CN116081760A - 一种光/声催化剂协同光/超声催化降解敌草隆的方法 - Google Patents

一种光/声催化剂协同光/超声催化降解敌草隆的方法 Download PDF

Info

Publication number
CN116081760A
CN116081760A CN202211691385.1A CN202211691385A CN116081760A CN 116081760 A CN116081760 A CN 116081760A CN 202211691385 A CN202211691385 A CN 202211691385A CN 116081760 A CN116081760 A CN 116081760A
Authority
CN
China
Prior art keywords
diuron
photo
ultrasonic
catalyst
degrading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211691385.1A
Other languages
English (en)
Inventor
王富
戈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202211691385.1A priority Critical patent/CN116081760A/zh
Publication of CN116081760A publication Critical patent/CN116081760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种光/声催化剂协同光/超声催化降解敌草隆的方法,该方法具体实施步骤为在含有敌草隆的废水中,加入光/声催化剂Sr0.7Ba0.3Bi2B2O7后,同时进行光源照射和超声辐射,完成敌草隆降解。本发明中Sr0.7Ba0.3Bi2B2O7催化剂的制备方法为固相反应法。本发明制备的Sr0.7Ba0.3Bi2B2O7催化剂具有光敏和声敏性能。与现有的单一光催化降解敌草隆的技术相比,引入超声波作为共同激发源,在提高催化降解水中敌草隆效率的同时,也可以结合二者的优点,有利于解决复杂废水环境中敌草隆的降解,有很好的应用前景,为其他降解水中敌草隆的方法的联用提供了新的思路。

Description

一种光/声催化剂协同光/超声催化降解敌草隆的方法
技术领域
本发明属于农药废水处理技术领域,具体涉及一种光/声催化剂协同光/超声催化降解敌草隆的方法。
背景技术
除草剂类农药作为一种基本的农业生产资料,在预防控制或消灭危害农林业的有害植物、提高粮食综合生产能力、维护保障人类社会稳定等方面发挥着极其重要的作用。但当除草剂的使用量或毒性超出了自然环境的自降解能力,残留在土壤中的农药会随雨水渗透地表,污染水体环境,带来一系列环境和生命健康问题。因此,探究水体环境中除草剂合理降解的新方法,消除除草剂的水体污染问题十分有必要。
敌草隆(Diuron,地草净,分子式C9H10C12N2O),化学名称为N'-(3,4-二氯苯基)-N,N-二甲基脲,是一种通过抑制ATP合成、干扰植物光合作用来除草的广谱、内吸性的除草剂。作为一种能量代谢抑制药物,敌草隆与人体接触也会干扰人体内分泌系统,具有致癌、致基因突变等危害。近年来,在美国、法国、日本、马来西亚等国家的水体环境中相继检测到敌草隆的存在,敌草隆的水体污染已成为世界范围内十分严重的环境和健康问题,敌草隆也被列为环境污染和饮用水中重点监测和优先处理的对象。
目前水中敌草隆的去除方法主要有吸附法、微生物法和高级氧化技术等。其中,高级氧化技术作为敌草隆水中降解研究最多的技术,主要利用催化剂、光、电等组分在体系中生成强氧化性物质,氧化分解敌草隆生成二氧化碳或其他无害离子。虽然这些高级氧化技术在破坏敌草隆研究中极具前景,但单一的氧化处理技术因其作用机理都存在着自身的局限性,如芬顿催化法对废水浓度、过氧化氢含量、pH值等有要求,光催化法中光的穿透能力有限、对浑浊废水效果有限。结合不同手段的优点,规避缺点,将有利于解决复杂废水环境中敌草隆的处理问题,对生态环境和长期人类健康十分有益。
发明内容
本发明的目的是提供一种光/声催化剂协同光/超声催化降解敌草隆的方法,该方法将穿透能力强的超声波引入光催化降解体系,通过光/超声联用、协同降解敌草隆。
本发明的目的可以通过以下技术方案来实现:一种光/声催化剂协同光/超声催化降解敌草隆的方法,该方法具体实施步骤为在含有敌草隆的废水中,加入光/声催化剂Sr0.7Ba0.3Bi2B2O7后,同时进行光源照射和超声辐射,完成敌草隆降解。
进一步地,所述的光/声催化剂Sr0.7Ba0.3Bi2B2O7的制备方法为先将一定比例的碳酸锶、碳酸钡、氧化铋以及硼酸在研钵中研磨混合均匀,再将混合物倒入坩埚中置于马弗炉中煅烧,冷却至室温后,再次研磨即得到粉末状光/声催化剂Sr0.7Ba0.3Bi2B2O7
更进一步地,所述的碳酸锶、碳酸钡、氧化铋以及硼酸的摩尔比为0.7:0.3:1:2。
更进一步地,所述的碳酸锶、碳酸钡、氧化铋以及硼酸的研磨混合时间为30-45min。
更进一步地,所述的煅烧的升温程序为以6℃/min的升温速率升温至500℃煅烧2h,再以相同的升温速率继续升温至660℃煅烧6h;所述的煅烧在空气气氛下进行。
更进一步地,所述的混合物煅烧冷却后的研磨时间为20-40min。
进一步地,所述的光源包括氙灯;所述的氙灯的光照功率为0.8-1.2W/cm2
进一步地,所述的超声辐射的超声源包括超声仪或超声发生器;所述的超声辐射的超声频率为0.5-1.0MHz,声强为1.5-2.0W/cm2
进一步地,所述的光源照射和超声辐射的时间为10~60min。
进一步地,当废水中敌草隆浓度为10mg/L时,所使用的光/声催化剂Sr0.7Ba0.3Bi2B2O7的用量为0.5-1.0mg/mL。
与现有技术相比,本发明具有以下优点:
1、本发明将超声引入光催化降解敌草隆体系,提出了光/超声联用催化降解敌草隆的新方法,其中,通过固相反应法制得的Sr0.7Ba0.3Bi2B2O7催化剂为光/声催化剂,其同时具有光敏和声敏性能。在光或超声的照射下,Sr0.7Ba0.3Bi2B2O7催化剂均可以被激发产生电子空穴对,并进一步生成高氧化活性的物质降解敌草隆,且在光与超声共同照射下,降解效果最佳;
2、本发明一种光/声催化剂协同光/超声催化降解敌草隆的方法作为催化降解水中敌草隆的新方法,利用单一催化剂Sr0.7Ba0.3Bi2B2O7和不同照射源(氙灯和超声发生器),可适用于不同复杂环境(浑浊、深层)的含敌草隆废水降解,且使用的照射源功率较低,有很好的应用前景,为其他方法的联用提供了新的思路。
附图说明
图1为光/声催化剂Sr0.7Ba0.3Bi2B2O7的制备流程示意图;
图2为光/声催化剂Sr0.7Ba0.3Bi2B2O7的粉末X射线衍射图;
图3为光/超声协同催化降解敌草隆的降解示意图;
图4为实施例1和对比例1中检测敌草隆降解的紫外-可见吸收谱图;
图5为对比例2和对比例3中检测敌草隆降解的紫外-可见吸收谱图;
图6为实施例1和对比例1、2、3中敌草隆降解的速率对比图。
具体实施方式
下面将结合附图和实施例对本发明进行详细说明。需要指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
本发明中,室温指环境温度为10℃~30℃。
以下实施例中所使用的试剂皆为市售试剂;以下实施例中使用的各种设备皆为市售设备。
本发明中,敌草隆的降解通过紫外可见吸收光谱在200~400nm范围内监测,其特征吸收峰在248nm。
实施例1
通过固相反应法制备Sr0.7Ba0.3Bi2B2O7的步骤如图1所示:准确称取0.2g碳酸锶(SrCO3)、0.12g碳酸钡(BaCO3)、0.98g氧化铋(Bi2O3)以及0.25g硼酸(H3BO3)混合置于玛瑙研钵中研磨30~45min。研磨结束后,将混合物转移至坩埚中,于空气环境中500℃煅烧2h除去水分和碳酸盐(升温速率为6℃/min),随后仍以同样的升温速率继续升温至660℃煅烧6h,冷却至室温后,重新研磨20-40min,得到白色产物Sr0.7Ba0.3Bi2B2O7。随后,通过X射线粉末衍射仪(D8DaVinci,德国布鲁克公司)鉴定物质种类,从图2数据可以看出,制得的材料的衍射峰与晶体结构数据库ICSD#245017(SrBi2B2O7)类似,由于掺杂了更大离子半径的钡离子(Ba2+
Figure BDA0004021534950000041
Sr2+
Figure BDA0004021534950000042
),其位于27-29°的衍射峰发生轻微的偏移,进一步证明了所得产物为Sr0.7Ba0.3Bi2B2O7
该实施例制备的光/声催化剂对敌草隆的降解和检测方法如图3所示:准确称取5mg敌草隆溶于500mL去离子水中,得到浓度为10mg/L的敌草隆溶液,随后称取5mg的Sr0.7Ba0.3Bi2B2O7分散于5mL配置好的敌草隆溶液,避光,涡旋震荡混合均匀。随后,使用氙灯(HSX-F300,1.0W/cm2)和超声发生器(WED-100,1.0MHz,2.0W/cm2)共同照射样品10~60min,在不同的时间点(0、10、20、30、40、50、60min)离心样品取2mL上清液置于石英比色皿中通过紫外可见分光光度计(UV-2450,日本岛津公司)检测200~400nm范围内吸光度的变化。敌草隆的特征吸收峰为248nm,其降解情况如图4(a)所示,随着光和超声照射时间的增加,敌草隆于248nm处的特征吸收峰逐渐降低,表明水中的敌草隆在逐渐降解。
对比例1
准确称取5mg的Sr0.7Ba0.3Bi2B2O7分散于5mL配置好的敌草隆溶液(10mg/L),涡旋振荡混合均匀,避光保存,在不同时间点(0、10、20、30、40、50、60min)离心取上清液2mL置于石英比色皿中检测在248nm处的吸光度变化。本对比例的降解情况如图4(b)所示,本对比例对应的吸收谱图在不同时间点未发生明显变化,在248nm处的吸光度基本未变,表明催化剂在未加光和超声照射的情况下,不能产生活性氧物质催化降解敌草隆。
对比例2
准确称取5mg的Sr0.7Ba0.3Bi2B2O7分散于5mL配置好的敌草隆溶液,避光、涡旋震荡混合均匀后,仅使用超声发生器(WED-100,1.0MHz,2.0W/cm2)照射样品,在不同的时间点(0、10、20、30、40、50、60min)离心样品,取2mL上清液用于紫外-可见吸收光谱的测定,其结果如图5(a)所示,敌草隆在248nm处的吸光度逐渐降低,表明在超声处理下,Sr0.7Ba0.3Bi2B2O7可以作为声敏剂有效产生活性氧物质催化降解敌草隆。
对比例3
取5mg的Sr0.7Ba0.3Bi2B2O7分散于5mL配置好的敌草隆溶液,避光、涡旋震荡混合均匀后,仅使用氙灯(1.0W/cm2)照射样品,在不同的时间点(0、10、20、30、40、50、60min)离心样品,取2mL上清液用紫外-可见分光光度计测定敌草隆的降解情况。该对比例的结果如图5(b)所示,敌草隆在248nm处的吸光度缓慢降低,这可能是因为Sr0.7Ba0.3Bi2B2O7较大的能隙(2.7eV),氙灯在紫外蓝光区域的强度较弱,照射材料后产生较少的电子空穴对和活性氧物质,有望采用特定波长的激光或提高整体照射功率来提高催化效率。
检测数据分析:根据如下公式将上述所得的吸收谱图转化为敌草隆的降解率:降解率(%)=100×(初始吸光度-不同时间点检测吸光度)÷初始吸光度。具体结果如图6所示,在光或超声照射下,均可以降解敌草隆,且光和超声共同照射下敌草隆降解的更快更多,而单一激发源照射下,超声处理比氙灯照射降解更快,可能由于材料能隙较大(2.7eV),且氙灯光谱分布较广,在蓝光紫外区域强度较弱,激发材料产生的活性氧物质较少,可以选用能量更汇聚的激光或提高氙灯照射功率来优化降解条件。
综上所述,本发明提供了一种光/声催化剂Sr0.7Ba0.3Bi2B2O7协同光/超声催化降解敌草隆的方法,其中,Sr0.7Ba0.3Bi2B2O7既可同时作为光敏和声敏材料,在光或超声照射下均可以产生活性氧物质降解敌草隆,且二者同时照射情况下降解更快。
由于光/超声催化效率与催化剂浓度、照射源的波段、功率等密切相关,熟悉本领域的技术人员可以容易地对这些实施例和对比例做出各种修改,并把在此说明的一般性原理应用到其他实施例中。因此,本发明不限于上述实施例和对比例,本领域技术人员根据本发明的揭示,不脱离本发明范畴的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,在含有敌草隆的废水中,加入光/声催化剂Sr0.7Ba0.3Bi2B2O7后,同时进行光源照射和超声辐射,完成敌草隆降解。
2.根据权利要求1所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的光/声催化剂Sr0.7Ba0.3Bi2B2O7的制备方法为先将一定比例的碳酸锶、碳酸钡、氧化铋以及硼酸研磨混合均匀,再将混合物倒入坩埚中煅烧,冷却至室温后,再次研磨即得到粉末状光/声催化剂Sr0.7Ba0.3Bi2B2O7
3.根据权利要求2所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的碳酸锶、碳酸钡、氧化铋以及硼酸的摩尔比为0.7:0.3:1:2。
4.根据权利要求2所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的碳酸锶、碳酸钡、氧化铋以及硼酸的研磨混合时间为30-45min。
5.根据权利要求2所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的煅烧的升温程序为以6℃/min的升温速率升温至500℃煅烧2h,再以相同的升温速率继续升温至660℃煅烧6h;所述的煅烧在空气气氛下进行。
6.根据权利要求2所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的混合物煅烧冷却后的研磨时间为20-40min。
7.根据权利要求1所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的光源包括氙灯;所述的氙灯的光照功率为0.8-1.2W/cm2
8.根据权利要求1所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的超声辐射的超声源包括超声仪或超声发生器;所述的超声辐射的超声频率为0.5-1.0MHz,声强为1.5-2.0W/cm2
9.根据权利要求1所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,所述的光源照射和超声辐射的时间为10~60min。
10.根据权利要求1所述的一种光/声催化剂协同光/超声催化降解敌草隆的方法,其特征在于,当废水中敌草隆浓度为10mg/L时,所使用的光/声催化剂Sr0.7Ba0.3Bi2B2O7的用量为0.5-1.0mg/mL。
CN202211691385.1A 2022-12-28 2022-12-28 一种光/声催化剂协同光/超声催化降解敌草隆的方法 Pending CN116081760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211691385.1A CN116081760A (zh) 2022-12-28 2022-12-28 一种光/声催化剂协同光/超声催化降解敌草隆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211691385.1A CN116081760A (zh) 2022-12-28 2022-12-28 一种光/声催化剂协同光/超声催化降解敌草隆的方法

Publications (1)

Publication Number Publication Date
CN116081760A true CN116081760A (zh) 2023-05-09

Family

ID=86198469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211691385.1A Pending CN116081760A (zh) 2022-12-28 2022-12-28 一种光/声催化剂协同光/超声催化降解敌草隆的方法

Country Status (1)

Country Link
CN (1) CN116081760A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306360A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种可见光响应的光催化剂及低温燃烧合成方法
CN103043745A (zh) * 2013-01-17 2013-04-17 北京师范大学 一种可见光催化降解水中典型抗生素的方法
CN107601617A (zh) * 2017-10-20 2018-01-19 东北师范大学 一种超声/光催化降解罗丹明b的方法及其装置
CN108479748A (zh) * 2018-02-09 2018-09-04 南方科技大学 有机污染物降解用压电光电子材料及降解方法
CN108568302A (zh) * 2018-04-08 2018-09-25 辽宁大学 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
KR20210057517A (ko) * 2019-11-12 2021-05-21 경북대학교 산학협력단 바이오차 기반의 유기 오염물질 제거용 촉매 및 이를 이용한 오염물질의 산화 제거방법
CN113562804A (zh) * 2021-08-25 2021-10-29 上海交通大学 一种可见光降解除草剂的方法
CN114653358A (zh) * 2022-05-07 2022-06-24 桂林电子科技大学 Bi3.25La0.75Ti3O12纳米线在降解废水中二氯苯酚的应用
US20220347660A1 (en) * 2019-11-08 2022-11-03 Soochow University Bismuth iodide oxide / zinc oxide composite and preparation method therefor and application thereof in piezoelectric photocatalytic removal of organic pollutants

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306360A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种可见光响应的光催化剂及低温燃烧合成方法
CN103043745A (zh) * 2013-01-17 2013-04-17 北京师范大学 一种可见光催化降解水中典型抗生素的方法
CN107601617A (zh) * 2017-10-20 2018-01-19 东北师范大学 一种超声/光催化降解罗丹明b的方法及其装置
CN108479748A (zh) * 2018-02-09 2018-09-04 南方科技大学 有机污染物降解用压电光电子材料及降解方法
CN108568302A (zh) * 2018-04-08 2018-09-25 辽宁大学 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
US20220347660A1 (en) * 2019-11-08 2022-11-03 Soochow University Bismuth iodide oxide / zinc oxide composite and preparation method therefor and application thereof in piezoelectric photocatalytic removal of organic pollutants
KR20210057517A (ko) * 2019-11-12 2021-05-21 경북대학교 산학협력단 바이오차 기반의 유기 오염물질 제거용 촉매 및 이를 이용한 오염물질의 산화 제거방법
CN113562804A (zh) * 2021-08-25 2021-10-29 上海交通大学 一种可见光降解除草剂的方法
CN114653358A (zh) * 2022-05-07 2022-06-24 桂林电子科技大学 Bi3.25La0.75Ti3O12纳米线在降解废水中二氯苯酚的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO, HY 等: "Bandgap-engineered ferroelectric single-crystalline NBT-BT based nanocomposites with excellent visible light-ultrasound catalytic performance", 《CHEMOSPHERE》, vol. 306, 30 July 2022 (2022-07-30), pages 135543 *
魏春生: "《几种新型半导体声催化剂的制备及常见毒品的超声催化降解》", 《中国优秀博士学位论文全文数据库 工程科技I辑》, vol. 02, 15 February 2019 (2019-02-15), pages 014 - 123 *

Similar Documents

Publication Publication Date Title
JP3790189B2 (ja) 可視光応答性BiVO4微粉末の新規合成法、該BiVO4微粉末からなる光触媒および該光触媒を用いた浄化方法
Ji et al. Recent advances in visible light-responsive titanium oxide-based photocatalysts
Rao et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths
KR20090083239A (ko) 텅스텐계 산화물을 이용한 가시광 응답형 광촉매 조성물 및 그 제조방법
Zhang et al. Photocatalytic degradation of methylene blue by ZnGa2O4 thin films
CN109395761B (zh) 一种氮掺杂BiOIO3光催化剂的制备方法及其应用
CN109261172A (zh) 一种碘氧化铋/溴氧化铋异质结光催化剂的制备方法和用途
Yu et al. Controlled synthesis of uniform BiVO 4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater
Arul Hency Sheela et al. Structural, Morphological and Optical Properties of ZnO, ZnO: Ni 2+ and ZnO: Co 2+ Nanostructures by Hydrothermal Process and Their Photocatalytic Activity
CN103127958A (zh) 一种金属铜卟啉/二氧化钛复合光催化剂的制备及其应用
US20070082807A1 (en) Visible light responsive complex oxide photocatalyst and method of using the same to decompose and eliminate harmful chemical substance
Lavakusa et al. Selective synthesis of visible light active γ-bismuth molybdate nanoparticles for efficient photocatalytic degradation of methylene blue, reduction of 4-nitrophenol, and antimicrobial activity
JP3890414B2 (ja) ペロブスカイト型複合酸化物可視光応答性光触媒とそれを用いた水素の製造方法及び有害化学物質分解方法
Avilés-García et al. Removal of metoprolol by means of photo-oxidation processes
Piumetti et al. Catalytic degradation of Acid Orange 7 by H2O2 as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid
Sato et al. Photochemical reduction of nitrate to ammonia using layered hydrous titanate/cadmium sulphide nanocomposites
CN116081760A (zh) 一种光/声催化剂协同光/超声催化降解敌草隆的方法
Song et al. C-doped Bi3O4X nanosheets with self-induced internal electric fields for pyrene degradation: Effects of carbon and halogen element type on photocatalytic activity
JP3870267B2 (ja) アルカリ金属及びAgのビスマス複合酸化物可視光応答性光触媒とそれを用いた有害化学物質分解除去方法
Zhang et al. A study on the degradation of methamidophos in the presence of nano-TiO 2 catalyst doped with Re
Hu et al. Synthesis of a BiOIO3/Bi2O4 heterojunction that can efficiently degrade rhodamine B and ciprofloxacin under visible light
Wang et al. Photocatalytic activity of N-doped TiO2 to vehicle exhaust in road tunnel
US10364165B2 (en) Method for generating hydroxyl radical and removing organic pollutants in water by utilizing an organic membrane
Dhara et al. An efficient approach towards the photodegradation of indigo carmine by introducing ZnO/CuO/Si ternary nanocomposite as photocatalyst
Waehayee et al. Modulation of the Internal Electric Field in Te-Doped Bi2MoO6 Nanosheets: Implication for the Photocatalytic Degradation of Rhodamine B and Photooxidation of Benzylamine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination