation of PTFE-2 / THV-1 Organosol) 41.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 41.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 200 mL beaker, and a mechanical stirrer. And stirred. While stirring, 95 g of acetone was added, followed by stirring for 4 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 190 g of NMP was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Reference Example 1 (Preparation of PTFE-1 / THV-1 Organosol) Organosol as in Example 1, except that 10.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 61.5 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were used. 70 g of organosol in which PTFE-1 particles were uniformly dispersed in NMP was obtained. The solid content concentration of the organosol was measured and found to be 20.1% by mass. The water concentration measured by the Karl Fischer method was 100 ppm or less. Moreover, when this organosol was allowed to stand and visually observed, no separated layers or particles were observed even after 10 days or more. From these results, it can be seen that according to the production method of the present invention, an organosol having excellent stability can be produced even when the content of PTFE-1 particles is low.
  • Comparative example 1 (coagulation by freeze coagulation method) 5.9 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 35.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed, and PTFE-1 particles and THV-1 particles were mixed. Was obtained in a mass ratio of 20:80.
  • This mixed aqueous dispersion is stored at ⁇ 20 ° C. overnight in a freezer and frozen, and the frozen mixture is melted at room temperature, filtered to separate solid particles, and an equal volume of 70 ° C. with the water of the mixed aqueous dispersion.
  • the solid particles were washed three times with deionized water, and the washed solid particles were dried at 90 ° C. for 16 hours to coagulate and separate PTFE-1 particles and THV-1 particles.
  • the resulting dry mixture was a gummy white solid.
  • This dry mixture was dispersed in NMP to prepare an organosol having a solid concentration of 20% by mass.
  • the water concentration measured by the Karl Fischer method was 350 ppm. Moreover, when this organosol was allowed to stand and visually observed, no layers or particles separated after 10 days were observed.
  • Comparative example 2 (coagulation by freeze coagulation method)
  • 20.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 30.8 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed to obtain PTFE- Except for using a mixed aqueous dispersion containing 1 particle and 50:50 (mass ratio) of THV-1 particles, freeze coagulation and drying were performed in the same manner as in Comparative Example 1, and the resulting dry mixture (rubbery White solid) was dispersed in NMP to prepare an organosol having a solid concentration of 20% by mass, but it became a very viscous gel-like liquid. When this organosol was allowed to stand and visually observed, no clear separation layer was observed after 10 days, but particles of a size that could be visually identified were observed.
  • Comparative example 3 (coagulation by freeze coagulation method)
  • PTFE- obtained by mixing 30.0 g of the aqueous dispersion of PTFE-1 particles obtained in Preparation Example 1 and 11.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 Except for using a mixed aqueous dispersion containing 1 particle and 80:20 (mass ratio) of THV-1 particles, freeze coagulation and drying were performed in the same manner as in Comparative Example 1, and the resulting dry mixture (rubbery White solid) was dispersed in NMP to prepare an organosol having a solid concentration of 20% by mass, but it became a very viscous liquid. Further, when this organosol was allowed to stand and visually observed, a clear separated layer was not observed after 10 days, but many particles having a size that could be visually identified were observed.
  • Test Example 1 (dispersed storage stability) A part of the PTFE organosol prepared in each of Examples 1 and 3 and Comparative Examples 2 and 3 was taken and diluted with NMP to prepare organosols having solid content concentrations of 2 mass%, 5 mass% and 10 mass%. These organosols were irradiated with ultrasonic waves for 30 minutes and then allowed to stand for 48 hours. Moreover, each supernatant liquid was taken, each solid content concentration was measured, and the sedimentation rate of PTFE particle
  • reaction was started by press-fitting an aqueous solution in which 205.8 mg of APS was dissolved in 10 g of water with nitrogen. 10 g of water was again injected with nitrogen so that no liquid remained in the middle of the reaction tube.
  • VdF gas monomer was additionally charged so as to maintain the pressure in the tank.
  • the stirring was slowed down and the gas in the tank was blown to complete the reaction.
  • the inside of the tank was cooled, and 1595 g of an aqueous dispersion of PVdF particles was collected in a container.
  • the solid content concentration of the aqueous dispersion by the dry weight method was 15.8% by mass.
  • Example 9 (Preparation of PTFE / PVdF organosol) 40.0 g of the aqueous dispersion of PTFE particles obtained in Preparation Example 3 as PTFE particles (A), 79.5 g of the aqueous dispersion of PVdF particles obtained in Preparation Example 4 as polymers (B), and 16 g of hexane. It took in a 500 mL beaker and stirred with the mechanical stirrer. While stirring, 95 g of acetone was added, followed by stirring for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 250 g of NMP was added to the remaining hydrous coagulum and stirred for 5 minutes.
  • a mixed gas monomer having a VdF / TFE composition ratio of 67/33 mol% was charged to 0.39 MPaG in the tank. Then, the reaction was started by injecting an aqueous solution obtained by dissolving 137.2 mg of APS in 10 g of water with nitrogen. 10 g of water was again injected with nitrogen so that no liquid remained in the middle of the reaction tube.
  • a mixed monomer having a VdF / TFE composition ratio of 67/33 mol% was additionally charged so as to maintain the pressure in the tank.
  • stirring was slowed down and the gas in the tank was blown to complete the reaction.
  • the inside of the tank was cooled, and 1708 g of an aqueous dispersion of VdF / TFE copolymer (hereinafter referred to as “TV-1”) particles was collected in a container.
  • the solid content concentration of the aqueous dispersion by the dry mass method was 20.4% by mass.
  • Example 10 (Preparation of PTFE-2 / TV-1 organosol) 40.0 g of the aqueous dispersion of PTFE particles obtained in Preparation Example 3 as PTFE particles (A), 60.7 g of the aqueous dispersion of TV-1 particles obtained in Preparation Example 5 as polymer (B), and hexane 16 g was taken in a 500 mL beaker and stirred with a mechanical stirrer. While stirring, 95 g of acetone was added, followed by stirring for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 250 g of NMP was added to the remaining hydrous coagulum and stirred for 5 minutes.
  • Example 11 (Preparation of PTFE-2 / THV-1 Organosol) 15.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 52.8 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 500 mL beaker, and a mechanical stirrer. And stirred. While stirring, 90 g of acetone was added and then stirred for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 160 g of NMP was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Example 12 (Preparation of PTFE-2 / THV-1 Organosol) 20.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 45.3 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 500 mL beaker, and a mechanical stirrer. And stirred. While stirring, 90 g of acetone was added and then stirred for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 160 g of NMP was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Example 13 (Preparation of PTFE-2 / THV-1 Organosol) 40.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 60.7 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 500 mL beaker, and a mechanical stirrer. And stirred. While stirring, 105 g of acetone was added, and then stirred for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 250 g of NMP was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Example 14 (Preparation of PTFE-2 / THV-1 Organosol) 50.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 19.1 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 and 19 g of hexane were placed in a 500 mL beaker, and a mechanical stirrer. And stirred. While stirring, 80 g of acetone was added, and then stirred for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 195 g of NMP was added to the remaining hydrous coagulum and stirred for 30 minutes.
  • Example 15 (Preparation of organosol of PTFE-2 / THV-1) 40.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3, 60.7 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2, and 19 g of hexane were placed in a 500 mL beaker, and a mechanical stirrer. And stirred. While stirring, 105 g of acetone was added, and then stirred for 10 minutes. After completion of the stirring, the resulting coagulated product and the supernatant liquid mainly composed of water were separated by filtration. About 250 g of DMAC was added to the remaining hydrous coagulum, and the mixture was stirred for 30 minutes.
  • Comparative example 4 (coagulation by freeze coagulation method) 20.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3 and 30.8 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed, and PTFE-2 particles and THV-1 particles were mixed.
  • This mixed aqueous dispersion is stored at ⁇ 20 ° C. overnight in a freezer and frozen, and the frozen mixture is melted at room temperature, filtered to separate solid particles, and an equal volume of 70 ° C. with the water of the mixed aqueous dispersion.
  • the mixture was washed with deionized water three times, and the washed solid particles were dried at 90 ° C. for 16 hours to coagulate, separate and dry the mixture of PTFE-2 particles and THV-1 particles.
  • the resulting dry mixture was a gummy white solid.
  • This dry mixture was dispersed in NMP to prepare an organosol having a solid concentration of 12% by mass. The dissolution was performed using a mechanical stirrer, and the stirring time was 30 minutes. The water concentration measured by the Karl Fischer method was 350 ppm. Moreover, when this organosol was left still and visually observed, a clear separated layer was observed after 10 days. Numerous precipitates of particles with a size that can be visually identified were observed from the time of preparation.
  • Comparative Example 5 (coagulation by freeze coagulation method)
  • 30.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3 and 11.0 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed to obtain PTFE.
  • -1 particles and THV-1 particles in a mixed aqueous dispersion containing 80:20 (mass ratio) were subjected to freeze coagulation and drying in the same manner as in Comparative Example 4, and the resulting dry mixture (rubbery Of white solid) was dispersed in NMP to prepare an organosol having a solid concentration of 12% by mass.
  • a uniform dispersion could not be obtained due to phase separation from the time of preparation.
  • Comparative Example 6 (coagulation by freeze coagulation method)
  • 20.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3 and 30.8 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed to obtain PTFE.
  • -2 particles and THV-1 particles in a mixed aqueous dispersion containing 50:50 (mass ratio) were subjected to freeze coagulation and drying in the same manner as in Comparative Example 4, and the resulting dry mixture (rubbery Of white solid) was dispersed in DMAC to prepare an organosol having a solid concentration of 12% by mass, but it became a very viscous gel-like liquid. When this organosol was allowed to stand and visually observed, a separation layer was observed after 10 days. Numerous precipitates of particles with a size that can be visually identified were observed from the time of preparation.
  • Comparative Example 7 (Coagulation by freeze coagulation method)
  • 20.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3 and 45.3 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed to obtain PTFE.
  • -2 particles and THV-1 particles were used in a mixed aqueous dispersion containing 40:60 (mass ratio).
  • white solid was dispersed in DMAC to prepare an organosol having a solid concentration of 12% by mass, but it became a very viscous gel-like liquid. When this organosol was allowed to stand and visually observed, a separation layer was observed after 10 days. Numerous precipitates of particles with a size that can be visually identified were observed from the time of preparation.
  • Comparative Example 8 (coagulation by freeze coagulation method)
  • 15.0 g of the aqueous dispersion of PTFE-2 particles obtained in Preparation Example 3 and PTFE obtained by mixing 52.8 g of the aqueous dispersion of THV-1 particles obtained in Preparation Example 2 were mixed.
  • -2 particles and THV-1 particles in a mixed aqueous dispersion containing 30:70 (mass ratio) were subjected to freeze coagulation and drying in the same manner as in Comparative Example 4, and the resulting dry mixture (rubbery Of white solid) was dispersed in DMAC to prepare an organosol having a solid concentration of 12% by mass, but it became a very viscous gel-like liquid. When this organosol was allowed to stand and visually observed, a separation layer was observed after 10 days. Numerous precipitates of particles with a size that can be visually identified were observed from the time of preparation.
  • Test example 2 A part of the PTFE organosol prepared in Examples 11 to 13 and Comparative Examples 4, 7, and 8 was taken and diluted with NMP to prepare an organosol having a solid content concentration of 5% by mass. These organosols were tested as described above using a dispersion stability analyzer (trade name “Lumisizer 611”, manufactured by Nippon Lucas Co., Ltd.). The results are shown in Table 2.
  • Test example 3 Part of the PTFE organosols prepared in Examples 11 to 14 and Comparative Examples 4, 7, and 8 were taken and diluted with NMP to prepare organosols having a solid content concentration of 12% by mass. These organosols were tested as described above using an ultrasonic attenuation method particle size distribution measuring apparatus (trade name DT-1200, manufactured by Nippon Lucas Co., Ltd.). The results are shown in Table 3.

