WO2021089031A1 - 碘氧化铋 / 氧化锌复合材料及其制备方法与在压电 - 光催化去除有机污染物中的应用 - Google Patents

碘氧化铋 / 氧化锌复合材料及其制备方法与在压电 - 光催化去除有机污染物中的应用 Download PDF

Info

Publication number
WO2021089031A1
WO2021089031A1 PCT/CN2020/127394 CN2020127394W WO2021089031A1 WO 2021089031 A1 WO2021089031 A1 WO 2021089031A1 CN 2020127394 W CN2020127394 W CN 2020127394W WO 2021089031 A1 WO2021089031 A1 WO 2021089031A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
bismuth
composite material
iodide
oxide composite
Prior art date
Application number
PCT/CN2020/127394
Other languages
English (en)
French (fr)
Inventor
路建美
李娜君
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/624,111 priority Critical patent/US20220347660A1/en
Publication of WO2021089031A1 publication Critical patent/WO2021089031A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the technical fields of nano composite materials and piezoelectric-photocatalysis, in particular to a preparation method of a one-dimensional zinc oxide nanorod array and a two-dimensional bismuth oxyiodide nanocomposite material and the effective removal of water pollution in piezoelectric-photocatalysis The application in things.
  • Photocatalytic technology is a major progress in this regard, it is a sustainable, harmless and economically feasible advanced technology. This technology can use inexhaustible, safe and clean energy from the sun.
  • zinc oxide exhibits an ultraviolet response due to the wide band gap, which greatly reduces the utilization efficiency of sunlight.
  • the purpose of the present invention is to provide a composite material composite material responsive to visible light, which can quickly and effectively degrade pollutants in water bodies through the synergistic effect of ultrasound-photocatalysis.
  • Bisphenol A was used as the target organic pollutant to study the catalytic performance of the composite material prepared by the present invention.
  • the bismuth iodide/zinc oxide composite material disclosed by the present invention forms an electric field in the inside under the action of external force, effectively separates free carriers, inhibits the recombination of carriers, and realizes the catalytic degradation of organic pollutants in the absence of light , The degradation performance is improved through photocatalysis and piezoelectric catalysis.
  • the material Under the combined action of external force and light, the material is excited to generate photo-generated electron-hole pairs, which are quickly and effectively separated when passing through the piezoelectric internal electric field, and the photocatalytic performance is enhanced; it is chemically stable It has excellent application value in the field of photocatalysis and piezoelectric catalysis.
  • the preparation method of the bismuth iodide/zinc oxide composite material includes the following steps:
  • the zinc oxide nanorod array is added to the bismuth iodide precursor solution, and the bismuth iodide/zinc oxide composite material (BiOI/ZnO NAs) is obtained by reaction.
  • the invention discloses a method for degradation of organic pollutants, including the following steps:
  • the zinc oxide seed crystal solution is composed of a zinc salt aqueous solution and an amine compound aqueous solution.
  • the concentration of the zinc salt aqueous solution is (0.14-0.15) g/mL
  • the concentration of the amine compound aqueous solution is ( 0.07 ⁇ 0.071)g/mL
  • the precursor solution is composed of water-soluble zinc salt, amine compound and water.
  • the mass ratio of water-soluble zinc salt, amine compound and water is (0.74 ⁇ 0.75): (0.35 ⁇ 0.36) : 100.
  • the raw materials of the zinc oxide seed solution and the precursor solution of the present invention are the same, but the concentrations are different.
  • the water-soluble zinc salt is zinc nitrate hexahydrate
  • the amine compound is hexamethylenetetramine.
  • the conductive substrate is indium tin oxide (ITO) glass;
  • the annealing treatment is to heat at 300-350°C for 10 to 35 minutes in an air atmosphere, and the heating rate is 4-6°C/min, preferably The temperature is kept at 320°C for 30 minutes in an air atmosphere, and the heating rate is 5°C/min; the reaction is 80-120°C for 5-9 hours, preferably at 90°C for 6 hours.
  • ITO indium tin oxide
  • the bismuth iodide oxide precursor solution is composed of water-soluble bismuth salt, iodide salt, and organic solvent.
  • the ratio of water-soluble bismuth salt to organic solvent is (48-49) mg: 40 ml; water-soluble bismuth salt, iodized salt, and organic solvent are bismuth nitrate pentahydrate, potassium iodide, and ethylene glycol methyl ether.
  • step (2) the reaction is 120-180°C for 10-15 hours, preferably 160°C for 12 hours.
  • the Bi:Zn molar ratio is 10%-20%.
  • the organic pollutant is bisphenol A; the illumination is visible light irradiation; the ultrasonic power is 90W.
  • the preparation method of the bismuth iodide/zinc oxide composite material of the present invention includes the following steps:
  • (1) Preparation of zinc oxide nanorod array First, spin-coated a zinc oxide seed layer on the cleaned indium tin oxide (ITO) glass conductive surface, and then apply the spin-coated ITO glass to 300 ⁇ 350 Annealed in air at °C for 10 ⁇ 35 minutes; then put the annealed ITO glass with conductive surface facing down into the reactor, and add the precursor solution, which is the aqueous solution of zinc nitrate and hexamethylenetetramine, at 80 ⁇ 120 React for 5-9 h at °C, take out the ITO glass after the reaction, wash with deionized water, and dry to obtain zinc oxide nanorod arrays (ZnO NRs);
  • Piezoelectric synergistic photocatalytic degradation experiment Put the above-mentioned nano-array material in an aqueous solution containing bisphenol A, absorb it in the dark for half an hour, and then use ultrasound and visible light to work together to achieve the removal of organic pollutants in the water.
  • the present invention discloses a bismuth oxide/zinc oxide composite material (BiOI/ZnO NAs) grown on ITO conductive glass.
