WO2021070252A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021070252A1
WO2021070252A1 PCT/JP2019/039677 JP2019039677W WO2021070252A1 WO 2021070252 A1 WO2021070252 A1 WO 2021070252A1 JP 2019039677 W JP2019039677 W JP 2019039677W WO 2021070252 A1 WO2021070252 A1 WO 2021070252A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electrode
outer peripheral
semiconductor device
thickness
Prior art date
Application number
PCT/JP2019/039677
Other languages
English (en)
French (fr)
Inventor
毅 大佐賀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980101038.9A priority Critical patent/CN114467165A/zh
Priority to US17/624,040 priority patent/US11876062B2/en
Priority to PCT/JP2019/039677 priority patent/WO2021070252A1/ja
Priority to DE112019007795.3T priority patent/DE112019007795T5/de
Priority to JP2021550977A priority patent/JP7170894B2/ja
Publication of WO2021070252A1 publication Critical patent/WO2021070252A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • H01L2224/03464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0501Shape
    • H01L2224/05011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device in which an external electrode electrically connected to the outside and a main electrode of the semiconductor device are solder-bonded.
  • Patent Document 1 discloses a configuration in which a surface electrode and an external electrode are solder-bonded.
  • the thermal cycle during energization causes tensile stress on the surface electrodes, which may cause cracks from the electrode ends.
  • the cracks propagate from the electrodes toward the inside of the semiconductor device, and in some cases, the semiconductor device may be electrically destroyed, which is a problem for improving the thermal cycle resistance of the product.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device having improved thermal cycle resistance.
  • the semiconductor device is a semiconductor device in which a main current flows in the thickness direction of the semiconductor substrate, and the semiconductor substrate has an active region in which the main current flows and a terminal region outside the active region.
  • the semiconductor device includes a first main electrode provided on the active region, a second main electrode provided on the side of the semiconductor substrate opposite to the first main electrode, and at least the terminal.
  • a protective film covering the region and a electroless plating layer provided on the first main electrode not covered with the protective film are provided, and the first main electrode includes a central electrode in a central portion and the central electrode.
  • the central electrode has an outer peripheral electrode provided along the central electrode at intervals, and the protective film is provided from the terminal region to the edge portion of the outer peripheral electrode, and the central electrode and the outer peripheral electrode are provided.
  • the outer peripheral electrode has a first metal layer and a second metal layer containing aluminum provided on the first metal layer, and at least the outer peripheral electrode penetrates the second metal layer. It has a hole that reaches the first metal layer.
  • the contact area between the first metal layer and the second metal layer is provided by having a hole portion that penetrates the second metal layer of the outer peripheral electrode and reaches the first metal layer. Is reduced, so that peeling is likely to occur at the interface between the first metal layer and the second metal layer, and cracks (interfacial peeling) along the interface between the protective film and the electroless plating layer due to the thermal cycle. ), When the crack reaches the outer peripheral electrode, peeling progresses in the horizontal direction at the interface between the first metal layer and the second metal layer, and the crack progresses in the vertical direction, that is, in the thickness direction of the semiconductor device. Is suppressed and the thermal cycle resistance is improved.
  • FIG. 1 It is a top view which shows the top surface structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partially enlarged view which shows the structure of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows typically the crack which occurs when the heat cycle by energization is applied to the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view explaining the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view explaining the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 2.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 3.
  • FIG. It is a partial cross-sectional view explaining the manufacturing method of the semiconductor device which concerns on Embodiment 3.
  • FIG. It is a partial cross-sectional view explaining the manufacturing method of the semiconductor device which concerns on Embodiment 3.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 4.
  • FIG. It is a partial cross-sectional view which shows the structure of the semiconductor device which concerns on Embodiment 5. It is a figure explaining the relationship between the distance between the emitter center electrode and the emitter outer peripheral electrode, and the thickness of a plating layer.
  • the "active region” is a region in which the main current flows when the semiconductor device is on.
  • the "outside” is the direction toward the outer circumference of the semiconductor device, and the “inside” is the direction opposite to the “outside”.
  • the conductive type of impurities the N type is generally defined as the “first conductive type”
  • the P type which is the opposite conductive type to the N type, is generally defined as the “second conductive type”, but vice versa. It does not matter if it is defined as.
  • MOS Metal-Oxide-Semiconductor
  • MOS transistor the field effect transistor having a MOS structure
  • the materials of the gate insulating film and the gate electrode have been improved from the viewpoint of integration and improvement of the manufacturing process in recent years.
  • polycrystalline silicon has been adopted as a material for gate electrodes instead of metal, mainly from the viewpoint of forming source and drain in a self-aligned manner.
  • a material having a high dielectric constant is adopted as a material for the gate insulating film, but the material is not necessarily limited to an oxide.
  • MOS metal-oxide-semiconductor laminated structure
  • IGBT Insulated Gate Bipolar Transistor
  • FIG. 1 is a plan view schematically showing a top surface configuration of the IGBT 100 according to the first embodiment of the present invention.
  • the IGBT 100 is provided on a semiconductor substrate 1 having a rectangular shape in a plan view, and a gate wiring 51 is provided along the outer peripheral portion thereof. Further, a quadrangular gate electrode pad 5 is provided at one of the corners of the IGBT 100, and the gate electrode pad 5 is surrounded by a gate wiring 51.
  • the emitter electrode 3 (first main electrode) is provided on most of the main surface of the IGBT 100 other than the portion where the gate electrode pad 5 and the gate wiring 51 are provided.
  • the emitter electrode 3 is provided on the active region AR of the IGBT 100, and the emitter electrode 3 is divided into an emitter central electrode 3a in the center and an emitter outer peripheral electrode 3b arranged so as to surround the outside thereof.
  • the area outside the outer circumference of the gate wiring 51 is defined as the terminal area 2.
  • the termination region 2 may be provided with an impurity region for maintaining the withstand voltage, but the illustration is omitted.
  • a protective film 4 is provided so as to cover at least the terminal region 2 and the gate wiring 51.
  • FIG. 2 shows a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3 shows a cross-sectional view taken along the line BB.
  • the IGBT 100 is provided with an N-type drift layer 15 on the upper main surface of the N-type buffer layer 16, and P is provided on the upper layer of the N-type drift layer 15.
  • a mold body layer 10 is provided.
  • a P-type collector layer 17 is provided on the lower main surface of the buffer layer 16, and a metal layer 18 of AlSi (aluminum-silicon alloy) is provided on the lower main surface of the collector layer 17, and the metal is provided.
  • a Ni metal layer 19 is provided on the lower main surface of the layer 18 to form a collector electrode (second main electrode).
  • the semiconductor substrate 1 includes a collector layer 17, a buffer layer 16, a drift layer 15, and a body layer 10.
  • a plurality of N-shaped emitter layers 12 are selectively provided on the upper layer of the body layer 10, and a plurality of trench gate electrodes that penetrate the emitter layer 12 and the body layer 10 in the thickness direction and reach the inside of the drift layer 15. 11 is provided.
  • an interlayer insulating film 13 is provided on the drift layer 15 (on the body layer 10), and the interlayer insulating film 13 has a plurality of contact electrodes that penetrate the interlayer insulating film 13 in the thickness direction and reach the emitter layer 12. 14 is provided.
  • the emitter center electrode 3a and the emitter outer peripheral electrode 3b are a metal layer 6 (first metal layer) provided on the interlayer insulating film 13 so as to be in contact with the plurality of contact electrodes 14, and a metal provided on the metal layer 6. It has a laminated structure with the layer 7 (second metal layer), and the plating layer 8 is provided on the metal layer 7.
  • the metal layer 6 is, for example, a barrier metal (Ti / TiN) in which Ti (titanium) is laminated on TiN (titanium nitride)
  • the metal layer 7 is, for example, an aluminum layer
  • the plating layer 8 is.
  • it is an electroless nickel plating layer (electroless plating layer) of phosphorus-containing nickel (NiP).
  • the metal layer 7 is formed with a hole 9 that penetrates the metal layer 7 in the thickness direction and reaches the top of the metal layer 6, and the hole 9 is filled with the plating layer 8.
  • a protective film 4 made of polyimide is provided.
  • FIG. 4 is a diagram showing details of the trench gate electrode 11 and the contact electrode 14.
  • the trench gate electrode 11 is provided with a gate insulating film 111 so as to cover the inner surface of the gate trench 113 that penetrates the emitter layer 12 and the body layer 10 in the thickness direction and reaches the inside of the drift layer 15.
  • the gate electrode 112 is embedded in the gate trench 113 covered with the gate insulating film 111.
  • the trench gate electrode 11 is covered with the interlayer insulating film 13, it is electrically connected to the gate wiring 51 through the opening of the interlayer insulating film 13 provided in a portion (not shown), and the gate voltage is supplied. It is composed.
  • the contact electrode 14 has a metal layer 6 embedded in an opening 131 that penetrates the interlayer insulating film 13 in the thickness direction and reaches the emitter layer 12. Further, in the metal layer 6 embedded in the opening 131, a tungsten (W) layer 142 is embedded in the opening 141, and the contact electrode 14 is composed of the metal layer 6 and the tungsten layer 142. .. The metal layer 6 is provided to reduce the contact resistance between the upper metal layer 7 and the tungsten layer 142 (contact electrode 14).
  • FIG. 5 is a cross-sectional view schematically showing a crack 21 generated when a solder layer 20 is bonded onto a plating layer 8 and a thermal cycle due to energization is applied.
  • the crack 21 generated by the thermal cycle propagates along the interface between the protective film 4 and the plating layer 8, and when it comes into contact with the metal layer 7, it first becomes the plating layer 8 and the metal layer 7.
  • Interfacial peeling occurs at the interface of. After that, when the peeling reaches the top of the metal layer 6, the contact area between the metal layer 6 and the metal layer 7 is reduced due to the formation of the hole portion 9, so that the metal layer 7 and the metal layer 6 are separated from each other. Peeling occurs at the interface.
  • the peeling progresses in the horizontal direction
  • the peeling progresses in the vertical direction, that is, in the thickness direction of the IGBT 100
  • the destruction of the element structure of the IGBT 100 is suppressed, and the life of the apparatus is extended as compared with the conventional case. be able to.
  • FIGS. 6 and 7 are cross-sectional views showing the manufacturing steps in order.
  • the configuration of the interlayer insulating film 13 or less is a well-known configuration, and a well-known technique can be used for the manufacturing method, and thus the description thereof will be omitted.
  • the contact electrode 14 is formed in the interlayer insulating film 13 and, for example, Ti / TiN is formed on the interlayer insulating film 13.
  • a barrier metal is formed to form a metal layer 6, and an aluminum layer is formed on the metal layer 6 to form a metal layer 7.
  • the metal layer 7 may be an aluminum alloy layer.
  • the metal layer 6 is formed on the active region, not on the formation region of the gate electrode pad 5 and the gate wiring 51, and the laminated structure of the metal layer 6 and the metal layer 7 is formed on the active region. Further, the metal layer 6 may be formed in the formation region of the gate electrode pad 5 and the gate wiring 51 to form a laminated structure with the metal layer 7.
  • the laminated structure of the metal layer 6 and the metal layer 7 and the metal layer 7 are patterned, the region where the protective film 4 is in contact with the interlayer insulating film 13, the emitter center electrode 3a and the emitter. A region for separating from the outer peripheral electrode 3b is opened. Then, for example, the protective film 4 is selectively formed of polyimide. A well-known etching process can be used for etching the metal layer 6 and the metal layer 7.
  • Al pore corrosion is generated in the metal layer 7 by performing a zincate treatment as a pretreatment, and as shown in FIG. 7, the metal layer is formed. A plurality of holes 9 that penetrate the 7 in the thickness direction are formed.
  • the thickness of the metal layer 7 is set to 0.5 ⁇ m or more and 1 ⁇ m or less, more preferably about 0.5 ⁇ m, and the hole portion 9 is surely made. Penetrates the metal layer 7.
  • the thickness of the metal layer 6 is about 0.1 ⁇ m, and the thickness of the plating layer 8 is about 5 ⁇ m.
  • the plating layer 8 is formed by electroless NiP plating to obtain an IGBT 100 having the cross-sectional structure shown in FIGS. 2 and 3.
  • the processing process for forming the hole portion 9 in the metal layer can be omitted, so that the process and cost required for the processing can be reduced, and the hole portion 9 is provided. It is possible to suppress the decrease in productivity due to.
  • FIG. 8 is a cross-sectional view showing the configuration of the IGBT 200 of the second embodiment according to the present invention, and corresponds to the cross-sectional view taken along the line BB in FIG.
  • the top surface configuration of the IGBT 200 is the same as the plan view of the IGBT 100 shown in FIG.
  • the hole 91 in the emitter outer peripheral electrode 3b is formed larger than the hole 9 in the emitter center electrode 3a.
  • cracks (interfacial peeling) generated when a thermal cycle is applied to the IGBT 200 can be reliably propagated in the horizontal direction of the outer peripheral electrode 3b of the emitter, and in the vertical direction, That is, it is possible to suppress the progress of peeling in the thickness direction of the IGBT 200, suppress the destruction of the element structure of the IGBT 200, and extend the life of the device as compared with the conventional case.
  • the central electrode 3a of the emitter and the gate electrode pad 5 (in the formation of the metal layer 7 made of AlSi) are formed.
  • the process of forming the portion to be the emitter outer peripheral electrode 3b and the portion to be the emitter outer peripheral electrode 3b is separated, and the silicon concentration of the metal layer 7 of the portion to be the emitter outer peripheral electrode 3b is set to the emitter center electrode 3a and the gate electrode pad 5. It is formed of different film materials so that the concentration is higher than the silicon concentration of the metal layer 7 of the portion.
  • the Si content of AlSi is about 1%, but by increasing this to about 10%, a large amount of silicon nodules (segregation of silicon) are formed in the metal layer 7.
  • the silicon nodules are also desorbed from the metal layer 7, so that the metal layer 7 in the portion to be the outer peripheral electrode 3b of the emitter has a hole larger than the hole 9 in the central electrode 3a of the emitter.
  • the portion 91 will be formed.
  • a sputtering method is used to form the metal layer 7, and by using sputtering targets having different Si composition ratios, the Si concentration is formed in the portion that becomes the emitter center electrode 3a and the portion that becomes the emitter outer peripheral electrode 3b and the gate electrode pad 5. Can be changed. That is, when forming the metal layer 7 of the portion to be the emitter center electrode 3a and the gate electrode pad 5 (not shown), a sputtering target having a Si composition ratio of about 1% is used to form the portion to be the emitter outer peripheral electrode 3b. Occasionally, a sputtering target having a Si composition ratio of about 10% may be used.
  • FIG. 9 is a cross-sectional view showing the configuration of the IGBT 300 according to the third embodiment of the present invention, and corresponds to the cross-sectional view taken along the line AA in FIG.
  • the top surface configuration of the IGBT 300 is the same as the plan view of the IGBT 100 shown in FIG.
  • the hole portion 92 in the emitter outer peripheral electrode 3b is formed deeper and larger than the hole portion 9 in the emitter center electrode 3a and the gate electrode pad 5, and the hole portion 92 in the emitter outer peripheral electrode 3b is made of metal.
  • the hole 9 in the emitter center electrode 3a and the gate electrode pad 5 does not penetrate the metal layer 7 while penetrating the layer 7 and reaching the metal layer 6.
  • the hole 92 in the outer peripheral electrode 3b of the emitter is a hole selectively formed by etching, and the hole 9 and the gate electrode pad 5 in the central electrode 3a of the emitter are subjected to a zincate treatment prior to the formation of the plating layer 8. It is a hole formed by Al pitting corrosion and is non-selectively formed.
  • FIGS. 10 and 11 are cross-sectional views showing the manufacturing steps in order.
  • the configuration of the interlayer insulating film 13 or less is a well-known configuration, and a well-known technique can be used for the manufacturing method, and thus the description thereof will be omitted.
  • the contact electrode 14 is formed in the interlayer insulating film 13 and, for example, a Ti / TiN barrier metal is formed on the interlayer insulating film 13 to form a metal.
  • the layer 6 is formed, and an aluminum layer is formed on the metal layer 6 to form the metal layer 7.
  • the metal layer 6 is formed on the active region, not on the formed region of the gate electrode pad 5 and the gate wiring 51, and the laminated structure of the metal layer 6 and the metal layer 7 is formed on the active region.
  • a metal layer 6 may also be formed in the formation region of the gate electrode pad 5 and the gate wiring 51 to form a laminated structure with the metal layer 7.
  • the laminated structure of the metal layer 6 and the metal layer 7 and the metal layer 7 are patterned, and the region where the protective film 4 is in contact with the interlayer insulating film 13 and the emitter center electrode 3a and the emitter outer peripheral electrode 3b are formed. Open the area to separate. Then, for example, the protective film 4 is selectively formed of polyimide.
  • a resist mask RM in which the portion to be the hole 92 is the opening OP is provided on the metal layer 7 of the portion to be the emitter outer peripheral electrode 3b.
  • the resist mask RM has no opening other than the opening OP, and the metal layer 7 of the portion to be the emitter center electrode 3a and the gate electrode pad 5 is covered with the resist mask RM.
  • a zincate treatment is performed prior to forming the plating layer 8 by electroless NiP plating on aluminum.
  • Al pitting corrosion occurs in the metal layer 7 of the portion to be the emitter center electrode 3a and the gate electrode pad 5, and the hole portion 9 is formed.
  • the thickness of the metal layer 7 is preferably 1.5 ⁇ m or more and 2 ⁇ m or less from the viewpoint of ensuring the flatness of the plating layer 8.
  • Al pitting corrosion also occurs in the outer peripheral electrode 3b of the emitter due to the zincate treatment, but since the thickness of the metal layer 7 is 1.5 ⁇ m or more, the hole portion 9 due to the Al pitting corrosion cannot penetrate the metal layer 7, so the figure is not shown. It is omitted.
  • the plating layer 8 is formed by electroless NiP plating to obtain an IGBT 300 having the cross-sectional structure shown in FIG.
  • the hole 92 in the outer peripheral electrode 3b of the emitter By forming the hole 92 in the outer peripheral electrode 3b of the emitter by etching in this way, the size, shape, number, and arrangement pattern of the hole 92 can be arbitrarily set. Therefore, the metal layer in the outer peripheral electrode 3b of the emitter can be arbitrarily set. It is possible to control the growth of interfacial peeling (cracks) at the interface between the metal layer 7 and the metal layer 6, and it is possible to reliably grow the cracks in the horizontal direction.
  • interfacial peeling cracks
  • the hole 9 of the emitter center electrode 3a and the gate electrode pad 5 cannot penetrate the metal layer 7, contact between the metal layer 6 and the plating layer 8 having a large contact resistance can be avoided, and a metal having a small contact resistance can be avoided.
  • the contact area between the layer 6 and the metal layer 7 is increased, the resistance at the time of energization is reduced, and the electrical performance of the IGBT 300 is improved.
  • FIG. 12 is a cross-sectional view showing the configuration of the IGBT 400 according to the fourth embodiment of the present invention, and corresponds to the cross-sectional view taken along the line BB in FIG.
  • the top surface configuration of the IGBT 400 is the same as the plan view of the IGBT 100 shown in FIG.
  • the thickness of the metal layer 7 in the emitter center electrode 3a and the gate electrode pad 5 is formed to be thicker than the thickness of the metal layer 7 in the emitter outer peripheral electrode 3b, and the hole 9 of the emitter center electrode 3a is formed. Does not penetrate the metal layer 7. On the other hand, the hole 9 in the emitter outer peripheral electrode 3b penetrates the metal layer 7 and reaches the metal layer 6.
  • the emitter center electrode 3a and the gate electrode pad 5 thicker than the thickness of the metal layer 7 in the emitter outer peripheral electrode 3b in this way, in forming the metal layer 7, the emitter center electrode 3a and the gate are formed. The forming step of the portion to be the electrode pad 5 and the portion to be the emitter outer peripheral electrode 3b is separated.
  • the thickness of the metal layer 7 of the portion serving as the emitter center electrode 3a and the gate electrode pad 5 is 1.5 ⁇ m or more, and the thickness of the metal layer 7 of the portion serving as the emitter outer peripheral electrode 3b is 0.5 ⁇ m or more and 1 ⁇ m or less, which is more desirable.
  • the thickness should be about 0.5 ⁇ m so that the hole 9 penetrates the metal layer 7.
  • the thickness of the metal layer 7 at the portion serving as the emitter center electrode 3a and the gate electrode pad 5 is preferably 1.5 ⁇ m or more and 2 ⁇ m or less from the viewpoint of ensuring the flatness of the plating layer 8.
  • the hole 9 of the emitter center electrode 3a and the gate electrode pad 5 cannot penetrate the metal layer 7, contact between the metal layer 6 and the plating layer 8 having a large contact resistance can be avoided, and a metal having a small contact resistance can be avoided.
  • the contact area between the layer 6 and the metal layer 7 is increased, the resistance at the time of energization is reduced, and the electrical performance of the IGBT 400 is improved.
  • FIG. 13 is a cross-sectional view showing the configuration of the IGBT 500 according to the fifth embodiment of the present invention, and corresponds to the cross-sectional view taken along the line BB in FIG.
  • the top surface configuration of the IGBT 500 is the same as the plan view of the IGBT 100 shown in FIG.
  • the IGBT 500 does not have the trench gate electrode 11 provided below the emitter outer peripheral electrode 3b, that is, it does not have a unit cell which is the smallest unit structure of the IGBT.
  • the flatness of the metal layer 6 of the outer peripheral electrode 3b of the emitter is improved, and cracks (interface peeling) generated when a thermal cycle is applied to the IGBT 500 are caused by the metal layer 7 and the metal layer of the outer peripheral electrode 3b of the emitter.
  • the interface with 6 it becomes easier to propagate in the horizontal direction, the propagation of peeling in the vertical direction, that is, in the thickness direction of the IGBT 500 is suppressed, the destruction of the element structure of the IGBT 500 is suppressed, and the device life is longer than before. Can be extended.
  • the trench gate electrode 11 is not provided below the emitter outer peripheral electrode 3b, the number of unit cells in the IGBT 500 is reduced by that amount. Therefore, in order to suppress the decrease of the unit cell, the length of the emitter outer peripheral electrode 3b in the horizontal direction is shortened as much as possible, for example, about 5 ⁇ m.
  • FIG. 14 is a diagram for explaining the relationship between the distance between the emitter center electrode and the emitter outer peripheral electrode and the thickness of the plating layer, and is a diagram based on the cross-sectional view taken along the line BB in FIG. ..