Abstract

PTFE粒子を高含有量で含むものであっても安定したオルガノゾル組成物を提供する。 PTFE粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾルであって、(1)ポリマー(B)が有機溶剤(S)に可溶であり、(2)PTFE粒子(A)の含有量が、PTFE粒子(A)とポリマー(B)の合計量の50質量%以上であり、(3)PTFE粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において、48時間後のPTFE粒子の沈降率が60%以下であるPTFE粒子のオルガノゾル組成物。

Description

含フッ素重合体のオルガノゾル組成物
本発明は、ポリテトラフルオロエチレン(PTFE)粒子の含有割合が増大しているオルガノゾル組成物に関する。
フィブリル形成性の高分子量PTFE粒子を有機溶剤に分散させたオルガノゾルは、たとえばリチウム電池などの蓄電デバイスの電極を製造する際の電極合剤として有用である。
そうした高分子量PTFE粒子のオルガノゾルでは、PTFE粒子の濃度が高くなると極端に安定性が悪くなるため、多くても25質量%濃度のものしか安定して得られない。そこで、PTFEを変性して高濃度のオルガノゾルを提供する試みが行われている。
その方向性として、フィブリル形成性の高分子量PTFEをコア部とし、シェル部を非フィブリル形成性重合体とするコア-シェル粒子を用いる方法(特許文献1~4)、ポリフルオロアルキル基を有するアクリル系単量体の極少量を共重合して変性する方法(特許文献5)が提案されている。
しかし、これらの特許文献でも得られるオルガノゾル中の変性PTFE粒子の割合は30質量%までである。
また、PTFE粒子と他のフッ素樹脂とを併用することも提案されている。たとえば、未変性PTFEとテトラフルオロエチレン(TFE)-ヘキサフルオロプロピレン(HFP)の共重合体(FEP)を併用する方法(特許文献6)、高分子量PTFEとFEPやPFAとの混合物の水性分散体やオルガノゾル(特許文献7)が、高分子量PTFEなどの結晶質フルオロポリマー粒子とフッ化ビニリデン(VdF)系ポリマーなどの非晶質フッ素樹脂とを混合したオルガノゾル(特許文献8)が提案されている。
しかし、特許文献6においてもPTFE/FEPの割合は30/70(質量比)までであり、それを超えると凝集が生じてしまう。また、特許文献7にはオルガノゾルに調製されているのは10質量%以下の未変性PTFEだけであり、また、未変性PTFEとPFAとが50/50(質量比)の混合物も記載されているが水性分散体でしか存在し得ない。
特許文献8に記載のオルガノゾルは、PTFE粒子のラテックスと非晶質または結晶性の低いフッ素樹脂粒子のラテックスを混合した後凝析し、乾燥後有機溶剤に分散させるラテックス混合方法、または、PTFE粒子と非晶質フッ素樹脂粒子を乾燥状態でドライブレンドし、ついで有機溶剤に分散させる方法で製造されている。ドライブレンド法では固形分中のPTFEの割合は50質量%を超えるオルガノゾルも製造されているが、ドライブレンドしているためPTFE粒子は凝集したり繊維化して粒径が大きくなり一次粒子としては存在せず安定性に劣る。一方、ラテックス混合法では、やはり、従来と同様に2次粒子の発生割合が多く沈降安定性に優れるのは、PTFE粒子の割合が20質量%までである。
特開昭62-109846号公報 特開平2-158651号公報 特開平4-154842号公報 国際公開第96/012764号パンフレット 特開昭63-284201号公報 特公昭48-27549号公報 特開平10-53682号公報 特表2008-527081号公報
このように、従来の方法でPTFE粒子のオルガノゾルを調製したときは、PTFE粒子の含有量が30質量%を超えるとPTFE粒子が凝集し、オルガノゾルが不安定になってしまう。また、30質量%までの安定なPTFEオルガノゾルであっても、たとえば電極合剤用のスラリーとするために電極活物質材料などと剪断混合したり、さらに補助バインダー溶液と混合したりすると、PTFE粒子が凝集してしまったりフィブリル化してしまうという問題は避けられない。
本発明は、PTFE粒子を高含有量で含むものであっても安定したオルガノゾル組成物を提供することを目的とする。
すなわち本発明は、ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)ポリテトラフルオロエチレン粒子(A)の含有量が、ポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計量の50質量%以上であり、
(3)ポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において、48時間後のポリテトラフルオロエチレン粒子の沈降率が60%以下であるポリテトラフルオロエチレン粒子のオルガノゾル組成物に関する。
本発明はまた、ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)超音波減衰スペクトルの傾きが+0.50以上である
ポリテトラフルオロエチレン粒子のオルガノゾル組成物に関する。
但し、超音波減衰スペクトルは、固形分濃度が12質量%のオルガノゾル組成物について、超音波減衰法を用いて3~100MHzの周波数で測定した減衰率から求めるものである。
本発明はまた、ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)飽和赤外透過率の変化率が5.0%以下のものである
ポリテトラフルオロエチレン粒子のオルガノゾル組成物に関する。
但し、飽和赤外透過率の変化率は、固形分濃度が5質量%のオルガノゾル組成物について、光路長を2.2mm、遠心力を2300Gとして、25℃で遠心分離を行いながら測定する赤外光強度から算出するものである。
また本発明は、
有機溶剤(S)に不溶なフッ素系樹脂粒子(X)の水性分散体と、有機溶剤(S)に可溶なポリマー(B)の水性分散体を混合する工程(I)、
得られた混合水性分散体に、水に可溶な凝析用有機溶剤(D)を添加して有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)を凝析させる工程(II)、
得られた有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)の含水凝析物(E)と液層とを分離する工程(III)、
得られた含水凝析物(E)と有機溶剤(S)を混合し、撹拌して含水凝析物(E)を分散させる工程(IV)、および
得られた含水有機分散体(F)から水分を除去する工程(V)
を含む有機溶剤(S)に不溶なフッ素系樹脂粒子(X)のオルガノゾル組成物の製造方法にも関する。
本発明のPTFEオルガノゾル組成物は、PTFE粒子を安定して含有しており、本発明のPTFEオルガノゾル組成物をバインダーとして塗膜を形成した場合に基材との密着性の向上を図ることもできるという優れた特性を有している。
本発明のPTFEオルガノゾル組成物は、PTFE粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾルであって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)PTFE粒子(A)の含有量が、PTFE粒子(A)とポリマー(B)の合計量の50質量%以上であり、
(3)PTFE粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において48時間後のPTFE粒子の沈降率が60%以下である
PTFE粒子のオルガノゾル組成物である。
各成分および要件について、以下詳述する。
(A)PTFE粒子
PTFEは標準比重(SSG)が2.130~2.230のものが好ましく、また、フィブリル形成性のものでも、非フィブリル形成性のものでもよい。
PTFEは溶融加工できずかつフィブリル化するので、その分子量はゲルパーミエーションクロマトグラフィー(GPC)などの通常の分子量測定法では測定できない。そのため、従来より、標準比重(SSG)が分子量の目安として用いられている。標準比重は、ASTM D 4895-89で規定されており、数値が小さくなるほど分子量が大きくなる。たとえば、特許文献6に記載されている未変性PTFEの標準比重は2.20~2.29である。
本発明で使用するPTFEの標準比重は2.230以下であることが好ましく、より好ましくは2.130~2.200である。標準比重が2.230を超えると、すなわち低分子量になるとフィブリル化しにくくなる。標準比重が2.130より小さい高分子量のPTFEは、高分子量PTFEに本質的なフィブリル形成性が失われるものではないが、製造上困難であり実際的でない。
また、フィブリル形成性については、別の観点である380℃における比溶融粘度(ASTM 1238-52T)で評価する場合もある。本発明において、「非フィブリル形成性」の目安は、380℃における比溶融粘度が1×10ポイズ以下、さらには1×10ポイズ以下である。下限は、通常、5×10ポイズである。
また、フィブリル形成性については、さらに別の観点である溶融押出し圧力から、評価する場合もある。この値が大きいとフィブリル形成性が高いと評価でき、小さいとフィブリル形成性が低いと評価できる。本発明において、「非フィブリル形成性」の目安は、リダクションレシオ1600における円柱押出圧力が70MPa以下、60MPa以下、さらには50MPa以下のものがオルガノゾル組成物製造時に凝集が生じにくいので好ましい。下限は、通常、5MPaであるが、用途や目的により適宜選定すればよく、特に限定されるものではない。
(A1)フィブリル形成性PTFE
高分子量(通常SSGが2.230以下)のTFEの単独重合体であり、変性されていないもの(以下、「未変性PTFE」ということもある)が代表例である。上記のように、フィブリル形成性のPTFEは、これまで高含有量でオルガノゾルに入れることは困難であったPTFE粒子である。
(A2)非フィブリル形成性PTFE
非フィブリル形成性であるかどうかは、上記の基準で評価できる。具体的には、特許文献5などに記載されている変性用単量体が2質量%以下共重合された単量体変性PTFE、低分子量(SSGが大きい)PTFE、特許文献1~4などに記載されているフィブリル形成性PTFEのコアと非フィブリル形成性の樹脂のシェルとから構成されるコア-シェル複合粒子などが挙げられる。
本発明のオルガノゾル組成物においては、フィブリル形成性か非フィブリル形成性かを問わず、PTFE粒子は一次粒子の状態でオルガノゾル中に存在していると推定される。なお、「一次粒子の状態でオルガノゾル中に存在する」とは、全てのPTFE粒子が一次粒子であることまで要求するものではなく、PTFE粒子(A)の含有量(PTFE粒子(A)とポリマー(B)の合計量におけるPTFE粒子(A)の含有量。以下同様)が50質量%以上の状態においてオルガノゾル中で安定して存在すればよく(後述する「48時間後のPTFE粒子の沈降率が60質量%以下」)、明確ではないが、凝集したPTFE粒子(5μm以上の粒子径を有するPTFE粒子)がほとんどないことを意味する。また別の表現をすると、光散乱法による粒径測定において、平均粒子径が5μm以下、さらに好ましくは1μm以下である組成物を意味する。また、全PTFE粒子中の30質量%以上、さらには50質量%以上が一次粒子であればよいと考えられる。
用いるPTFE水性分散体のPTFE粒子の平均一次粒子径は50~500nmの範囲にあることが、オルガノゾルの安定性、再分散性が良好な点から好ましい。より好ましくは50~400nm、さらに好ましくは100~350nmである。
また、他材と混合する場合には、PTFE粒子の平均一次粒子径は小さい方が混合・均一分散しやすい点で好ましく、50~400nmの範囲にあることが好ましい。より好ましくは50~300nm、さらに好ましくは50~250nmである。
さらに具体的には、天然黒鉛、人造黒鉛、活性炭などの炭素材料との混合やアセチレンブラックやケッチンブラックのような導電性炭素材料との混合、リチウム2次電池やリチウムイオンキャパシタなどに用いるリチウム含有遷移金属複合酸化物やリチウム含有リン酸などの正極物質との混合などでは、PTFE粒子の平均一次粒子径は小さい方がより均一な電極合剤スラリーを調製できる点で好ましく、50~400nmの範囲にあることが好ましい。より好ましくは50~300nm、さらに好ましくは50~250nmである。
また、PTFE水性分散体中には、分散安定剤が含まれていても含まれていなくても上記オルガノゾルが製造でき、下記市販のPTFE水性分散体も使用できる。例えば、ダイニオン(Dyneon, LLC)からのダイニオン(DYNEON)(登録商標)TF 5032 PTFE、ダイニオン(DYNEON)(登録商標)TF 5033 PTFE、ダイニオン(DYNEON)(登録商標)TF 5035 PTFE、またはダイニオン(DYNEON)(登録商標)TF 5050 PTFE、ならびにイ-・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニ-(E.I. du Pont de Nemours & Co.)からのテフロン(登録商標)(TEFLON)PTFE GRADE 30およびテフロン(登録商標)(TEFLON)PTFE GRADE 307A、ならびにダイキン工業(株)からのポリフロン(登録商標)D-1E、ポリフロン(登録商標)D-210Cなどが例示できる。
本発明のオルガノゾル組成物では、これまで高含有量でオルガノゾルに含有させることが困難であったフィブリル形成性のPTFE粒子を高含有量で安定して含ませることができる。
本発明のオルガノゾル組成物は、テトラフルオロエチレン(TFE)-ヘキサフルオロプロピレン(HFP)共重合体(FEP)を含まないことが好ましい。
(B)ポリマー
ポリマー(B)は、オルガノゾル組成物の1成分である有機溶剤(S)に溶解するものであれば特に制限されず、フッ素系の樹脂やゴム(B1)でも非フッ素系の樹脂やゴム(B2)でもよく、有機溶剤(S)の種類、オルガノゾル組成物の用途や製造条件に応じて適宜選択することができる。
フッ素系樹脂やゴム(B1)としては、VdF系重合体や含フッ素アクリルまたはメタクリル系重合体系重合体などが例示できる。なお、PTFEやFEPなどが含まれるパーフルオロ系重合体は、有機溶剤(S)には実質的に溶解しないので、ポリマー(B)には含まれない。
ポリマー(B)としては、樹脂であることが好ましく、フッ素系樹脂がより好ましい。中でも、VdF系重合体が好ましい。
VdF系重合体は、VdFの単独重合体(PVdF)であってもVdF共重合体であってもよい。VdFと共重合可能な単量体としては、たとえばTFE、HFP、パーフルオロ(アルキルビニルエーテル)(PAVE)、CTFE、CF=CFH、CH=CFRf(Rfは炭素数1~10のパーフルオロアルキル基)などの1種または2種以上が挙げられる。
ポリマー(B)としては、VdF共重合体がより好ましい。VdF共重合体としては、VdFを40モル%以上含む共重合体が非フッ素系有機溶剤に溶解するため好ましく、特に、式:
 -(CHCF)-(CFCF(CF))-(CFCF
(式中、xは40~85、yは0~10、zは1~60。ただし、x+y+z=100)で示される共重合体が、電極合剤用ポリマーとして用いる場合は、耐酸化性、集電体との密着性が良好な点から好ましい。具体的には、VdF/TFE共重合体、及び、TFE/HFP/VdF共重合体からなる群より選択される少なくとも1種の共重合体が好ましい。
含フッ素アクリルまたはメタクリル系重合体としては、炭素数4~8のパーフルオロアルキル基を含有するアクリルまたはメタクリル系重合体が例示でき、たとえば、CH=CHCOO(CH-Rf(nは整数で1~4、Rfは炭素数4~6のパーフルオロアルキル基)と共重合可能な非フッ素系モノマーとの共重合体、CH=C(CH)COO(CH-Rf(nは整数で1~4、Rfは炭素数4~6のパーフルオロアルキル基)と共重合可能な非フッ素系モノマーとの共重合体などが挙げられ、非フッ素系モノマーと共重合することは、非フッ素系有機溶剤に溶解しやすくなる点や塗膜としたとき基材との密着性が良好になる点から好ましい。共重合可能な非フッ素系モノマーとしては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-プロピルアクリレート、n-プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ラウリルアクリレート、ステアリルアクリレート、ベンジルアクリレートなどのα,β-エチレン性不飽和カルボン酸エステル、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、3-ヒドロキシプロピルメタクリレートなどのα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル、ジエチレングリコールメタクリレートのようなα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル、アクリルアミド、メチロールメタクリルアミドなどのα,β-エチレン性不飽和カルボン酸アミド、アクリル酸、メタクリル酸、イタコン酸、無水マレイン酸、マレイン酸、フマル酸、クロトン酸などのα,β-エチレン性不飽和カルボン酸、スチレン、アルキルスチレン、アクリロニトリル、ビニルピロリドン、アルキルビニルエーテル、ピロールなどが挙げられる。
非フッ素系樹脂やゴム(B2)としては、特に限定されず、有機溶剤(S)の種類、オルガノゾル組成物の用途や製造条件に応じて適宜選択することができる。たとえば非フッ素系樹脂としては、ポリアミドイミド、ポリイミド、カルボキシメチルセルロースまたはその塩、カルボキシエチルセルロースまたはその塩、カルボキシブチルセルロースまたはその塩、エポキシ樹脂、ウレタン樹脂、ポリエチレンオキシドまたはその誘導体、ポリメタクリル酸またはその誘導体、ポリアクリル酸またはその誘導体などが挙げられる。電極合剤用ポリマーとしては、塗布後の乾燥・熱処理工程で非フッ素樹脂が塗布膜中に残存する可能性がある場合は、耐熱性に優れた樹脂であるポリアミドイミド、ポリイミドが好ましい。一方、塗布後の乾燥・熱処理工程で完全に塗布膜中から非フッ素樹脂を除去できる場合は、分解しやすい樹脂であることが好ましく、カルボキシメチルセルロースまたはその塩、カルボキシエチルセルロースまたはその塩、カルボキシブチルセルロースまたはその塩、ウレタン樹脂、ポリエチレンオキシドまたはその誘導体、ポリメタクリル酸またはその誘導体、ポリアクリル酸またはその誘導体が好ましい。
非フッ素系ゴムとしては、EPDMゴム、スチレン-ブタジエンゴム、ネオプレンゴム、アクリルゴムが挙げられる。電極合剤用ポリマーとしては、塗布膜に残存する可能性がある場合はアクリルゴムが好ましく、除去できる場合はスチレンブタジエンゴムが好ましい。
(S)有機溶剤
本発明のオルガノゾル組成物を構成する有機溶剤(S)は、ポリマー(B)を溶解し得る有機溶剤であれば特に制限されず、ポリマー(B)の種類、オルガノゾル組成物の用途や製造条件に応じて適宜選定される。有機溶剤(S)は、フッ素系溶剤と非フッ素系有機溶剤(C)から構成される。
ポリマー(B)がフッ素原子を含む樹脂の場合、特に有機溶剤(S)は、フッ素系溶剤が好ましく、フッ素含有率が高い有機溶媒がポリマー(B)を溶解できる点で好ましい。
フッ素系溶剤としては、例えば、含フッ素エーテル系溶媒、含フッ素ケトン系溶剤、含フッ素アルコール系溶剤、含フッ素アミド系溶剤、含フッ素エステル系溶剤、含フッ素脂肪族炭化水素系溶剤、含フッ素芳香族炭化水素系溶剤、含フッ素ハロゲン化炭化水素系溶剤が好ましく挙げられる。特に有機溶剤(S)のフッ素含有率が高い有機溶媒としては、含フッ素エーテル系溶媒、含フッ素アルコール類、含フッ素脂肪族炭化水素系溶剤、含フッ素ハロゲン化炭化水素系溶剤が好ましく挙げられる。また、フッ素系溶剤は2種、あるいはそれ以上を混合して用いても良い。この組合せは、フッ素系溶剤の物性により適宜選択することができる。
フッ素系溶剤としては、例えば、炭素原子数4~10のフッ素化炭化水素、水素原子の一部ないし全部がフッ素原子により置換されている少なくとも1以上の酸素原子を環構成原子として有する複素環化合物、及び炭素原子数2~5のフルオロアルキルアミンの中から選ばれる少なくとも1種のフッ素系溶剤を用いることができる。
(炭素原子数4~10のフッ素化炭化水素)
炭素原子数4~10のフッ素化炭化水素としては、具体的には、水素原子の一部ないし全部がフッ素原子により置換された、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、n-ヘキサン、イソヘキサン、3-メチルペンタン、ネオヘキサン、2,3-ジメチルブタン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2,2,3-トリメチルブタン、n-オクタン、2-メチルヘプタン、3-メチルヘプタン、4-メチルヘプタン、3-エチルヘキサン、2,2-ジメチルヘキサン、2,3-ジメチルヘキサン、2,4-ジメチルヘキサン、2,5-ジメチルヘキサン、3,3-ジメチルヘキサン、3,4-ジメチルヘキサン、2-メチル-3-エチルペンタン、3-メチル-3-エチルペンタン、2,2,3-トリメチルペンタン、2,2,4-トリメチルペンタン、2,3,3-トリメチルペンタン、2,3,4-トリメチルペンタン、2,2,3,3-テトラメチルブタン、n-ノナン、2-メチルオクタン、3-メチルオクタン、4-メチルオクタン、2,4-ジメチルヘプタン、2,5-ジメチルヘプタン、2,6-ジメチルヘプタン、2,6-ジメチルヘプタン、2,2,5-トリメチルヘキサン、2,3,5-トリメチルヘキサン、3,3-ジエチルペンタン、n-デカン、2-メチルノナン、3-メチルノナン、4-メチルノナン、5-メチルノナン、2,4-ジメチルオクタン、2,5-ジメチルオクタン、2,6-ジメチルオクタン、2,7-ジメチルオクタン、3,6-ジメチルオクタン、4-プロピルヘプタン、2,2,6-トリメチルヘプタン、2,4,6-トリメチルヘプタン、3,3,5-トリメチルヘプタン、3,4-ジエチルヘキサン、2,2,3,4-テトラメチルヘキサン、3,3,4,4-テトラメチルヘキサン等が挙げられる。
(水素原子の一部ないし全部がフッ素原子により置換されている少なくとも1以上の酸素原子を環構成原子として有する複素環化合物)
水素原子の一部ないし全部がフッ素原子により置換されている少なくとも1以上の酸素原子を環構成原子として有する複素環化合物としては、具体的には、テトラヒドロフラン、2-メチルテトラヒドロフラン、2-エチルテトラヒドロフラン、2-プロピルテトラヒドロフラン、2-ブチルテトラヒドロフラン、テトラヒドロピラン、2-メチルテトラヒドロピラン、2-エチルテトラヒドロピラン、2-プロピルテトラヒドロピラン、2-ブチルテトラヒドロピラン等の水素原子の一部ないし全部がフッ素原子により置換されている複素環化合物が挙げられる。
(炭素原子数2~5のフルオロアルキルアミン)
炭素原子数2~5のフルオロアルキルアミンは、水素原子の一部ないし全部がフッ素原子により置換されたフルオロアルキルアミンである。このようなフルオロアルキルアミンとして、具体的には、水素原子の一部ないし全部がフッ素原子に置換された、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ペンチルアミン、イソペンチルアミン、ジペンチルアミン、トリペンチルアミン、テトラペンチルアミン、テトラヘキシルアミンなどが挙げられる。
(C)非フッ素系有機溶剤
有機溶剤(S)は、非フッ素系有機溶剤(C)であることが好ましい。非フッ素系有機溶剤(C)は、ポリマー(B)を溶解し得る有機溶剤であれば特に制限されず、ポリマー(B)の種類、オルガノゾル組成物の用途や製造条件に応じて適宜選定される。たとえば、エーテル系溶媒、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エステル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、ハロゲン化炭化水素系溶剤が好ましく挙げられ、さらにはケトン系溶剤、アルコール系溶剤、アミド系溶剤、エステル系溶剤、および脂肪族炭化水素系溶剤よりなる群から選ばれる少なくとも1種が、ポリマー(B)の溶解性が良好な点から好ましい。
ケトン系溶剤としては、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどが;アルコール系溶剤としては、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、t-ブタノールなどが;アミド系溶剤としては、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)などが;エステル系溶剤としては、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチルなどが;脂肪族炭化水素系溶剤としてはヘキサン、石油エーテルなどが;芳香族炭化水素系溶剤としてはベンゼン、トルエン、キシレンなどが;ハロゲン化炭化水素系溶剤としては四塩化炭素、トリクロルエチレンなどが例示できる。また単独ではポリマー(B)を溶解しにくい有機溶剤、たとえば四塩化炭素、トリクロルエチレン、ジイソブチルケトンでは油溶性の界面活性剤を少量添加することによってオルガノゾルにすることも可能である。これらは本発明のオルガノゾル組成物の使用分野や目的に応じて適宜選択すればよい。電池の電極の製造に用いる場合はN-メチル-2-ピロリドンが特に好ましい。また、その他好ましいものとしては、ジメチルアセトアミドをあげることができる。すなわち、有機溶剤(S)は、N-メチル-2-ピロリドンまたはジメチルアセトアミドであることが好ましい。より好ましくは、N-メチル-2-ピロリドンである。
本発明のオルガノゾル組成物において、固形分中のPTFE粒子(A)の含有量は特に制限は無いが、好ましくは20%以上、より好ましくは30%以上、更に好ましくは40%以上、特に好ましくは50質量%以上である。従来、PTFE粒子が50質量%以上で安定して存在するオルガノゾルは知られていない。中でも、より好ましいPTFE粒子の含有量は、60質量%以上であり、さらには80質量%以上であり、またオルガノゾル製造時の攪拌のせん断力によるPTFEの繊維化によるPTFEの凝集を防ぐ点からは、95質量%以下、さらには80質量%以下である。
本発明のオルガノゾル組成物における固形分(PTFE粒子(A)とポリマー(B)の合計)の濃度は、オルガノゾル組成物の用途や製造条件に応じて適宜選定すればよいが、通常1~40質量%、さらには5~20質量%の範囲から選定することが好ましい。
本発明のPTFEオルガノゾル組成物は、PTFE粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において48時間後のPTFE粒子の沈降率が60%以下であることを要件とする。
ここで、「48時間後のPTFE粒子の沈降率」とは、PTFE粒子(A)とポリマー(B)の合計の固形分濃度が5質量%のオルガノゾル組成物を、株式会社マルエム製、透明スクリュー管No.3(容量10ml)、ガラス製に8ml入れて、BRANSONIC登録商標 B-521、BRANSON CLEANING EQUIPMENT COMPANY社製の超音波洗浄器を用いて、超音波照射を30分間行った後、48時間静置した後、上澄み液を取り、その上澄み液の固形分濃度を測定し、つぎの式に従い、PTFE粒子(A)の沈降率を算出する。ただし、上澄み液中でポリマー(B)は全て有機溶剤(S)に溶解しているものと仮定する。
PTFE沈降率(%)=[{PTFEの初期濃度-(48時間静置後の上澄みの固形分濃度-ポリマー(B)の初期濃度)}]/PTFEの初期濃度×100
PTFEの初期濃度:沈降率試験に用いたオルガノゾル組成物の固形分濃度と、固体NMRにより測定した沈降率試験に用いたオルガノゾル組成物中のPTFE粒子(A)とポリマー(B)の組成比から算出し、PTFEの初期濃度を求める。
48時間静置後の上澄みの固形分濃度:静置後の上澄みを採取して、150℃にて約3時間加熱した後に秤量した固形分の質量から、上記水性分散体またはオルガノゾルの質量と固形分の質量との割合として算出する。
ポリマー(B)の初期濃度:沈降率試験に用いたオルガノゾル組成物の固形分濃度と、固体NMRにより測定した沈降率試験に用いたオルガノゾル組成物中のPTFE粒子(A)とポリマー(B)の組成比から算出し、ポリマー(B)の初期濃度を求める。
48時間後のPTFE粒子の沈降率は低い方が好ましく、したがって60%以下、さらには50%以下が好ましい。
また本発明のPTFE粒子のオルガノゾル組成物は、PTFE粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)飽和赤外透過率の変化率が5.0(%)以下のものである。
但し、飽和赤外透過率の変化率は、固形分濃度が5質量%のオルガノゾル組成物について、光路長を2.2mm、遠心力を2300Gとして、25℃で遠心分離を行いながら測定する赤外光強度から算出するものである。
飽和赤外透過率の変化率が5.0%以下であると、分散安定性が良好となり、2次凝集したPTFE粒子が目に見えて沈殿することなく、良好な貯蔵状態が継続できる。
遠心力を2300Gとして遠心分離を行うと、PTFE粒子の分散安定性が低いオルガノゾル組成物であるほど2次凝集したPTFE粒子が遠心分離されやすい。そのため分散安定性が低いオルガノゾル組成物の飽和赤外透過率の変化率は高くなる。上記飽和赤外透過率の変化率が5.0%を上回った場合、オルガノゾル組成物から2次凝集したPTFE粒子が目に見えて沈殿し、貯蔵安定性の低下をもたらす。赤外透過率及び飽和赤外透過率の変化率の具体的な算出方法は後述する。
上記飽和赤外透過率の変化率は、低い方が好ましく、4.0%以下がより好ましく、3.0%以下が更に好ましく、2.0%以下が特に好ましい。
本発明のPTFE粒子のオルガノゾル組成物は、遠心分離開始から終了までの赤外透過率の平均変化率は、6.0%/時以下であることが好ましい。赤外透過率の平均変化率が6.0%/時以下であると、分散安定性が良好となり、2次凝集したPTFE粒子が目に見えて沈殿することなく、良好な貯蔵状態が継続できる。5.0%/時以下であることがより好ましく、4.0%/時以下であることが更に好ましい。
赤外透過率の平均変化率の具体的な算出方法は、後述する。
オルガノゾル中のPTFE粒子の分散状態および粒子分布状態は、オルガノゾルに遠心分離処理を行った時の赤外透過率を尺度として把握できる。赤外透過率を尺度として用いると、オルガノゾル中のPTFE粒子の分散性を精度良く定量することができるため有用であり、また、極端に希釈することなく固形分1質量%以上の濃厚な溶液で評価できるので組成物の貯蔵安定性の評価にも有用である。
以下に、赤外透過率の測定方法、飽和赤外透過率の変化率の算出方法等について具体的に説明する。
(赤外透過率の算出方法)
赤外透過率は、上記固形分濃度が5質量%のオルガノゾル組成物に波長870nmの赤外光(強度:I0)を入射し、該オルガノゾル組成物を透過する赤外光強度I1を測定し、得られる値(I1/I0×100)のことである。
具体的には、赤外透過率は、下記方法により算出する。
まず、本発明のPTFE粒子のオルガノゾル組成物を、合計固形分濃度(PTFE粒子(A)とポリマー(B))が5重量%のオルガノゾル組成物になるように調製する。
合計固形分濃度が5重量%のオルガノゾル組成物は、本発明のオルガノゾル組成物に有機溶剤(S)を添加すること等により調製することができる。
光路長が2.2mmのポリアミド製セル(日本ルフト社製、型番:110-13429、光路長2.2mmポリアミドセル)内に合計固形分濃度が5重量%のオルガノゾル(試料)を約0.3ml入れ(セルの底から試料を約20mm充填する)、該セルを遠心分離を行いながら赤外透過率を測定できる分散安定性分析装置(日本ルフト社製、商品名「Lumisizer611」)にセットする。
その後、遠心分離を行いながら、該セルの底(下部)から0~25mmの範囲で、合計固形分濃度が試料を透過する赤外光強度I1を測定し、入射赤外光(波長:870nm、強度:I0)に対する赤外透過率〔I1/I0×100〕を算出する。
赤外透過率は、測定開始から、10秒間隔で400回、合計4000秒間の測定を行う。
遠心分離は、25℃で2300Gの遠心力を与えながら行う。
(飽和赤外透過率の変化率の算出方法)
飽和赤外透過率の変化率は、4000秒間測定した前後での赤外透過率がどれだけ変化したかを表わす変化率である。式で表わすと
飽和赤外透過率の変化率(%)=(|測定終了時の赤外透過率-測定開始時の赤外透過率|)/測定開始時の赤外透過率×100
である。
飽和赤外透過率の変化率の算出において、赤外光強度は、セルの中央部(上記分散安定性分析装置の回転中心からの距離が120mmの位置)で測定した値を用いる。
(赤外透過率の平均変化率の算出方法)
