WO2024024822A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2024024822A1
WO2024024822A1 PCT/JP2023/027335 JP2023027335W WO2024024822A1 WO 2024024822 A1 WO2024024822 A1 WO 2024024822A1 JP 2023027335 W JP2023027335 W JP 2023027335W WO 2024024822 A1 WO2024024822 A1 WO 2024024822A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
semiconductor device
nitride semiconductor
sic
Prior art date
Application number
PCT/JP2023/027335
Other languages
English (en)
French (fr)
Inventor
裕介 神田
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2024024822A1 publication Critical patent/WO2024024822A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present disclosure relates to a semiconductor device and a method of manufacturing the semiconductor device, and particularly relates to a nitride semiconductor device using a group III nitride semiconductor and a method of manufacturing the same.
  • a nitride semiconductor device using a group III nitride semiconductor such as gallium nitride (GaN) or aluminum gallium nitride (AlGaN) has a high dielectric breakdown voltage due to the wide band gap of the material. Further, in a semiconductor device using a group III nitride semiconductor, a heterostructure such as AlGaN/GaN can be easily formed.
  • a high concentration of electrons (two-dimensional electron gas; A channel is formed by 2DEG (Two Dimensions Electron Gas).Nitride semiconductor devices that utilize this two-dimensional electron gas channel have relatively high electron saturation speed and insulation resistance, and also have comparatively high thermal conductivity. Because of its high performance, it is applied to high-frequency power devices.
  • 2DEG Twin Dimensions Electron Gas
  • nitride semiconductor device there is a technique for forming a nitride semiconductor layer made of a group III nitride semiconductor on a Si substrate because the cost of the Si substrate is lower than that of a sapphire substrate or a SiC substrate.
  • a nitride semiconductor layer made of a group III nitride semiconductor is directly formed on a Si substrate, the crystals of the group III nitride semiconductor in the nitride semiconductor layer are The performance is lower than that in the case where a nitride semiconductor layer made of a group III nitride semiconductor is formed on a SiC substrate.
  • a buffer layer made of 3C-SiC is formed on the Si substrate, and then a nitride made of the group III nitride semiconductor is formed on the 3C-SiC.
  • Techniques for forming semiconductor layers have been proposed. By using a buffer layer made of 3C-SiC, it is possible to stack a thick nitride semiconductor layer made of a group III nitride semiconductor. This can be made equivalent to the case where a nitride semiconductor layer made of a semiconductor is formed.
  • GaN-based semiconductor devices disclosed in Patent Documents 1 and 2 will be described as conventional nitride semiconductor devices of this type.
  • FIG. 10 is a cross-sectional view of a nitride semiconductor device 1X disclosed in Patent Document 1.
  • the nitride semiconductor device 1X disclosed in Patent Document 1 includes a dielectric substrate 107X, a SiC layer 102 formed on the dielectric substrate 107X, and a SiC layer 102 formed on the SiC layer 102. It also includes a nitride semiconductor layer 103 made of a group III nitride semiconductor, and a source electrode 201, a drain electrode 202, and a gate electrode 203 formed on the surface of the nitride semiconductor layer 103.
  • an opening 104 is provided so as to penetrate through the drain electrode 202, the nitride semiconductor layer 103, and the SiC layer 102, and the inside of the opening 104 is A metal layer 305 is embedded.
  • a through via 301 is provided in the dielectric layer 101X of the dielectric substrate 107X, and a conductor 303 is embedded in the through via 301.
  • a back electrode 304 is provided on the back surface of the dielectric layer 101X. Note that the dielectric layer 101X, the back electrode 304, and the conductor 303 constitute a dielectric substrate 107X.
  • the back electrode 304 and the drain electrode 202 are electrically connected via the conductor 303 embedded in the through via 301 and the metal layer 305 embedded in the opening 104. has been done. Specifically, according to the manufacturing method described in Patent Document 1, after removing the Si substrate on the back surface of the SiC layer 102, the SiC layer 102 and the metal layer 305 are connected to the conductor 303. It is bonded to the dielectric substrate 107X.
  • FIG. 11 is a cross-sectional view of a nitride semiconductor device 1Y disclosed in Patent Document 2.
  • the nitride semiconductor device 1Y disclosed in Patent Document 2 includes a Si substrate 101 that is an insulating substrate, and a nitride semiconductor device made of a group III nitride semiconductor formed on the Si substrate 101.
  • the semiconductor layer 103 includes a source electrode 201, a drain electrode 202, and a gate electrode 203, which are formed on the surface of the nitride semiconductor layer 103.
  • a metal layer 305 serving as a stopper layer is provided in the source region 201S where the source electrode 201 is provided, and a back electrode 304 is provided on the back surface of the Si substrate 101.
  • a through via 301 that penetrates the Si substrate 101 and the nitride semiconductor layer 103 reaches the metal layer 305, and the back electrode 304 is connected to the source electrode through the metal layer 305. It is electrically connected to 201.
  • the conductor 303 is attached to the through via 301. It's filling.
  • the metal layer 305 and the conductor 303 are connected to the SiC layer.
  • the manufacturing process is complicated and the cost is high.
  • the back electrode 304 and the source electrode 201 are connected by forming a through via 301 from the back surface of the Si substrate 101. Therefore, although the manufacturing process of the nitride semiconductor device 1Y shown in FIG. 11 is not complicated, since there is no SiC layer between the Si substrate 101 and the nitride semiconductor layer 103, the nitride semiconductor device 1Y shown in FIG. The crystallinity of the group III nitride semiconductor constituting the nitride semiconductor layer 103 decreases due to the difference in lattice constant between the nitride semiconductor layer 103 and the nitride semiconductor layer 103.
  • a SiC layer between the Si substrate 101 and the nitride semiconductor layer 103.
  • a SiC layer 102 is provided between a Si substrate 101 and a nitride semiconductor layer 103, and a metal layer 106 is used as a stopper to connect the Si substrate 101 and the SiC layer.
  • a through via 301 is provided that penetrates the layer 102 and the nitride semiconductor layer 103, and a conductor 303 is embedded inside the through via 301.
  • a metal diffusion prevention film 302 is provided on the inner surface of the through via 301 to prevent the conductor 303 and the Si substrate 101 from coming into contact and interdiffusion of metal. That is, a metal diffusion prevention film 302 is provided between the Si substrate 101 and the conductor 303.
  • notching 400 is formed in the Si substrate 101 when forming the through via 301. It is formed.
  • the through via 301 is formed by dry etching the Si substrate 101 and the SiC layer 102 using a fluorine-based gas or a chlorine-based gas, but the etching rate of SiC is slower than the etching rate of Si. Therefore, side etching occurs in the Si substrate 101 in the vicinity of the SiC layer 102 on the Si substrate 101, and this becomes a notch 400.
  • the notching 400 may become a void when the conductor 303 is formed inside the through via 301, or the presence of the notching 400 may reduce the coverage of the metal diffusion prevention film 302, causing the conductor 303 to become void.
  • interdiffusion of metal occurs, resulting in high resistance.
  • the quality of the nitride semiconductor device 1Z deteriorates, and the yield decreases.
  • An object of the present invention is to provide a semiconductor device in which a through via can be provided.
  • one embodiment of a semiconductor device includes a Si substrate, a back electrode provided below the Si substrate, an SiC layer provided above the Si substrate, and a back electrode provided below the Si substrate.
  • an SiC layer is formed above a Si substrate, a semiconductor layer made of a group III nitride semiconductor is formed above the SiC layer, and the SiC layer is formed above the SiC layer.
  • an intermediate layer is formed in the opening, a source electrode, a drain electrode, and a gate electrode are formed above the semiconductor layer;
  • a metal layer is formed above the opening, a through via is formed that penetrates the Si substrate and the intermediate layer from the lower surface side of the Si substrate using the metal layer as a stopper, and a conductor is formed inside the through via.
  • a back electrode is formed below the Si substrate, the back electrode and the metal layer are electrically connected via the conductor, and the intermediate layer is between the SiC layer and the conductor.
  • the intermediate layer is a metal nitride layer or a silicon oxide layer.
  • a through via that penetrates the Si substrate and the SiC layer can be provided without causing notching. can.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment.
  • FIG. 2 is a cross-sectional view of the semiconductor device according to the first embodiment taken along line II-II in FIG.
  • FIG. 3A is a diagram for explaining a step of forming a SiC layer and a nitride semiconductor layer on a Si substrate in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3B is a diagram for explaining a step of forming an opening in a SiC layer and a nitride semiconductor layer in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3C is a diagram for explaining a step of forming an intermediate layer in an opening in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3D is a diagram for explaining a step of forming a source electrode, a drain electrode, and a gate electrode in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3E is a diagram for explaining a step of forming a metal layer on the intermediate layer in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3F is a diagram for explaining a step of forming a through via that penetrates the Si substrate and the intermediate layer in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3G is a diagram for explaining a step of forming a conductor in a through via in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 3H is a diagram for explaining a step of forming a back electrode on a Si substrate in the method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 4 is a plan view of a semiconductor device according to a modification of the first embodiment.
  • FIG. 5 is a cross-sectional view of a semiconductor device according to a modification of the first embodiment taken along line VV in FIG.
  • FIG. 6A is a diagram for explaining a step of forming a SiC layer and a nitride semiconductor layer on a Si substrate in a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6B is a diagram for explaining a step of forming a source electrode, a drain electrode, and a gate electrode in the method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6C is a diagram for explaining a step of forming an opening in the method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6D is a diagram for explaining a step of forming an intermediate layer in an opening in a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6E is a diagram for explaining a step of forming a metal layer on the intermediate layer in the method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6F is a diagram for explaining a step of forming a through via that penetrates the Si substrate and the intermediate layer in the method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6G is a diagram illustrating a step of forming a conductor in a through via in a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 6H is a diagram for explaining a step of forming a back electrode on a Si substrate in a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 7 is a plan view of the semiconductor device according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor device according to the second embodiment taken along line VIII-VIII in FIG. FIG.
  • FIG. 9A is a diagram for explaining a step of forming a SiC layer on a Si substrate in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9B is a diagram for explaining the step of forming an opening in the SiC layer in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9C is a diagram for explaining a step of forming an intermediate layer and a nitride semiconductor layer in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9D is a diagram for explaining a step of forming a source electrode, a drain electrode, and a gate electrode in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9A is a diagram for explaining a step of forming a SiC layer on a Si substrate in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9B is a diagram for explaining the step of forming an opening in the SiC layer in the method for manufacturing a semiconductor device according to the second
  • FIG. 9E is a diagram for explaining a step of forming a metal layer on the intermediate layer in the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9F is a diagram for explaining a step of forming a through via that penetrates the Si substrate and the intermediate layer in the method of manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9G is a diagram illustrating a step of forming a conductor in a through via in the method of manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9H is a diagram for explaining a step of forming a back electrode on a Si substrate in the method of manufacturing a semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a nitride semiconductor device disclosed in Patent Document 1.
  • FIG. 11 is a cross-sectional view of a nitride semiconductor device disclosed in Patent Document 2.
  • FIG. 12 is a cross-sectional view of a nitride semiconductor device of a comparative
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
  • the terms “above” and “above” and “downward” and “below” in the configuration of a semiconductor device refer to upward direction (vertically upward) and downward direction (vertically downward) in absolute spatial recognition. It is a term defined by the relative positional relationship based on the order of lamination in a laminated structure.
  • the X-axis, Y-axis, and Z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • two axes parallel to a main surface included in a substrate included in a semiconductor device are defined as an X-axis and a Y-axis, and a direction perpendicular to the main surface is defined as a Z-axis direction.
  • the direction in which the source electrode, gate electrode, and drain electrode are lined up in this order, that is, the so-called gate length direction is defined as the X-axis direction.
  • planar view refers to the main surface (upper surface) of the substrate of the semiconductor device viewed from the Z-axis direction.
  • a group III nitride semiconductor is a semiconductor containing one or more types of group III elements and nitrogen.
  • group III elements include aluminum (Al), gallium (Ga), and indium (In).
  • group III nitride semiconductors include GaN, AlN, InN, AlGaN, InGaN, and AlInGaN.
  • the Group III nitride semiconductor may contain one or more types of elements other than Group III, such as silicon (Si) and phosphorus (P).
  • Si silicon
  • P phosphorus
  • a layer made of a group III nitride semiconductor and a layer composed of a group III nitride semiconductor mean that the layer substantially contains only a group III nitride semiconductor.
  • the layer may contain other elements as impurities, such as elements that cannot be avoided during manufacturing, at a rate of 1 at % or less.
  • FIG. 1 is a plan view of a semiconductor device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the semiconductor device 1 according to the first embodiment taken along line II-II in FIG. Note that in FIG. 1, the positions of the source electrode 201, the drain electrode 202, and the gate electrode 203 are hatched for convenience in order to make the positions easier to understand.
  • the semiconductor device 1 is a nitride semiconductor device formed using a group III nitride semiconductor. In this embodiment, a case will be described in which the semiconductor device 1 is a high electron mobility transistor (HEMT).
  • HEMT high electron mobility transistor
  • the semiconductor device 1 includes a Si substrate (silicon substrate) 101, a SiC layer (silicon carbide layer) 102, a nitride semiconductor layer 103, an intermediate layer 105, and a metal layer 106. , a source electrode 201, a drain electrode 202, a gate electrode 203, a metal diffusion prevention film 302, a conductor 303, and a back electrode 304.
  • the Si substrate 101 is, for example, a substrate made of Si whose main surface is a (111) plane.
  • the resistivity of the Si substrate 101 is, for example, 1 k ⁇ or more and 20 ⁇ or less, but is not limited thereto.
  • the type of dopant in the Si substrate 101 may be P type or N type.
  • a substrate having a combination of resistivities and dopants may be used as the Si substrate 101.
  • the Si substrate 101 is a substrate itself made of Si, but the present invention is not limited to this.
  • the Si substrate 101 may be one in which silicon is formed on a substrate made of a sapphire substrate, a GaN substrate, or an AlN substrate.
  • the SiC layer 102 is provided above the Si substrate 101.
  • SiC layer 102 is provided on the first main surface (front surface) of Si substrate 101.
  • the SiC layer 102 is, for example, an epitaxial layer made of 3C-SiC.
  • 3C-SiC "C” indicates cubic crystal, and the number “3” indicates the number of regular tetrahedral structure layers included in one period in the stacking direction.
  • the layer thickness of the SiC layer 102 is, for example, 5 nm or more and 5000 nm or less, but is not limited thereto. In this embodiment, the layer thickness of SiC layer 102 is 2000 nm (2 ⁇ m).
  • the nitride semiconductor layer 103 is provided above the SiC layer 102. In this embodiment, nitride semiconductor layer 103 is provided directly on SiC layer 102.
  • the nitride semiconductor layer 103 is a semiconductor layer made of a group III nitride semiconductor. Specifically, the nitride semiconductor layer 103 is a stack of a plurality of semiconductor layers each made of a group III nitride semiconductor.
  • Nitride semiconductor layer 103 includes an active layer made of a group III nitride semiconductor.
  • the nitride semiconductor layer 103 includes a two-dimensional electron gas layer that serves as carriers of a transistor. A two-dimensional electron gas is generated at the heterointerface of the active layer. Note that the carriers of the transistor may be formed by ion implantation or doping according to epitaxial layer formation conditions.
  • the layer thickness of the nitride semiconductor layer 103 is, for example, 100 nm or more and 15000 nm or less, but is not limited thereto. In this embodiment, the layer thickness of nitride semiconductor layer 103 is 5000 nm (5 ⁇ m).
  • a source electrode 201 and a drain electrode 202 are provided above the nitride semiconductor layer 103.
  • source electrode 201 and drain electrode 202 are provided on the surface of nitride semiconductor layer 103 with an interval between them.
  • the source electrode 201 and the drain electrode 202 face each other in the X-axis direction.
  • Source electrode 201 is provided on source region 201S in nitride semiconductor layer 103.
  • the source electrode 201 and the drain electrode 202 are metal layers made of a metal material. Specifically, the source electrode 201 and the drain electrode 202 are made of a single metal or a metal alloy containing at least one metal selected from metals such as Ti, Al, Ni, Au, Ta, W, Pd, and Cu. ing. In this embodiment, the source electrode 201 and the drain electrode 202 are a stacked body in which a Ti layer and an Al layer are sequentially stacked. Note that the source electrode 201 and the drain electrode 202 may be a single layer of metal layers instead of a stack of metal layers.
  • each of the source electrode 201 and the drain electrode 202 is electrically connected to the two-dimensional electron gas layer. Specifically, the source electrode 201 and the drain electrode 202 are ohmically connected to the two-dimensional electron gas layer.
  • the gate electrode 203 is provided above the nitride semiconductor layer 103.
  • gate electrode 203 is provided on the surface of nitride semiconductor layer 103, similar to source electrode 201 and drain electrode 202. That is, the gate electrode 203 is in contact with the nitride semiconductor layer 103. Further, the gate electrode 203 is provided between the source electrode 201 and the drain electrode 202.
  • the gate electrode 203 is made of a single metal or a metal alloy containing at least one selected from metals such as Ti, TiN, Ta, TaN, W, Ni, Pd, Au, Al, and Cu.
  • the gate electrode 203 is a stacked body in which a Ni layer and an Au layer are stacked in this order. Note that the gate electrode 203 may be a single layer of metal layers instead of a stack of metal layers.
  • the gate electrode 203 causes a current to flow between the source electrode 201 and the drain electrode 202 (between the source and drain) due to a voltage or current applied to the gate electrode 203 with respect to carriers formed in the nitride semiconductor layer 103. It has the function to control.
  • the gate electrode 203 may be configured such that the semiconductor device 1 is a Schottky junction type, or the semiconductor device 1 may be configured in a so-called MIS in which an insulating layer is provided between the gate electrode 203 and the nitride semiconductor layer 103. (Metal-Insulator-Semiconductor) structure and a normally-on structure. Note that the semiconductor device 1 may have a normally-off structure in which a P-type nitride semiconductor layer or the like is provided between the gate electrode 203 and the nitride semiconductor layer 103.
  • Opening 104 is provided in the SiC layer 102. Opening 104 opens at least SiC layer 102 . In this embodiment, opening 104 opens SiC layer 102 and nitride semiconductor layer 103. That is, the opening 104 penetrates the SiC layer 102 and the nitride semiconductor layer 103, exposing a part of the surface of the Si substrate 101.
  • the opening 104 is provided in a part of the source region 201S where the source electrode 201 is formed.
  • the distance between the opening 104 and the end of the source electrode 201 on the gate electrode 203 side is preferably 500 nm or more. By doing so, it is possible to suppress the crystallinity of the nitride semiconductor layer 103 between the gate electrode 203 and the source electrode 201 from deteriorating.
  • the opening 104 is provided in a part of the source region 201S, but the invention is not limited thereto.
  • the opening 104 may be provided in a region where the drain electrode 202 or the gate electrode 203 is formed, or may be provided in a region other than the active region where a transistor is formed.
  • the present invention is not limited thereto.
  • the side surface of the nitride semiconductor layer 103 may be recessed from the side surface of the SiC layer 102 toward the side opposite to the opening 104, or It may also protrude toward the inside of the portion 104.
  • the opening width of the opening 104 may be constant in the Z-axis direction, or may be different in the Z-axis direction. In this case, the opening width of the opening 104 may become smaller continuously from the upper surface to the lower surface of the opening 104, or may become smaller discontinuously.
  • An intermediate layer 105 is provided in the opening 104.
  • the intermediate layer 105 is provided between the Si substrate 101 exposed through the opening 104 and the metal layer 106 .
  • the intermediate layer 105 is formed between the upper surface of the Si substrate 101 and the lower surface of the metal layer 106 within the opening 104, and is located between the side surface of the SiC layer 102 within the opening 104 (the inner surface of the opening 104). ) and the side surface of the conductor 303.
  • intermediate layer 105 is also provided between the side surface of nitride semiconductor layer 103 and metal layer 106 within opening 104 .
  • the upper surface of the intermediate layer 105 and the upper surface of the nitride semiconductor layer 103 are substantially flush, the present invention is not limited thereto.
  • the intermediate layer 105 (opening 104) is provided to surround the through via 301. That is, the intermediate layer 105 (opening 104) is provided so as to surround the conductor 303 embedded in the through via 301 and the metal diffusion prevention film 302. Therefore, intermediate layer 105 (opening 104) is provided between conductor 303 (through via 301) and SiC layer 102. That is, intermediate layer 105 is an intervening layer interposed between conductor 303 and SiC layer 102.
  • Intermediate layer 105 is a metal nitride layer or a silicon oxide layer.
  • the intermediate layer 105 functions as a buffer layer that alleviates problems caused by the difference in etching rate between SiC and Si when forming the through via 301 that penetrates the Si substrate 101 and the SiC layer 102 by etching.
  • the material constituting the intermediate layer 105 it is preferable to use a material whose etching rate is faster than that of SiC.
  • the etching rate of the material constituting the intermediate layer 105 is preferably faster than the etching rate of SiC and slower than the etching rate of Si.
  • the material constituting the intermediate layer 105 may be a metal nitride such as GaN, AlN, TiN, TaN, WN, InN, or SiN, or SiO 2 or BPSG (containing boron (B) and phosphorus (P)). It is a silicon oxide such as SiO 2 ).
  • the intermediate layer 105 is a single layer or multiple layers selected from these layers. In this embodiment, intermediate layer 105 is a silicon nitride layer (SiN layer).
  • the Vickers hardness of these materials is 15 GPa for GaN, 9.8 to 10.4 GPa for AlN, 10.8 GPa for TiN, 14 GPa for SiN, and 9.7 GPa for SiO2 . It is. Note that the Vickers hardness of Si is 9.8 to 10.6 GPa, and the Vickers hardness of SiC is 23 GPa. Therefore, the Vickers hardness of the intermediate layer 105 is preferably 9.8 GPa or more, which is the minimum Vickers hardness of the Si substrate 101, and less than 23 GPa, which is the Vickers hardness of the SiC layer 102.
  • the intermediate layer 105 is in contact with both the Si substrate 101 and the metal layer 106, but the present invention is not limited to this. That is, the intermediate layer 105 and the Si substrate 101 do not need to be in contact with each other, and the intermediate layer 105 and the metal layer 106 do not need to be in contact with each other.
  • a layer made of a material other than metal nitride and silicon oxide may be interposed between Si substrate 101 and intermediate layer 105.
  • a material having an etching rate equivalent to that of the Si substrate 101 or a material between the etching rate of the Si substrate 101 and that of the intermediate layer 105 is used.
  • an intervening layer of material having an etching rate of there may also be an intervening layer of material having an etching rate of . Further, between the intermediate layer 105 and the metal layer 106, a material having an etching rate equivalent to that of the intermediate layer 105 or an etching rate between the etching rate of the intermediate layer 105 and the etching rate of the metal layer 106 is used. There may also be a layer made of a material having
  • the layer thickness of the intermediate layer 105 is, for example, 100 nm or more and 15000 nm or less. However, the layer thickness of the intermediate layer 105 is not limited to this. In this embodiment, the thickness of intermediate layer 105 is 500 nm.
  • the metal layer 106 is provided above the opening 104. Further, the metal layer 106 covers at least a portion of the intermediate layer 105. In this embodiment, metal layer 106 is provided so as to cover not only intermediate layer 105 but also a portion of source electrode 201. Furthermore, the metal layer 106 located above the opening 104 also covers the conductor 303 . Specifically, the metal layer 106 covers the top surface of the conductor 303, the bottom and side surfaces of the intermediate layer 105, and a portion of the source electrode 201. Furthermore, the metal layer 106 covering the conductor 303 covers the through via 301 . In this embodiment, metal layer 106 covers the entire through via 301 . Specifically, the metal layer 106 is provided so as to protrude from the opening of the through via 301.
  • the metal layer 106 functions as an etching stopper layer for stopping etching of the through via 301 provided in the Si substrate 101.
  • the metal layer 106 is made of, for example, a single metal or a metal alloy containing at least one selected from Cu, Au, Pt, Ni, and Mo. Further, the metal layer 106 may be made of a single metal or a metal alloy made of a high melting point metal such as W, Ti, or Ta. Thereby, it is possible to suppress mixed crystal formation between the metal layer 106 and the conductor 303. Furthermore, the metal layer 106 may be made of a metal nitride made of W, Ti, or Ta. In this embodiment, the metal layer 106 is a titanium nitride layer (TiN layer) with a thickness of 300 nm. Note that the metal layer 106 may be a single layer or multiple layers.
  • the metal layer 106 is electrically connected to the source electrode 201.
  • the metal layer 106 and the source electrode 201 may be electrically connected by direct contact, or may be electrically connected via a conductor such as a wiring layer (not shown). Note that the metal layer 106 may be electrically connected to the drain electrode 202 or the gate electrode 203 instead of the source electrode 201.
  • the semiconductor device 1 is provided with a through via 301 that penetrates the intermediate layer 105 and the Si substrate 101.
  • the through via 301 is provided in the source region 201S.
  • the through via 301 is located inside the opening 104 in plan view.
  • the through via 301 is a through hole that penetrates the intermediate layer 105 and the Si substrate 101 so that the metal layer 106 is exposed. Therefore, the upper surface of the through via 301 is the lower surface of the metal layer 106. In this case, the width of the bottom surface of the metal layer 106 is longer than the opening width of the through via 301 at the top surface.
  • the through via 301 is surrounded by the intermediate layer 105.
  • the opening shape of the through via 301 is circular.
  • the inner diameter (opening width) of the through via 301 monotonically decreases from the bottom surface to the top surface of the through via 301.
  • the opening area of the through via 301 continuously decreases from the bottom surface to the top surface of the through via 301.
  • the side surfaces of the through vias 301 have a forward tapered shape from the bottom surface to the top surface of the through vias 301, so when forming the metal diffusion prevention film 302 and the conductor 303 from the back surface of the Si substrate 101.
  • the inner diameter of the through via 301 may decrease discontinuously from the lower surface to the upper surface of the through via 301.
  • the side surface of the Si substrate 101 of the through via 301 and the side surface of the intermediate layer 105 are flush with each other, but the side surface of the Si substrate 101 and the side surface of the intermediate layer 105 are discontinuous. You can.
  • a metal diffusion prevention film 302 is provided to cover the side surface of the through via 301 .
  • the metal diffusion prevention film 302 is a thin film layer provided to prevent the Si substrate 101 and the conductor 303 from coming into contact with each other and causing metal to diffuse into each other.
  • the metal diffusion prevention film 302 is preferably an insulating film made of an insulating material, but may also be a conductive film made of a conductive material.
  • the metal diffusion prevention film 302 is a single layer or multiple layers of any one selected from Ti, Ta, TiN, TaN, WN, SiO 2 , and SiN.
  • the metal diffusion prevention film 302 is a laminate in which a Ti layer and a TiN layer are sequentially stacked. Note that when the metal diffusion prevention film 302 is made of a conductive material, it may not only cover the side surfaces of the through vias 301 but also cover the upper surfaces of the through vias 301.
  • a conductor 303 made of a conductive material is provided inside the through via 301. Specifically, the conductor 303 is provided inside a through via 301 whose inner surface is covered with a metal diffusion prevention film 302 . The conductor 303 is a buried via formed to fill the through via 301 .
  • the conductor 303 is a metal layer made of a metal material.
  • the conductor 303 is a single layer or multiple layers of any one selected from Ti, Ta, Cu, Al, Au, Ni, and W.
  • the conductor 303 is a laminate in which a Ti layer and a Cu layer are sequentially stacked, or a laminate in which a Ti layer, a TiN layer, a Ti layer, and a Cu layer are stacked in this order.
  • the conductor 303 may be filled in the through via 301 so as to fill the entire inside of the through via 301, or the conductor 303 may be filled in the through via 301 so as to leave a part of the cavity.
  • the conductor 303 is electrically connected to the back electrode 304 and the metal layer 106.
  • Back electrode 304 and metal layer 106 are electrically connected via conductor 303.
  • the metal layer 106 and the source electrode 201 are connected, so the source electrode 201 and the back electrode 304 are electrically connected via the metal layer 106 and the conductor 303.
  • the back electrode 304 is provided below the Si substrate 101.
  • the back electrode 304 is provided on the second main surface (back surface) of the Si substrate 101, which is opposite to the first main surface (front surface).
  • the back electrode 304 is a solid pattern electrode (a planar (ie, solid) pattern that continues uniformly without any gaps) that covers the back surface of the Si substrate 101. In this embodiment, the back electrode 304 covers the entire back surface of the Si substrate 101.
  • the back electrode 304 is made of, for example, a single metal or a metal alloy containing at least one metal selected from metals such as Ti, Al, W, Ta, Cu, Ni, Au, Sn, and Ag. Further, the back electrode 304 may have a single layer structure or may be a laminate in which a plurality of metal layers are stacked. In this embodiment, the back electrode 304 is a laminate in which a Ti layer, a Ni layer, and an Au layer are stacked in this order. Note that the back electrode 304 and the conductor 303 may be made of the same material.
  • the back electrode 304 is electrically grounded. In other words, the potential of the back electrode 304 is the ground potential. As described above, the back electrode 304 is electrically connected to the source electrode 201 via the conductor 303 and the metal layer 106. In other words, the back electrode 304 and the source electrode 201 are at the same potential. Note that the back electrode 304 may be electrically connected to the drain electrode 202 or the gate electrode 203 instead of being electrically connected to the source electrode 201.
  • FIGS. 3A to 3H are diagrams for explaining each step of the method for manufacturing the semiconductor device 1 according to the first embodiment.
  • a SiC layer 102 is formed above a Si substrate 101. Specifically, the SiC layer 102 is formed on the surface of the Si substrate 101 by epitaxially growing 3C-SiC (111) plane with a thickness of 2 ⁇ m. Thereafter, a nitride semiconductor layer 103 made of a group III nitride semiconductor is formed above the SiC layer 102. Specifically, a nitride semiconductor layer 103 with a thickness of 5 ⁇ m is formed on the surface of the SiC layer 102 by epitaxially growing a stack of a plurality of semiconductor layers made of group III nitride semiconductors. Note that within the nitride semiconductor layer 103, a two-dimensional electron gas layer that serves as carriers of the transistor is formed.
  • opening 104 is formed in the SiC layer 102.
  • opening 104 opens SiC layer 102 and nitride semiconductor layer 103.
  • a resist (not shown) is applied on the surface of the nitride semiconductor layer 103, and then the resist is patterned by photolithography and etching to form a resist mask in areas other than the area where the opening 104 is to be formed. form.
  • the nitride semiconductor layer 103 and the SiC layer 102 are etched and removed by dry etching using the resist mask as a mask, thereby forming an opening 104 that penetrates the nitride semiconductor layer 103 and the SiC layer 102, and forming an opening 104 on the Si substrate 101. expose. Thereafter, the attached polymer and resist mask are removed by dry etching.
  • an intermediate layer 105 is formed in the opening 104.
  • a silicon nitride layer with a thickness of 500 nm is deposited on the nitride semiconductor layer 103 so as to cover the opening 104 by a CVD (Chemical Vapor Deposition) method, and then a silicon nitride layer is deposited using a photolithography method and a dry etching method.
  • CVD Chemical Vapor Deposition
  • a source electrode 201, a drain electrode 202, and a gate electrode 203 are formed above the nitride semiconductor layer 103.
  • a Ti layer and an Al layer patterned with photoresist are sequentially laminated by vapor deposition, patterned by lift-off, and then alloyed by heat treatment.
  • a source electrode 201 and a drain electrode 202 which are ohmically connected to the two-dimensional electron gas in the nitride semiconductor layer 103 are formed.
  • the source electrode 201 is not formed in the region of the source electrode 201 where the through via 301 is formed and around the region.
  • gate electrode 203 that makes a Schottky connection with the two-dimensional electron gas in the nitride semiconductor layer 103 is formed. do.
  • gate electrode 203 is formed between source electrode 201 and drain electrode 202.
  • a metal layer 106 is formed above the opening 104 so as to cover the intermediate layer 105. Specifically, after depositing a TiN layer with a thickness of 200 nm by a sputtering method, the TiN layer other than the source region 201S and a part of the TiN layer on the source electrode 201 are removed using a lithography method and a dry etching method. By doing so, the metal layer 106 is formed so as to cover the intermediate layer 105 and the other part of the source electrode 201.
  • a through via 301 is formed that penetrates the Si substrate 101 and the intermediate layer 105 from the lower surface side (back side) of the Si substrate 101 using the metal layer 106 as a stopper.
  • the through via 301 is formed on the lower surface side of the Si substrate 101 by removing the Si substrate 101 and the intermediate layer 105 so as to penetrate through them using a photolithography method and an etching method.
  • the etching method dry etching using fluorine-based gas or chlorine-based gas can be used.
  • the SiC layer 102 and the through via 301 do not overlap.
  • the intermediate layer 105 is provided to surround the through via 301, and when forming the through via 301 by dry etching, the SiC layer 102 is not etched and only the Si substrate 101 and the intermediate layer 105 are formed. etched. Therefore, it is possible to suppress notching from occurring in the Si substrate 101 when forming the through via 301. Thereby, the through via 301 that penetrates the Si substrate 101 and the SiC layer 102 can be easily formed.
  • the through via 301 may be formed using a Bosch process or a non-Bosch process. Further, the through via 301 may be formed under a plurality of etching conditions, or the intermediate layer 105 may be selectively etched with respect to the Si substrate 101. In this case, the Si substrate 101 can be selectively etched using a fluorine-based gas, and if the intermediate layer 105 is a metal nitride layer, the intermediate layer 105 can be selectively etched using a chlorine-based gas. The etching conditions at this time may be switched during the middle of the Si substrate 101. Note that the roughness of the side surface of the through via 301 is preferably 300 nm or less.
  • a conductor 303 is formed inside the through via 301.
  • a Ti layer, a TiN layer, a Ti layer, and a Cu layer are sequentially deposited by sputtering, and then the inside of through via 301 is filled with a Cu layer by plating. Thereafter, the Ti layer, TiN layer, Ti layer, and Cu layer deposited on the back surface of the Si substrate 101 are removed by CMP (Chemical Mechanical Polishing). Thereby, the conductor 303 made of the Ti layer, the TiN layer, the Ti layer, and the Cu layer can be formed only inside the through via 301.
  • a back electrode 304 is formed below the Si substrate 101. Specifically, by sequentially depositing a Ti layer, a Ni layer, and an Au layer on the back surface of the Si substrate 101 by vapor deposition, the back electrode 304, which is a laminate of the Ti layer, Ni layer, and Au layer, is formed on the Si substrate. It can be formed on the back surface of 101. Thereby, the back electrode 304 and the metal layer 106 are electrically connected via the conductor 303.
  • the semiconductor device 1 having the structure shown in FIGS. 1 and 2 can be completed.
  • the intermediate layer 105 which is a metal nitride layer or a silicon oxide layer, is provided in the opening 104 that opens the SiC layer 102.
  • the through via 301 can be formed without etching the Si substrate 101 and the SiC layer 102 at the same time.
  • an intermediate layer 105 having a faster etching rate than the SiC layer 102 that is, harder than the SiC layer 102 is buried in the SiC layer 102 in advance, and this intermediate layer 105 and the Si substrate 101 are etched simultaneously.
  • a through via 301 is formed.
  • the through via 301 that penetrates the Si substrate 101 and the SiC layer 102 can be easily provided without causing notching. Therefore, voids are generated in the conductor 303 inside the through-via 301 due to the notching, and the coverage of the metal diffusion prevention film 302 is reduced due to the presence of the notching, and the conductor 303 and the Si substrate 101 come into contact, causing mutual diffusion of metal. It is possible to prevent the resistance from becoming high. As a result, a highly reliable semiconductor device 1 can be obtained.
  • the source electrode 201 is electrically connected to the grounded back electrode 304 via the metal layer 106 and the conductor 303 present in the source region 201S. This allows the source electrode 201 to be more strongly grounded.
  • the Vickers hardness of the intermediate layer 105 is 9.8 GPa or more, which is the Vickers hardness of the Si substrate 101, and is less than 23 GPa, which is the Vickers hardness of the SiC layer 102. Good.
  • the SiC layer 102 is formed between the Si substrate 101 and the nitride semiconductor layer 103.
  • the through via 301 can be easily formed by effectively suppressing side etching in the Si substrate 101 due to the difference in etching rate between SiC and Si. Note that when a hard layer is provided on the Si substrate 101 regardless of the substrate type of the Si substrate 101, the Vickers hardness of the intermediate layer 105 should be set to the Vickers hardness between the substrate and the hard layer. Through-vias 301 can be easily formed.
  • the inner diameter of the through via 301 monotonically decreases from the bottom surface to the top surface of the through via 301.
  • the side surface of the through via 301 has a forward tapered shape from the lower surface to the upper surface of the through via 301, so the through via 301 can be formed with high reliability.
  • the upper surface of the intermediate layer 105 and the upper surface of the nitride semiconductor layer 103 are substantially flush with each other.
  • the metal layer 106 includes at least one selected from Cu, Au, Pt, Ni, and Mo.
  • the metal layer 106 may include at least one selected from high melting point metals such as W, Ti, and Ta.
  • the metal layer 106 and the source electrode 201 are electrically connected.
  • the conductor 303 in the through via 301 and the source electrode 201 are electrically connected via the metal layer 106.
  • source vias can be realized.
  • the source electrode 201 is provided on the source region 201S in the nitride semiconductor layer 103, and the through via 301 is provided in the source region 201S.
  • grounding of the source electrode 201 can be strengthened.
  • the width of the bottom surface of the metal layer 106 is longer than the opening width of the through via 301 at the top surface.
  • FIG. 4 is a plan view of a semiconductor device 1A according to a modification of the first embodiment.
  • FIG. 5 is a cross-sectional view of a semiconductor device 1A according to a modification of the first embodiment taken along line VV in FIG. Note that in FIG. 4, similar to FIG. 1, the positions of the source electrode 201, drain electrode 202, and gate electrode 203 are hatched for convenience in order to make them easier to understand.
  • the semiconductor device 1A according to this modification and the semiconductor device 1 according to the first embodiment are different in the configuration of the opening 104 and the intermediate layer 105.
  • the opening 104 was provided to open the SiC layer 102 and the nitride semiconductor layer 103, but in this modification, the opening 104 was provided to open the SiC layer 102 and the nitride semiconductor layer 103. 102 and the nitride semiconductor layer 103 are provided so that not only the source electrode 201 is opened, but also the source electrode 201 is opened. Therefore, in this modification, the side surface of the SiC layer 102, the side surface of the nitride semiconductor layer 103, and the side surface of the source electrode 201 are flush with each other. Note that also in this modification, the opening 104 is provided to expose the Si substrate 101.
  • the intermediate layer 105 was provided so as to cover only the opening 104 among the opening 104 and the source electrode 201, but in this modification, the intermediate layer 105 and the source electrode 201. Specifically, the intermediate layer 105 in this modification is provided so as to cover the bottom and side surfaces of the opening 104 and a portion of the source electrode 201.
  • the metal layer 106 located above the opening 104 covers the conductor 303, the intermediate layer 105, and a part of the source electrode 201. In this case, the metal layer 106 also covers the top of the intermediate layer 105 that covers the top of the source electrode 201.
  • FIGS. 6A to 6H are diagrams for explaining each step of a method for manufacturing a semiconductor device 1A according to a modification of the first embodiment.
  • a SiC layer 102 is formed above a Si substrate 101, and a nitride semiconductor layer 103 is formed above the SiC layer 102. This step is similar to the step shown in FIG. 3A in the first embodiment described above.
  • a source electrode 201, a drain electrode 202, and a gate electrode 203 are formed above the nitride semiconductor layer 103. Specifically, first, on the surface of the nitride semiconductor layer 103, a Ti layer and an Al layer patterned with photoresist are sequentially laminated by vapor deposition, patterned by lift-off, and then alloyed by heat treatment. By performing this, the source electrode 201 and the drain electrode 202 are formed which are ohmically connected to the two-dimensional electron gas in the nitride semiconductor layer 103.
  • a Ni layer and an Au layer patterned with photoresist are sequentially laminated by vapor deposition, patterned by lift-off, and then a gate electrode 203 that makes a Schottky connection with the two-dimensional electron gas in the nitride semiconductor layer 103 is formed. do. Also in this modification, the gate electrode 203 is formed between the source electrode 201 and the drain electrode 202.
  • an opening 104 is formed to open the SiC layer 102 and the nitride semiconductor layer 103.
  • the source electrode 201 is also opened. Specifically, by etching and removing the source electrode 201, the nitride semiconductor layer 103, and the SiC layer 102 using a lithography method and a dry etching method, the SiC layer 102, the nitride semiconductor layer 103, and the source electrode 201 are removed. The Si substrate 101 is exposed by forming an opening 104 penetrating through it.
  • the source electrode 201, nitride semiconductor layer 103, and SiC layer 102 are removed all at once, so the width of the opening 104 is smaller than when they are removed in separate steps. can be easily increased. Therefore, since the width of the lowermost surface of the metal layer 106 can be easily increased, the margin for the through via 301 to miss the metal layer 106 can be increased.
  • an intermediate layer 105 is formed in the opening 104.
  • a silicon nitride layer with a thickness of 500 nm is deposited on the nitride semiconductor layer 103 by the CVD method so as to cover the opening 104, and then a layer other than the opening 104 is deposited using a photolithography method and a dry etching method.
  • the intermediate layer 105 made of a silicon nitride layer can be formed so as to cover the inner surface of the opening 104 and a portion of the source electrode 201.
  • the intermediate layer 105 By forming the intermediate layer 105 in this manner, the generation of a step at the boundary between the surface of the nitride semiconductor layer 103 and the surface of the intermediate layer 105 can be suppressed compared to the first embodiment described above. Can be done. Thereby, it is possible to suppress the generation of voids between the nitride semiconductor layer 103 and the intermediate layer 105 due to the step difference.
  • a metal layer 106 is formed above the opening 104 so as to cover the intermediate layer 105.
  • a through via 301 is formed that penetrates the Si substrate 101 and the intermediate layer 105 from the lower surface side (back side) of the Si substrate 101 using the metal layer 106 as a stopper.
  • a conductor 303 is formed inside the through via 301.
  • a back electrode 304 is formed below the Si substrate 101. Note that the steps shown in FIGS. 6E to 6H can be performed in the same manner as the steps shown in FIGS. 3E to 3H in the first embodiment.
  • the semiconductor device 1A according to this modification has the same effects as the semiconductor device 1 according to the first embodiment.
  • an intermediate layer 105 that is a metal nitride layer or a silicon oxide layer is provided in the opening 104 opening the SiC layer 102.
  • the through via 301 that penetrates the Si substrate 101 and the SiC layer 102 can be easily provided without causing notching.
  • FIG. 7 is a plan view of the semiconductor device 2 according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor device 2 according to the second embodiment taken along line VIII-VIII in FIG. Note that in FIG. 8, similar to FIG. 1, the positions of the source electrode 201, drain electrode 202, and gate electrode 203 are hatched for convenience in order to make them easier to understand.
  • the semiconductor device 2 according to this embodiment and the semiconductor device 1 according to the first embodiment described above are different in the configurations of the opening 104 and the intermediate layer 105.
  • the opening 104 was provided to open the SiC layer 102 and the nitride semiconductor layer 103, but in the present embodiment, the opening 104 is provided to open the nitride semiconductor layer 103.
  • the physical semiconductor layer 103 is not opened, and only the SiC layer 102 is opened. Note that also in this embodiment, the opening 104 is provided to expose the Si substrate 101.
  • the intermediate layer 105 was formed along the inner surface of the opening 104, but in this embodiment, the intermediate layer 105 is formed so as to fill the opening 104. There is. Therefore, the upper surface of intermediate layer 105 and the upper surface of nitride semiconductor layer 103 are flush with each other.
  • intermediate layer 105 is made of a group III nitride semiconductor. That is, in this embodiment, intermediate layer 105 and nitride semiconductor layer 103 are both made of a group III nitride semiconductor.
  • the intermediate layer 105 has the same structure as the nitride semiconductor layer 103, and is a stack of a plurality of semiconductor layers made of a group III nitride semiconductor.
  • the intermediate layer 105 and the nitride semiconductor layer 103 can be formed simultaneously in the same process.
  • the two-dimensional electron gas in the nitride semiconductor layer 103 may be inactivated by implanting fluorine (F) or boron fluoride (BF 2 ) as an impurity into the nitride semiconductor layer 103 .
  • the intermediate layer 105 so as to fill the opening 104, the global step difference can be reduced compared to the opening 104 in the first embodiment. That is, a wiring layer can be easily formed on the source region 201S.
  • the metal layer 106 is located above the opening 104 and covers the conductor 303, the intermediate layer 105, and part of the source electrode 201.
  • FIGS. 9A to 9H are diagrams for explaining each step of the method for manufacturing the semiconductor device 2 according to the second embodiment.
  • a SiC layer 102 is formed above a Si substrate 101. Specifically, the SiC layer 102 is formed on the surface of the Si substrate 101 by epitaxially growing 3C-SiC (111) plane with a thickness of 2 ⁇ m.
  • an opening 104 is formed in the SiC layer 102. Specifically, by etching and removing the SiC layer 102 using a lithography method and a dry etching method, an opening 104 penetrating the SiC layer 102 is formed and the Si substrate 101 is exposed.
  • an intermediate layer 105 is formed in the opening 104, and a nitride semiconductor layer 103 is formed above the SiC layer 102.
  • a nitride semiconductor layer 103 is formed above the SiC layer 102.
  • the thickness is reduced.
  • a 5 ⁇ m thick nitride semiconductor layer SC is formed.
  • the nitride semiconductor layer SC formed to fill the opening 104 has lower crystallinity than the nitride semiconductor layer SC formed on the SiC layer 102.
  • the nitride semiconductor layer SC on the SiC layer 102 becomes the nitride semiconductor layer 103 made of a group III nitride semiconductor with high crystallinity, and the nitride semiconductor layer SC within the opening 104 has low crystallinity.
  • a source electrode 201, a drain electrode 202, and a gate electrode 203 are formed above the nitride semiconductor layer 103. Specifically, on the surface of the nitride semiconductor layer 103, a Ti layer and an Al layer patterned with photoresist are sequentially laminated by vapor deposition, patterned by lift-off, and then alloyed by heat treatment. Then, a source electrode 201 and a drain electrode 202 which are ohmically connected to the two-dimensional electron gas in the nitride semiconductor layer 103 are formed.
  • a Ni layer and an Au layer patterned with photoresist are sequentially laminated by vapor deposition, patterned by lift-off, and then a gate electrode 203 that makes a Schottky connection with the two-dimensional electron gas in the nitride semiconductor layer 103 is formed. do. Also in this embodiment, the gate electrode 203 is formed between the source electrode 201 and the drain electrode 202.
  • the source electrode 201 may be formed so as to straddle the upper part of the opening 104 in a plan view. By doing so, pits are formed at the boundary between the intermediate layer 105 and the nitride semiconductor layer 103, so that the contact resistance between the source electrode 201 and the two-dimensional electron gas layer can be reduced.
  • a metal layer 106 is formed above the opening 104 so as to cover the intermediate layer 105.
  • a through via 301 is formed that penetrates the Si substrate 101 and the intermediate layer 105 from the lower surface side (back side) of the Si substrate 101 using the metal layer 106 as a stopper.
  • a conductor 303 is formed inside the through via 301.
  • a back electrode 304 is formed below the Si substrate 101. Note that the steps shown in FIGS. 9E to 9H can be performed in the same manner as the steps shown in FIGS. 3E to 3H in the first embodiment.
  • the semiconductor device 2 having the structure shown in FIGS. 7 and 8 can be completed.
  • the semiconductor device 2 according to the present embodiment has the same effects as the semiconductor device 1 according to the first embodiment.
  • an intermediate layer 105 that is a metal nitride layer or a silicon oxide layer is provided in the opening 104 that opens the SiC layer 102.
  • the through via 301 that penetrates the Si substrate 101 and the SiC layer 102 can be easily provided without causing notching.
  • the intermediate layer 105 is made of a group III nitride semiconductor similarly to the nitride semiconductor layer 103.
  • the intermediate layer 105 and the nitride semiconductor layer 103 can be formed simultaneously. Thereby, the semiconductor device 2 having the intermediate layer 105 can be manufactured at low cost.
  • Embodiments 1 and 2 For example, a form obtained by applying various modifications to the above-mentioned Embodiments 1 and 2 that a person skilled in the art would think of, or a form obtained by arbitrarily combining the components and functions of Embodiments 1 and 2 without departing from the spirit of the present disclosure.
  • the present disclosure also includes forms realized by this. Further, the present disclosure also includes arbitrary combinations of two or more claims from among the plurality of claims described in the scope of claims as of the filing of this application, within a technically consistent range.
  • the semiconductor device according to the present disclosure is useful for communication devices and inverters that require high-speed operation, power switching elements used in power supply circuits, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

半導体装置(1)は、Si基板(101)と、Si基板(101)の下方に設けられた裏面電極(304)と、Si基板(101)の上方に設けられたSiC層(102)と、SiC層(102)の上方に設けられた窒化物半導体層(103)と、窒化物半導体層(103)の上方に設けられたソース電極(201)およびドレイン電極(202)と、窒化物半導体層(103)に接触するゲート電極(203)と、SiC層(102)および窒化物半導体層(103)を開口する開口部(104)に設けられた中間層(105)と、中間層(105)を覆うように開口部(104)の上方に設けられた金属層(106)と、中間層(105)およびSi基板(101)を貫通する貫通ビア(301)の内部に設けられ、裏面電極(304)および金属層(106)と電気的に接続された導体(303)とを備え、中間層(105)は、金属窒化物層またはシリコン酸化物層である。

Description

半導体装置および半導体装置の製造方法
 本開示は、半導体装置および半導体装置の製造方法に関し、特に、III族窒化物半導体を用いた窒化物半導体装置およびその製造方法に関する。
 窒化ガリウム(GaN)または窒化アルミニウムガリウム(AlGaN)などのIII族窒化物半導体を用いた窒化物半導体装置は、材料のバンドギャップの広さから、高い絶縁破壊電圧を有する。また、III族窒化物半導体を用いた半導体装置では、AlGaN/GaN等のヘテロ構造を容易に形成することができる。
 AlGaN/GaNヘテロ構造では、材料間での格子定数差から発生するピエゾ分極とAlGaNおよびGaNの自発分極との差により、AlGaN/GaN界面のGaN層側に高濃度の電子(2次元電子ガス;2DEG(Two Dimensions Electron Gas)によるチャネルが形成される。この2次元電子ガスのチャネルを利用した窒化物半導体装置は、電子飽和速度や耐絶縁性が比較的に高く、また、熱伝導率も比較的に高いことから、高周波パワーデバイスに応用されている。
 この種の窒化物半導体装置では、Si基板がサファイヤ基板またはSiC基板などと比較して低コストであるため、Si基板上にIII族窒化物半導体からなる窒化物半導体層を形成する技術がある。しかしながら、Si基板上にIII族窒化物半導体からなる窒化物半導体層を直接形成すると、SiとIII族窒化物半導体との格子定数差が大きいため、窒化物半導体層におけるIII族窒化物半導体の結晶性は、SiC基板上にIII族窒化物半導体からなる窒化物半導体層を形成した場合と比べて低下する。そこで、SiとIII族窒化物半導体との格子定数差を低減するために、3C-SiCからなるバッファ層をSi基板上に形成してから3C-SiC上にIII族窒化物半導体からなる窒化物半導体層を形成する技術が提案されている。3C-SiCからなるバッファ層を用いることで、III族窒化物半導体からなる窒化物半導体層を厚く積層することができるので、III族窒化物半導体の結晶性を、SiC基板上にIII族窒化物半導体からなる窒化物半導体層を形成した場合と同等にすることができる。
 また、高周波パワーデバイスにおいては、接地された裏面電極を基板の裏面に形成し、基板を貫通する貫通ビアに金属を埋め込むことで、裏面電極と基板上のソース電極とを電気的に接続する技術が提案されている。このように構成することで、ソース電極の接地を強化することができるので、利得の低下を抑制することができる。
 ここで、この種の従来の窒化物半導体装置として、特許文献1、2に開示されたGaN系半導体装置について説明する。
 図10は、特許文献1に開示された窒化物半導体装置1Xの断面図である。
 図10に示すように、特許文献1に開示された窒化物半導体装置1Xは、誘電体基板107Xと、誘電体基板107Xの上に形成されたSiC層102と、SiC層102の上に形成された、III族窒化物半導体からなる窒化物半導体層103と、窒化物半導体層103の表面に形成された、ソース電極201、ドレイン電極202およびゲート電極203と備えている。また、ドレイン電極202が設けられたドレイン領域202Dには、ドレイン電極202、窒化物半導体層103およびSiC層102を貫通するように開口部104が設けられており、この開口部104の内部には金属層305が埋め込まれている。また、誘電体基板107Xにおける誘電体層101Xには貫通ビア301が設けられており、この貫通ビア301には導体303が埋め込まれている。さらに、誘電体層101Xの裏面には裏面電極304が設けられている。なお、誘電体層101Xと裏面電極304と導体303とによって誘電体基板107Xが構成されている。
 図10に示される窒化物半導体装置1Xでは、貫通ビア301に埋め込まれた導体303と開口部104に埋め込まれた金属層305とを介して、裏面電極304とドレイン電極202とが電気的に接続されている。具体的には、特許文献1に記載された製造方法によれば、SiC層102の裏面にあったSi基板を除去してから、金属層305と導体303とを接続するようにSiC層102と誘電体基板107Xとを接合している。
 また、図11は、特許文献2に開示された窒化物半導体装置1Yの断面図である。図11に示すように、特許文献2に開示された窒化物半導体装置1Yは、絶縁性基板であるSi基板101と、Si基板101の上に形成された、III族窒化物半導体からなる窒化物半導体層103と、窒化物半導体層103の表面に形成された、ソース電極201、ドレイン電極202およびゲート電極203と備えている。また、ソース電極201が設けられたソース領域201Sには、ストッパー層となる金属層305が設けられており、Si基板101の裏面には裏面電極304が設けられている。
 図11に示される窒化物半導体装置1Yでは、Si基板101と窒化物半導体層103とを貫通する貫通ビア301が金属層305に到達しており、裏面電極304が金属層305を介してソース電極201と電気的に接続されている。なお、特許文献2に記載された製造方法によれば、Si基板101の裏面側から貫通ビア301を形成し、貫通ビア301に沿って裏面電極304を形成した後に、貫通ビア301に導体303を充填している。
特開2013-243275号公報 特開2009-033097号公報
 しかしながら、図10に示される窒化物半導体装置1Xでは、上記のように、SiC層102の裏面にあったSi基板を除去してから、金属層305と導体303とを接続するようにしてSiC層102と誘電体基板107Xとを接合しているため、製造工程が複雑であり、コストが高くなる。
 一方、図11に示される窒化物半導体装置1Yでは、Si基板101の裏面から貫通ビア301を形成することで裏面電極304とソース電極201とを接続している。このため、図11に示される窒化物半導体装置1Yは、製造工程は複雑にならないものの、Si基板101と窒化物半導体層103との間にSiC層が存在しないので、SiとIII族窒化物半導体との格子定数差によって窒化物半導体層103を構成するIII族窒化物半導体の結晶性が低下する。
 そこで、図11に示される窒化物半導体装置1Yにおいて、Si基板101と窒化物半導体層103との間にSiC層を設けることが考えられる。具体的には、図12に示される窒化物半導体装置1Zのように、Si基板101と窒化物半導体層103との間にSiC層102を設けて、金属層106をストッパーとしてSi基板101とSiC層102と窒化物半導体層103とを貫通する貫通ビア301を設け、貫通ビア301の内部に導体303を埋め込む。これにより、導体303と金属層106とを介して裏面電極304とソース電極201とを電気的に接続することができる。また、図12に示される窒化物半導体装置1Zでは、導体303とSi基板101とが接触して金属が相互拡散しないように、貫通ビア301の内面に金属拡散防止膜302が設けられている。つまり、Si基板101と導体303との間に金属拡散防止膜302が設けられている。
 しかしながら、図12に示される窒化物半導体装置1Zの構成では、SiC層102を構成するSiCが硬くて化学的に安定しているため、貫通ビア301を形成する際にSi基板101にノッチング400が形成される。具体的には、貫通ビア301は、フッ素系ガスまたは塩素系ガスを用いてSi基板101およびSiC層102をドライエッチングすることで形成されるが、SiCのエッチング速度がSiのエッチング速度よりも遅いので、Si基板101におけるSiC層102の近傍において、Si基板101にサイドエッチングが生じ、これがノッチング400となる。
 Si基板101にノッチング400が生じると、貫通ビア301の内部に導体303を形成した際にノッチング400がボイドになったり、ノッチング400の存在で金属拡散防止膜302のカバレッジが低下して導体303とSi基板101とが接触して金属の相互拡散が生じて高抵抗化したりする。この結果、窒化物半導体装置1Zの品質が低下し、歩留まりが低下する。
 本開示は、このような課題を鑑みてなされたものであり、Si基板と窒化物半導体層との間にSiC層を設けたとしても、ノッチングを発生させることなくSi基板とSiC層とを貫通する貫通ビアを設けることができる半導体装置を提供することを目的とする。
 上記目的を達成するために、本開示に係る半導体装置の一態様は、Si基板と、前記Si基板の下方に設けられた裏面電極と、前記Si基板の上方に設けられたSiC層と、前記SiC層の上方に設けられ、III族窒化物半導体からなる半導体層と、前記半導体層の上方に設けられたソース電極およびドレイン電極と、前記半導体層に接触するゲート電極と、少なくとも前記SiC層を開口する開口部に設けられた中間層と、前記開口部の上方に設けられた金属層と、前記中間層および前記Si基板を貫通する貫通ビアの内部に設けられ、前記裏面電極および前記金属層と電気的に接続された導体と、を備え、前記金属層は、前記貫通ビアを覆っており、前記中間層は、前記SiC層と前記導体との間に設けられており、前記中間層は、金属窒化物層またはシリコン酸化物層である。
 また、本開示に係る半導体装置の製造方法の一態様は、Si基板の上方にSiC層を形成し、前記SiC層の上方に、III族窒化物半導体からなる半導体層を形成し、前記SiC層を開口する開口部を形成し、前記開口部に中間層を形成し、前記半導体層の上方に、ソース電極、ドレイン電極およびゲート電極を形成し、前記中間層の少なくとも一部を覆うように前記開口部の上方に金属層を形成し、前記金属層をストッパーとして、前記Si基板の下面側から前記Si基板および前記中間層を貫通する貫通ビアを形成し、前記貫通ビアの内部に導体を形成し、前記Si基板の下方に裏面電極を形成し、前記裏面電極と前記金属層とは前記導体を介して電気的に接続されており、前記中間層は、前記SiC層と前記導体との間に設けられており、前記中間層は、金属窒化物層またはシリコン酸化物層である。
 本開示に係る半導体装置によれば、Si基板と窒化物半導体層との間にSiC層を設けたとしても、ノッチングを発生させることなくSi基板とSiC層とを貫通する貫通ビアを設けることができる。
図1は、実施の形態1に係る半導体装置の平面図である。 図2は、図1のII-II線における実施の形態1に係る半導体装置の断面図である。 図3Aは、実施の形態1に係る半導体装置の製造方法において、Si基板にSiC層および窒化物半導体層を形成する工程を説明するための図である。 図3Bは、実施の形態1に係る半導体装置の製造方法において、SiC層および窒化物半導体層に開口部を形成する工程を説明するための図である。 図3Cは、実施の形態1に係る半導体装置の製造方法において、開口部に中間層を形成する工程を説明するための図である。 図3Dは、実施の形態1に係る半導体装置の製造方法において、ソース電極、ドレイン電極およびゲート電極を形成する工程を説明するための図である。 図3Eは、実施の形態1に係る半導体装置の製造方法において、中間層の上に金属層を形成する工程を説明するための図である。 図3Fは、実施の形態1に係る半導体装置の製造方法において、Si基板および中間層を貫通する貫通ビアを形成する工程を説明するための図である。 図3Gは、実施の形態1に係る半導体装置の製造方法において、貫通ビアに導体を形成する工程を説明するための図である。 図3Hは、実施の形態1に係る半導体装置の製造方法において、Si基板に裏面電極を形成する工程を説明するための図である。 図4は、実施の形態1の変形例に係る半導体装置の平面図である。 図5は、図4のV-V線における実施の形態1の変形例に係る半導体装置の断面図である。 図6Aは、実施の形態1の変形例に係る半導体装置の製造方法において、Si基板にSiC層および窒化物半導体層を形成する工程を説明するための図である。 図6Bは、実施の形態1の変形例に係る半導体装置の製造方法において、ソース電極、ドレイン電極およびゲート電極を形成する工程を説明するための図である。 図6Cは、実施の形態1の変形例に係る半導体装置の製造方法において、開口部を形成する工程を説明するための図である。 図6Dは、実施の形態1の変形例に係る半導体装置の製造方法において、開口部に中間層を形成する工程を説明するための図である。 図6Eは、実施の形態1の変形例に係る半導体装置の製造方法において、中間層の上に金属層を形成する工程を説明するための図である。 図6Fは、実施の形態1の変形例に係る半導体装置の製造方法において、Si基板および中間層を貫通する貫通ビアを形成する工程を説明するための図である。 図6Gは、実施の形態1の変形例に係る半導体装置の製造方法において、貫通ビアに導体を形成する工程を説明するための図である。 図6Hは、実施の形態1の変形例に係る半導体装置の製造方法において、Si基板に裏面電極を形成する工程を説明するための図である。 図7は、実施の形態2に係る半導体装置の平面図である。 図8は、図7のVIII-VIII線における実施の形態2に係る半導体装置の断面図である。 図9Aは、実施の形態2に係る半導体装置の製造方法において、Si基板にSiC層を形成する工程を説明するための図である。 図9Bは、実施の形態2に係る半導体装置の製造方法において、SiC層に開口部を形成する工程を説明するための図である。 図9Cは、実施の形態2に係る半導体装置の製造方法において、中間層および窒化物半導体層を形成する工程を説明するための図である。 図9Dは、実施の形態2に係る半導体装置の製造方法において、ソース電極、ドレイン電極およびゲート電極を形成する工程を説明するための図である。 図9Eは、実施の形態2に係る半導体装置の製造方法において、中間層の上に金属層を形成する工程を説明するための図である。 図9Fは、実施の形態2に係る半導体装置の製造方法において、Si基板および中間層を貫通する貫通ビアを形成する工程を説明するための図である。 図9Gは、実施の形態2に係る半導体装置の製造方法において、貫通ビアに導体を形成する工程を説明するための図である。 図9Hは、実施の形態2に係る半導体装置の製造方法において、Si基板に裏面電極を形成する工程を説明するための図である。 図10は、特許文献1に開示された窒化物半導体装置の断面図である。 図11は、特許文献2に開示された窒化物半導体装置の断面図である。 図12は、比較例の窒化物半導体装置の断面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態、並びに、ステップ(工程)およびステップの順序などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行または垂直などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書において、半導体装置の構成における「上方」や「上」および「下方」や「下」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構造における積層順をもとに相対的な位置関係により規定される用語である。
 また、本明細書および図面において、X軸、Y軸およびZ軸は、三次元直交座標系の三軸を示している。具体的には、本明細書では、半導体装置が有する基板が含む主面に平行な二軸をX軸およびY軸とし、この主面に直交する方向をZ軸方向としている。より具体的には、ソース電極、ゲート電極およびドレイン電極がこの順で並ぶ方向、すなわち、いわゆるゲート長方向をX軸方向としている。また、本明細書において「平面視」とは、特に断りのない限り、半導体装置が有する基板の主面(上面)をZ軸方向から見たときのことをいう。
 また、本明細書において、III族窒化物半導体とは、1種類以上のIII族元素と窒素とを含む半導体である。III族元素は、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などである。III族窒化物半導体の例としては、GaN、AlN、InN、AlGaN、InGaN、AlInGaNなどである。III族窒化物半導体には、シリコン(Si)、リン(P)などのIII族以外の元素が1種類以上含まれていてもよい。なお、以下の説明において、特に断り無く、III族窒化物半導体をAlInGaNと表記した場合には、III族窒化物半導体は、Al、In、GaおよびNのいずれも含んでいることを意味する。AlGaN、GaN等の他の表記についても同様である。
 また、III族窒化物半導体からなる層、および、III族窒化物半導体によって構成される層とは、当該層が実質的にIII族窒化物半導体のみを含んでいることを意味する。ただし、当該層には、例えば製造上混入を避けられない元素など他の元素が不純物として、1at%以下の割合で含まれていてもよい。
 (実施の形態1)
 まず、実施の形態1に係る半導体装置1について、図1および図2を用いて説明する。図1は、実施の形態1に係る半導体装置1の平面図である。図2は、図1のII-II線における実施の形態1に係る半導体装置1の断面図である。なお、図1では、ソース電極201、ドレイン電極202およびゲート電極203の位置を分かりやすくするため、便宜上、ハッチングを施している。
 半導体装置1は、III族窒化物半導体を用いて形成された窒化物半導体装置である。本実施の形態では、半導体装置1が高電子移動度トランジスタ(High Electron Mobility TranSistor:HEMT)である場合について説明する。
 図1および図2に示すように、半導体装置1は、Si基板(シリコン基板)101と、SiC層(シリコンカーバイド層)102と、窒化物半導体層103と、中間層105と、金属層106と、ソース電極201と、ドレイン電極202と、ゲート電極203と、金属拡散防止膜302と、導体303と、裏面電極304とを備える。
 Si基板101は、例えば、主面が(111)面であるSiからなる基板である。Si基板101の抵抗率は、一例として1kΩ以上20Ω以下であるが、これに限らない。また、Si基板101におけるドーパントの種類は、P型であってもよいし、N型であってもよい。また、Si基板101として、抵抗率やドーパントを複数組み合わせたものを用いてもよい。
 また、本実施の形態において、Si基板101は、基板そのものがSiからなる基板であるが、これに限らない。例えば、Si基板101は、基板種がサファイヤ基板、GaN基板またはAlN基板からなる基板の上にシリコンが形成されたものであってもよい。
 SiC層102は、Si基板101の上方に設けられている。本実施の形態において、SiC層102は、Si基板101の第1主面(オモテ面)に設けられている。SiC層102は、例えば、3C-SiCからなるエピタキシャル層である。「3C-SiC」において、「C」は立方晶であることを示しており、また、「3」の数字は、積層方向の一周期中に含まれる正四面体構造層の数を示している。SiC層102の層厚は、一例として5nm以上5000nm以下であるが、これに限らない。本実施の形態において、SiC層102の層厚は、2000nm(2μm)である。
 窒化物半導体層103は、SiC層102の上方に設けられている。本実施の形態において、窒化物半導体層103は、SiC層102の上に直接設けられている。窒化物半導体層103は、III族窒化物半導体からなる半導体層である。具体的には、窒化物半導体層103は、各々がIII族窒化物半導体によって構成された複数の半導体層の積層体である。窒化物半導体層103は、III族窒化物半導体からなる活性層を含んでいる。また、窒化物半導体層103は、層内にトランジスタのキャリアとなる二次元電子ガス層を含む。二次元電子ガスは、活性層のヘテロ界面に発生する。なお、トランジスタのキャリアは、イオン注入またはエピ層形成条件によるドーピングによって形成されてもよい。
 窒化物半導体層103の層厚は、例えば、100nm以上15000nm以下であるが、これに限らない。本実施の形態において、窒化物半導体層103の層厚は、5000nm(5μm)である。
 窒化物半導体層103の上方には、ソース電極201とドレイン電極202が設けられている。本実施の形態において、ソース電極201とドレイン電極202は、窒化物半導体層103の表面上に間隔をあけて設けられている。ソース電極201とドレイン電極202とは、X軸方向において対向している。ソース電極201は、窒化物半導体層103におけるソース領域201Sの上に設けられている。
 ソース電極201とドレイン電極202は、金属材料によって構成された金属層である。具体的には、ソース電極201およびドレイン電極202は、Ti、Al、Ni、Au、Ta、W、Pd、Cu等の金属の中から選ばれる少なくとも1つを含む金属単体または金属合金によって構成されている。本実施の形態において、ソース電極201とドレイン電極202は、Ti層とAl層とが順に積層された積層体である。なお、ソース電極201およびドレイン電極202は、金属層の積層体ではなく、金属層の単層であってもよい。
 また、ソース電極201およびドレイン電極202のそれぞれは、二次元電子ガス層と電気的に接続されている。具体的には、ソース電極201およびドレイン電極202は、二次元電子ガス層とオーミック接続されている。
 ゲート電極203は、窒化物半導体層103の上方に設けられている。本実施の形態において、ゲート電極203は、ソース電極201およびドレイン電極202と同様に、窒化物半導体層103の表面上に設けられている。つまり、ゲート電極203は、窒化物半導体層103に接触している。また、ゲート電極203は、ソース電極201とドレイン電極202との間に設けられている。
 ゲート電極203は、Ti、TiN、Ta、TaN、W、Ni、Pd、Au、Al、Cu等の金属の中から選ばれる少なくとも1つを含む金属単体または金属合金によって構成されている。本実施の形態において、ゲート電極203は、Ni層とAu層とが順に積層された積層体である。なお、ゲート電極203は、金属層の積層体ではなく、金属層の単層であってもよい。
 ゲート電極203は、窒化物半導体層103内に形成されたキャリアに対して、ゲート電極203に印加される電圧もしくは電流によって、ソース電極201とドレイン電極202との間(ソースドレイン間)に流れる電流を制御する機能を有する。ゲート電極203は、半導体装置1がショットキー接合型となるように構成されていてもよいし、半導体装置1がゲート電極203と窒化物半導体層103との間に絶縁層が設けられたいわゆるMIS(Metal-Insulator-Semiconductor)構造でノーマリオンの構造となるように構成されていてもよい。なお、半導体装置1は、ゲート電極203と窒化物半導体層103との間にP型の窒化物半導体層などが設けられたノーマリオフの構造であってもよい。
 SiC層102には、開口部104が設けられている。開口部104は、少なくともSiC層102を開口している。本実施の形態において、開口部104は、SiC層102および窒化物半導体層103を開口している。つまり、開口部104は、SiC層102および窒化物半導体層103を貫通しており、Si基板101の表面の一部を露出させている。
 開口部104は、ソース電極201が形成されるソース領域201Sの一部に設けられている。開口部104とゲート電極203側のソース電極201の端部との距離は、500nm以上であるとよい。このようにすることで、ゲート電極203とソース電極201との間の窒化物半導体層103の結晶性が低下することを抑制できる。
 本実施の形態において、開口部104は、ソース領域201Sの一部に設けているが、これに限らない。例えば、開口部104は、ドレイン電極202またはゲート電極203が形成される領域に設けられていてもよいし、トランジスタが形成される活性領域以外に設けられていてもよい。
 なお、開口部104内におけるSiC層102の側面と窒化物半導体層103の側面とは面一になっているが、これに限らない。例えば、開口部104内において、窒化物半導体層103の側面は、SiC層102の側面から開口部104側とは反対側に向かって後退していてもよいし、SiC層102の側面よりも開口部104の内側に向かって飛び出していてもよい。また、開口部104の開口幅は、Z軸方向において一定であってもよいし、Z軸方向において異なっていてもよい。この場合、開口部104の開口幅は、開口部104の上面から下面に向かって連続的に小さくなってもよいし不連続に小さくなっていてもよい。
 開口部104には、中間層105が設けられている。中間層105は、開口部104により露出したSi基板101上と金属層106との間に設けられている。具体的には、中間層105は、開口部104内におけるSi基板101の上面と金属層106の下面との間であって、開口部104内におけるSiC層102の側面(開口部104の内側面)と導体303の側面との間に設けられている。本実施の形態において、中間層105は、開口部104内における窒化物半導体層103の側面と金属層106との間にも設けられている。また、中間層105の上面と窒化物半導体層103の上面とは、実質的に面一になっているが、これに限らない。
 上面視において、中間層105(開口部104)は、貫通ビア301を囲むように設けられている。つまり、中間層105(開口部104)は、貫通ビア301に埋め込まれた導体303および金属拡散防止膜302を囲むように設けられている。したがって、中間層105(開口部104)は、導体303(貫通ビア301)とSiC層102との間に設けられている。つまり、中間層105は、導体303とSiC層102との間に介在する介在層である。
 中間層105は、金属窒化物層またはシリコン酸化物層である。中間層105は、Si基板101とSiC層102とを貫通する貫通ビア301をエッチングにより形成する際にSiCとSiとのエッチングレート差によって生じる不具合を緩和させる緩衝層として機能する。例えば、フッ素系ガスまたは塩素系ガスを用いたドライエッチングによってSi基板101とSiC層102とをエッチングする場合、フッ素系ガスに対するエッチング速度は、Si>SiO≫SiC>GaNであり、塩素系ガスに対するエッチング速度は、Si=GaN≫SiCである。このため、中間層105を構成する材料としては、エッチング速度がSiCのエッチング速度よりも速いものを用いるとよい。具体的には、中間層105を構成する材料のエッチング速度は、SiCのエッチング速度よりも速く、Siのエッチング速度よりも遅いものを用いるとよい。
 一例として、中間層105を構成する材料は、GaN、AlN、TiN、TaN、WN、InN、SiN等の金属窒化物、または、SiO、BPSG(ボロン(B)とリン(P)とを含むSiO)等のシリコン酸化物である。中間層105は、これらの中から選ばれるいずれか1つの単層または複数層である。本実施の形態において、中間層105は、シリコン窒化層(SiN層)である。
 なお、エッチング条件にもよるが、GaN、AlN、TiN、SiN、SiOとSiとのエッチング速度の関係は、GaN=Si、AlN=Si、TiN>Si、SiN>Si、SiO>Siとすることが可能である(等号、不等号は、エッチング速度の大小関係を表している)。また、これらの材料についてのビッカース硬さは、GaNが15GPaであり、AlNが9.8~10.4GPaであり、TiNが10.8GPaであり、SiNが14GPaであり、SiOが9.7GPaである。なお、Siのビッカース硬さは9.8~10.6GPaであり、SiCのビッカース硬さは23GPaである。したがって、中間層105のビッカース硬さは、Si基板101の最小のビッカース硬さである9.8GPa以上で、SiC層102のビッカース硬さである23GPa未満であるとよい。
 また、本実施の形態において、中間層105は、Si基板101にも金属層106にも接触しているが、これに限らない。つまり、中間層105とSi基板101とは接触していなくてもよいし、中間層105と金属層106とは接触していなくてもよい。例えば、Si基板101と中間層105との間に、金属窒化物およびシリコン酸化物以外の材料からなる層が介在していてもよい。具体的には、Si基板101と中間層105との間には、Si基板101のエッチング速度と同等のエッチング速度を有する材料、もしくはSi基板101のエッチング速度と中間層105のエッチング速度との間のエッチング速度を有する材料からなる層が介在していてもよい。また、中間層105と金属層106の間には、中間層105のエッチング速度と同等のエッチング速度を有する材料、もしくは中間層105のエッチング速度と金属層106のエッチング速度との間のエッチング速度を有する材料からなる層が介在していてもよい。
 中間層105の層厚は、例えば、100nm以上15000nm以下である。ただし、中間層105の層厚は、これに限るものではない。本実施の形態において、中間層105の厚さは、500nmである。
 金属層106は、開口部104の上方に設けられている。また、金属層106は、中間層105の少なくとも一部を覆っている。本実施の形態において、金属層106は、中間層105だけではなくソース電極201の一部も覆うように設けられている。また、開口部104の上方に位置する金属層106は、導体303も覆っている。具体的には、金属層106は、導体303の上面と中間層105の底面および側面とソース電極201の一部とを覆っている。また、導体303を覆う金属層106は、貫通ビア301を覆っている。本実施の形態において、金属層106は、貫通ビア301の全体を覆っている。具体的には、金属層106は、貫通ビア301の開口からはみ出すように設けられている。
 金属層106は、Si基板101に設けられる貫通ビア301のエッチングを停止させるためのエッチングストッパー層として機能する。金属層106は、例えば、Cu、Au、Pt、Ni、Moの中から選ばれる少なくとも1つを含む金属単体または金属合金で構成されている。また、金属層106は、W、Ti、Ta等の高融点金属からなる金属単体または金属合金で構成されていてもよい。これにより、金属層106と導体303とが混晶することを抑制することができる。また、金属層106は、W、Ti、またはTaとで構成された金属窒化物で構成されていてもよい。本実施の形態において、金属層106は、厚さが300nmの窒化チタン層(TiN層)である。なお、金属層106は、単層および複数層のいずれであってもよい。
 金属層106は、ソース電極201に電気的に接続されている。金属層106とソース電極201とは、直接接触することで電気的に接続されていてもよいし、配線層(不図示)等の導電体を介して電気的に接続されていてもよい。なお、金属層106は、ソース電極201ではなく、ドレイン電極202またはゲート電極203と電気的に接続されていてもよい。
 半導体装置1には、中間層105およびSi基板101を貫通する貫通ビア301が設けられている。本実施の形態において、貫通ビア301は、ソース領域201Sに設けられている。貫通ビア301は、平面視において開口部104の内側に位置している。貫通ビア301は、貫通孔であり、金属層106が露出するように中間層105およびSi基板101を貫通している。したがって、貫通ビア301の上面は、金属層106の下面である。この場合、金属層106の最下面の幅は、貫通ビア301の最上面における開口幅より長くなっている。
 また、平面視において、貫通ビア301は、中間層105に囲まれている。本実施の形態において、貫通ビア301の開口形状は、円形である。本実施の形態において、貫通ビア301の内径(開口幅)は、貫通ビア301の下面から上面に向かって単調減少している。つまり、貫通ビア301の開口面積は、貫通ビア301の下面から上面に向かって連続的に減少している。このようにすることで、貫通ビア301の側面が、貫通ビア301の下面から上面に向かって順テーパ形状となるため、Si基板101の裏面から金属拡散防止膜302と導体303とを形成する際に、金属拡散防止膜302にボイドやクラックが発生したり導体303に形成不良が発生したりすることを防止できる。つまり、信頼性の高い貫通ビア301を半導体装置1に形成することができる。なお、貫通ビア301の内径は、貫通ビア301の下面から上面に向かって不連続に減少していてもよい。また、本実施の形態では貫通ビア301のSi基板101の側面と中間層105の側面とが面一となっているが、Si基板101の側面と中間層105の側面とが不連続になっていてもよい。
 貫通ビア301の側面を被覆するように金属拡散防止膜302が設けられている。金属拡散防止膜302は、Si基板101と導体303とが接触して金属が相互拡散しないように設けられた薄膜の層である。金属拡散防止膜302は、絶縁材料で構成された絶縁膜であるとよいが、導電材料で構成された導電膜であってもよい。金属拡散防止膜302は、Ti、Ta、TiN、TaN、WN、SiO、SiNの中から選ばれるいずれか1つの単層または複数層である。本実施の形態において、金属拡散防止膜302は、Ti層とTiN層とが順に積層された積層体である。なお、金属拡散防止膜302が導電材料で構成されている場合は、貫通ビア301の側面を被覆するだけではなく、貫通ビア301の上面も被覆していてもよい。
 貫通ビア301の内部には、導電材料からなる導体303が設けられている。具体的には、導体303は、内面が金属拡散防止膜302で被覆された貫通ビア301の内部に設けられている。導体303は、貫通ビア301を埋めるように形成された埋め込みビアである。
 本実施の形態において、導体303は、金属材料によって構成された金属層である。導体303は、Ti、Ta、Cu、Al、Au、Ni、Wの中から選ばれるいずれか1つの単層または複数層である。本実施の形態において、導体303は、Ti層とCu層とが順に積層された積層体、またはTi層とTiN層とTi層とCu層とが順に積層された積層体である。なお、貫通ビア301の内部全体を埋め尽くすように導体303が貫通ビア301に充填されていてもよいし、一部空洞を残すようにして導体303が貫通ビア301に充填されていてもよい。
 導体303は、裏面電極304および金属層106と電気的に接続されている。裏面電極304と金属層106とは、導体303を介して電気的に接続されている。本実施の形態では金属層106とソース電極201とが接続されているので、ソース電極201と裏面電極304とは、金属層106および導体303を介して電気的に接続されている。
 裏面電極304は、Si基板101の下方に設けられている。本実施の形態において、裏面電極304は、Si基板101の第1主面(オモテ面)と背向する第2主面(裏面)に設けられている。
 裏面電極304は、Si基板101の裏面を覆うベタパターン(実質的に隙間なく一様に連続する面状(すなわちベタ状)のパターン)の電極である。本実施の形態において、裏面電極304は、Si基板101の裏面の全面を覆っている。
 裏面電極304は、例えば、Ti、Al、W、Ta、Cu、Ni、Au、Sn、Ag等の金属の中から選ばれる少なくとも1つを含む金属単体または金属合金によって構成されている。また、裏面電極304は、単層構造であってもよいし、複数の金属層が積層された積層体であってもよい。本実施の形態において、裏面電極304は、Ti層とNi層とAu層とが順に積層された積層体である。なお、裏面電極304と導体303とは同じ材料で構成されていてもよい。
 裏面電極304は、電気的に接地されている。つまり、裏面電極304の電位は、接地電位である。上記のように、裏面電極304は、導体303および金属層106を介してソース電極201と電気的に接続されている。つまり、裏面電極304とソース電極201とは同電位である。なお、裏面電極304は、ソース電極201と電気的に接続されるのではなく、ドレイン電極202またはゲート電極203と電気的に接続されていてもよい。
 次に、実施の形態1に係る半導体装置1の製造方法について、図3A~図3Hを用いて説明する。図3A~図3Hは、実施の形態1に係る半導体装置1の製造方法の各工程を説明するための図である。
 まず、図3Aに示すように、Si基板101の上方にSiC層102を形成する。具体的には、Si基板101の表面上に、厚さ2μmの(111)面である3C-SiCをエピタキシャル成長させることでSiC層102を形成する。その後、SiC層102の上方に、III族窒化物半導体からなる窒化物半導体層103を形成する。具体的には、III族窒化物半導体からなる複数の半導体層の積層体をエピタキシャル成長させることで、厚さが5μmの窒化物半導体層103をSiC層102の表面上に形成する。なお、窒化物半導体層103の層内には、トランジスタのキャリアとなる二次元電子ガス層が形成されている。
 次に、図3Bに示すように、SiC層102を開口する開口部104を形成する。本実施の形態において、開口部104は、SiC層102および窒化物半導体層103を開口している。具体的には、まず、窒化物半導体層103の表面上にレジスト(不図示)を塗布した後にフォトリソグラフィー法およびエッチングによってレジストをパターニングすることで、開口部104が形成される領域以外にレジストマスクを形成する。その後、レジストマスクをマスクとしてドライエッチング法によって窒化物半導体層103とSiC層102とをエッチング除去することで、窒化物半導体層103とSiC層102を貫通する開口部104を形成してSi基板101を露出させる。その後、ドライエッチングにより付着したポリマーとレジストマスクとを除去する。
 次に、図3Cに示すように、開口部104に中間層105を形成する。具体的には、開口部104を覆うように窒化物半導体層103の上に厚さ500nmのシリコン窒化層をCVD(Chemical Vapor DepoSition)法により堆積した後、フォトリソグラフィー法およびドライエッチング法を用いて開口部104以外のシリコン窒化層を除去することで、開口部104の内部のシリコン窒化層のみを残す。これにより、開口部104の内面を覆うようにシリコン窒化層からなる中間層105を形成することができる。
 次に、図3Dに示すように、窒化物半導体層103の上方に、ソース電極201、ドレイン電極202およびゲート電極203を形成する。具体的には、窒化物半導体層103の表面上に、フォトレジストによりパターニングされたTi層とAl層とを蒸着法により順次積層し、リフトオフによるパターニングをした後、熱処理によって合金化処理を行うことで、窒化物半導体層103中の二次元電子ガスとオーミック接続されたソース電極201とドレイン電極202とを形成する。このとき、ソース電極201における貫通ビア301が形成される領域とその周囲にはソース電極201を形成しない。
 その後、フォトレジストによりパターニングされたNi層とAu層とを蒸着法によって順次積層し、リフトオフによりパターニングをした後、窒化物半導体層103中の二次元電子ガスとショットキー接続するゲート電極203を形成する。本実施の形態において、ゲート電極203は、ソース電極201とドレイン電極202との間に形成した。
 次に、図3Eに示すように、中間層105を覆うように開口部104の上方に金属層106を形成する。具体的には、厚さ200nmのTiN層をスパッタ法により堆積した後、リソグラフィー法とドライエッチング法を用いて、ソース領域201S以外のTiN層とソース電極201上の一部のTiN層とを除去することで、中間層105とソース電極201上の他の一部とを覆うように金属層106を形成する。
 次に、図3Fに示すように、金属層106をストッパーとして、Si基板101の下面側(裏面側)からSi基板101および中間層105を貫通する貫通ビア301を形成する。具体的には、Si基板101の下面側にフォトリソグラフィー法とエッチング法とを用いて、Si基板101と中間層105とを貫通するように除去することで、貫通ビア301を形成する。エッチング法としては、フッ素系ガスまたは塩素系ガスを用いたドライエッチングを用いることができる。
 このとき、本実施の形態では、硬くて難エッチング材料であるSiC層102と貫通ビア301との間には中間層105が存在しているので、SiC層102と貫通ビア301とが重なり合わない。つまり、貫通ビア301の周囲を囲むように中間層105が設けられており、ドライエッチングにより貫通ビア301を形成する際に、SiC層102がエッチングされず、Si基板101と中間層105とのみがエッチングされる。このため、貫通ビア301を形成する際にSi基板101にノッチングが発生することを抑制することができる。これにより、Si基板101とSiC層102とを貫通する貫通ビア301を容易に形成することができる。
 なお、貫通ビア301は、ボッシュプロセスを用いて形成してもよいし、非ボッシュプロセスを用いて形成してもよい。また、貫通ビア301は複数のエッチング条件で形成してもよいし、Si基板101に対して中間層105を選択的にエッチングしてもよい。この場合、Si基板101をフッ素系ガスを用いて選択的にエッチングし、中間層105が金属窒化物層である場合は塩素系ガスを用いて中間層105を選択的にエッチングすることができる。このときのエッチング条件の切り替えは、Si基板101の途中であってもよい。なお、貫通ビア301の側面のラフネスは300nm以下であるとよい。
 次に、図3Gに示すように、貫通ビア301の内部に導体303を形成する。本実施の形態では、Ti層とTiN層とTi層とCu層とを順にスパッタ法により堆積した後、メッキ法により貫通ビア301の内部をCu層で充填する。その後、Si基板101の裏面に堆積したTi層とTiN層とTi層とCu層とをCMP(Chemical Mecanical Polishing)によって除去する。これにより、Ti層とTiN層とTi層とCu層とからなる導体303を貫通ビア301の内部のみに形成することができる。
 次に、図3Hに示すように、Si基板101の下方に裏面電極304を形成する。具体的には、Si基板101の裏面にTi層とNi層とAu層とを蒸着法により順次堆積することで、Ti層とNi層とAu層との積層体である裏面電極304をSi基板101の裏面に形成することができる。これにより、裏面電極304と金属層106とが導体303を介して電気的に接続される。
 このように一連の工程を経ることで、図1および図2に示される構造の半導体装置1を完成させることができる。
 以上説明したように、本実施の形態に係る半導体装置1によれば、SiC層102を開口する開口部104に、金属窒化物層またはシリコン酸化物層である中間層105が設けられている。
 この構成により、Si基板101と窒化物半導体層103との間に硬くて難エッチング材料で構成されたSiC層102が設けられたHEMT構造にエッチングによって貫通ビア301を形成する場合であっても、Si基板101とSiC層102とを同時にエッチングすることなく貫通ビア301を形成することができる。つまり、SiC層102よりもエッチング速度が速い(つまり、SiC層102よりも硬い)中間層105を予めSiC層102に埋め込んでおいて、この中間層105とSi基板101とを同時にエッチングすることで貫通ビア301を形成している。これにより、上記の図12に示される窒化物半導体装置1ZのようにSiCとSiとのエッチングレート差によってSi基板101にサイドエッチングが生じるということを抑制することができる。つまり、ノッチングが生じることを抑制できる。
 このように、本実施の形態に係る半導体装置1によれば、ノッチングを発生させることなくSi基板101とSiC層102とを貫通する貫通ビア301を容易に設けることができる。したがって、ノッチングによって貫通ビア301の内部の導体303にボイドが発生したりノッチングの存在で金属拡散防止膜302のカバレッジが低下して導体303とSi基板101とが接触して金属の相互拡散が生じて高抵抗化したりすることを抑制することができる。この結果、信頼性が高い半導体装置1を得ることができる。
 なお、本実施の形態における半導体装置1では、ソース電極201がソース領域201Sに存在する金属層106と導体303とを介して接地された裏面電極304と電気的に接続されている。これにより、ソース電極201の接地をより強くすることができる。
 また、本実施の形態に係る半導体装置1において、中間層105のビッカース硬さは、Si基板101のビッカース硬さである9.8GPa以上で、SiC層102のビッカース硬さである23GPa未満であるとよい。
 このように、中間層105の硬さをSi基板101の硬さとSiC層102の硬さとの間の硬さにすることで、Si基板101と窒化物半導体層103との間にSiC層102が設けられた構造であっても、SiCとSiとのエッチングレート差によってSi基板101にサイドエッチングが生じることを効果的に抑制して貫通ビア301を容易に形成することができる。なお、Si基板101における基板の基板種によらずSi基板101の上に硬い層を設ける場合には、中間層105のビッカース硬さを、基板と硬い層との間のビッカース硬さにすることで貫通ビア301を容易に形成することができる。
 また、本実施の形態における半導体装置1において、貫通ビア301の内径は、貫通ビア301の下面から上面に向かって単調減少している。
 この構成により、貫通ビア301の側面が貫通ビア301の下面から上面に向かって順テーパ形状になるので、信頼性が高い貫通ビア301を形成することができる。
 また、本実施の形態における半導体装置1において、中間層105の上面と窒化物半導体層103の上面とは、実質的に面一である。
 この構成により、グローバル段差と呼ばれるウエハレベルでの表面の凹凸差を緩和することができる。
 また、本実施の形態における半導体装置1において、金属層106は、Cu、Au、Pt、Ni、Moの中から選ばれる少なくとも1つを含む。あるいは、金属層106は、W、Ti、Taの高融点金属の中から選ばれる少なくとも1つを含むものであってもよい。
 この構成により、金属層106と導体303との混晶を抑制することができる。
 また、本実施の形態における半導体装置1において、金属層106とソース電極201とは電気的に接続されている。
 この構成により、貫通ビア301内の導体303とソース電極201とが金属層106を介して電気的に接続される。つまり、ソースビアを実現することができる。
 また、本実施の形態における半導体装置1において、ソース電極201は、窒化物半導体層103におけるソース領域201Sの上に設けられており、貫通ビア301は、ソース領域201Sに設けられている。
 この構成により、ソース電極201の接地を強化することができる。
 また、本実施の形態における半導体装置1において、金属層106の最下面の幅は、貫通ビア301の最上面における開口幅より長くなっている。
 この構成により、エッチングにより貫通ビア301を形成する際に貫通ビア301が金属層106からはみ出してエッチングしなくてもよい部分までエッチングされてしまうことを防止できる。つまり、金属層106に対する貫通ビア301の踏み外しを抑制できる。
 (実施の形態1の変形例)
 次に、実施の形態1の変形例について説明する。まず、実施の形態1の変形例に係る半導体装置1Aの構成について、図4および図5を用いて説明する。図4は、実施の形態1の変形例に係る半導体装置1Aの平面図である。図5は、図4のV-V線における実施の形態1の変形例に係る半導体装置1Aの断面図である。なお、図4では、図1と同様に、ソース電極201、ドレイン電極202およびゲート電極203の位置を分かりやすくするため、便宜上、ハッチングを施している。
 本変形例に係る半導体装置1Aと上記実施の形態1に係る半導体装置1とは、開口部104と中間層105との構成が異なる。
 具体的には、上記実施の形態1では、開口部104は、SiC層102と窒化物半導体層103とを開口するように設けられていたが、本変形例では、開口部104は、SiC層102と窒化物半導体層103を開口するだけではなく、ソース電極201も開口するように設けられている。したがって、本変形例では、SiC層102の側面と窒化物半導体層103の側面とソース電極201の側面とは面一になっている。なお、本変形例においても、開口部104は、Si基板101を露出させるように設けられている。
 また、上記実施の形態1において、中間層105は、開口部104およびソース電極201のうち開口部104のみを覆うように設けられていたが、本変形例において、中間層105は、開口部104およびソース電極201の両方を覆うように設けられている。具体的には、本変形例における中間層105は、開口部104の底面および側面とソース電極201の一部とを覆うように設けられている。
 なお、本変形例においても、開口部104の上方に位置する金属層106は、導体303と中間層105とソース電極201の一部とを覆っている。この場合、金属層106は、ソース電極201の上部を覆う中間層105の上部も覆っている。
 次に、実施の形態1の変形例に係る半導体装置1Aの製造方法について、図6A~図6Hを用いて説明する。図6A~図6Hは、実施の形態1の変形例に係る半導体装置1Aの製造方法の各工程を説明するための図である。
 まず、図6Aに示すように、Si基板101の上方にSiC層102を形成し、SiC層102の上方に窒化物半導体層103を形成する。この工程は、上記実施の形態1における図3Aに示される工程と同様である。
 次に、図6Bに示すように、窒化物半導体層103の上方に、ソース電極201、ドレイン電極202およびゲート電極203を形成する。具体的には、まず、窒化物半導体層103の表面上に、フォトレジストによりパターニングされたTi層とAl層とを蒸着法により順次積層し、リフトオフによるパターニングをした後、熱処理によって合金化処理を行うことで、窒化物半導体層103中の二次元電子ガスとオーミック接続されたソース電極201とドレイン電極202とを形成する。
 その後、フォトレジストによりパターニングされたNi層とAu層とを蒸着法によって順次積層し、リフトオフによりパターニングをした後、窒化物半導体層103中の二次元電子ガスとショットキー接続するゲート電極203を形成する。本変形例においても、ゲート電極203は、ソース電極201とドレイン電極202との間に形成した。
 次に、図6Cに示すように、SiC層102および窒化物半導体層103を開口する開口部104を形成する。本変形例において、開口部104は、SiC層102および窒化物半導体層103を開口するにあたり、ソース電極201も開口している。具体的には、リソグラフィー法とドライエッチング法とを用いて、ソース電極201と窒化物半導体層103とSiC層102とをエッチング除去することで、SiC層102と窒化物半導体層103とソース電極201とを貫通する開口部104を形成してSi基板101を露出させる。
 このように、本変形例では、ソース電極201と窒化物半導体層103およびSiC層102とを一括で除去しているので、それぞれ別の工程に分けて除去する場合と比べて開口部104の幅を容易に大きくすることができる。したがって、金属層106の最下面の幅を容易に大きくすることができるため、金属層106に対する貫通ビア301の踏み外しのマージンを拡大できる。
 次に、図6Dに示すように、開口部104に中間層105を形成する。具体的には、開口部104を覆うように窒化物半導体層103の上に厚さ500nmのシリコン窒化層をCVD法により堆積した後、フォトリソグラフィー法およびドライエッチング法を用いて開口部104以外とソース電極201上の一部以外とのシリコン窒化層を除去することで、開口部104の内部のシリコン窒化層のみを残す。これにより、開口部104の内面とソース電極201上の一部とを覆うようにシリコン窒化層からなる中間層105を形成することができる。
 このようにして中間層105を形成することで、上記実施の形態1と比較して、窒化物半導体層103の表面と中間層105の表面との境界部に段差が発生することを抑制することができる。これにより、その段差によって窒化物半導体層103と中間層105との間にボイドが発生することを抑制できる。
 その後、図6Eに示すように、中間層105を覆うように開口部104の上方に金属層106を形成する。次に、図6Fに示すように、金属層106をストッパーとして、Si基板101の下面側(裏面側)からSi基板101および中間層105を貫通する貫通ビア301を形成する。次に、図6Gに示すように、貫通ビア301の内部に導体303を形成する。次に、図6Hに示すように、Si基板101の下方に裏面電極304を形成する。なお、図6E~図6Hに示される工程は、上記実施の形態1における図3E~図3Hの工程と同様にして行うことができる。
 このように一連の工程を経ることで、図4および図5に示される構造の半導体装置1Aを完成させることができる。
 以上のとおり、本変形例に係る半導体装置1Aは、上記実施の形態1に係る半導体装置1と同様の効果を奏する。例えば、本変形例に係る半導体装置1Aにおいても、SiC層102を開口する開口部104には、金属窒化物層またはシリコン酸化物層である中間層105が設けられている。これにより、ノッチングを発生させることなくSi基板101とSiC層102とを貫通する貫通ビア301を容易に設けることができる。
 (実施の形態2)
 次に、実施の形態2に係る半導体装置2について説明する。まず、実施の形態2に係る半導体装置2の構成について、図7および図8を用いて説明する。図7は、実施の形態2に係る半導体装置2の平面図である。図8は、図7のVIII-VIII線における実施の形態2に係る半導体装置2の断面図である。なお、図8では、図1と同様に、ソース電極201、ドレイン電極202およびゲート電極203の位置を分かりやすくするため、便宜上、ハッチングを施している。
 本実施の形態に係る半導体装置2と上記実施の形態1に係る半導体装置1とは、開口部104と中間層105の構成が異なる。
 具体的には、上記実施の形態1では、開口部104は、SiC層102と窒化物半導体層103とを開口するように設けられていたが、本実施の形態では、開口部104は、窒化物半導体層103を開口しておらず、SiC層102のみを開口している。なお、本実施の形態でも、開口部104は、Si基板101を露出させるように設けられている。
 また、上記実施の形態1において、中間層105は、開口部104の内面に沿って形成されていたが、本実施の形態において、中間層105は、開口部104を埋めるようにして形成されている。したがって、中間層105の上面と窒化物半導体層103の上面とは面一になっている。また、本実施の形態において、中間層105は、III族窒化物半導体によって構成されている。つまり、本実施の形態では、中間層105と窒化物半導体層103とは、いずれもIII族窒化物半導体によって構成されている。具体的には、中間層105は、窒化物半導体層103と同一の構造であり、III族窒化物半導体からなる複数の半導体層の積層体である。これにより、中間層105と窒化物半導体層103とを同じ工程で同時に形成することができる。なお、窒化物半導体層103に、フッ素(F)またはフッ化ホウ素(BF)を不純物注入することで、窒化物半導体層103中の二次元電子ガスを不活性化してもよい。
 また、開口部104を埋め込むように中間層105を設けることで、実施の形態1における開口部104と比べてグローバル段差を緩和することができる。すなわち、ソース領域201S上に配線層を容易に形成することができる。
 なお、本実施の形態においても、金属層106は、開口部104の上方に位置しており、また、導体303と中間層105とソース電極201の一部とを覆っている。
 次に、実施の形態2に係る半導体装置2の製造方法について、図9A~図9Hを用いて説明する。図9A~図9Hは、実施の形態2に係る半導体装置2の製造方法の各工程を説明するための図である。
 まず、図9Aに示すように、Si基板101の上方にSiC層102を形成する。具体的には、Si基板101の表面上に、厚さ2μmの(111)面である3C-SiCをエピタキシャル成長させることでSiC層102を形成する。
 次に、図9Bに示すように、SiC層102を開口する開口部104を形成する。具体的には、リソグラフィー法とドライエッチング法とを用いて、SiC層102をエッチング除去することで、SiC層102を貫通する開口部104を形成してSi基板101を露出させる。
 次に、図9Cに示すように、開口部104に中間層105を形成するとともに、SiC層102の上方に窒化物半導体層103を形成する。具体的には、SiC層102の表面上と開口部104により露出したSi基板101の表面上とに、III族窒化物半導体からなる複数の半導体層の積層体をエピタキシャル成長させることで、厚さが5μmの窒化物半導体層SCを形成する。このとき、開口部104を埋めるように形成された窒化物半導体層SCは、SiC層102上に形成された窒化物半導体層SCと比べて結晶性が低い。このため、SiC層102上の窒化物半導体層SCは、高い結晶性を有するIII族窒化物半導体からなる窒化物半導体層103となり、開口部104内の窒化物半導体層SCは、結晶性が低くて転位が多いIII族窒化物半導体からなる中間層105となる。つまり、本実施の形態において、窒化物半導体層103および中間層105は、いずれもIII族窒化物半導体によって構成されているが、結晶性が異なっている。なお、窒化物半導体層103の層内には、トランジスタのキャリアとなる二次元電子ガス層が形成されている。
 次に、図9Dに示すように、窒化物半導体層103の上方に、ソース電極201、ドレイン電極202およびゲート電極203を形成する。具体的には、窒化物半導体層103の表面上に、フォトレジストによりパターニングされたTi層とAl層とを蒸着法により順次積層し、リフトオフによるパターニングをした後、熱処理によって合金化処理を行うことで、窒化物半導体層103中の二次元電子ガスとオーミック接続されたソース電極201とドレイン電極202とを形成する。
 その後、フォトレジストによりパターニングされたNi層とAu層とを蒸着法によって順次積層し、リフトオフによりパターニングをした後、窒化物半導体層103中の二次元電子ガスとショットキー接続するゲート電極203を形成する。本実施の形態においても、ゲート電極203は、ソース電極201とドレイン電極202との間に形成した。
 なお、ソース電極201は、平面視において開口部104の上方を跨ぐように形成されていてもよい。このようにすることで、中間層105と窒化物半導体層103との境界部にピットが形成されるため、ソース電極201と二次元電子ガス層とのコンタクト抵抗を低減することができる。
 その後、図9Eに示すように、中間層105を覆うように開口部104の上方に金属層106を形成する。次に、図9Fに示すように、金属層106をストッパーとして、Si基板101の下面側(裏面側)からSi基板101および中間層105を貫通する貫通ビア301を形成する。次に、図9Gに示すように、貫通ビア301の内部に導体303を形成する。次に、図9Hに示すように、Si基板101の下方に裏面電極304を形成する。なお、図9E~図9Hに示される工程は、上記実施の形態1における図3E~図3Hの工程と同様にして行うことができる。
 このように一連の工程を経ることで、図7および図8に示される構造の半導体装置2を完成させることができる。
 以上のとおり、本実施の形態に係る半導体装置2は、上記実施の形態1に係る半導体装置1と同様の効果を奏する。例えば、本実施の形態に係る半導体装置2においても、SiC層102を開口する開口部104には、金属窒化物層またはシリコン酸化物層である中間層105が設けられている。これにより、ノッチングを発生させることなくSi基板101とSiC層102とを貫通する貫通ビア301を容易に設けることができる。
 また、本実施の形態に係る半導体装置2において、中間層105は、窒化物半導体層103と同様に、III族窒化物半導体によって構成されている。
 この構成により、中間層105と窒化物半導体層103とを同時に形成することができる。これにより、低コストで中間層105を有する半導体装置2を作製することができる。
 (その他の変形例)
 以上、本開示に係る半導体装置について、実施の形態1、2に基づいて説明したが、本開示は、上記の実施の形態1、2に限定されるものではない。
 例えば、上記実施の形態1、2に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態1、2における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。また、本願出願時の請求の範囲に記載された複数の請求項の中から技術的に矛盾しない範囲で2つ以上の請求項を任意に組み合わせたものも本開示に含まれる。例えば、本願出願時の請求の範囲に記載された引用形式請求項を、技術的に矛盾しない範囲で上位請求項の全てを引用するようにマルチクレームまたはマルチマルチクレームとしたときに、そのマルチクレームまたはマルチマルチクレームに含まれる全ての請求項の組み合わせも本開示に含まれる。
 本開示に係る半導体装置は、高速動作が要求される通信機器やインバータ、および、電源回路等に用いられるパワースイッチング素子等に有用である。
 1、1A、2 半導体装置
 1X、1Y、1Z 窒化物半導体装置
 101 Si基板
 101X 誘電体層
 102 SiC層
 103、SC 窒化物半導体層
 104 開口部
 105 中間層
 106 金属層
 107X 誘電体基板
 201 ソース電極
 201S ソース領域
 202 ドレイン電極
 202D ドレイン領域
 203 ゲート電極
 301 貫通ビア
 302 金属拡散防止膜
 303 導体
 304 裏面電極
 305 金属層
 400 ノッチング

Claims (13)

  1.  Si基板と、
     前記Si基板の下方に設けられた裏面電極と、
     前記Si基板の上方に設けられたSiC層と、
     前記SiC層の上方に設けられ、III族窒化物半導体からなる半導体層と、
     前記半導体層の上方に設けられたソース電極およびドレイン電極と、
     前記半導体層に接触するゲート電極と、
     少なくとも前記SiC層を開口する開口部に設けられた中間層と、
     前記開口部の上方に設けられた金属層と、
     前記中間層および前記Si基板を貫通する貫通ビアの内部に設けられ、前記裏面電極および前記金属層と電気的に接続された導体と、を備え、
     前記金属層は、前記貫通ビアを覆っており、
     前記中間層は、前記SiC層と前記導体との間に設けられており、
     前記中間層は、金属窒化物層またはシリコン酸化物層である、
     半導体装置。
  2.  前記中間層のビッカース硬さは、9.8GPa以上23GPa未満である、
     請求項1に記載の半導体装置。
  3.  Si基板と、
     前記Si基板の下方に設けられた裏面電極と、
     前記Si基板の上方に設けられたSiC層と、
     前記SiC層の上方に設けられ、III族窒化物半導体からなる半導体層と、
     前記半導体層の上方に設けられたソース電極およびドレイン電極と、
     前記半導体層に接触するゲート電極と、
     少なくとも前記SiC層を開口する開口部に設けられた中間層と、
     前記開口部の上方に設けられた金属層と、
     前記中間層および前記Si基板を貫通する貫通ビアの内部に設けられ、前記裏面電極および前記金属層と電気的に接続された導体と、を備え、
     前記金属層は、前記貫通ビアを覆っており、
     前記中間層は、前記SiC層と前記導体との間に設けられており、
     前記中間層のビッカース硬さは、9.8GPa以上23GPa未満である、
     半導体装置。
  4.  前記貫通ビアの内径は、前記貫通ビアの下面から上面に向かって単調減少している、
     請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記中間層は、III族窒化物半導体によって構成されている、
     請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記中間層の上面と前記半導体層の上面とは、実質的に面一である、
     請求項5に記載の半導体装置。
  7.  前記金属層は、Cu、Au、Pt、Ni、Moの中から選ばれる少なくとも1つを含む、
     請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記金属層は、W、Ti、Taの中から選ばれる少なくとも1つを含む、
     請求項1~6のいずれか1項に記載の半導体装置。
  9.  前記金属層と前記ソース電極とは電気的に接続されている、
     請求項1~8のいずれか1項に記載の半導体装置。
  10.  前記ソース電極は、前記半導体層におけるソース領域の上に設けられており、
     前記貫通ビアは、前記ソース領域に設けられている、
     請求項1~9のいずれか1項に記載の半導体装置。
  11.  前記金属層の最下面の幅は、前記貫通ビアの最上面における開口幅より長い、
     請求項1~10のいずれか1項に記載の半導体装置。
  12.  さらに、前記貫通ビアの側面を被覆する金属拡散防止膜を備える、
     請求項1~11のいずれか1項に記載の半導体装置。
  13.  Si基板の上方にSiC層を形成し、
     前記SiC層の上方に、III族窒化物半導体からなる半導体層を形成し、
     前記SiC層を開口する開口部を形成し、
     前記開口部に中間層を形成し、
     前記半導体層の上方に、ソース電極、ドレイン電極およびゲート電極を形成し、
     前記中間層の少なくとも一部を覆うように前記開口部の上方に金属層を形成し、
     前記金属層をストッパーとして、前記Si基板の下面側から前記Si基板および前記中間層を貫通する貫通ビアを形成し、
     前記貫通ビアの内部に導体を形成し、
     前記Si基板の下方に裏面電極を形成し、
     前記裏面電極と前記金属層とは前記導体を介して電気的に接続されており、
     前記中間層は、前記SiC層と前記導体との間に設けられており、
     前記中間層は、金属窒化物層またはシリコン酸化物層である、
     半導体装置の製造方法。
PCT/JP2023/027335 2022-07-27 2023-07-26 半導体装置および半導体装置の製造方法 WO2024024822A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263392691P 2022-07-27 2022-07-27
US63/392,691 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024024822A1 true WO2024024822A1 (ja) 2024-02-01

Family

ID=89706485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027335 WO2024024822A1 (ja) 2022-07-27 2023-07-26 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024024822A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226871A (ja) * 2007-03-08 2008-09-25 Nec Corp 半導体装置及びその製造方法
JP2009076694A (ja) * 2007-09-20 2009-04-09 Panasonic Corp 窒化物半導体装置およびその製造方法
JP2013243275A (ja) * 2012-05-22 2013-12-05 Pawdec:Kk GaN系半導体素子およびその製造方法
JP2015070252A (ja) * 2013-10-01 2015-04-13 富士通株式会社 半導体装置、半導体装置の製造方法及びウェハ
JP2020072216A (ja) * 2018-11-01 2020-05-07 エア・ウォーター株式会社 化合物半導体装置、化合物半導体基板、および化合物半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226871A (ja) * 2007-03-08 2008-09-25 Nec Corp 半導体装置及びその製造方法
JP2009076694A (ja) * 2007-09-20 2009-04-09 Panasonic Corp 窒化物半導体装置およびその製造方法
JP2013243275A (ja) * 2012-05-22 2013-12-05 Pawdec:Kk GaN系半導体素子およびその製造方法
JP2015070252A (ja) * 2013-10-01 2015-04-13 富士通株式会社 半導体装置、半導体装置の製造方法及びウェハ
JP2020072216A (ja) * 2018-11-01 2020-05-07 エア・ウォーター株式会社 化合物半導体装置、化合物半導体基板、および化合物半導体装置の製造方法

Similar Documents

Publication Publication Date Title
TWI663698B (zh) 半導體裝置
US9768257B2 (en) Semiconductor device
TW201633532A (zh) 半導體裝置及半導體裝置之製造方法
US10971579B2 (en) Semiconductor device and fabrication method thereof
CN114127955B (zh) 半导体装置及其制造方法
US20220376041A1 (en) Semiconductor device and method for manufacturing the same
US20220384423A1 (en) Nitride-based semiconductor bidirectional switching device and method for manufacturing the same
US11862721B2 (en) HEMT semiconductor device with a stepped sidewall
CN114127954B (zh) 半导体装置及其制造方法
WO2023082058A1 (en) Nitride-based semiconductor device and method for manufacturing thereof
WO2023141749A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
WO2023102744A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2023035103A1 (en) Semiconductor device and method for manufacturing the same
WO2024024822A1 (ja) 半導体装置および半導体装置の製造方法
US20220376042A1 (en) Semiconductor device and method for manufacturing the same
US20240030327A1 (en) Semiconductor device and method for manufacturing the same
CN111613666B (zh) 半导体组件及其制造方法
TW202414543A (zh) 半導體裝置及半導體裝置之製造方法
CN113906571B (zh) 半导体器件及其制造方法
WO2024016216A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2023197251A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2024026597A1 (en) Nitride-based semiconductordevice and method for manufacturing the same
WO2024026738A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2024087005A1 (en) Nitride-based semiconductor device and method for manufacturing the same
JP2023133798A (ja) 窒化物半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846552

Country of ref document: EP

Kind code of ref document: A1