  • the synthesis method is simple and the morphology is regular; the raw materials used are common and easy to obtain; the substrate ITO conductive glass has good Electrical conductivity can promote the transfer and diffusion of electron-hole pairs of composite materials, and can effectively improve the photocatalytic performance;
  • the present invention discloses a bismuth oxyiodide/zinc oxide composite material (BiOI/ZnO NAs) grown on ITO conductive glass. Since it is grown on ITO glass, it is very convenient to recover the catalyst after the photocatalytic degradation experiment, and only clean water is needed. Clean, you can continue to recycle;
  • the present invention discloses a bismuth iodide oxide/zinc oxide composite material (BiOI/ZnO NAs) grown on ITO conductive glass.
  • Zinc oxide has good piezoelectric properties.
  • the introduction of ultrasonic assistance can effectively improve the photocatalytic performance, especially
  • the rod-shaped zinc oxide has the best performance; after loading the bismuth iodide oxide, the light response range of the composite material is expanded, and the visible light is fully utilized; at the same time, the flake-shaped bismuth oxide iodide can provide abundant active sites and further promote the degradation reaction activity.
  • Figure 1 is a scanning electron micrograph of zinc oxide nanorod arrays (ZnO NRs);
  • Figure 2 is a SEM photo of zinc oxide supported bismuth iodine oxide composite material (BiOI/ZnO);
  • Figure 3 is a TEM picture of zinc oxide supported bismuth iodine oxide composite material (BiOI/ZnO);
  • Figure 4 shows the effect of bisphenol A degradation by zinc oxide supported bismuth iodine oxide composite material (BiOI/ZnO).
  • the present invention uses a simple hydrothermal method to grow a zinc oxide nanorod array on an indium tin oxide glass substrate, and then uses a solvothermal method to support two-dimensional bismuth iodide nanosheets on the surface of the one-dimensional zinc oxide nanorods.
  • a solvothermal method to support two-dimensional bismuth iodide nanosheets on the surface of the one-dimensional zinc oxide nanorods.
  • the band gap of the composite material so that it can absorb visible light.
  • the built-in electric field of the piezoelectric material is used to promote the transfer and separation of photo-generated charges and inhibit the recombination of the charges to improve the photocatalytic activity of the composite material, thereby rapidly and efficiently degrading Organic pollutants in water.
  • the preparation method of the bismuth iodide/zinc oxide composite material of the present invention is as follows:
  • the zinc oxide nanorod array is added to the bismuth iodide precursor solution, and the bismuth iodide/zinc oxide composite material (BiOI/ZnO NAs) is obtained by reaction.
  • the present invention adds the zinc oxide nanorod array to the solution containing both bismuth and iodine instead of adding step by step, and the product obtained has good performance.
  • Figure 1 is a scanning electron micrograph of the above-mentioned zinc oxide nanorod array. It can be clearly seen from the figure that the zinc oxide nanorod array is in a regular and orderly vertical arrangement.
  • Figure 2 is a scanning electron micrograph of the above BiOI/ZnO nano-array composite material
  • Figure 3 is the above 15% The TEM image of the BiOI/ZnO nano-array composite material. From the above figure, it can be seen that the small-size layered bismuth iodide is supported on the surface of the zinc oxide nanorods.
  • BiOI/ZnO piezoelectric degradation experiment of bisphenol A Take two 15% composite materials obtained in the above implementation BiOI/ZnO, placed in a concentration of 10 containing 7 ml mg/L of bisphenol A aqueous solution in a test tube. Absorb in the dark for half an hour to reach adsorption equilibrium.
  • Figure 4 is the degradation curve of 15% BiOI/ZnO on bisphenol A in water. It can be seen from the figure that the piezoelectric-photocatalytic performance is the best, and the piezoelectric catalytic effect alone is the worst. After 90 minutes of piezoelectric-photocatalytic degradation, the bisphenol A in the aqueous solution is almost completely degraded, and the residual rate is close to zero.
  • the BiOI/ZnO nano-array composite material has a concentration of 10
  • the degradation effect of mg/L bisphenol A aqueous solution, 90 minutes after equilibrium, the residual rate of bisphenol A was 23.2% and 8.5%, respectively.
  • Example 8 Using the same test method as in Example 8 to test the zinc oxide-bismuth iodide prepared in Example 1 of CN106525942A, the residual rate of bisphenol A was 19.9% at 90 minutes after equilibrium; indicating that the growth process of BiOI on ZnO will degrade the results Have a significant impact.
  • the invention discloses a composite material material for catalyzing and degrading organic pollutants by ultrasonic and visible light, a preparation method thereof and the effective removal of organic pollutants (such as bisphenol A) in water bodies.
  • organic pollutants such as bisphenol A
  • spin-coating is used to form a zinc oxide seed layer on the ITO conductive glass
  • the zinc oxide nanorod array is obtained by hydrothermal method
  • the composite material (BiOI/ZnO) is obtained by simple solvothermal method to compound the bismuth oxide nanosheets NAs).
  • Zinc oxide is a commonly used photocatalyst. Because zinc oxide has a wide band gap and only responds to ultraviolet light, its application is limited.
  • the present invention first prepares a zinc oxide nanorod array.
  • the zinc oxide nanorod array has a regular and orderly morphology. It has better electron-hole pair transport and diffusion capabilities, and improves its photocatalytic efficiency. Then, bismuth iodide oxide is loaded on the zinc oxide nanorod array to enhance its response to visible light and obtain a composite material that absorbs visible light.
  • the composite material prepared by the invention promotes the migration of photogenerated electron-hole pairs by introducing an ultrasonic field to assist photocatalysis, achieves the purpose of rapidly and effectively degrading organic pollutants in water, and can be recycled to reduce costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)

Abstract

一种碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用;将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列(ZnO NRs);将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs)。将所述复合材料放入含有双酚A的水溶液中,避光吸附半小时后用超声和可见光共同作用,实现水中有机污染物的去除,在压电-光催化降解90分钟后,水溶液中的双酚A几乎完全降解。

Description

碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用 技术领域
本发明涉及纳米复合材料及压电-光催化技术领域,具体涉及一种一维氧化锌纳米棒阵列和二维碘氧化铋纳米复合材料的制备方法及其在压电-光催化有效去除水体污染物中的应用。
背景技术
环境污染和破坏以及清洁能源短缺是目前全球面临的最严重的问题。如何有效绿色处理环境污染成为全球研究热点。光催化技术是这方面的一个重大进展,它是一种可持续、无害和经济上可行的先进技术。这一技术可以利用来自太阳的取之不竭的、安全的和清洁的能量。此外,氧化锌由于宽带隙表现为紫外响应,这大大减少了对太阳光的利用效率。
技术解决方案
本发明的目的是提供一种对可见光响应的复合材料复合材料,通过超声-光催化协同作用快速有效降解水体中的污染物。以双酚A作为目标有机污染物研究本发明制备的复合材料的催化性能。本发明公开的碘氧化铋/氧化锌复合材料,在外力作用下,在其内部形成电场,有效分离自由载流子,抑制载流子的复合,实现在无光条件下的催化降解有机污染物,通过光催化协同压电催化提高降解性能,在外力和光的共同作用下,材料受激发产生光生电子空穴对,通过压电内电场时被快速有效分离,光催化性能得到增强;具有化学稳定性、高反应活性和压电性,在光催化和压电催化领域具有优异的应用价值。
为达到上述目的,本发明具体技术方案如下:
碘氧化铋/氧化锌复合材料,其制备方法包括以下步骤:
(1)将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列(ZnO NRs);
(2)将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs)。
本发明公开了有机污染物的降解方法,包括以下步骤:
(1)将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列(ZnO NRs);
(2)将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs);
(3)将碘氧化铋/氧化锌复合材料置入含有有机污染物的溶液中,在超声和光照的共同作用下,实现有机污染物的降解。
本发明中,步骤(1)中,氧化锌晶种溶液由锌盐水溶液、胺化合物水溶液组成,优选的,锌盐水溶液的浓度为(0.14~0.15)g/mL,胺化合物水溶液的浓度为(0.07~0.071)g/mL;前驱体溶液由水溶性锌盐、胺化合物、水组成,优选的,水溶性锌盐、胺化合物、水的质量比为(0.74~0.75)∶(0.35~0.36)∶100。本发明氧化锌晶种溶液、前驱体溶液的原料一样,但是浓度不同。其中,水溶性锌盐为六水合硝酸锌,胺化合物为六亚甲基四胺。
本发明中,步骤(1)中,导电基底为氧化铟锡(ITO)玻璃;退火处理为空气气氛下于300~350 ℃保温10~35分钟,升温速率为4~6℃/min,优选为空气气氛下于320 ℃保温30分钟,升温速率为5 ℃/min;反应为80~120℃反应5~9h,优选为90℃反应6 h。
本发明中,步骤(2)中,碘氧化铋前驱体溶液由水溶性铋盐、碘盐、有机溶剂组成,优选的,水溶性铋盐、有机溶剂的用量比为(48~49)mg ∶40 ml;水溶性铋盐、碘盐、有机溶剂分别为五水硝酸铋、碘化钾、乙二醇甲醚。
本发明中,步骤(2)中,反应为120~180 ℃反应10~15h,优选为160 ℃反应12h。
本发明中,碘氧化铋/氧化锌复合材料中,Bi : Zn摩尔比为10%~20%。
本发明中,步骤(3)中,有机污染物为双酚A;光照为可见光照射;超声的功率为90W。
本发明碘氧化铋/氧化锌复合材料的制备方法包括以下步骤:
(1)氧化锌纳米棒阵列的制备:首先,在洗干净的氧化铟锡(ITO)玻璃导电面上旋涂上一层氧化锌晶种层,随后将旋涂好的ITO玻璃在300~350 ℃空气条件下退火10~35分钟;然后将退火后的ITO玻璃导电面朝下斜放入反应釜中,加入前驱体溶液,即为硝酸锌和六亚甲基四胺水溶液,在80~120 ℃下反应5~9 h,反应结束后将ITO玻璃取出,用去离子水清洗,干燥,得到氧化锌纳米棒阵列(ZnO NRs);
(2)碘氧化铋/氧化锌复合材料纳米阵列的制备:配置摩尔比1:1的五水硝酸铋和碘化钾的乙二醇甲醚溶液,剧烈搅拌15~30分钟,随后倒入50 ml反应釜中,将长有氧化锌纳米棒阵列的ITO玻璃导电面朝下斜插入反应釜中,密封,120~180 ℃反应10~15 h。自然冷却后,取出ITO玻璃,去离子水冲洗,干燥,即为碘氧化铋/氧化锌纳米阵列(BiOI/ZnO NAs)。
压电协同光催化降解实验:将上述纳米阵列材料放入含有双酚A的水溶液中,避光吸附半小时后用超声和可见光共同作用,实现水中有机污染物的去除。
有益效果
本发明的优点:
1.本发明公开在ITO导电玻璃上生长的碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs),其合成方法简单且形貌规则;所用原材料均常见易得;基底ITO导电玻璃有良好的导电性,可以促进复合材料的电子空穴对转移和扩散,同时可有效提高光催化性能;
2.本发明公开在ITO导电玻璃上生长的碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs),由于是生长在ITO玻璃上,可以非常方便的在光催化降解实验之后回收催化剂,只需用清水清洗,即可继续循环使用;
3. 本发明公开在ITO导电玻璃上生长的碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs),氧化锌具有较好的压电性能,通过引入超声辅助可以有效提高光催化性能,尤以棒状的氧化锌性能最好;在负载碘氧化铋后,拓展复合材料的光响应范围,充分利用可见光;同时,片状的碘氧化铋可以提供丰富的活性位点,进一步促进降解反应活性。
附图说明
图1为氧化锌纳米棒阵列(ZnO NRs)的扫描电镜照片;
图2为氧化锌负载碘氧化铋复合材料(BiOI/ZnO)的扫描电镜照片;
图3为氧化锌负载碘氧化铋复合材料(BiOI/ZnO)的透射电镜照片;
图4为氧化锌负载碘氧化铋复合材料(BiOI/ZnO)降解双酚A的效果图。
本发明的实施方式
[0008] 本发明通过简单的水热法在氧化铟锡玻璃基底上生长氧化锌纳米棒阵列,随后通过溶剂热法在一维的氧化锌纳米棒表面负载二维的碘氧化铋纳米片,以达到调节复合材料带隙的目的,使其可以吸收可见光。通过光催化剂碘氧化铋和压电催化剂氧化锌相结合,利用压电材料的内建电场促进光生电荷的迁移和分离,抑制电荷的复合,以提高复合材料的光催化活性,从而快速高效地降解水中有机污染物。
本发明碘氧化铋/氧化锌复合材料的制备方法如下:
(1)将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列(ZnO NRs);
(2)将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料(BiOI/ZnO NAs)。
与现有技术不同,本发明将氧化锌纳米棒阵列加入同时含有铋、碘的溶液中,而不是分步加入,得到的产品性能好。
实施例一
ITO玻璃上氧化锌晶种层的制备,具体步骤如下:
先将ITO导电玻璃(1.5*3 cm 2)用乙醇、丙酮、去离子水(体积比为1:1:1)在超声仪中清洗30分钟,然后将0.7437 g六水合硝酸锌和0.3505 g六亚甲基四胺分别溶于5 ml去离子水中,分别得到硝酸锌水溶液、六亚甲基四胺水溶液;取干净ITO玻璃放在旋涂仪上,在ITO玻璃导电面上先后滴加各约1 ml上述硝酸锌水溶液、六亚甲基四胺水溶液,2000 rpm旋涂30 s后静置5分钟;完成上述操作后烘干并放入管式炉中,在空气气氛下于320 ℃条件下保温30分钟,升温速率为5 ℃/min(室温至320℃)。
实施例二
氧化锌纳米棒阵列的制备,具体步骤如下:
称取0.7437 g六水合硝酸锌和0.3505 g六亚甲基四胺分别溶于50 ml去离子水中,搅拌10分钟后将两者混合继续搅拌10分钟,得到前驱体溶液(浓度为25 mM);将实施例一制备的有ZnO晶种层的ITO导电玻璃导电面朝下,斜插入反应釜内胆中,角度约为60°,将前驱体溶液倒入反应釜内胆中,倒入体积约内胆容量80 %,密封,放入烘箱中90 ℃反应6 h。自然冷却,打开反应釜,取出ITO玻璃,用去离子水和乙醇冲洗正反面,干燥,得氧化锌纳米棒阵列,用于实施例三至实施例五。
附图1为上述氧化锌纳米棒阵列扫描电镜图。从图中可以明显看出氧化锌纳米棒阵列呈规则有序垂直排列的结构。
实施例三
碘氧化铋/氧化锌纳米阵列复合材料(10 % BiOI/ZnO)的制备,具体步骤如下:
称取48.5 mg五水合硝酸铋和16.6 mg碘化钾溶于40 ml乙二醇甲醚(浓度为2.5 mM)中,剧烈搅拌25分钟,移入反应釜内胆中,将有氧化锌纳米棒阵列的ITO玻璃导电面朝下斜插入反应釜内胆中,角度约60°,密封,放入烘箱中160 ℃反应12 h。自然冷却后,取出ITO玻璃,用去离子水和乙醇冲洗干净,放在烘箱内60 ℃干燥6 h,得Bi : Zn摩尔比为10 %的复合材料记为10 % BiOI/ZnO纳米阵列复合材料。
实施例四
碘氧化铋/氧化锌纳米阵列复合材料(15 % BiOI/ZnO)的制备,具体步骤如下:
称取72.8 mg五水合硝酸铋和24.9 mg碘化钾溶于40 ml乙二醇甲醚(浓度为3.75 mM)中,剧烈搅拌25分钟,移入反应釜内胆中,将有氧化锌纳米棒阵列的ITO玻璃导电面朝下斜插入反应釜内胆中,角度约60°,密封,放入烘箱中160 ℃反应12 h。自然冷却后,取出ITO玻璃,用去离子水和乙醇冲洗干净,放在烘箱内60 ℃干燥6 h,得Bi : Zn摩尔比为15 %的复合材料记为15 % BiOI/ZnO纳米阵列复合材料。
附图2为上述BiOI/ZnO纳米阵列复合材料的扫描电镜图,附图3为上述15 % BiOI/ZnO纳米阵列复合材料的透射电镜图,从上述图中可以看出小尺寸的层状碘氧化铋负载在氧化锌纳米棒表面。
实施例五
碘氧化铋/氧化锌纳米阵列复合材料(20 % BiOI/ZnO)的制备,具体步骤如下:
称取97.0 mg五水合硝酸铋和33.2 mg碘化钾溶于40 ml乙二醇甲醚(浓度为5.0 mM)中,剧烈搅拌25分钟,移入反应釜内胆中,将有氧化锌纳米棒阵列的ITO玻璃导电面朝下斜插入反应釜内胆中,角度约60°,密封,放入烘箱中160 ℃反应12 h。自然冷却后,取出ITO玻璃,用去离子水和乙醇冲洗干净,放在烘箱内60 ℃干燥6 h,得Bi : Zn摩尔比为20 %的复合材料记为20 % BiOI/ZnO纳米阵列复合材料。
实施例六
15 % BiOI/ZnO对双酚A的光降解实验:取两片上述实施中所得的复合材料材料15 % BiOI/ZnO,置于含7 ml浓度为10 mg/L的双酚A水溶液的试管中。避光吸附半小时,达到吸附平衡。平衡后,使用300 W氙灯照射催化剂,每30分钟取1ml,用滤头过滤后,放入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇= 30:70的流动相中测试样品在290 nm紫外波长下的吸收曲线,记录在6 min左右的双酚A出峰面积,并把初始双酚A的浓度记为100 %,得到双酚A的光降解曲线。
实施例七
15 % BiOI/ZnO对双酚A的压电降解实验:取两片上述实施中所得的复合材料材料15 % BiOI/ZnO,置于含7 ml浓度为10 mg/L的双酚A水溶液的试管中。避光吸附半小时,达到吸附平衡。平衡后,将试管斜置于超声清洁器中,打开超声清洁器,功率调至90 W,每30分钟取1 ml,用滤头过滤后,放入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇= 30:70的流动相中测试样品在290 nm紫外波长下的吸收曲线,记录在6 min左右的双酚A出峰面积,并把初始双酚A的浓度记为100 %,得到双酚A的压电降解曲线。
实施例八
15 % BiOI/ZnO对双酚A的压电-光降解实验:取两片上述实施中所得的复合材料材料15 % BiOI/ZnO,置于含7 ml浓度为10 mg/L的双酚A水溶液的试管中。避光吸附半小时,达到吸附平衡。平衡后,将试管斜置于超声清洁器中,使用300 W氙灯照射催化剂并打开超声清洁器,功率调至90 W,每30分钟取1 ml,用滤头过滤后,放入高效液相样品瓶中,使用高效液相色谱仪在水和甲醇混合溶液(水:甲醇= 30:70)的流动相中测试样品在290 nm紫外波长下的吸收曲线,记录在6 min左右的双酚A出峰面积,并把初始双酚A的浓度记为100 %,得到双酚A的压电-光降解曲线。
附图4是15 % BiOI/ZnO对水中双酚A的降解曲线。从图中可以看出,压电-光催化性能最好,单独压电催化效果最差,在压电-光催化降解90分钟后,水溶液中的双酚A几乎完全降解,残留率接近0。
采用上述同样的测试方法,测试10 % BiOI/ZnO纳米阵列复合材料、20 % BiOI/ZnO纳米阵列复合材料对含7 ml浓度为10 mg/L的双酚A水溶液的降解效果,平衡后90分钟时,双酚A的残留率分别为23.2%、8.5%。
对比例
    采用实施例八同样的测试方法,测试实施例二的氧化锌纳米棒阵列平衡后90分钟时,双酚A的残留率为65%。
采用实施例八同样的测试方法,测试CN106525942A实施例1制备的氧化锌‑碘氧化铋,平衡后90分钟时,双酚A的残留率为19.9%;说明BiOI在ZnO上的生长过程对降解结果有明显影响。
称取72.8 mg五水合硝酸铋和24.9 mg碘化钾溶于40 ml乙二醇甲醚中,剧烈搅拌25分钟,移入反应釜内胆中,密封,放入烘箱中160 ℃反应12 h。自然冷却后,过滤,将滤饼用去离子水和乙醇冲洗干净,放在烘箱内60 ℃干燥6 h,得BiOI纳米粒子;采用实施例八同样的测试方法,测试平衡后90分钟时,双酚A的残留率为35.3%。
本发明公开了一种超声协同可见光催化降解有机污染物的复合材料材料、其制备方法及其对水体中有机污染物(如双酚A)的有效去除。首先通过旋涂,在ITO导电玻璃上制一层氧化锌晶种层,随后用水热法得到氧化锌纳米棒阵列,最后通过简单溶剂热法复合碘氧化铋纳米片得到复合材料材料(BiOI/ZnO NAs)。氧化锌是常用的光催化剂,由于氧化锌带隙宽,仅响应紫外光,其应用受到限制,本发明先制备了氧化锌纳米棒阵列,氧化锌纳米棒阵列具有规则有序的形貌,使其有较好的电子空穴对的传输和扩散能力,提高其光催化效率。再在氧化锌纳米棒阵列上负载碘氧化铋,增强其对可见光的响应,得到吸收可见光的复合材料材料。本发明制备的复合材料材料通过引入超声场辅助光催化,促进光生电子空穴对的迁移,达到快速有效降解水中有机污染物的目的,并且可以循环利用,降低成本。

Claims (10)

  1. 碘氧化铋/氧化锌复合材料,其特征在于,所述碘氧化铋/氧化锌复合材料的制备方法包括以下步骤:
    (1)将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列;
    (2)将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料。
  2. 根据权利要求1所述碘氧化铋/氧化锌复合材料,其特征在于,步骤(1)中,氧化锌晶种溶液由锌盐水溶液、胺化合物水溶液组成;前驱体溶液由水溶性锌盐、胺化合物、水组成。
  3. 根据权利要求2所述碘氧化铋/氧化锌复合材料,其特征在于,锌盐水溶液的浓度为(0.14~0.15)g/mL,胺化合物水溶液的浓度为(0.07~0.071)g/mL;前驱体溶液中,水溶性锌盐、胺化合物、水的质量比为(0.74~0.75)∶(0.35~0.36)∶100。
  4. 根据权利要求1所述碘氧化铋/氧化锌复合材料,其特征在于,步骤(1)中,导电基底为氧化铟锡玻璃;退火处理为空气气氛下于300~350 ℃保温10~35分钟,升温速率为4~6℃/min;反应为80~120℃反应5~9h。
  5. 根据权利要求4所述碘氧化铋/氧化锌复合材料,其特征在于,退火处理为空气气氛下于320 ℃保温30分钟,升温速率为5 ℃/min;反应为90℃反应6 h。
  6. 根据权利要求1所述碘氧化铋/氧化锌复合材料,其特征在于,步骤(2)中,碘氧化铋前驱体溶液由水溶性铋盐、碘盐、有机溶剂组成;反应为120~180 ℃反应10~15h。
  7. 根据权利要求6所述碘氧化铋/氧化锌复合材料,其特征在于,水溶性铋盐、有机溶剂的用量比为(48~49)mg ∶40 ml;水溶性铋盐、碘盐、有机溶剂分别为五水硝酸铋、碘化钾、乙二醇甲醚;反应为160 ℃反应12h。
  8. 根据权利要求1所述碘氧化铋/氧化锌复合材料在有机污染物降解中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述有机污染物为双酚A。
  10. 碘氧化铋/氧化锌复合材料的制备方法,其特征在于,包括以下步骤:
    (1)将旋涂氧化锌晶种溶液的导电基底退火处理后加入前驱体溶液中,反应后得到氧化锌纳米棒阵列;
    (2)将氧化锌纳米棒阵列加入碘氧化铋前驱体溶液中,反应得到碘氧化铋/氧化锌复合材料。
PCT/CN2020/127394 2019-11-08 2020-11-08 碘氧化铋 / 氧化锌复合材料及其制备方法与在压电 - 光催化去除有机污染物中的应用 WO2021089031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,111 US20220347660A1 (en) 2019-11-08 2020-11-08 Bismuth iodide oxide / zinc oxide composite and preparation method therefor and application thereof in piezoelectric photocatalytic removal of organic pollutants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089784.9 2019-11-08
CN201911089784.9A CN110841668B (zh) 2019-11-08 2019-11-08 碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用

Publications (1)

Publication Number Publication Date
WO2021089031A1 true WO2021089031A1 (zh) 2021-05-14

Family

ID=69600122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127394 WO2021089031A1 (zh) 2019-11-08 2020-11-08 碘氧化铋 / 氧化锌复合材料及其制备方法与在压电 - 光催化去除有机污染物中的应用

Country Status (3)

Country Link
US (1) US20220347660A1 (zh)
CN (1) CN110841668B (zh)
WO (1) WO2021089031A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804299A (zh) * 2022-06-10 2022-07-29 青岛科技大学 一种柔性压电衬管的制备及自驱动降解有机污染物的应用
CN117696045A (zh) * 2024-02-05 2024-03-15 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110841668B (zh) * 2019-11-08 2021-09-28 苏州大学 碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用
CN111525142A (zh) * 2020-04-30 2020-08-11 青岛尚东新能源科技有限责任公司 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极
CN111509243A (zh) * 2020-04-30 2020-08-07 青岛尚东新能源科技有限责任公司 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN113385169A (zh) * 2021-06-21 2021-09-14 大连理工大学 一种高效降解有机污染物的新型压电光催化剂、制备方法及应用
CN113713798B (zh) * 2021-09-06 2023-11-17 新疆大学 一种石墨烯量子点修饰氧化锌的制备方法及降解染料应用
CN115057518B (zh) * 2022-06-08 2023-10-10 天津科技大学 水流驱动增强压电光催化降解有机染料的装置及方法
WO2024007201A1 (zh) * 2022-07-06 2024-01-11 苏州大学 一种铜掺杂氧化锌纳米棒、制备方法及其在压电 - 光催化去除有机污染物中的应用
CN115121257A (zh) * 2022-07-06 2022-09-30 苏州大学 一种铜掺杂氧化锌纳米棒、制备方法及其在压电-光催化去除有机污染物中的应用
CN115870010A (zh) * 2022-10-09 2023-03-31 苏州大学 一种含铋空位的钛酸铋纳米片/UiO-66-NH2异质结及其制备方法与应用
CN115888821A (zh) * 2022-11-21 2023-04-04 苏州大学 一种复合棉织物及其制备方法与其在偏位双光源下降解有机污染物中的应用
CN116081760A (zh) * 2022-12-28 2023-05-09 上海交通大学 一种光/声催化剂协同光/超声催化降解敌草隆的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455973A (zh) * 2009-01-05 2009-06-17 清华大学 一种可用于去除水体中酚类内分泌干扰物的光催化剂的制备方法
CN106525942A (zh) * 2016-10-09 2017-03-22 济南大学 一种以时间为读取信号的光致电传感器的构建方法
CN109999859A (zh) * 2019-03-13 2019-07-12 东北大学 一种微球状ZnO-BiOI复合材料的制备方法
CN110292940A (zh) * 2019-07-11 2019-10-01 福州大学 CdS/ZnO复合压电光催化剂及其制备方法和应用
CN110841668A (zh) * 2019-11-08 2020-02-28 苏州大学 碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455973A (zh) * 2009-01-05 2009-06-17 清华大学 一种可用于去除水体中酚类内分泌干扰物的光催化剂的制备方法
CN106525942A (zh) * 2016-10-09 2017-03-22 济南大学 一种以时间为读取信号的光致电传感器的构建方法
CN109999859A (zh) * 2019-03-13 2019-07-12 东北大学 一种微球状ZnO-BiOI复合材料的制备方法
CN110292940A (zh) * 2019-07-11 2019-10-01 福州大学 CdS/ZnO复合压电光催化剂及其制备方法和应用
CN110841668A (zh) * 2019-11-08 2020-02-28 苏州大学 碘氧化铋/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU JUANJUAN, ZOU SHIHUI, LOU BAOHUI, CHEN CHANGLEI, XIAO LIPING, FAN JIE: "Interfacial Electronic Interaction Induced Engineering of ZnO-BiOI Heterostructures for Efficient Visible-Light Photocatalysis", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 58, no. 13, 1 July 2019 (2019-07-01), Easton , US, pages 8525 - 8532, XP055810435, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.9b00834 *
ZHANG CHAOJUN, WEIHUA FEI, HAOQING WANG, NAJUN LI, DONGYUN CHEN, QINGFENG XU, HUA LI, JINGHUI HE, JIANMEI LU: "p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water", JOURNAL OF HAZARDOUS MATERIALS, vol. 399, 10 June 2020 (2020-06-10), XP055810434, DOI: 10.1016/j.jhazmat.2020.123109 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804299A (zh) * 2022-06-10 2022-07-29 青岛科技大学 一种柔性压电衬管的制备及自驱动降解有机污染物的应用
CN117696045A (zh) * 2024-02-05 2024-03-15 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用
CN117696045B (zh) * 2024-02-05 2024-04-12 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110841668A (zh) 2020-02-28
US20220347660A1 (en) 2022-11-03
CN110841668B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021089031A1 (zh) 碘氧化铋 / 氧化锌复合材料及其制备方法与在压电 - 光催化去除有机污染物中的应用
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
WO2021212923A1 (zh) 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
CN110102312B (zh) 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
CN103816885B (zh) 一种纳米氧化锌光催化剂的制备及应用
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
WO2017219382A1 (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN110252352B (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN112521617B (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
CN103157477B (zh) 氧化镍掺杂钛酸钠-二氧化钛复合光催化剂及其制备方法
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution
CN111659452A (zh) 一种二维s型异质结复合光催化剂硫掺杂多孔氮化碳/缺陷型氧化钨的制备方法
Tian et al. BiOBr@ UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine b under visible light irradiation
CN110801837A (zh) 银/氧化锌/碳中空复合光催化剂及其制备方法和应用
CN111203234A (zh) 一种CdIn2S4纳米块/SnIn4S8片状堆集结构双功能复合光催化剂的制备方法
CN106000412A (zh) 一种钽酸钠基复合材料的制备方法
CN110935448A (zh) 一种Ag纳米颗粒复合ZnO纳米棒阵列的制备方法
CN116351438A (zh) 一种二氧化铈硫化铟光催化材料及其制备方法与应用
CN113976149B (zh) 钴铝水滑石/富铋氯氧化铋复合光催化剂及其制备方法和应用
CN115025813A (zh) 一种用于去除水中藻类的光催化材料及制备方法
CN110075879B (zh) 碳包覆四氧化三铁磁性微球修饰碘氧化铋复合光催化材料及其制备方法与应用
CN114029073A (zh) 一种光降解水体抗生素的卤氧化铋/黑磷复合催化剂的制备方法
CN107744807B (zh) 一种粉末催化材料、复合多孔纳米催化材料的制备及应用
CN109433231B (zh) 具有光催化性能的纳米片核壳复合材料、其制备方法及其应用
CN111974375A (zh) 一种复合光催化剂薄膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885733

Country of ref document: EP

Kind code of ref document: A1