  • the distance between the emitter center electrode 3a and the emitter outer peripheral electrode 3b is d
  • the thickness of the plating layer 8 is t
  • the relationship between the distance d and the thickness t is d> 2t.
  • the solder layer 20 wets and spreads only on the emitter center electrode 3a. , Cracks may occur on the emitter center electrode 3a when a thermal cycle is applied, and the life of the apparatus may be shortened.
  • the particles are formed on the emitter center electrode 3a and the emitter outer peripheral electrode 3b.
  • the plating layer 8 is gently connected, and the solder layer 20 wets and spreads over the entire surface of the plating layer 8 above the emitter center electrode 3a and the emitter outer peripheral electrode 3b. Therefore, cracks are likely to occur on the emitter outer peripheral electrode 3b when a thermal cycle is applied.
  • the relationship between the interval d and the thickness t is set to be d ⁇ 2t, so that the crack grows in the horizontal direction of the emitter peripheral electrode 3b.
  • the trench gate type IGBT has been described as an example, but the configurations of the embodiments 1 to 5 can be applied to both the planar gate type IGBT and the MOS transistor. It can also be applied to various diodes such as PN junction diodes.
  • the configuration of the fifth embodiment is particularly effective, and the flatness of the metal layer 6 of the emitter outer peripheral electrode 3b is significantly improved.
  • the material of the semiconductor substrate 1 is not particularly limited, but the semiconductor substrate 1 may be silicon or SiC (silicon carbide), and is wide other than silicon carbide. It may be a bandgap semiconductor, for example, GaN (gallium nitride).
  • SiC has a dielectric breakdown strength as high as about 10 times that of Si, and the thickness of the semiconductor layer can be reduced to about 1/10 of Si. Therefore, a SiC semiconductor device can realize a low on-voltage and can operate even at a high temperature. Therefore, the SiC semiconductor device can be made smaller and more efficient than the Si semiconductor device.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本発明は半導体装置に関し、半導体基板が、主電流が流れる活性領域と、活性領域より外側の終端領域と、を有し、半導体装置は、活性領域上に設けられた第1の主電極と、半導体基板の第1の主電極とは反対側に設けられた第2の主電極と、少なくとも終端領域を覆う保護膜と、保護膜で覆われない第1の主電極上に設けられた無電解めっき層と、を備え、第1の主電極は、中央部の中央電極と、中央電極とは間隔を開けて中央電極に沿って設けられた外周電極と、を有し、保護膜は、終端領域から外周電極の端縁部にかけて設けられ、中央電極および外周電極は、第1の金属層と、第1の金属層上に設けられたアルミニウムを含む第2の金属層と、を有し、少なくとも外周電極は、第2の金属層を貫通し第1の金属層に達する穴部を有している。

Description

半導体装置
 本発明は半導体装置に関し、特に、外部と電気的に接続される外部電極と半導体装置の主電極とをはんだ接合する半導体装置に関する。
 従来の半導体装置では、半導体装置の通電抵抗低減のため、例えば、特許文献1では、表面電極と外部電極とをはんだ接合する構成が開示されている。この構成では、通電時の熱サイクルによって、表面電極に対し引張応力が生じ、電極端部よりクラックが生じる可能性がある。クラックは電極から半導体装置内部に向けてクラックが進展し、場合によっては半導体装置が電気的に破壊することがあり、製品の熱サイクル耐量を向上させるための課題となっている。
 また、熱サイクルによりはんだと表面電極との合金化が進む場合があるので、熱サイクル耐量を確保するために、表面電極の厚膜化も必要となり、そのため、特許文献2で開示されるようにニッケル(Ni)の無電解めっきを用いて電極を形成することが一般的である。
特開2008-182074号公報 特開2005-19798号公報
 表面電極を厚膜化した場合でも表面電極の端部にクラックが発生する可能性があり、クラックが進展して半導体装置内部にまで達すると、半導体装置が電気的に破壊する可能性がある。
 本発明は上記のような問題を解決するためになされたものであり、熱サイクル耐性を向上させた半導体装置を提供することを目的とする。
 本発明に係る半導体装置は、半導体基板の厚み方向に主電流が流れる半導体装置であって、前記半導体基板は、前記主電流が流れる活性領域と、前記活性領域より外側の終端領域と、を有し、前記半導体装置は、前記活性領域上に設けられた第1の主電極と、前記半導体基板の前記第1の主電極とは反対側に設けられた第2の主電極と、少なくとも前記終端領域を覆う保護膜と、前記保護膜で覆われない前記第1の主電極上に設けられた無電解めっき層と、を備え、前記第1の主電極は、中央部の中央電極と、前記中央電極とは間隔を開けて前記中央電極に沿って設けられた外周電極と、を有し、前記保護膜は、前記終端領域から前記外周電極の端縁部にかけて設けられ、前記中央電極および前記外周電極は、第1の金属層と、前記第1の金属層上に設けられたアルミニウムを含む第2の金属層と、を有し、少なくとも前記外周電極は、前記第2の金属層を貫通し前記第1の金属層に達する穴部を有している。
 本発明に係る半導体装置によれば、外周電極の第2の金属層を貫通し第1の金属層に達する穴部を有することで、第1の金属層と第2の金属層との接触面積が少なくなっているので、第1の金属層と第2の金属層との界面で剥離が生じやすくなっており、熱サイクルにより保護膜と無電解めっき層との界面に沿ってクラック(界面剥離)が発生した場合でも、クラックが外周電極に達すると、第1の金属層と第2の金属層との界面で水平方向に剥離が進展し、垂直方向、すなわち、半導体装置の厚み方向にクラックが進展することが抑制され、熱サイクル耐性が向上する。
実施の形態1に係る半導体装置の上面構成を示す平面図である。 実施の形態1に係る半導体装置の構成を示す部分断面図である。 実施の形態1に係る半導体装置の構成を示す部分断面図である。 実施の形態1に係る半導体装置の構成を示す部分拡大図である。 実施の形態1に係る半導体装置に通電による熱サイクルが加わった場合に発生するクラックを模式的に示す断面図である。 実施の形態1に係る半導体装置の製造方法を説明する部分断面図である。 実施の形態1に係る半導体装置の製造方法を説明する部分断面図である。 実施の形態2に係る半導体装置の構成を示す部分断面図である。 実施の形態3に係る半導体装置の構成を示す部分断面図である。 実施の形態3に係る半導体装置の製造方法を説明する部分断面図である。 実施の形態3に係る半導体装置の製造方法を説明する部分断面図である。 実施の形態4に係る半導体装置の構成を示す部分断面図である。 実施の形態5に係る半導体装置の構成を示す部分断面図である。 エミッタ中央電極とエミッタ外周電極との間隔とめっき層の厚みとの関係を説明する図である。
 <はじめに>
 以下の説明において、「活性領域」とは半導体装置のオン状態において主電流が流れる領域である。また、以下において、「外側」とは半導体装置の外周に向かう方向であり、「内側」とは「外側」に対して反対の方向とする。また、以下の記載では、不純物の導電型に関して、N型を「第1導電型」、N型とは反対導電型のP型を「第2導電型」として一般的に定義するが、その逆の定義でも構わない。
 なお、図面は模式的に示されるものであり、異なる図面にそれぞれ示されている画像のサイズおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称および機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。また、本明細書において、「~上」および「~を覆う」という場合、構成要素間に介在物が存在することが妨げられるものではない。例えば、「A上に設けられたB」または「AがBを覆う」と記載している場合、AとBとの間に他の構成要素Cが設けられたものも設けられていないものも意味され得る。また、以下の説明では、「上」、「下」、「側」、「底」、「表」または「裏」などの特定の位置および方向を意味する用語が用いられる場合があるが、これらの用語は、実施の形態の内容を理解することを容易にするため便宜上用いられているものであり、実際に実施される際の方向とは関係しない。
 また、「MOS」という用語は、古くは金属-酸化物-半導体の接合構造に用いられており、Metal-Oxide-Semiconductorの頭文字を採ったものとされている。しかしながら特にMOS構造を有する電界効果トランジスタ(以下、単に「MOSトランジスタ」と称す)においては、近年の集積化や製造プロセスの改善などの観点からゲート絶縁膜およびゲート電極の材料が改善されている。
 例えばMOSトランジスタにおいては、主としてソース・ドレインを自己整合的に形成する観点から、ゲート電極の材料として金属の代わりに多結晶珪素が採用されてきている。また電気的特性を改善する観点から、ゲート絶縁膜の材料として高誘電率の材料が採用されるが、当該材料は必ずしも酸化物には限定されない。
 従って「MOS」という用語は必ずしも金属-酸化物-半導体の積層構造のみに限定されて採用されているわけではなく、本明細書でもそのような限定を前提としない。すなわち、技術常識に鑑みて、ここでは「MOS」とはその語源に起因した略語としてのみならず、広く導電体-絶縁体-半導体の積層構造をも含む意義を有する。
 以下、本発明に係る半導体装置の実施の形態について説明する。なお、以下では、半導体装置としてIGBT(Insulated Gate Bipolar Transistor)を例に採って説明する。
 <実施の形態1>
  <装置構成>
 図1は、本発明に係る実施の形態1のIGBT100の上面構成を模式的に示す平面図である。図1に示すようにIGBT100は、平面視形状が四角形状の半導体基板1上に設けられ、その外周部に沿ってゲート配線51が設けられている。また、IGBT100の角部の1つには、四角形のゲート電極パッド5が設けられ、ゲート電極パッド5にはゲート配線51に囲まれている。
 このゲート電極パッド5およびゲート配線51が設けられた部分以外のIGBT100の主面の大部分には、エミッタ電極3(第1の主電極)が設けられている。
 エミッタ電極3は、IGBT100の活性領域AR上に設けられ、エミッタ電極3は、中央部のエミッタ中央電極3aと、その外側を囲むように配置されたエミッタ外周電極3bとに分割されている。
 ゲート配線51の外周よりも外側の領域を終端領域2と定義する。なお、終端領域2には、耐圧を保持するための不純物領域が設けられても良いが、図示は省略している。また、終端領域2とゲート配線51を少なくとも覆うように保護膜4が設けられている。
 図1におけるA-A線での矢示方向断面図を図2に示し、B-B線での矢示方向断面図を図3に示す。図2および図3に示されるように、IGBT100はN型のバッファ層16の上主面上には、N型のドリフト層15が設けられ、N型のドリフト層15の上層部には、P型のボディ層10が設けられている。
 また、バッファ層16の下主面上には、P型のコレクタ層17が設けられ、コレクタ層17の下主面上には、AlSi(アルミニウム-シリコン合金)の金属層18が設けられ、金属層18の下主面上にはNiの金属層19が設けられてコレクタ電極(第2の主電極)を構成している。なお、半導体基板1は、コレクタ層17、バッファ層16、ドリフト層15およびボディ層10を含んでいる。
 ボディ層10の上層部には、N型の複数のエミッタ層12が選択的に設けられ、エミッタ層12およびボディ層10を厚さ方向に貫通してドリフト層15内に達する複数のトレンチゲート電極11が設けられている。
 また、ドリフト層15上(ボディ層10上)には層間絶縁膜13が設けられ、層間絶縁膜13には、層間絶縁膜13を厚さ方向に貫通してエミッタ層12に達する複数のコンタクト電極14が設けられている。
 エミッタ中央電極3aおよびエミッタ外周電極3bは、複数のコンタクト電極14に接するように層間絶縁膜13上に設けられた金属層6(第1の金属層)と、金属層6上に設けられた金属層7(第2の金属層)との積層構造を有し、金属層7の上にめっき層8が設けられている。ここで、金属層6は、例えばTiN(窒化チタン)上にTi(チタン)が積層された(Ti/TiN)のバリアメタルであり、金属層7は、例えばアルミニウム層であり、めっき層8は、例えば、リン含有ニッケル(NiP)の無電解ニッケルめっき層(無電解めっき層)である。
 金属層7には、金属層7を厚み方向に貫通して金属層6上に達する穴部9が形成されており、穴部9にはめっき層8が充填されている。
 図1におけるゲート電極パッド5の端縁部上からエミッタ外周電極3bの外側端縁部上、および、図2におけるエミッタ外周電極3bの外側端縁部上からゲート配線51上を覆うように、例えばポリイミドで構成される保護膜4が設けられている。
 ここで、図2における領域“X”の拡大図を図4に示す。図4は、トレンチゲート電極11とコンタクト電極14の詳細を示す図である。図4に示されるように、トレンチゲート電極11は、エミッタ層12およびボディ層10を厚さ方向に貫通してドリフト層15内に達するゲートトレンチ113の内面を覆うようにゲート絶縁膜111が設けられ、ゲート絶縁膜111で覆われたゲートトレンチ113内にゲート電極112が埋め込まれている。
 トレンチゲート電極11上は層間絶縁膜13で覆われているが、図示されない部分に設けられた層間絶縁膜13の開口部を介してゲート配線51に電気的に接続され、ゲート電圧が供給される構成となっている。
 コンタクト電極14は、層間絶縁膜13を厚さ方向に貫通してエミッタ層12に達する開口部131内に金属層6が埋め込まれている。さらに、開口部131内に埋め込まれた金属層6には、開口部141にはタングステン(W)層142が埋め込まれており、金属層6とタングステン層142とでコンタクト電極14が構成されている。金属層6は上部の金属層7とタングステン層142(コンタクト電極14)との接触抵抗を低減するために設けられている。
 図5は、めっき層8上にはんだ層20を接合し、通電による熱サイクルが加わった場合に発生するクラック21を模式的に示す断面図である。
 図5に示されるように、熱サイクルによって発生したクラック21は、保護膜4とめっき層8との界面に沿って進展し、金属層7と接触すると、まず、めっき層8と金属層7との界面に界面剥離(クラック)が生じる。その後、剥離が金属層6上に達すると、穴部9が形成されていることで、金属層6と金属層7との接触面積が少なくなっているので、金属層7と金属層6との界面で剥離が生じる。この結果、水平方向に剥離が進展し、垂直方向、すなわち、IGBT100の厚み方向に剥離が進展することが抑制され、IGBT100の素子構造が破壊されることが抑制され、従来よりも装置寿命を延ばすことができる。
 なお、界面の剥離はエミッタ外周電極3b上を進展するが、エミッタ外周電極3bとエミッタ中央電極3aとは分離されているので、エミッタ中央電極3aにまでクラックが及ぶことが抑制される。
  <製造方法>
 次に、製造工程を順に示す断面図である図6および図7を用いて、IGBT100の製造方法について説明する。なお、層間絶縁膜13以下の構成については、周知の構成であり、製造方法についても周知の技術を用いることができるので説明は省略する。
 層間絶縁膜13以下の構成を従来の技術を用いて形成した後、図6に示す工程において、層間絶縁膜13内にコンタクト電極14を形成すると共に層間絶縁膜13上に、例えばTi/TiNのバリアメタルを形成して金属層6とし、金属層6上にアルミニウム層を形成して金属層7とする。金属層7はアルミニウム合金層であっても良い。
 なお、金属層6は活性領域上に形成され、ゲート電極パッド5およびゲート配線51の形成領域には形成されず、金属層6と金属層7との積層構造は活性領域上に形成される。また、ゲート電極パッド5およびゲート配線51の形成領域にも金属層6を形成して、金属層7との積層構造としても良い。
 写真製版(フォトリソグラフィー)工程とエッチング工程を経て、金属層6と金属層7との積層構造および金属層7をパターニングし、保護膜4が層間絶縁膜13に接する領域およびエミッタ中央電極3aとエミッタ外周電極3bとを分離する領域を開口する。そして、例えばポリイミドで保護膜4を選択的に形成する。なお、金属層6および金属層7のエッチングには周知のエッチング工程を使用することができる。
 次に、アルミニウムに対する無電解NiPめっきによりめっき層8を形成するのに先だって、前処理としてジンケート処理を施すことで金属層7にAl孔食を発生させ、図7に示されるように、金属層7を厚み方向に貫通する複数の穴部9を形成する。
 ここで、ジンケート処理によるAl孔食の深さは、0.5μm~1μm程度であるので、金属層7の厚みは0.5μm以上1μm以下、より望ましく0.5μm程度とし、確実に穴部9が金属層7を貫通するようにする。なお、金属層6の厚みは0.1μm程度とし、めっき層8の厚みは5μm程度とする。
 その後、無電解NiPめっきによりめっき層8を形成することで、図2および図3に示した断面構成を有するIGBT100を得る。
 ジンケート処理によるAl孔食を穴部9として用いるので、金属層に穴部9を形成する加工処理が省略できるため、加工に必要な工程および費用を削減することができ、穴部9を設けることによる生産性の低下を抑制できる。
 <実施の形態2>
 図8は、本発明に係る実施の形態2のIGBT200の構成を示す断面図であり、図1におけるB-B線での矢示方向断面図に対応する。なお、IGBT200の上面構成は、図1に示したIGBT100の平面図と同じである。
 図8に示すようにIGBT200は、エミッタ外周電極3bにおける穴部91がエミッタ中央電極3aにおける穴部9よりも大きく形成されている。エミッタ外周電極3bにおける穴部91を大きくすることで、IGBT200に熱サイクルが加わった場合に発生するクラック(界面剥離)をエミッタ外周電極3bの水平方向により確実に進展させることができ、垂直方向、すなわち、IGBT200の厚み方向に剥離が進展することが抑制され、IGBT200の素子構造が破壊されることが抑制され、従来よりも装置寿命を延ばすことができる。
 このようにエミッタ外周電極3bにおける穴部91をエミッタ中央電極3aにおける穴部9よりも大きく形成するには、AlSiで構成される金属層7の形成において、エミッタ中央電極3aおよびゲート電極パッド5(図示せず)となる部分と、エミッタ外周電極3bとなる部分との形成工程を分け、エミッタ外周電極3bとなる部分の金属層7のシリコン濃度を、エミッタ中央電極3aおよびゲート電極パッド5となる部分の金属層7のシリコン濃度よりも高濃度となるように異なる膜材料で形成する。
 通常は、AlSiのSi含有率は1%程度であるが、これを10%程度まで高めることで金属層7中にシリコンノジュール(シリコンの偏析)が多く形成される。めっき層8の形成に先立つジンケート処理時に、シリコンノジュールも金属層7から脱離することで、エミッタ外周電極3bとなる部分の金属層7には、エミッタ中央電極3aにおける穴部9よりも大きな穴部91が形成されることとなる。
 金属層7の形成にはスパッタリング法を使用し、Si組成比の異なるスパッタリングターゲットを用いることでエミッタ中央電極3aとなる部分と、エミッタ外周電極3bおよびゲート電極パッド5となる部分とで、Si濃度を変えることができる。すなわち、エミッタ中央電極3aおよびゲート電極パッド5(図示せず)となる部分の金属層7の形成時には、Si組成比が1%程度のスパッタリングターゲットを使用し、エミッタ外周電極3bとなる部分の形成時には、Si組成比が10%程度のスパッタリングターゲットを使用すれば良い。
 <実施の形態3>
  <装置構成>
 図9は、本発明に係る実施の形態3のIGBT300の構成を示す断面図であり、図1におけるA-A線での矢示方向断面図に対応する。なお、IGBT300の上面構成は、図1に示したIGBT100の平面図と同じである。
 図9に示すようにIGBT300は、エミッタ外周電極3bにおける穴部92がエミッタ中央電極3aおよびゲート電極パッド5における穴部9よりも深く大きく形成されており、エミッタ外周電極3bにおける穴部92が金属層7を貫通して金属層6上に達しているのに対し、エミッタ中央電極3aおよびゲート電極パッド5における穴部9は金属層7を貫通していない。
 エミッタ外周電極3bにおける穴部92を金属層7を貫通して金属層6上に達するように形成することで、IGBT300に熱サイクルが加わった場合に発生するクラック(界面剥離)をエミッタ外周電極3bの水平方向に進展させることができ、垂直方向、すなわち、IGBT300の厚み方向に剥離が進展することが抑制され、IGBT300の素子構造が破壊されることが抑制され、従来よりも装置寿命を延ばすことができる。
 ここで、エミッタ外周電極3bにおける穴部92は、エッチングにより選択的に形成された穴であり、エミッタ中央電極3aにおける穴部9およびゲート電極パッド5は、めっき層8の形成に先立つジンケート処理によるAl孔食で形成されており、非選択的に形成された穴である。
  <製造方法>
 次に、製造工程を順に示す断面図である図10および図11を用いて、IGBT300の製造方法について説明する。なお、層間絶縁膜13以下の構成については、周知の構成であり、製造方法についても周知の技術を用いることができるので説明は省略する。
 層間絶縁膜13以下の構成を従来の技術を用いて形成した後、層間絶縁膜13内にコンタクト電極14を形成すると共に層間絶縁膜13上に、例えばTi/TiNのバリアメタルを形成して金属層6とし、金属層6上にアルミニウム層を形成して金属層7とする。なお、金属層6は活性領域上に形成され、ゲート電極パッド5およびゲート配線51の形成領域には形成されず、金属層6と金属層7との積層構造は活性領域上に形成される。なお、ゲート電極パッド5およびゲート配線51の形成領域にも金属層6を形成して、金属層7との積層構造としても良い。
 写真製版工程とエッチング工程を経て、金属層6と金属層7との積層構造および金属層7をパターニングし、保護膜4が層間絶縁膜13に接する領域およびエミッタ中央電極3aとエミッタ外周電極3bとを分離する領域を開口する。そして、例えばポリイミドで保護膜4を選択的に形成する。
 その後、再び写真製版工程を経て、図10に示す工程において、エミッタ外周電極3bとなる部分の金属層7上に穴部92となる部分が開口部OPとなったレジストマスクRMを設ける。当該レジストマスクRMは、開口部OP以外の開口部は有さず、エミッタ中央電極3aおよびゲート電極パッド5となる部分の金属層7上はレジストマスクRMで覆われている。
 その後、エッチング工程により、開口部OPを介して金属層6と金属層7との積層構造をエッチングすることで、金属層7を貫通して金属層6上に達する穴部92を形成する。
 レジストマスクRMを除去した後、アルミニウムに対する無電解NiPめっきによりめっき層8を形成するのに先だって、ジンケート処理を施す。これにより、図11に示されるように、エミッタ中央電極3aおよびゲート電極パッド5となる部分の金属層7にAl孔食が発生し、穴部9が形成される。
 ここで、金属層7の厚みを1.5μm以上とすることで、穴部9は金属層7を貫通できず、エミッタ中央電極3aおよびゲート電極パッド5では、穴部9は金属層6上には達していない。なお、金属層7の厚みは、めっき層8の平坦性を確保する観点から、1.5μm以上2μm以下とすることが望ましい。
 またジンケート処理によりエミッタ外周電極3bにおいてもAl孔食が発生するが、金属層7の厚みが1.5μm以上であるので、Al孔食による穴部9は金属層7を貫通できないので、図示は省略している。
 その後、無電解NiPめっきによりめっき層8を形成することで、図9に示した断面構成を有するIGBT300を得る。
 このように、エミッタ外周電極3bにおける穴部92をエッチングにより形成することで、穴部92の大きさ、形状、個数および配置パターンを任意に設定することができるので、エミッタ外周電極3bにおける金属層7と金属層6との界面での界面剥離(クラック)の進展を制御することが可能となり、確実にクラックを水平方向に進展させることが可能となる。
 また、エミッタ中央電極3aおよびゲート電極パッド5の穴部9は金属層7を貫通できないので、接触抵抗の大きい、金属層6とめっき層8との接触を避けることができ、接触抵抗の小さい金属層6と金属層7との接触面積が増え、通電時の抵抗が低減してIGBT300の電気的な性能が向上する。
 <実施の形態4>
 図12は、本発明に係る実施の形態4のIGBT400の構成を示す断面図であり、図1におけるB-B線での矢示方向断面図に対応する。なお、IGBT400の上面構成は、図1に示したIGBT100の平面図と同じである。
 図12に示すようにIGBT400は、エミッタ中央電極3aおよびゲート電極パッド5における金属層7の厚みが、エミッタ外周電極3bにおける金属層7の厚みよりも厚く形成され、エミッタ中央電極3aの穴部9は金属層7を貫通していない。一方、エミッタ外周電極3bにおける穴部9は金属層7を貫通して金属層6上に達している。
 このようにエミッタ中央電極3aおよびゲート電極パッド5における金属層7の厚みをエミッタ外周電極3bにおける金属層7の厚みよりも厚く形成するには、金属層7の形成において、エミッタ中央電極3aおよびゲート電極パッド5となる部分と、エミッタ外周電極3bとなる部分との形成工程を分ける。
 そして、エミッタ中央電極3aおよびゲート電極パッド5となる部分の金属層7の厚みを1.5μm以上とし、エミッタ外周電極3bとなる部分の金属層7の厚みは0.5μm以上1μm以下、より望ましく0.5μm程度とし、確実に穴部9が金属層7を貫通するようにする。なお、エミッタ中央電極3aおよびゲート電極パッド5となる部分の金属層7の厚みは、めっき層8の平坦性を確保する観点から、1.5μm以上2μm以下とすることが望ましい。
 このような構成とすることで、エミッタ外周電極3bにおいては、IGBT400に熱サイクルが加わった場合に発生するクラック(界面剥離)をエミッタ外周電極3bの水平方向に進展させることができ、垂直方向、すなわち、IGBT400の厚み方向に剥離が進展することが抑制され、IGBT400の素子構造が破壊されることが抑制され、従来よりも装置寿命を延ばすことができる。
 また、エミッタ中央電極3aおよびゲート電極パッド5の穴部9は金属層7を貫通できないので、接触抵抗の大きい、金属層6とめっき層8との接触を避けることができ、接触抵抗の小さい金属層6と金属層7との接触面積が増え、通電時の抵抗が低減してIGBT400の電気的な性能が向上する。
 <実施の形態5>
 図13は、本発明に係る実施の形態5のIGBT500の構成を示す断面図であり、図1におけるB-B線での矢示方向断面図に対応する。なお、IGBT500の上面構成は、図1に示したIGBT100の平面図と同じである。
 図13に示すようにIGBT500は、エミッタ外周電極3bの下部にトレンチゲート電極11を設けられていない、すなわちIGBTの最小単位構造であるユニットセルを有さない構成となっている。
 上記構成を採ることで、エミッタ外周電極3bの金属層6の平坦性が向上し、IGBT500に熱サイクルが加わった場合に発生するクラック(界面剥離)がエミッタ外周電極3bにおける金属層7と金属層6との界面で水平方向により進展しやすくなり、垂直方向、すなわち、IGBT500の厚み方向に剥離が進展することが抑制され、IGBT500の素子構造が破壊されることが抑制され、従来よりも装置寿命を延ばすことができる。
 なお、エミッタ外周電極3bの下部にトレンチゲート電極11を設けないので、その分だけIGBT500中のユニットセルの個数が減少する。従って、ユニットセルの減少を抑制するため、エミッタ外周電極3bの水平方向の長さはできるだけ短くし、例えば5μm程度とする。
 <エミッタ中央電極とエミッタ外周電極との間隔とめっき層の厚みとの関係>
 図14は、エミッタ中央電極とエミッタ外周電極との間隔とめっき層の厚みとの関係を説明する図であり、図1におけるB-B線での矢示方向断面図をベースとする図である。図14においては、エミッタ中央電極3aとエミッタ外周電極3bとの間隔をdとし、めっき層8の厚みをtとして示しており、間隔dと厚みtとの関係がd>2tの場合を示している。
 この場合、めっき層8がエミッタ中央電極3aとエミッタ外周電極3bとの間隔が広くなり過ぎ、めっき層8上にはんだ層20を接合した場合、はんだ層20がエミッタ中央電極3a上のみで濡れ広がり、熱サイクルが加わった場合のクラックがエミッタ中央電極3a上に発生して、装置寿命が低下する可能性がある。
 一方、間隔dと厚みtとの関係がd≦2tとなるようにエミッタ中央電極3aとエミッタ外周電極3bとの間隔を設定することで、エミッタ中央電極3a上およびエミッタ外周電極3b上に形成されるめっき層8がなだらかに繋がり、はんだ層20がエミッタ中央電極3aおよびエミッタ外周電極3bの上方でめっき層8上の全面に濡れ広がる。このため、熱サイクルが加わった場合のクラックがエミッタ外周電極3b上に発生しやすくなる。
 なお、実施の形態1~5におけるIGBT100~500においては、間隔dと厚みtとの関係がd≦2tとなるように設定されているので、クラックはエミッタ外周電極3bの水平方向に進展する。
 <他の適用例>
 以上説明した実施の形態1~5においては、トレンチゲート型のIGBTを例に採って説明したが、実施の形態1~5の構成はプレーナゲート型のIGBTでもMOSトランジスタにも適用可能であり、PN接合ダイオード等の各種のダイオードにも適用可能である。特に、プレーナゲート型のIGBTおよびMOSトランジスタであれば、実施の形態5の構成は特に有効であり、エミッタ外周電極3bの金属層6の平坦性が大幅に向上することとなる。
 また、以上の説明した実施の形態1~5においては、半導体基板1の材質を特に限定していなかったが、半導体基板1はシリコンでもSiC(炭化シリコン)でも良く、また、炭化シリコン以外のワイドバンドギャップ半導体、例えばGaN(窒化ガリウム)であっても良い。
 特に、SiCは絶縁破壊強度がSiの約10倍と高く、半導体層の厚みをSiの約1/10に低減できるため、SiC半導体装置は、低オン電圧を実現でき、また高温でも動作が可能であるため、SiC半導体装置は、Si半導体装置に比較して小型化および高効率化が可能となる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (10)

  1.  半導体基板の厚み方向に主電流が流れる半導体装置であって、
     前記半導体基板は、
     前記主電流が流れる活性領域と、
     前記活性領域より外側の終端領域と、を有し、
     前記半導体装置は、
     前記活性領域上に設けられた第1の主電極と、
     前記半導体基板の前記第1の主電極とは反対側に設けられた第2の主電極と、
     少なくとも前記終端領域を覆う保護膜と、
     前記保護膜で覆われない前記第1の主電極上に設けられた無電解めっき層と、を備え、
     前記第1の主電極は、
     中央部の中央電極と、前記中央電極とは間隔を開けて前記中央電極に沿って設けられた外周電極と、を有し、
     前記保護膜は、前記終端領域から前記外周電極の端縁部にかけて設けられ、
     前記中央電極および前記外周電極は、
     第1の金属層と、
     前記第1の金属層上に設けられたアルミニウムを含む第2の金属層と、を有し、
     少なくとも前記外周電極は、
     前記第2の金属層を貫通し前記第1の金属層に達する穴部を有する、半導体装置。
  2.  前記穴部は、
     前記無電解めっき層を形成する前の前処理による孔食によって形成された穴である、請求項1記載の半導体装置。
  3.  前記第2の金属層はアルミニウム-シリコン合金で構成され、
     前記外周電極の前記第2の金属層のシリコン濃度は、前記中央電極の前記第2の金属層のシリコン濃度よりも高い、請求項2記載の半導体装置。
  4.  前記穴部は、選択的に形成された穴である、請求項1記載の半導体装置。
  5.  前記中央電極は、前記穴部を有し、
     前記中央電極の前記第2の金属層の厚みは、前記外周電極の前記第2の金属層の厚みよりも厚く、前記穴部が前記第2の金属層を貫通しない厚さに設定される、請求項2記載の半導体装置。
  6.  前記活性領域は、
     前記外周電極の下方において前記半導体装置の最小単位構造であるユニットセルを有さない、請求項1記載の半導体装置。
  7.  前記中央電極とは前記外周電極との間隔は、
     前記無電解めっき層の厚さよりも短く設定される、請求項1記載の半導体装置。
  8.  前記第2の金属層の厚みは、0.5μm以上に設定される、請求項2記載の半導体装置。
  9.  前記中央電極の前記第2の金属層の厚みおよび前記外周電極の前記第2の金属層の厚みは、1.5μm以上に設定される、請求項4記載の半導体装置。
  10.  前記中央電極の前記第2の金属層の厚みは、1.5μm以上に設定され、
     前記外周電極の前記第2の金属層の厚みは0.5μm以上に設定される、請求項5記載の半導体装置。
PCT/JP2019/039677 2019-10-08 2019-10-08 半導体装置 WO2021070252A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980101038.9A CN114467165A (zh) 2019-10-08 2019-10-08 半导体装置
US17/624,040 US11876062B2 (en) 2019-10-08 2019-10-08 Semiconductor device
PCT/JP2019/039677 WO2021070252A1 (ja) 2019-10-08 2019-10-08 半導体装置
DE112019007795.3T DE112019007795T5 (de) 2019-10-08 2019-10-08 Halbleitervorrichtung
JP2021550977A JP7170894B2 (ja) 2019-10-08 2019-10-08 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039677 WO2021070252A1 (ja) 2019-10-08 2019-10-08 半導体装置

Publications (1)

Publication Number Publication Date
WO2021070252A1 true WO2021070252A1 (ja) 2021-04-15

Family

ID=75437365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039677 WO2021070252A1 (ja) 2019-10-08 2019-10-08 半導体装置

Country Status (5)

Country Link
US (1) US11876062B2 (ja)
JP (1) JP7170894B2 (ja)
CN (1) CN114467165A (ja)
DE (1) DE112019007795T5 (ja)
WO (1) WO2021070252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062781A1 (ja) * 2021-10-14 2023-04-20 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019798A (ja) * 2003-06-27 2005-01-20 Denso Corp モールド型半導体装置及びその製造方法
JP2011219828A (ja) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2017069569A (ja) * 2016-11-16 2017-04-06 三菱電機株式会社 半導体装置
JP2019062121A (ja) * 2017-09-27 2019-04-18 日亜化学工業株式会社 半導体装置及び半導体装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101024A (ja) * 2001-09-25 2003-04-04 Sanyo Electric Co Ltd 半導体装置の製造方法
US7193326B2 (en) 2003-06-23 2007-03-20 Denso Corporation Mold type semiconductor device
JP4627399B2 (ja) * 2003-07-30 2011-02-09 ルネサスエレクトロニクス株式会社 縦型電界効果トランジスタ及びその製造方法
JP4640345B2 (ja) 2007-01-25 2011-03-02 三菱電機株式会社 電力用半導体装置
DE102007008777B4 (de) * 2007-02-20 2012-03-15 Infineon Technologies Austria Ag Halbleiterbauelement mit Zellenstruktur und Verfahren zur Herstellung desselben
JP2010121151A (ja) * 2008-11-17 2010-06-03 Fuji Electric Systems Co Ltd 表面処理方法
WO2011161721A1 (ja) * 2010-06-24 2011-12-29 三菱電機株式会社 電力用半導体装置
JP5954856B2 (ja) * 2011-02-01 2016-07-20 ルネサスエレクトロニクス株式会社 縦チャネル型ノーマリオフ型パワーjfetの製造方法
JP6101183B2 (ja) * 2013-06-20 2017-03-22 株式会社東芝 半導体装置
JP6834156B2 (ja) * 2016-03-16 2021-02-24 富士電機株式会社 半導体装置および製造方法
JP6897141B2 (ja) * 2017-02-15 2021-06-30 株式会社デンソー 半導体装置とその製造方法
CN110383488B (zh) * 2017-03-16 2023-08-29 三菱电机株式会社 半导体装置
JP6777245B2 (ja) * 2017-11-16 2020-10-28 富士電機株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019798A (ja) * 2003-06-27 2005-01-20 Denso Corp モールド型半導体装置及びその製造方法
JP2011219828A (ja) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
JP2017069569A (ja) * 2016-11-16 2017-04-06 三菱電機株式会社 半導体装置
JP2019062121A (ja) * 2017-09-27 2019-04-18 日亜化学工業株式会社 半導体装置及び半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062781A1 (ja) * 2021-10-14 2023-04-20 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Also Published As

Publication number Publication date
DE112019007795T5 (de) 2022-06-30
CN114467165A (zh) 2022-05-10
US20220399291A1 (en) 2022-12-15
JP7170894B2 (ja) 2022-11-14
US11876062B2 (en) 2024-01-16
JPWO2021070252A1 (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
US8723254B2 (en) Semiconductor device and manufacturing method thereof
KR100317160B1 (ko) 반도체장치및그제조방법
JP6897141B2 (ja) 半導体装置とその製造方法
JP7024626B2 (ja) 半導体装置、半導体装置の製造方法
US8916962B2 (en) III-nitride transistor with source-connected heat spreading plate
WO2011007387A1 (ja) 電力用半導体装置およびその製造方法
US20170162458A1 (en) Method for manufacturing semiconductor device
JPWO2017199706A1 (ja) 電力用半導体装置およびその製造方法
JP2021190639A (ja) 半導体装置
WO2021070252A1 (ja) 半導体装置
JP4986420B2 (ja) トランジスタ
JP2011040431A (ja) 半導体装置およびその製造方法
WO2021261521A1 (ja) 半導体装置およびその製造方法
JPWO2019198168A1 (ja) 半導体装置の製造方法および半導体装置
US9741805B2 (en) Semiconductor device and method for manufacturing the semiconductor device
JP2009004566A (ja) 半導体装置および半導体装置の製造方法
WO2016092895A1 (ja) 半導体装置および半導体装置の製造方法
JP2017079315A (ja) 半導体装置とその製造方法
JP7415413B2 (ja) 半導体装置
WO2024024822A1 (ja) 半導体装置および半導体装置の製造方法
JP2005129747A (ja) 絶縁ゲート型バイポーラトランジスタ
US20230122575A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6680161B2 (ja) スイッチング素子の製造方法
JP2017162932A (ja) 半導体装置
JPH02156572A (ja) Mos型半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550977

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19948461

Country of ref document: EP

Kind code of ref document: A1