赤外透過率の平均変化率は、上記赤外光強度の測定結果より、測定開始時から終了時までの各測定時間で、X軸に回転中心からの距離、Y軸に赤外透過率をプロットしたグラフをそれぞれ作成し、試料の液面上部から下部までの部分の測定開始時から終了時までに囲われた部分の面積をそれぞれ算出し合計する。これを測定開始時から終了時までの4000秒間の赤外透過光量の変化量とし、1時間当たりの変化量として算出した値を赤外透過率の平均変化率(%/時)とする。
また本発明のPTFE粒子のオルガノゾル組成物は、PTFE粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
(1)ポリマー(B)が有機溶剤(S)に可溶であり、
(2)超音波減衰スペクトルの傾きが+0.5以上のものである。
但し、超音波減衰スペクトルは、固形分濃度が12質量%のオルガノゾル組成物について、超音波減衰法を用いて3~100MHzの周波数で測定した減衰率から求めるものである。
上記超音波減衰スペクトルの傾きが+0.5以上のものであると、分散安定性が良好となり、2次凝集したPTFE粒子が目に見えて沈殿することなく、良好な貯蔵状態が継続できる。
PTFEの1次粒子が凝集した2次粒子が多数存在すると、粒子分布は広くなり、低周波側の減衰率が大きくなるため超音波減衰スペクトルの傾きは減少する。一方PTFEの2次粒子が少なく、1次粒子が多い場合には、相対的に低周波側の減衰率は下がり、高周波側の減衰率が大きくなるため、超音波減衰スペクトルの傾きは増加する。
超音波減衰スペクトルの傾きは、高い方が好ましく、+0.55以上がより好ましく、+0.60以上が更に好ましく、+0.65以上が特に好ましい。
超音波減衰法は、超音波を懸濁液に照射すると、その懸濁液中の粒子が溶媒に対して相対運動を起こすが、その運動に起因する音響エネルギーの減衰率を、発振した音響エネルギーに対して測定し、その特性から粒度分布を求める方法である。超音波減衰法は、濃厚溶液の平均粒径、分布パターンの測定に最適な方法である。また、超音波減衰法を用いた粒度分布測定装置としては、日本ルフト社製の商品名DT-1200等が挙げられる。
上記超音波減衰法は、測定チャンバー上部から測定用の懸濁液を注ぎ、基本的には循環させながら行われ、必要に応じて、循環速度を変更できる。また、沈降物の発生がほとんど無いスラリーでは循環を止めて測定される。
上記超音波減衰法は、一方に設置された振動子から3~100MHzの超音波をチャンバー中の懸濁液に照射し、他方に設置された振動子でこれを受信して、超音波が懸濁液中を伝播する間に減衰した割合(減衰率)を複数の設定された周波数毎に測定することで減衰率曲線が得られる。この曲線を超音波減衰スペクトルと呼ぶ。この超音波減衰スペクトルの形状、傾きから分散状態や粒子分布状態を算出、評価する方法である。
上記超音波減衰法の具体的な測定方法については、「色材、75〔11〕,530-537(2002)武田真一著、岡山大学」に記載されているのと同様に測定できる。
具体的には、超音波減衰スペクトルの傾きは、下記の方法に従って算出する。
まず、合計固形分濃度(PTFE粒子(A)とポリマー(B))が12重量%のオルガノゾル組成物(試料)を調製する。
合計固形分濃度が12重量%のオルガノゾル組成物は、本発明のオルガノゾル組成物に有機溶剤(S)を添加すること等により調製することができる。
次に、超音波方式粒度分布測定装置(例えば、日本ルフト社製、商品名DT-1200)の測定チャンバー上部から試料を注ぎ、3~100MHzの間で下記設定された周波数毎に減衰率を測定する。
設定周波数は、3.0MHz、3.7MHz、4.5MHz、5.6MHz、6.8MHz、8.4MHz、10.3MHz、12.7MHz、15.6MHz、19.2MHz、23.5MHz、28.9MHz、35.5MHz、43.7MHz、53.6MHz、81.0MHz、99.5MHzである。
測定は、脱気した試料を用いる。脱気操作は、減圧できる装置の中で試料を数回減圧-常圧を繰り返した後に、数時間静置しても良いし、減圧下超音波を試料にあてながらまたは攪拌して脱気した後に、数時間静置しても良い。測定は複数回行い、各測定点で前回測定との誤差が5%以内となれば測定を終了し、最終回の測定値を採用する。各測定点の値からx軸にlog10(周波数(MHz))を、y軸に減衰率(dB/cm/MHz)をプロットしグラフを作成する。この各測定点から最小2乗法により1次の近似曲線(回帰直線)を算出し、この直線の傾きの値を超音波減衰スペクトルの傾き(dB/cm/(MHz))とする。
本発明のオルガノゾル組成物はいずれも、固形分中のPTFE粒子(A)の含有量は、特に制限は無いが、好ましくは20%以上、より好ましくは30%以上、更に好ましくは40%以上、特に好ましくは50質量%以上である。
より好ましいPTFE粒子の含有量は、60質量%以上であり、さらには80質量%以上である。またオルガノゾル製造時の攪拌のせん断力によるPTFEの繊維化によるPTFEの凝集を防ぐ点から、95質量%以下、さらには80質量%以下が好ましい。
また、本発明のオルガノゾル組成物における固形分(PTFE粒子(A)とポリマー(B)の合計)の濃度は、オルガノゾル組成物の用途や製造条件に応じて適宜選定すればよいが、通常1~40質量%、さらには5~20質量%の範囲から選定することが好ましい。本発明のいずれのオルガノゾル組成物においても、PTFE粒子(A)、ポリマー(B)、有機溶剤(S)としては上述したものと同じである。
本発明のオルガノゾル組成物は、超音波減衰スペクトルの傾きが+0.50以上であり、かつ飽和赤外透過率の変化率が5.0%以下のものであることも好ましい。
また、本発明のオルガノゾル組成物はいずれも、PTFE粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において、48時間後のPTFE粒子の沈降率が60%以下であることが好ましい。
本発明のオルガノゾル組成物はいずれも、特にリチウム電池の電極の製造に使用する場合など、水分の存在を嫌う分野および目的に使用する場合は、実質的に無水であることが好ましい。具体的には、水分含有量(例えば、カール-フィッシャー法により測定することができる)が、好ましくは1000ppm以下、より好ましくは800ppm以下、更に好ましくは500ppm以下、特に好ましくは350ppm以下、最も好ましくは100ppm以下であることが好ましい。
つぎに本発明のオルガノゾル組成物の各成分の組合せとして特に好ましい例をあげるが、本発明はこれらの組合せに限定されるものではない。
例1
(A)PTFE粒子
 SSG:2.130~2.200
 変性の有無:無
 フィブリル形成性:無
(B)ポリマー
 種類:VdF系重合体、特にPVdF、テトラフルオロエチレン/ビニリデンフルオライド共重合体(VT)及びTFE-HFP-VdF共重合体(THV)からなる群より選択される少なくとも1種の樹脂が好ましい。より好ましくは、VT及びTHVからなる群より選択される少なくとも1種の樹脂である。
(C)非フッ素系有機溶剤
 種類:アミド系溶剤、特にNMP、DMAC
固形分濃度:5~20質量%
水分含有量:100ppm以下
本発明はまた、有機溶剤(S)に不溶なフッ素系樹脂粒子(X)のオルガノゾル組成物の製造方法にも関する。上述した本発明のPTFE粒子(A)のオルガノゾル組成物はいずれも、当該製造方法により製造したものであることが好ましい。
本発明の製造方法は、
有機溶剤(S)に不溶なフッ素系樹脂粒子(X)の水性分散体と、有機溶剤(S)に可溶なポリマー(B)の水性分散体を混合する工程(I)、
得られた混合水性分散体に、水に可溶な凝析用有機溶剤(D)を添加して有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)を凝析させる工程(II)、
得られた有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)の含水凝析物(E)と液層とを分離する工程(III)、
得られた含水凝析物(E)と有機溶剤(S)を混合し、撹拌して含水凝析物(E)を分散させる工程(IV)、および
得られた含水有機分散体(F)から水分を除去する工程(V)
を含む有機溶剤(S)に不溶なフッ素系樹脂粒子(X)のオルガノゾル組成物の製造方法である。
有機溶剤(S)に不溶なフッ素系樹脂粒子(X)としては、PTFE粒子のほか、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)粒子、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(PFA)粒子などが挙げられる。なかでも、PTFE粒子が好ましい。
以下、各工程について、有機溶剤(S)に不溶なフッ素系樹脂粒子(X)の代表例としてPTFE粒子(A)を用いた場合について説明する。
(I)混合工程
PTFE粒子(A)の水性分散体としては、乳化重合で得られたPTFEの一次粒子(粒子径50~500nm)の水性分散体が好ましく、固形分濃度は10~40質量%の範囲が好ましい。ポリマー(B)の水性分散体としては、粒子径が50~500nm程度の水性分散体が好ましく、固形分濃度は10~40質量%の範囲が好ましい。
2つの水性分散体の混合は、PTFE粒子(A)が繊維化するような強い攪拌をしないほかは通常の混合方法でよい。
(II)凝析工程
凝析工程(II)で使用する水に可溶な凝析用有機溶剤(D)は、有機溶剤(S)と同じであっても異なっていてもよい。凝析用有機溶剤(D)としては、たとえばケトン系溶剤、アルコール系溶剤などが挙げられ、ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどが;アルコール系溶剤としては、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、t-ブタノールなど、沸点が比較的低い有機溶媒が好ましく挙げられる。
また、凝析用有機溶剤(D)として有機溶剤(S)を使用する場合であっても、凝析工程(II)と分散工程(IV)でそれぞれ使用する具体的な有機溶剤としては、異なる有機溶剤を採用してもよい。
好ましい凝析用有機溶剤(D)としては、たとえばケトン系溶剤、アルコール系溶剤が挙げられ、なかでもアセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトンなどのケトン系溶剤、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノールなどのアルコール系溶剤が、沸点が比較的低く蒸留等により除去が容易な点から特に好ましい。
凝析用有機溶剤(D)の添加量は、PTFE粒子(A)およびポリマー(B)の実質的に全量が凝析する量であれば特に制限されない。たとえばPTFE粒子(A)およびポリマー(B)の水性分散体混合物100質量部に対して10~1000質量部程度でよい。
また、凝析工程(II)において、次の分離工程(III)を容易に行うために炭化水素系溶剤(G)を添加することが好ましい。炭化水素系溶剤(G)としては、たとえばベンゼン、トルエン、ペンタン、ヘキサン、ヘプタンなど比較的沸点の低い炭化水素系溶剤が例示できる。添加量は、PTFE粒子(A)およびポリマー(B)の水性分散体混合物100質量部に対して1~100質量部程度でよい。
(III)分離工程
この分離工程では、含水凝析物(E)と液状成分(凝析用有機溶剤(D)、炭化水素系溶剤、水など)を単に分離して、固形分(含水凝析物(E))を回収するだけである。したがって、分離回収した凝析物には水分が残存しており、含水凝析物(E)となっている。
分離の方法は特に限定されないが、上記のように精度の高い分離は要求されないので、通常のろ過方法、上澄み液除去方法などが採用できる。なかでも、簡便であることから、ろ過方法が好ましい。
(IV)分散工程
得られた含水凝析物(E)を本発明のオルガノゾル組成物の1成分である有機溶剤(S)に分散させて含水有機分散体(F)を得る工程である。分散方法は、PTFE粒子(A)が繊維化するような強い攪拌をしないほかは通常の分散混合方法でよい。好ましい分散混合方法としては、機械的撹拌法、超音波撹拌法などが挙げられる。
本発明においては、分離工程(III)と分散工程(IV)の間で特に乾燥(水分も含めて液体の乾燥除去)を必要としない。一方、特許文献8では、回収した凝析物を一旦乾燥させてから有機溶剤に分散させており、この方法ではPTFE一次粒子が繊維化したり二次凝集を起こしたりして、高PTFE含有量で安定したオルガノゾル組成物は得られない。
(V)水分除去工程
水分除去工程(V)は、含水有機分散体(F)から水分を除去する工程である。電池の分野など、水分の混入を嫌う分野に使用する場合に、行うことが好ましい。この工程では、従来周知の方法により、用途や目的に応じた水分含有量になるまで水分を除去する。具体的には、水と共沸可能な有機溶媒(H)を添加して加熱することにより水分を有機溶媒(H)と共に除去する方法、水よりも沸点の高い有機溶剤(S)を分散溶媒として用い、これを蒸留または濃縮することで水分を除去する方法、水分を吸収するろ過可能な固体を分散ろ過して水分を除去する方法などが例示できる。
好ましい水分除去方法は水と共沸可能な有機溶媒(H)を添加して加熱する方法である。有機溶媒(H)としては、たとえばベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、クメンなどの芳香族炭化水素系溶媒;メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトンなどのケトン系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチルなどのエステル系溶媒;1,4-ジオキサンなどのエーテル系溶媒などが挙げられ、その添加量は特に制限はないが、分散工程(IV)で得られた溶液100質量部に対して1~50質量部程度でよい。加熱温度は有機溶媒(H)と水との共沸点によって適宜選定すればよい。
水分の除去の程度は、特にリチウム電池やキャパシタの電極の製造に使用する場合など、水分の存在を嫌う分野および目的に使用する場合は、実質的に無水であることが好ましい。具体的には、水分含有量(例えば、カール-フィッシャー法により測定することができる)が、好ましくは1000ppm以下、より好ましくは800ppm以下、更に好ましくは500ppm以下、特に好ましくは350ppm以下、最も好ましくは100ppm以下であることが好ましい。
そのほか、本発明のオルガノゾル組成物を製造可能な方法として、たとえば、PTFE粒子(A)の水性分散体と、有機溶剤(S)に可溶なポリマー(B)の水性分散体を混合した後に有機溶剤(S)と水と共沸可能な有機溶媒(H)を添加して加熱蒸留することにより水分と有機溶媒(H)を除去した後、樹脂固形分濃度を調整する方法などが考えられる。
本発明のオルガノゾル組成物の製造方法において、上記有機溶剤(S)は上述したものと同じである。有機溶剤(S)は、非フッ素系有機溶剤(C)であることが好ましい。
本発明のオルガノゾル組成物の製造法について、PTFE粒子を代表として説明したが、PTFE粒子だけではなく有機溶剤に実質的に溶けないパーフルオロ粒子であれば同様にして適応可能であり、たとえばFEP粒子やPFA粒子などを含む水性分散体を用いても同様にオルガノゾル組成物を製造できる。
本発明のオルガノゾル組成物は、PTFE粒子を多量にしかも安定した形で含んでおり、広い分野で多くの用途に有用である。
たとえば、電池の分野では、本発明のオルガノゾル組成物がNMPに分散しているため、リチウム二次電池や電気二重層キャパシタの正極や負極作製用の電極合剤スラリーにおけるバインダー成分として、また、電極に撥水性を与える混合剤として有用である。
塗料の分野では、滑り性、耐汚染性、耐腐食性、低屈折率性などに優れた塗膜を与える被覆材として有用である。
樹脂成形の分野では、熱可塑性・熱硬化性重合体、エラストマーにブレンドしてその難燃性、摺動性、撥水・撥油性、耐汚染性、耐腐食性、耐候性、電気特性、粘度などを改質する改質材として、また、白色顔料として有用である。
例えば、樹脂添加剤、封止剤、低誘電率や誘電損失低減が求められるプリント基板材料、非粘着性が要求されるような複写機やプリンターなどOA機器用ベルト、特に転写ベルトや転写・定着ベルトに有用である。
つぎに実施例をあげて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
実施例および比較例における測定方法は以下のものを採用した。
(1)水性分散体またはオルガノゾルの固形分濃度 
シャーレに10gのPTFEなどの水性分散体またはオルガノゾルを採取し、150℃にて約3時間加熱した後に秤量した固形分の質量から、上記水性分散体またはオルガノゾルの質量と固形分の質量との割合として算出する。 
(2)平均粒子径 
PTFE水性分散体を固形分0.15質量%に調整してセルに入れ、550nmの光を入射したときの透過率と、透過型電子顕微鏡写真により定方向径を測定して算出した数平均一次粒子径との相関を検量線にまとめ、得られた検量線と各試料について測定した上記透過率とから決定する。 
(3)標準比重[SSG]
ASTM D 4895-89に準拠して、水中置換法に基づき測定する。
(4)ポリマー融点
DSC装置(SEIKO社製)により、試料3mgを測定し、10℃/分の昇温速度で融点以上まで昇温させた後、同速度で冷却の後、同速度で昇温させたセカンドランの融解ピークを読み取り融点とする。
(5)固体NMRによるオルガノゾル組成物中のPTFE粒子(A)とポリマー(B)の組成比の測定
オルガノゾル組成物またはオルガノゾル組成物の調製時の分離工程(III)で得た含水凝析物(E)を120℃で真空乾燥し、得られた試料を固体NMR装置(BRUKER社製)で測定し、得られたスペクルのPTFE由来ピークとポリマー(B)由来ピークの面積比に基づいて算出する。
(6)オルガノゾル組成物の赤外透過率の測定方法(分散安定性)
光路長が2.2mmのポリアミド製セル(日本ルフト社製 型番110-13429、光路長2.2mmポリアミドセル)内に該オルガノゾルを0.3ml入れ(セルの底から試料は約20mm充填される)、該セルを分散安定性分析装置(日本ルフト社製、商品名「Lumisizer611」)にセットし、遠心分離を行いながら、該セルの下部から0~25mmの範囲を、赤外光(強度:I0)の入射に対する、懸濁液を透過する赤外光強度I1を測定し、測定毎に赤外透過率(I1/I0×100)を測定した。
遠心分離は25℃で2300Gの遠心力を与えることができる回転数(4000rpm)で行い、赤外透過率は10秒間隔で400回測定を行った。飽和赤外透過率の変化率を測定する場合の赤外光を測定する位置は回転中心からの距離が120mmで、光路長2.2mmの赤外透過率から、式(測定終了時の赤外透過率-測定開始時の赤外透過率)/測定開始時の赤外透過率×100(%)で算出した。
赤外透過率の平均変化率は、赤外光強度の測定結果より、測定開始時から終了時までの各測定時間で、X軸に回転中心からの距離、Y軸に赤外透過率をプロットしたグラフをそれぞれ作成し、試料の液面上部から下部までの部分の測定開始時から終了時までに囲われた部分の面積をそれぞれ算出し合計する。これを測定開始時から終了時までの4000秒間の赤外透過光量の変化量とし、1時間当たりの変化量として算出した値を赤外透過率の平均変化率(%/時)とする。
(7)オルガノゾル組成物の超音波減衰スペクトルの測定方法
下記実施例及び比較例で調製したPTFEオルガノゾル組成物の一部を取り、NMPで希釈して固形分濃度が12質量%のオルガノゾルを、超音波減衰法粒度分布測定装置(日本ルフト社製、商品名DT-1200)で測定し、超音波減衰スペクトルを得た。
3~100MHzの間で下記設定した周波数毎に上記DT-1200で減衰率を測定した。設定した周波数は、3.0MHz、3.7MHz、4.5MHz、5.6MHz、6.8MHz、8.4MHz、10.3MHz、12.7MHz、15.6MHz、19.2MHz、23.5MHz、28.9MHz、35.5MHz、43.7MHz、53.6MHz、81.0MHz、99.5MHz。測定は脱気した試料を用いて複数回行い、各測定点で前回測定との誤差が5%以内となれば測定を終了し最終回の測定値を採用した。脱気は、減圧できる装置の中に試料を入れ、数回減圧-常圧を繰り返した後に数時間静置して行った。各測定点の値からx軸にlog10(周波数)を、y軸に減衰率(dB/cm/MHz)をプロットしグラフを作成した。この各測定点の値を用いて最小2乗法により1次の近似曲線(回帰直線)を求め、この直線の傾きから「超音波減衰スペクトルの傾き」を算出した。
調製例1(PTFE粒子の水性分散体の調製)
内容積6Lの攪拌機付きSUS製重合槽に、乳化剤CFOCF(CF)CFOCF(CF)COONHを0.15質量%濃度に調整した純水3500gと粒状パラフィンワックス100gを入れて密閉した。真空窒素置換後、槽内を真空引きした。その後、85℃、265rpmで撹拌しながら、槽内にテトラフルオロエチレン(TFE)を0.7MPaGまで仕込んだ。次に、ジコハク酸過酸化物(DSP)525mgを溶かした水溶液20gを窒素で槽内に圧入した。反応管の途中に液が残らないよう、水20gを再び窒素で圧入し配管を洗浄した。その後、TFE圧を0.8MPaにして撹拌を265rpm、内温を85℃に保った。DSP導入から1時間後に、過硫酸アンモニウム(APS)19mgを20gの純水に溶かし、これを窒素で圧入した。反応管の途中に液が残らないよう、水20gを再び窒素で圧入し配管を洗浄した。槽内圧力を0.8MPaに保持するように、TFEを追加して仕込んだ。追加モノマーが1195gになった時点で攪拌を停止し、槽内ガスをブローして、反応を終了した。槽内を冷却して、内容物をポリ容器に回収し、PTFE(以下、「PTFE-1」という)粒子の水性分散体を得た。乾燥質量法による水性分散体の固形分濃度は31.4質量%であった。また、水性分散体の平均一次粒子径は0.29μmであった。
標準比重および融点を測定するため、得られたPTFE-1粒子の水性分散体500mlを脱イオン水で固形分濃度が約15質量%となるように希釈し、硝酸を1ml加え、凝固するまで激しく撹拌して凝析し、得られた凝集物を145℃で18時間乾燥し、PTFE-1粉末を得た。得られたPTFE-1粉末を用いて標準比重〔SSG〕を測定したところ、2.189であった。DSCにより分析した融点は326.9℃であった。
調製例2(TFE-ヘキサフルオロプロペン(HFP)-VdF共重合体の水性分散体の調製)
内容積3Lの攪拌機付きSUS製重合槽に、F(CFCOONHが3300ppmで、かつCH=CFCFOCF(CF)CFOCF(CF)COONHが200ppm濃度の純水を入れて密閉した。真空窒素置換後、槽内を真空引きし、連鎖移動剤としてのエタンをシリンジで400cc相当量を真空吸引しながら仕込んだ。その後、70℃、450rpmで撹拌しながら、槽内にVdF/TFE/HFP組成比が50/38/12モル%の混合ガスモノマーを、0.39MPaGまで仕込んだ。その後、APSの137.2mgを10gの水に溶かした水溶液を窒素で圧入することで反応を開始した。反応管の途中に液が残らないよう、水10gを再び窒素で圧入した。
槽内圧力を保持するように、VdF/TFE/HFP組成比が60/38/2モル%の混合モノマーを追加で仕込んだ。追加モノマーが346gになった時点で攪拌を低速にし、槽内ガスをブローして、反応を終了した。槽内を冷却して、1708gのVdF/TFE/HFP共重合体(以下、「THV-1」という)粒子の水性分散体を容器に回収した。乾燥質量法による水性分散体の固形分濃度は20.4質量%であった。NMR分析により共重合組成を調べたところ、VdF/TFE/HFP=59.0/38.9/2.1(モル%)であり、DSCにより分析した融点は145.9℃であった。
調製例3(PTFE粒子の水性分散体の調製)
内容積6Lの攪拌機付きSUS製重合槽に、乳化剤CFOCF(CF)CFOCF(CF)COONHを0.15質量%濃度に調整した純水3500gと粒状パラフィンワックス100gを入れて密閉した。265rpmで撹拌しながら、真空-窒素置換を数回繰り返した後、槽内を窒素圧0.3MPaGとした。次に槽内を85℃とした後に、ジコハク酸過酸化物(DSP)722mgを溶かした水溶液20gを窒素で槽内に圧入した。反応管の途中に液が残らないよう、水20gを再び窒素で圧入し配管を洗浄した。その後、撹拌を265rpm、内温を85℃に保った。DSP導入から2時間後に、槽内をテトラフルオロエチレン(TFE)で置換した後にTFEを0.7MPaGまで仕込んだ。過硫酸アンモニウム(APS)16mgを20gの純水に溶かし、これを槽内に窒素で圧入した。反応管の途中に液が残らないよう、水20gを再び窒素で圧入し配管を洗浄した。槽内圧力を0.8MPaに保持するように、TFEを追加して仕込んだ。追加モノマーが1195gになった時点で攪拌を停止し、槽内ガスをブローして、反応を終了した。槽内を冷却して、内容物をポリ容器に回収し、PTFE(以下、「PTFE-2」という)粒子の水性分散体を得た。乾燥質量法による水性分散体の固形分濃度は31.0質量%であった。また、水性分散体の平均一次粒子径は0.23μmであった。
標準比重および融点を測定するため、得られたPTFE-2粒子の水性分散体500mlを脱イオン水で固形分濃度が約15質量%となるように希釈し、硝酸を1ml加え、凝固するまで激しく撹拌して凝析し、得られた凝集物を145℃で18時間乾燥し、PTFE-2粉末を得た。得られたPTFE-2粉末を用いて標準比重〔SSG〕を測定したところ、2.199であった。DSCにより分析した融点は327.1℃であった。
実施例1(PTFE-1/THV-1のオルガノゾルの調製)
PTFE粒子(A)として調製例1で得たPTFE-1粒子の水性分散体の40.0gと、ポリマー(B)として調製例2で得たTHV-1粒子の水性分散体の61.5gと、ヘキサン16gを200mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン60gを添加し、その後3分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約150g加え5分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE-1粒子が分散したオルガノゾルを120g得た。このオルガノゾルの固形分濃度を測定したところ18.5質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-1/THV-1の質量比は、53/47であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例2(PTFE-1/THV-1のオルガノゾルの調製)
調製例1で得たPTFE-1粒子の水性分散体の40.0gと調製例2で得たTHV-1粒子の水性分散体の41.0gを用いた以外は、実施例1と同様にオルガノゾルを調製し、NMPに均一にPTFE-1粒子が分散したオルガノゾルを145g得た。このオルガノゾルの固形分濃度を測定したところ12.5質量%であった。カールフィッシャー法で測定した水分濃度は、100ppm以下であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例3(PTFE-1/THV-1のオルガノゾルの調製)
調製例1で得たPTFE-1粒子の水性分散体の40.0gと調製例2で得たTHV-1粒子の水性分散体の15.4gを用いた以外は、実施例1と同様にオルガノゾルを調製し、NMPに均一にPTFE-1粒子が分散したオルガノゾルを72g得た。このオルガノゾルの固形分濃度を測定したところ19.5質量%であった。カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-1/THV-1の質量比は、81/19であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例4(PTFE-1/THV-1のオルガノゾルの調製)
調製例1で得たPTFE-1粒子の水性分散体の40.0gと調製例2で得たTHV-1粒子の水性分散体の10.4gを用いた以外は、実施例1と同様にオルガノゾルを調製し、NMPに均一にPTFE-1粒子が分散したオルガノゾルを50g得た。このオルガノゾルの固形分濃度を測定したところ27.1質量%であった。カールフィッシャー法で測定した水分濃度は、100ppm以下であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例5(PTFE-1/THV-1のオルガノゾルの調製)
NMPに代えてDMACを約150g用いた以外は、実施例2と同様にオルガノゾルを調製し、DMACに均一にPTFE-1粒子が分散したオルガノゾルを110g得た。このオルガノゾルの固形分濃度を測定したところ16.7質量%であった。カールフィッシャー法で測定した水分濃度は、100ppm以下であった。また、このオルガノゾルを静置し目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例6(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の40.0gと、調製例2で得たTHV-1粒子の水性分散体の41.0gと、ヘキサン16gを200mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン90gを添加し、その後4分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にジメチルアセトアミド(DMAC)を約190g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、DMACに均一にPTFE粒子が分散したオルガノゾルを158g得た。このオルガノゾルの固形分濃度を測定したところ12.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、61/39であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例7(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の41.0gと、調製例2で得たTHV-1粒子の水性分散体の41.0gと、ヘキサン19gを200mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン95gを添加し、その後4分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にDMACを約190g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、DMACに均一にPTFE粒子が分散したオルガノゾルを162g得た。このオルガノゾルの固形分濃度を測定したところ12.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、60/40であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例8(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の41.0gと、調製例2で得たTHV-1粒子の水性分散体の41.0gと、ヘキサン19gを200mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン95gを添加し、その後4分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約190g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを162g得た。このオルガノゾルの固形分濃度を測定したところ12.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、61/39であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
参考例1(PTFE-1/THV-1のオルガノゾルの調製)
調製例1で得たPTFE-1粒子の水性分散体の10.0gと調製例2で得たTHV-1粒子の水性分散体の61.5gを用いた以外は、実施例1と同様にオルガノゾルを調製し、NMPに均一にPTFE-1粒子が分散したオルガノゾルを70g得た。このオルガノゾルの固形分濃度を測定したところ20.1質量%であった。カールフィッシャー法で測定した水分濃度は、100ppm以下であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。この結果から、本発明の製造方法によれば、PTFE-1粒子の含有量が低い場合であっても、安定性に優れたオルガノゾルを製造できることが分かる。
比較例1(凍結凝析法による凝析)
調製例1で得たPTFE-1粒子の水性分散体の5.9gと調製例2で得たTHV-1粒子の水性分散体の35.0gを混合し、PTFE-1粒子とTHV-1粒子を20:80の質量比で含む混合水性分散体を得た。この混合水性分散体を冷凍庫中、-20℃で終夜貯蔵して冷凍し、凍結した混合物を室温で溶かし、濾過して、固体粒子を分離し、混合水性分散体の水と等量の70℃の脱イオン水で3回洗浄し、洗浄した固体粒子を90℃で16時間乾燥させることによって、PTFE-1粒子とTHV-1粒子を凝析分離した。得られた乾燥混合物は、ゴム質の白色固体であった。この乾燥混合物をNMPに分散して固形分濃度20質量%のオルガノゾルを調製した。カールフィッシャー法で測定した水分濃度は、350ppmであった。また、このオルガノゾルを静置し、目視で観察したところ、10日後に分離した層や粒子は観察されなかった。
比較例2(凍結凝析法による凝析)
比較例1において、調製例1で得たPTFE-1粒子の水性分散体の20.0gと調製例2で得たTHV-1粒子の水性分散体の30.8gを混合して得たPTFE-1粒子とTHV-1粒子の50:50(質量比)で含む混合水性分散体を用いたほかは、比較例1と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をNMPに分散して固形分濃度20質量%のオルガノゾルを調製したが、非常に粘張なゲル状の液体となった。このオルガノゾルを静置し、目視で観察したところ、10日後に明確な分離層は観察されなかったが、目視で識別できる大きさの粒子が観察された。
比較例3(凍結凝析法による凝析)
比較例1において、調製例1で得たPTFE-1粒子の水性分散体の30.0gと調製例2で得たTHV-1粒子の水性分散体の11.0gを混合して得たPTFE-1粒子とTHV-1粒子の80:20(質量比)で含む混合水性分散体を用いたほかは、比較例1と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をNMPに分散して固形分濃度20質量%のオルガノゾルを調製したが、非常に粘張な液体となった。また、このオルガノゾルを静置し目視で観察したところ、10日後に明確な分離層は観察されなかったが、目視で識別できる大きさの粒子が多数観察された。
試験例1(分散貯蔵安定性)
実施例1、3、比較例2、3でそれぞれ調製したPTFEオルガノゾルの一部を取り、NMPで希釈して固形分濃度が2質量%、5質量%および10質量%のオルガノゾルを調製した。これらのオルガノゾルに超音波照射を30分間行った後、48時間静置した。また、それぞれの上澄み液を取り、それぞれの固形分濃度を測定し、PTFE粒子の沈降率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
調製例4(PVdFの水性分散体の調製)
内容積3Lの攪拌機付きSUS製重合槽に、F(CFCOONHが3300ppmで、かつCH=CFCFOCF(CF)CFOCF(CF)COONHが200ppm濃度の純水を入れて密閉した。槽内を真空窒素置換後、真空引きし、連鎖移動剤としてのエタンをシリンジで48cc相当量を真空吸引しながら仕込んだ。その後、80℃、450rpmで撹拌しながら、槽内にVdFガスモノマーを、1.4MPaGまで仕込んだ。その後、APSの205.8mgを10gの水に溶かした水溶液を窒素で圧入することで反応を開始した。反応管の途中に液が残らないよう、水10gを再び窒素で圧入した。
槽内圧力を保持するように、VdFガスモノマーを追加で仕込んだ。追加モノマーが241gになった時点で攪拌を低速にし、槽内ガスをブローして、反応を終了した。槽内を冷却して、1595gのPVdF粒子の水性分散体を容器に回収した。乾燥重量法による水性分散体の固形分濃度は15.8質量%であった。NMR分析により共重合組成を調べたところ、VdF=100.0(モル%)であり、DSCにより分析した融点は162.8℃であった。
実施例9(PTFE/PVdFのオルガノゾルの調製)
PTFE粒子(A)として調製例3で得たPTFE粒子の水性分散体の40.0gと、ポリマー(B)として調製例4で得たPVdF粒子の水性分散体の79.5gと、ヘキサン16gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン95gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約250g加え5分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを164g得た。このオルガノゾルの固形分濃度を測定したところ14.4質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE/PVdFの質量比は、50/50であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
調製例5(TFE-VdF共重合体の水性分散体の調製)
内容積3Lの攪拌機付きSUS製重合槽に、F(CFCOONHが3300ppmで、かつCH=CFCFOCF(CF)CFOCF(CF)COONHが200ppm濃度の純水を入れて密閉した。真空窒素置換後、槽内を真空引きし、連鎖移動剤としてのエタンをシリンジで400cc相当量を真空吸引しながら仕込んだ。その後、70℃、450rpmで撹拌しながら、槽内にVdF/TFE組成比が67/33モル%の混合ガスモノマーを、0.39MPaGまで仕込んだ。その後、APSの137.2mgを10gの水に溶かした水溶液を窒素で圧入することで反応を開始した。反応管の途中に液が残らないよう、水10gを再び窒素で圧入した。
槽内圧力を保持するように、VdF/TFE組成比が67/33モル%の混合モノマーを追加で仕込んだ。追加モノマーが346gになった時点で攪拌を低速にし、槽内ガスをブローして、反応を終了した。槽内を冷却して、1708gのVdF/TFE共重合体(以下、「TV-1」という)粒子の水性分散体を容器に回収した。乾燥質量法による水性分散体の固形分濃度は20.4質量%であった。NMR分析により共重合組成を調べたところ、VdF/TFE=67.0/33.0(モル%)であり、DSCにより分析した融点は145.9℃であった。
実施例10(PTFE-2/TV-1のオルガノゾルの調製)
PTFE粒子(A)として調製例3で得たPTFE粒子の水性分散体の40.0gと、ポリマー(B)として調製例5で得たTV-1粒子の水性分散体の60.7gと、ヘキサン16gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン95gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約250g加え5分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを164g得た。このオルガノゾルの固形分濃度を測定したところ14.4質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE/TV-1の質量比は、50/50であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例11(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の15.0gと、調製例2で得たTHV-1粒子の水性分散体の52.8gと、ヘキサン19gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン90gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約160g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを112g得た。このオルガノゾルの固形分濃度を測定したところ13.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、30/70であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例12(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の20.0gと、調製例2で得たTHV-1粒子の水性分散体の45.3gと、ヘキサン19gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン90gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約160g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを113g得た。このオルガノゾルの固形分濃度を測定したところ13.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、40/60であった。また、このオルガノゾルを静置し目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例13(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の40.0gと、調製例2で得たTHV-1粒子の水性分散体の60.7gと、ヘキサン19gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン105gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約250g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを176g得た。このオルガノゾルの固形分濃度を測定したところ12.5質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、50/50であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例14(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の50.0gと、調製例2で得たTHV-1粒子の水性分散体の19.1gと、ヘキサン19gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン80gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にNMPを約195g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、NMPに均一にPTFE粒子が分散したオルガノゾルを132g得た。このオルガノゾルの固形分濃度を測定したところ14.0質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、80/20であった。また、このオルガノゾルを静置し目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
実施例15(PTFE-2/THV-1のオルガノゾルの調製)
調製例3で得たPTFE-2粒子の水性分散体の40.0gと、調製例2で得たTHV-1粒子の水性分散体の60.7gと、ヘキサン19gを500mLビーカーに取り、メカニカルスターラーで攪拌した。攪拌しながらアセトン105gを添加し、その後10分間攪拌した。攪拌終了後、生じた凝析物と水を主成分とする上澄み液をろ過により分離した。残った含水凝析物にDMACを約250g加え30分間攪拌した。これを、500mlナスフラスコに移し変え、エバポレーターで水分を除去し、DMACに均一にPTFE粒子が分散したオルガノゾルを176g得た。このオルガノゾルの固形分濃度を測定したところ13.3質量%であり、カールフィッシャー法で測定した水分濃度は、100ppm以下であった。固体NMRの測定によるPTFE-2/THV-1の質量比は、50/50であった。また、このオルガノゾルを静置し、目視で観察したところ、10日以上経っても分離した層や粒子は観察されなかった。
比較例4(凍結凝析法による凝析)
調製例3で得たPTFE-2粒子の水性分散体の20.0gと調製例2で得たTHV-1粒子の水性分散体の30.8gを混合し、PTFE-2粒子とTHV-1粒子を50:50の質量比で含む混合水性分散体を得た。この混合水性分散体を冷凍庫中、-20℃で終夜貯蔵して冷凍し、凍結した混合物を室温で溶かし、濾過して、固体粒子を分離し、混合水性分散体の水と等量の70℃の脱イオン水で3回洗浄し、洗浄した固体粒子を90℃で16時間乾燥させることによって、PTFE-2粒子とTHV-1粒子の混合物を凝析、分離、乾燥した。得られた乾燥混合物は、ゴム質の白色固体であった。この乾燥混合物をNMPに分散して固形分濃度12質量%のオルガノゾルを調製した。溶解は、メカニカルスターラーを用いて行い、攪拌時間は30分間で行った。カールフィッシャー法で測定した水分濃度は、350ppmであった。また、このオルガノゾルを静置し、目視で観察したところ、10日後に明確な分離層が観察された。目視で識別できる大きさの粒子の沈殿が作成時から多数観察された。
比較例5(凍結凝析法による凝析)
比較例4において、調製例3で得たPTFE-2粒子の水性分散体の30.0gと、調製例2で得たTHV-1粒子の水性分散体の11.0gを混合して得たPTFE-1粒子とTHV-1粒子を80:20(質量比)で含む混合水性分散体を用いたほかは、比較例4と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をNMPに分散して固形分濃度12質量%のオルガノゾルを調製したが、作成時から相分離して均一な分散体が得られなかった。
比較例6(凍結凝析法による凝析)
比較例4において、調製例3で得たPTFE-2粒子の水性分散体の20.0gと、調製例2で得たTHV-1粒子の水性分散体の30.8gを混合して得たPTFE-2粒子とTHV-1粒子を50:50(質量比)で含む混合水性分散体を用いたほかは、比較例4と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をDMACに分散して固形分濃度12質量%のオルガノゾルを調製したが、非常に粘張なゲル状の液体となった。このオルガノゾルを静置し、目視で観察したところ、10日後に分離層が観察された。目視で識別できる大きさの粒子の沈殿が作成時から多数観察された。
比較例7(凍結凝析法による凝析)
比較例4において、調製例3で得たPTFE-2粒子の水性分散体の20.0gと、調製例2で得たTHV-1粒子の水性分散体の45.3gを混合して得たPTFE-2粒子とTHV-1粒子を40:60(質量比)で含む混合水性分散体を用いたほかは、比較例4と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をDMACに分散して固形分濃度12質量%のオルガノゾルを調製したが、非常に粘張なゲル状の液体となった。このオルガノゾルを静置し、目視で観察したところ、10日後に分離層が観察された。目視で識別できる大きさの粒子の沈殿が作成時から多数観察された。
比較例8(凍結凝析法による凝析)
比較例4において、調製例3で得たPTFE-2粒子の水性分散体の15.0gと、調製例2で得たTHV-1粒子の水性分散体の52.8gを混合して得たPTFE-2粒子とTHV-1粒子を30:70(質量比)で含む混合水性分散体を用いたほかは、比較例4と同様に凍結凝析と乾燥を行い、得られた乾燥混合物(ゴム質の白色固体)をDMACに分散して固形分濃度12質量%のオルガノゾルを調製したが、非常に粘張なゲル状の液体となった。このオルガノゾルを静置し、目視で観察したところ、10日後に分離層が観察された。目視で識別できる大きさの粒子の沈殿が作成時から多数観察された。
試験例2
実施例11~13、比較例4、7、8でそれぞれ調製したPTFEオルガノゾルの一部を取り、NMPで希釈して固形分濃度が5質量%のオルガノゾルを調製した。これらのオルガノゾルの試験を分散安定性分析装置(日本ルフト社製、商品名「Lumisizer611」)を用いて上述のように行った。結果を表2に示す。
試験例3
実施例11~14、比較例4、7、8でそれぞれ調製したPTFEオルガノゾルの一部を取り、NMPで希釈して固形分濃度が12質量%のオルガノゾルを調製した。これらのオルガノゾルの試験を超音波減衰法粒度分布測定装置(日本ルフト社製、商品名DT-1200)を用いて上述のように行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (23)

  1. ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
    (1)ポリマー(B)が有機溶剤(S)に可溶であり、
    (2)ポリテトラフルオロエチレン粒子(A)の含有量が、ポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計量の50質量%以上であり、
    (3)ポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計固形分濃度が5質量%の状態において、48時間後のポリテトラフルオロエチレン粒子の沈降率が60%以下である
    ポリテトラフルオロエチレン粒子のオルガノゾル組成物。
  2. ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
    (1)ポリマー(B)が有機溶剤(S)に可溶であり、
    (2)超音波減衰スペクトルの傾きが+0.50以上である
    ポリテトラフルオロエチレン粒子のオルガノゾル組成物。
    但し、超音波減衰スペクトルは、固形分濃度が12質量%のオルガノゾル組成物について、超音波減衰法を用いて3~100MHzの周波数で測定した減衰率から求めるものである。
  3. ポリテトラフルオロエチレン粒子(A)とポリマー(B)と有機溶剤(S)を含むオルガノゾル組成物であって、
    (1)ポリマー(B)が有機溶剤(S)に可溶であり、
    (2)飽和赤外透過率の変化率が5.0%以下のものである
    ポリテトラフルオロエチレン粒子のオルガノゾル組成物。
    但し、飽和赤外透過率の変化率は、固形分濃度が5質量%のオルガノゾル組成物について、光路長を2.2mm、遠心力を2300Gとして、25℃で遠心分離を行いながら測定する赤外光強度から算出するものである。
  4. 遠心分離開始から終了までの赤外透過率の平均変化率は、6.0%/時以下である請求項3に記載のポリテトラフルオロエチレン粒子のオルガノゾル組成物。
  5. ポリテトラフルオロエチレン粒子(A)の含有量がポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計量の30質量%以上である請求項2~4のいずれかに記載のオルガノゾル組成物。
  6. ポリテトラフルオロエチレン粒子(A)の含有量がポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計量の50質量%以上である請求項2~5のいずれかに記載のオルガノゾル組成物。
  7. ポリテトラフルオロエチレン粒子(A)が、標準比重2.130~2.230のポリテトラフルオロエチレン粒子である請求項1~6のいずれかに記載のオルガノゾル組成物。
  8. ポリテトラフルオロエチレン粒子(A)が、未変性の高分子量ポリテトラフルオロエチレン粒子である請求項1~7のいずれかに記載のオルガノゾル組成物。
  9. 有機溶剤(S)が、非フッ素系有機溶剤(C)である請求項1~8のいずれかに記載のオルガノゾル組成物。
  10. 有機溶剤(S)が、N-メチル-2-ピロリドンまたはジメチルアセトアミドである請求項1~9のいずれかに記載のオルガノゾル組成物。
  11. ポリテトラフルオロエチレン粒子(A)の含有量が、ポリテトラフルオロエチレン粒子(A)とポリマー(B)の合計量の95質量%以下である請求項1~10のいずれかに記載のオルガノゾル組成物。
  12. 有機溶剤(S)に可溶なポリマー(B)が、フッ化ビニリデンの単独重合体または共重合体である請求項1~11のいずれかに記載のオルガノゾル組成物。
  13. リチウム電池の電極またはキャパシタ用の電極のバインダーとして用いる請求項1~12のいずれかに記載のオルガノゾル組成物。
  14. 有機溶剤(S)に不溶なフッ素系樹脂粒子(X)の水性分散体と、有機溶剤(S)に可溶なポリマー(B)の水性分散体を混合する工程(I)、
    得られた混合水性分散体に、水に可溶な凝析用有機溶剤(D)を添加して有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)を凝析させる工程(II)、
    得られた有機溶剤(S)に不溶なフッ素系樹脂粒子(X)およびポリマー(B)の含水凝析物(E)と液層とを分離する工程(III)、
    得られた含水凝析物(E)と有機溶剤(S)を混合し、撹拌して含水凝析物(E)を分散させる工程(IV)、および
    得られた含水有機分散体(F)から水分を除去する工程(V)
    を含む有機溶剤(S)に不溶なフッ素系樹脂粒子(X)である
    オルガノゾル組成物の製造方法。
  15. 有機溶剤(S)に不溶なフッ素系樹脂粒子(X)がポリテトラフルオロエチレン粒子である請求項14記載の製造方法。
  16. 凝析工程(II)において使用する水に可溶な凝析用有機溶剤(D)が、ケトン系溶剤またはアルコール系溶剤である請求項14又は15記載の製造方法。
  17. 凝析工程(II)において、さらに炭化水素系溶剤(G)を添加する請求項14~16のいずれかに記載の製造方法。
  18. 分離工程(III)における分離処理が、ろ過処理である請求項14~17のいずれかに記載の製造方法。
  19. 水分除去工程(V)において、水と共沸可能な有機溶媒(H)を共存させる請求項14~18のいずれかに記載の製造方法。
  20. 有機溶剤(S)が、非フッ素系有機溶剤(C)である請求項14~19のいずれかに記載のオルガノゾル組成物の製造方法。
  21. 有機溶剤(S)が、N-メチル-2-ピロリドンまたはジメチルアセトアミドである請求項14~20のいずれかに記載の製造方法。
  22. 有機溶剤(S)に可溶なポリマー(B)が、フッ化ビニリデンの単独重合体または共重合体である請求項14~21のいずれかに記載の製造方法。
  23. 請求項14~22のいずれかに記載の製造方法で製造されたポリテトラフルオロエチレン粒子のオルガノゾル組成物。
PCT/JP2011/060661 2010-06-30 2011-05-09 含フッ素重合体のオルガノゾル組成物 WO2012002038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11800507.3A EP2447322B1 (en) 2010-06-30 2011-05-09 Organosol composition of fluorine-containing polymer
CN201180003120.1A CN102471554B (zh) 2010-06-30 2011-05-09 含氟聚合物的有机溶胶组合物
US13/383,771 US9109095B2 (en) 2010-06-30 2011-05-09 Organosol composition of fluorine-containing polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-149717 2010-06-30
JP2010149717 2010-06-30
JP2010252376 2010-11-10
JP2010-252376 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012002038A1 true WO2012002038A1 (ja) 2012-01-05

Family

ID=45401774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060661 WO2012002038A1 (ja) 2010-06-30 2011-05-09 含フッ素重合体のオルガノゾル組成物

Country Status (7)

Country Link
US (1) US9109095B2 (ja)
EP (1) EP2447322B1 (ja)
JP (2) JP5223944B2 (ja)
KR (2) KR101399733B1 (ja)
CN (1) CN102471554B (ja)
TW (1) TW201219458A (ja)
WO (1) WO2012002038A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368495A1 (en) * 2012-06-26 2015-12-24 E. I. Du Pont De Nemours And Company Compostions for repairing electrical signal-carrying cables
WO2017222027A1 (ja) * 2016-06-23 2017-12-28 旭硝子株式会社 フッ素樹脂パウダーを含む液状組成物の製造方法
WO2018181904A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2018181898A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2019156175A1 (ja) 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
WO2019168183A1 (ja) 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2020218622A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2020218620A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
WO2020218618A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法
WO2020226178A1 (ja) 2019-05-08 2020-11-12 ダイキン工業株式会社 フルオロポリマーの製造方法及びフルオロポリマー
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
WO2021045227A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
WO2021100835A1 (ja) 2019-11-19 2021-05-27 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2021100836A1 (ja) 2019-11-19 2021-05-27 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
WO2021132055A1 (ja) * 2019-12-25 2021-07-01 Agc株式会社 分散液
WO2021131996A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2022163815A1 (ja) 2021-01-28 2022-08-04 ダイキン工業株式会社 フルオロポリマー組成物の製造方法
WO2022163814A1 (ja) 2021-01-28 2022-08-04 ダイキン工業株式会社 フルオロポリマー組成物の製造方法
WO2022196804A1 (ja) 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022244784A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2023277140A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023277139A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 フルオロポリマー組成物の製造方法およびフルオロポリマー組成物

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993150B1 (ja) 2012-02-13 2012-08-08 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
US9765008B2 (en) 2014-01-10 2017-09-19 Unimatec Co., Ltd. Perfluorovinyloxy polyether carboxylic acid alkali metal salt and method for producing the same
CN106165040B (zh) * 2014-04-04 2019-01-22 东洋纺株式会社 驻极体
JP6465175B2 (ja) 2016-08-04 2019-02-06 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末
JP6610509B2 (ja) * 2016-11-10 2019-11-27 信越化学工業株式会社 オルガノポリシロキサン組成物の分散安定性評価方法
EP3701768A4 (en) * 2017-10-23 2021-08-11 Acquire Industries Ltd. FLAT ELECTRIC HEATING UNIT INCLUDING A MODULAR ASSEMBLY
JP7311790B2 (ja) 2018-02-23 2023-07-20 ダイキン工業株式会社 非水系分散体
JP7443715B2 (ja) 2019-10-03 2024-03-06 Agc株式会社 非水系分散液及び非水系分散液の製造方法
KR20210077033A (ko) * 2019-12-16 2021-06-25 현대자동차주식회사 차량용 레이더의 전자기파 투과모듈
JP7266632B2 (ja) * 2021-04-23 2023-04-28 プライムプラネットエナジー&ソリューションズ株式会社 電池の電極材料の検査方法および加工検査装置
TW202333409A (zh) * 2021-09-30 2023-08-16 日商大金工業股份有限公司 聚四氟乙烯粉末、電極用黏合劑、電極合劑、電極、及二次電池
WO2023054711A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
JP7303470B2 (ja) * 2021-09-30 2023-07-05 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
WO2024034678A1 (ja) * 2022-08-10 2024-02-15 ダイキン工業株式会社 電気化学デバイス用バインダー用フッ素樹脂、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109846A (ja) 1985-11-06 1987-05-21 Daikin Ind Ltd 含フツ素共重合体粒子水性分散体ならびに含フツ素共重合体粒子オルガノゾル組成物
JPS63284201A (ja) 1987-05-15 1988-11-21 Asahi Glass Co Ltd フツ素系重合体オルガノゾルの製造方法
JPH02158651A (ja) 1988-12-12 1990-06-19 Daikin Ind Ltd 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
JPH04154842A (ja) 1990-10-19 1992-05-27 Daikin Ind Ltd ポリテトラフルオロエチレン微粒子および粉末
WO1996012764A1 (en) 1994-10-19 1996-05-02 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
JPH1053682A (ja) 1996-08-09 1998-02-24 Daikin Ind Ltd 含フッ素ポリマー水性分散体又はオルガノゾルの製造方法及びその分散体又はオルガノゾルを用いて製造した電池
JPH10298298A (ja) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂の溶解方法
JP2008527081A (ja) 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマーナノ粒子コーティング組成物
JP4827549B2 (ja) 2006-02-14 2011-11-30 本田技研工業株式会社 計画発注システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1068255A (en) 1962-10-15 1967-05-10 Du Pont Treatinent of electrical devices having alternate dieleetric and conductor layers
GB1364081A (en) * 1970-07-25 1974-08-21 Daikin Ind Ltd Polymer compositions
JPS4827549A (ja) 1971-08-16 1973-04-11
SG65045A1 (en) 1997-01-29 1999-05-25 Toray Industries A method for continuously producing a cyclic formal
JPH10233216A (ja) * 1997-02-18 1998-09-02 Hitachi Maxell Ltd リチウム二次電池
JP2003147256A (ja) * 2001-11-16 2003-05-21 Daikin Ind Ltd 含フッ素被覆用組成物及び被覆物再生方法
JP4233276B2 (ja) * 2002-06-27 2009-03-04 三井・デュポンフロロケミカル株式会社 電極材料用結着剤
US20120107689A1 (en) * 2010-06-30 2012-05-03 Daikin Industries Building Binder composition for electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109846A (ja) 1985-11-06 1987-05-21 Daikin Ind Ltd 含フツ素共重合体粒子水性分散体ならびに含フツ素共重合体粒子オルガノゾル組成物
JPS63284201A (ja) 1987-05-15 1988-11-21 Asahi Glass Co Ltd フツ素系重合体オルガノゾルの製造方法
JPH02158651A (ja) 1988-12-12 1990-06-19 Daikin Ind Ltd 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
JPH04154842A (ja) 1990-10-19 1992-05-27 Daikin Ind Ltd ポリテトラフルオロエチレン微粒子および粉末
WO1996012764A1 (en) 1994-10-19 1996-05-02 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
JPH1053682A (ja) 1996-08-09 1998-02-24 Daikin Ind Ltd 含フッ素ポリマー水性分散体又はオルガノゾルの製造方法及びその分散体又はオルガノゾルを用いて製造した電池
JPH10298298A (ja) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd ポリフッ化ビニリデン系樹脂の溶解方法
JP2008527081A (ja) 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマーナノ粒子コーティング組成物
JP4827549B2 (ja) 2006-02-14 2011-11-30 本田技研工業株式会社 計画発注システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447322A4
TAKEDA SHIN-ICHI, SHIKIZAI, vol. 75, no. 11, 2002, pages 530 - 537

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368495A1 (en) * 2012-06-26 2015-12-24 E. I. Du Pont De Nemours And Company Compostions for repairing electrical signal-carrying cables
WO2017222027A1 (ja) * 2016-06-23 2017-12-28 旭硝子株式会社 フッ素樹脂パウダーを含む液状組成物の製造方法
JPWO2017222027A1 (ja) * 2016-06-23 2019-04-18 Agc株式会社 フッ素樹脂パウダーを含む液状組成物の製造方法
WO2018181904A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
WO2018181898A1 (ja) 2017-03-31 2018-10-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
EP3858871A1 (en) 2017-03-31 2021-08-04 Daikin Industries, Ltd. Composition comprising a fluoropolymer
EP4257638A2 (en) 2017-03-31 2023-10-11 Daikin Industries, Ltd. Production method for fluoropolymer, surfactant for polymerization, and use of surfactant
WO2019156175A1 (ja) 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
WO2019168183A1 (ja) 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
EP4317214A2 (en) 2018-03-01 2024-02-07 Daikin Industries, Ltd. Method for manufacturing fluoropolymer
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2020218618A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法
WO2020218620A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
WO2020218622A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2020226178A1 (ja) 2019-05-08 2020-11-12 ダイキン工業株式会社 フルオロポリマーの製造方法及びフルオロポリマー
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
WO2021045227A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
WO2021100836A1 (ja) 2019-11-19 2021-05-27 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
WO2021100835A1 (ja) 2019-11-19 2021-05-27 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2021131996A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2021132055A1 (ja) * 2019-12-25 2021-07-01 Agc株式会社 分散液
WO2022163815A1 (ja) 2021-01-28 2022-08-04 ダイキン工業株式会社 フルオロポリマー組成物の製造方法
WO2022163814A1 (ja) 2021-01-28 2022-08-04 ダイキン工業株式会社 フルオロポリマー組成物の製造方法
WO2022196804A1 (ja) 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022244784A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2023277140A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023277139A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 フルオロポリマー組成物の製造方法およびフルオロポリマー組成物

Also Published As

Publication number Publication date
JP5488560B2 (ja) 2014-05-14
KR20120002413A (ko) 2012-01-05
TW201219458A (en) 2012-05-16
CN102471554B (zh) 2015-06-10
CN102471554A (zh) 2012-05-23
EP2447322A4 (en) 2015-12-30
JP5223944B2 (ja) 2013-06-26
US20120123031A1 (en) 2012-05-17
KR101399733B1 (ko) 2014-05-27
KR101377862B1 (ko) 2014-03-25
EP2447322A1 (en) 2012-05-02
JP2012117031A (ja) 2012-06-21
JP2012117042A (ja) 2012-06-21
EP2447322B1 (en) 2018-02-28
US9109095B2 (en) 2015-08-18
KR20130054973A (ko) 2013-05-27

Similar Documents

Publication Publication Date Title
JP5223944B2 (ja) 含フッ素重合体のオルガノゾル組成物
JP5338667B2 (ja) 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
JP5668689B2 (ja) ポリテトラフルオロエチレン水性乳化液及びその製造方法、該水性乳化液を用いて得られるポリテトラフルオロエチレン水性分散液、ポリテトラフルオロエチレンファインパウダー並びに延伸多孔体
JP5041090B2 (ja) 電極用バインダー組成物
JP5287310B2 (ja) 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
WO2014084399A1 (ja) ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
WO2018066430A1 (ja) 二次電池用結着剤及び二次電池用電極合剤
WO2014084397A1 (ja) ポリテトラフルオロエチレン水性分散液の製造方法
JP6369541B2 (ja) フルオロポリマー水性分散液の製造方法
JP6365664B2 (ja) ポリテトラフルオロエチレン水性分散液
TWI691515B (zh) 含氟聚合物之粉體及其製造方法
US7803889B2 (en) Granulated powder of low-molecular polytetrafluoro-ethylene and powder of low-molecular polytetrafluoro-ethylene and processes for producing both
JP5434753B2 (ja) 含フッ素重合体のオルガノゾル組成物
JP3775420B2 (ja) 低分子量ポリテトラフルオロエチレン造粒粉末、低分子量ポリテトラフルオロエチレン粉末及びこれらの製造方法
WO2023058543A1 (ja) フッ化ビニリデン重合体溶液
WO2023286787A1 (en) Composite fluoropolymer binder and methods of making same, composite binder material and method for producing same, electrode, energy storage device, binder powder for electrochemical device and method for producing same, binder for electrochemical device, electrode mixture, electrode for secondary battery, and secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003120.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13383771

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011800507

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE