WO2021088249A1 - 一种刀具复杂容屑槽磨制砂轮轨迹确定方法 - Google Patents

一种刀具复杂容屑槽磨制砂轮轨迹确定方法 Download PDF

Info

Publication number
WO2021088249A1
WO2021088249A1 PCT/CN2020/071727 CN2020071727W WO2021088249A1 WO 2021088249 A1 WO2021088249 A1 WO 2021088249A1 CN 2020071727 W CN2020071727 W CN 2020071727W WO 2021088249 A1 WO2021088249 A1 WO 2021088249A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding wheel
time
core diameter
tool
determining
Prior art date
Application number
PCT/CN2020/071727
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
李国超
戴磊
周宏根
田桂中
刘云龙
赵东豪
艾杼桦
马正宇
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to JP2021504215A priority Critical patent/JP7089134B2/ja
Publication of WO2021088249A1 publication Critical patent/WO2021088249A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a method for determining the track of a grinding wheel, and more specifically, to a method for determining the track of a grinding wheel for grinding a complex chip flute of a tool.
  • the complex chip flute of the tool means that its rake angle, core diameter, groove width, helix angle and other structural parameters change along the tool axis, which can effectively improve the tool rigidity, strength, and cutting performance. It is widely used in high-end solid end mills. .
  • the grinding of complex chip flutes faces many difficulties: First, the geometric structure of the complex chip flutes is determined by the shape of the grinding wheel and the motion trajectory.
  • the object of the present invention is to provide a method for determining the path of a grinding wheel for grinding a complex chip flute of a tool, which can be applied to the grinding process of a complex chip flute of a tool, and has high accuracy and reliability.
  • the present invention provides a method for determining the path of a grinding wheel for complex chip flutes of a tool, which includes the following steps:
  • step (2) :
  • i 1, 2, 3, 4 respectively represent the cutting edge curve, rake angle, core diameter line and tooth back line used to describe the complex chip flute
  • x si , y si , z si are respectively the knife edge curve and front
  • ⁇ i is the variable describing the parameter equation of the blade curve, the rake angle line, the core diameter line and the tooth back line.
  • the distance between r s2 and r s1 is less than 0.05DT, and the distance between r s3 and the tool axis is less than the distance between r s1 , r s2 or r s4 and the tool axis.
  • step (3) the steps of establishing the wheel radius constraint equation fcon1 in step (3) are:
  • x ow , y ow , z ow are the coordinate values in the tool coordinate system of the center of the circle that intersects with the cutting edge curve, rake angle, and core diameter at time t, and ⁇ 1_t is the grinding wheel blade at time t
  • ⁇ 2 , ⁇ 3 are the variables of the rake angle and core diameter parameter equations respectively;
  • R wc R wc ( ⁇ 1_t , ⁇ 2 , ⁇ 3 )
  • R wc is the radius of the circle that intersects the blade curve, rake angle, and core diameter at the same time at t;
  • x nw , y nw , z nw are the coordinate values in the tool coordinate system of the axis vector of the circle that simultaneously intersects the blade curve, rake angle, and core diameter line at time t;
  • R w is the radius of the large end circle of the grinding wheel, and R w ⁇ 15DT.
  • step (4) the steps of establishing the position of the grinding wheel at time t to solve the objective function are:
  • d axis d axis ( ⁇ 1_t , ⁇ 2 , ⁇ 3 , ⁇ 4 )
  • d plane d plane ( ⁇ 1_t , ⁇ 2 , ⁇ 3 , ⁇ 4 )
  • d GW d axis -d plane /tan( ⁇ w )
  • ⁇ w is the cone angle of the grinding wheel, ⁇ /2 ⁇ w > ⁇ /6;
  • the step (5) to obtain the position of the grinding wheel at time t is: according to the equation f con1 in step (3) and the position of the grinding wheel in step (4) to solve the objective function, the solution to obtain the corresponding blade curve and rake angle at time t
  • the line, core diameter and tooth back line parameters ⁇ 1_t , ⁇ 2_t , ⁇ 3_t , ⁇ 4_t , and ⁇ 1_t , ⁇ 2_t , ⁇ 3_t are brought into step (3) in the wheel radius constraint equation f con1 , and the time t is obtained by solving
  • the parameter values ⁇ 1_t , ⁇ 2_t , ⁇ 3_t , ⁇ 4_t corresponding to time t are greater than or equal to the parameter values corresponding to the previous time.
  • the grinding wheel selects 1A1 type or 1V1 type diamond grinding wheel, the diameter of the grinding wheel is 100mm ⁇ 200mm.
  • FIG. 1 is a flowchart of this method
  • Figure 2 is a schematic diagram of the shape of the grinding wheel
  • Figure 3 is a schematic diagram of the posture of the grinding wheel
  • Figure 4 is a three-dimensional schematic diagram of the grinding results of complex chip flutes with gradual core diameter, equal rake angle, equal groove width, and equal helix angle;
  • Fig. 5 is a projection view of the grinding result of complex chip flutes with constant rake angle, equal groove width and equal helix angle of gradual core diameter on the X T -Y T coordinate plane.
  • x ow , y ow , z ow are the coordinate values in the tool coordinate system of the center of the circle that intersects with the cutting edge curve, rake angle, and core diameter at time t, and ⁇ 1_t is the grinding wheel blade at time t The parameter value of a point on the curve;
  • R wc R wc ( ⁇ 1_t , ⁇ 2 , ⁇ 3 )
  • R wc is the radius of the circle that intersects the blade curve, rake angle, and core diameter at the same time at t;
  • x nw , y nw , z nw are the coordinate values in the tool coordinate system of the axis vector of the circle that simultaneously intersects the blade curve, rake angle, and core diameter line at time t;
  • R w is the radius of the large end circle of the grinding wheel
  • d axis d axis ( ⁇ 1_t , ⁇ 2 , ⁇ 3 , ⁇ 4 )
  • d plane d plane ( ⁇ 1_t , ⁇ 2 , ⁇ 3 , ⁇ 4 )
  • d GW d axis -d plane /tan( ⁇ w )
  • ⁇ w is the cone angle of the grinding wheel
  • the parameters ⁇ 1_t , ⁇ 2_t , ⁇ 3_t , ⁇ corresponding to time t are solved by solving 4_t , take ⁇ 1_t , ⁇ 2_t , ⁇ 3_t into the formulas r ow and n w in step (3), and solve to obtain the position of the grinding wheel at time t.
  • the position of the grinding wheel is shown in Figure 3;
  • r s1 , r s2 , r s3 , and r s4 are the curves that control the cutting edge, rake angle, core diameter, and groove width of the tool. 4. It can be seen from Figure 5 that the plane perpendicular to the tool axis is used to intercept the shape of the chip flute at 3 positions 5mm, 10mm, and 15mm away from the tool tip, and the rake angle and groove width along the tool axis remain unchanged, while the core Chip flutes with changing diameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Numerical Control (AREA)
PCT/CN2020/071727 2019-11-08 2020-01-13 一种刀具复杂容屑槽磨制砂轮轨迹确定方法 WO2021088249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504215A JP7089134B2 (ja) 2019-11-08 2020-01-13 工具の複雑なチップポケット研磨による砥石軌跡の決定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911085911.8A CN110990966B (zh) 2019-11-08 2019-11-08 一种刀具复杂容屑槽磨制砂轮轨迹确定方法
CN201911085911.8 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088249A1 true WO2021088249A1 (zh) 2021-05-14

Family

ID=70083568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071727 WO2021088249A1 (zh) 2019-11-08 2020-01-13 一种刀具复杂容屑槽磨制砂轮轨迹确定方法

Country Status (3)

Country Link
JP (1) JP7089134B2 (ja)
CN (1) CN110990966B (ja)
WO (1) WO2021088249A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664626A (zh) * 2021-09-09 2021-11-19 大连交通大学 一种基于离散点云原理螺旋槽磨削工艺系统建立方法
CN113962040A (zh) * 2021-10-22 2022-01-21 西南交通大学 一种立铣刀周齿分屑槽砂轮磨削轨迹计算方法
CN114036661A (zh) * 2021-10-29 2022-02-11 哈尔滨工业大学 一种基于磨削运动分析和螺旋理论的球头砂轮主轴倾角和转角优选方法
CN114036682A (zh) * 2021-11-22 2022-02-11 江苏科技大学 一种凸轮轴摆动磨削表面微观形貌建模仿真分析方法
CN115032945A (zh) * 2022-04-28 2022-09-09 大连理工大学 复杂曲面零件慢刀伺服磨削加工刀具轨迹规划方法
CN115229568A (zh) * 2022-07-29 2022-10-25 深圳数马电子技术有限公司 枪钻刀面的砂轮磨削方法、装置、数控机和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051665A1 (en) * 2012-09-26 2014-04-03 United Technologies Corporation Method of modifying gear profiles
CN104625193A (zh) * 2015-01-13 2015-05-20 东方电气集团东方汽轮机有限公司 一种复杂槽型铣刀断屑槽的加工方法
CN106294986A (zh) * 2016-08-04 2017-01-04 重庆大学 螺杆磨削加工磨削力预测方法
CN108971588A (zh) * 2018-08-22 2018-12-11 周永情 一种螺旋槽加工刀片及制造方法、使用该刀片的铣刀
CN109299514A (zh) * 2018-08-28 2019-02-01 天津大学 斜轴磨削自由曲面的砂轮路径生成方法
CN109614740A (zh) * 2018-12-25 2019-04-12 株洲钻石切削刀具股份有限公司 基于三维设计软件求解螺旋曲面磨削接触线的方法及系统
CN109702567A (zh) * 2019-01-29 2019-05-03 西南交通大学 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309614A (ja) * 1997-05-12 1998-11-24 Daishowa Seiki Co Ltd スローアウェイ式転削工具
CN103777568B (zh) 2014-02-24 2016-06-01 山东大学 一种基于刃磨过程的整体式立铣刀容屑槽建模方法
CN106826417B (zh) 2017-02-06 2018-12-25 成都天佑创软科技有限公司 一种立铣刀磨削过程二维图形仿真方法
CN106991241B (zh) 2017-04-11 2018-12-14 江苏科技大学 一种刀具容屑槽刃磨干涉预测方法
CN107045578B (zh) * 2017-04-25 2018-12-21 江苏科技大学 一种基于npso算法的容屑槽加工砂轮位姿求解方法
CN107169186B (zh) 2017-05-09 2019-11-19 江苏科技大学 一种具有强鲁棒性的整体刀具容屑槽形状预测方法
CN109189001B (zh) 2018-11-16 2020-07-03 厦门大学 拖拉机变速箱用立铣刀端截形图像扫描获取及标定的方法
CN109976254B (zh) * 2019-03-29 2020-08-25 西安交通大学 一种渐变芯厚立铣刀容屑槽法截面的建模方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051665A1 (en) * 2012-09-26 2014-04-03 United Technologies Corporation Method of modifying gear profiles
CN104625193A (zh) * 2015-01-13 2015-05-20 东方电气集团东方汽轮机有限公司 一种复杂槽型铣刀断屑槽的加工方法
CN106294986A (zh) * 2016-08-04 2017-01-04 重庆大学 螺杆磨削加工磨削力预测方法
CN108971588A (zh) * 2018-08-22 2018-12-11 周永情 一种螺旋槽加工刀片及制造方法、使用该刀片的铣刀
CN109299514A (zh) * 2018-08-28 2019-02-01 天津大学 斜轴磨削自由曲面的砂轮路径生成方法
CN109614740A (zh) * 2018-12-25 2019-04-12 株洲钻石切削刀具股份有限公司 基于三维设计软件求解螺旋曲面磨削接触线的方法及系统
CN109702567A (zh) * 2019-01-29 2019-05-03 西南交通大学 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI GUOCHAO: "Parametric Design and Side-Edge Process Modeling of End Mill", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I, 27 April 2015 (2015-04-27), XP055810249 *
WANG LIMING; CHEN ZEZHONG CHEVY; LI JIANFENG; SUN JIE: "A novel approach to determination of wheel position and orientation for five-axis CNC flute grinding of end mills", THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, SPRINGER, LONDON, vol. 84, no. 9, 3 October 2015 (2015-10-03), London, pages 2499 - 2514, XP035691057, ISSN: 0268-3768, DOI: 10.1007/s00170-015-7851-2 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664626A (zh) * 2021-09-09 2021-11-19 大连交通大学 一种基于离散点云原理螺旋槽磨削工艺系统建立方法
CN113962040A (zh) * 2021-10-22 2022-01-21 西南交通大学 一种立铣刀周齿分屑槽砂轮磨削轨迹计算方法
CN113962040B (zh) * 2021-10-22 2024-06-07 西南交通大学 一种立铣刀周齿分屑槽砂轮磨削轨迹计算方法
CN114036661A (zh) * 2021-10-29 2022-02-11 哈尔滨工业大学 一种基于磨削运动分析和螺旋理论的球头砂轮主轴倾角和转角优选方法
CN114036661B (zh) * 2021-10-29 2024-06-04 哈尔滨工业大学 一种基于磨削运动分析和螺旋理论的球头砂轮主轴倾角和转角优选方法
CN114036682A (zh) * 2021-11-22 2022-02-11 江苏科技大学 一种凸轮轴摆动磨削表面微观形貌建模仿真分析方法
CN115032945A (zh) * 2022-04-28 2022-09-09 大连理工大学 复杂曲面零件慢刀伺服磨削加工刀具轨迹规划方法
CN115229568A (zh) * 2022-07-29 2022-10-25 深圳数马电子技术有限公司 枪钻刀面的砂轮磨削方法、装置、数控机和存储介质
CN115229568B (zh) * 2022-07-29 2024-04-16 深圳数马电子技术有限公司 枪钻刀面的砂轮磨削方法、装置、数控机和存储介质

Also Published As

Publication number Publication date
JP7089134B2 (ja) 2022-06-22
JP2022513552A (ja) 2022-02-09
CN110990966A (zh) 2020-04-10
CN110990966B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2021088249A1 (zh) 一种刀具复杂容屑槽磨制砂轮轨迹确定方法
CN109702567B (zh) 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法
US20100003091A1 (en) Diamond Cutting Member and Method of Making the Same
CN107335847B (zh) 一种切削效能约束刀具姿态的加工方法
CN109918807B (zh) 一种优化曲率的局部刀轨光顺方法
CN104959666B (zh) 双圆弧大进给环形铣刀及其制备工艺与检测方法
CN104493305B (zh) 一种基于齿轮加工机床调整的车齿加工方法
CN109656192B (zh) 一种基于球头铣刀铣削力的加工优化方法
CN113204852B (zh) 一种球头铣刀铣削加工表面形貌预测方法及系统
CN109189001A (zh) 拖拉机变速箱用立铣刀端截形图像扫描获取及标定的方法
CN103862346A (zh) 一种微细铣刀螺旋曲面的无瞬心包络磨削方法
CN106624134B (zh) 一种渐开线花键拉刀刀齿设计制作方法
CN107045578B (zh) 一种基于npso算法的容屑槽加工砂轮位姿求解方法
CN107085412B (zh) 一种控制曲线车削加工切削力突变的方法
CN109093447A (zh) 一种基于刀具均匀磨损的刀轨设计方法
CN107544433A (zh) 五轴数控机床平面加工过程球头铣刀与工件接触区域半解析建模方法
CN101623847B (zh) 两次对刀的小直径金刚石球头砂轮电火花修整对刀方法
CN106371401B (zh) 一种基于椭圆的辊雕刀模线变距偏移方法
CN108526492B (zh) 一种基于ccd相机在位测量的换刀加工方法
WO2022179180A1 (zh) 一种基于多智能体协同转运实时在线位姿补偿控制方法
CN102520671B (zh) 一种数控铣削轴流压缩机叶片过切问题的加工前判定方法
CN208825653U (zh) 双刀槽成型倒角铣刀
CN114065427A (zh) 摆线铣削中基于切削力建模的摆线参数优化方法
CN206567550U (zh) 一种单刃镗削刀片及镗削刀具
CN103447756B (zh) 精密基准球复合加工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021504215

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884892

Country of ref document: EP

Kind code of ref document: A1