WO2021065266A1 - 流体機械装置 - Google Patents

流体機械装置 Download PDF

Info

Publication number
WO2021065266A1
WO2021065266A1 PCT/JP2020/032420 JP2020032420W WO2021065266A1 WO 2021065266 A1 WO2021065266 A1 WO 2021065266A1 JP 2020032420 W JP2020032420 W JP 2020032420W WO 2021065266 A1 WO2021065266 A1 WO 2021065266A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
mechanical device
fluid machine
machine
Prior art date
Application number
PCT/JP2020/032420
Other languages
English (en)
French (fr)
Inventor
山本 明弘
兼本 喜之
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US17/626,031 priority Critical patent/US20220252065A1/en
Priority to CN202080051025.8A priority patent/CN114127422B/zh
Priority to EP20871851.0A priority patent/EP4039978A4/en
Publication of WO2021065266A1 publication Critical patent/WO2021065266A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0801Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/02Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/07Electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics

Definitions

  • the present invention relates to a fluid mechanical device.
  • Gas compressors that generate compressed gas used as power sources in manufacturing lines and as air sources for machine tools, presses, air blowers, etc. are known.
  • the gas compressor includes a compressor body that compresses the gas in a compression chamber composed of a casing, and the compressed gas is discharged from a discharge port to a gas tank via a discharge pipe.
  • Patent Document 1 The technology of Patent Document 1 is known for gas compressors. Patent Document 1 can protect parts from failure, deterioration, etc. due to high temperature, extend the life of parts, and improve durability by performing no-load operation when the temperature of the compressor body exceeds the upper limit temperature. ..
  • the compressor described in Patent Document 1 performs no-load operation when a high temperature in the package is detected. No-load operation is described as an operating state in which compression operation is not performed (see paragraph number 0041).
  • Patent Document 1 When the amount of air used increases and the pressure decreases, the technology of Patent Document 1 performs no-load operation, so that the pressure cannot be increased until the temperature of the compressor decreases.
  • a multi-compressor equipped with a plurality of compressor bodies is a fluid mechanical device that generates the required compressed air by increasing or decreasing the number of compressor bodies to be operated according to the amount of compressed air used by the user.
  • a fluid mechanical device when an abnormality occurs in one compressor body, the compressor body can be protected by performing no-load operation of the compressor body in which the abnormality occurs as in Patent Document 1. it can.
  • An object of the present invention is to provide a fluid mechanical device capable of supplying necessary compressed air while protecting a fluid machine.
  • a plurality of fluid machines for discharging a fluid for discharging a fluid
  • a wear state detection unit for detecting the wear state of the fluid machine
  • a pressure detection unit for detecting the pressure from the fluid machine
  • It has a control unit that controls the fluid machine, The control unit Determine if there is a depleted fluid machine It is a fluid machine device that controls to start the operation of the fluid machine that is not consumed when the pressure is insufficient.
  • FIG. This is the internal structure of the fluid mechanical device of the first embodiment. It is a conceptual diagram of the operation which stops a fluid machine by the estimated arrival time to stop pressure. It is a conceptual diagram of the operation at the time of a normal operation in Example 1 and at the time of the wear detection of one compressor. It is a schematic diagram of the pressure transition when the estimated arrival time to the stop pressure is lengthened. It is a conceptual diagram of the structure of the fluid machine in Example 1. FIG. It is a conceptual diagram of the operation which stops a fluid machine by lowering a stop pressure. The figure which shows the flow of the stop judgment of a pressure machine main body when the wear of a compressor main body is not judged.
  • a fluid machine equipped with a plurality of scroll compressor bodies (fluid machines) in which a compression chamber is formed between a fixed scroll and a swirl scroll and air is compressed by a swirl motion.
  • the device will be described as an example.
  • FIG. 1 is a cross-sectional view of the compressor body according to the first embodiment.
  • this compressor transmits power from a motor composed of a stator 101 and a rotor 102 to a scroll compressor composed of a swivel scroll 104 and a fixed scroll 105 via a shaft 103. ..
  • the air compressed by the scroll compressor passes through a pipe from the discharge port 109 and passes through a fluid mechanical device such as an aftercooler.
  • the rotation speed of the motor changes depending on the frequency of the voltage output from the inverter 107.
  • Power is transmitted from the shaft 103 to the cooling fan 106, and the generated cooling air is sent to the cooling fins of the swivel scroll 104 and the fixed scroll 105 via a duct (not shown) to cool the compressor.
  • the temperature sensor 108 is arranged at the tip of the cooling fin of the fixed scroll 105.
  • the temperature sensor 108 serves as a wear state detection unit that detects the wear state of the compressor using the measured temperature.
  • the tip seals arranged at their tips are worn.
  • the temperature of the swivel scroll 104 or the fixed scroll 105 rises, which can be used as an example of determining whether the compressor body is consumed by the temperature.
  • FIG. 2 shows a perspective view of a package-type fluid machine device equipped with a plurality of scroll-type compressor bodies as an example of the fluid machine device 200.
  • a plurality of scroll compressor bodies 201, 202, and 203 (three in this case) are housed in one package, and the number of operating compressor bodies is changed according to the amount of air used to respond to changes in the amount of air.
  • FIG. 6 is an overall conceptual diagram of the fluid mechanical device 200 of the first embodiment.
  • a packaged gas compressor will be described as an example.
  • the packaged gas compressor is equipped with a motor that is a drive unit that drives the compressor body, and a single or multiple compressor bodies, a control circuit, an operation panel, etc. are integrated into a package to save space. It is a compressor.
  • the electrical wiring 9 is connected to the inverters 2a, 2b, 2c and the dryer 14 for controlling the main body of each compressor from the terminal 10 that takes in power from the outside.
  • each motor 3a, 3b, 3c is connected from each inverter or switch 2a, 2b, 2c.
  • the compression units 4a, 4b, and 4c are driven by the motors 3a, 3b, and 3c.
  • the air 1 to be compressed is supplied through the filters 5a, 5b, 5c, and presses the compression portions 4a, 4b, 4c, the check valves 6a, 6b, 6c, the first aftercoolers 7a, 7b, 7c, and the rubber hoses 8a, 8b, 8c. After passing, it will be united in one airline.
  • the rubber hoses 8a, 8b and 8c have a structure that can be easily attached and detached.
  • a pressure sensor 16 that detects the pressure of the compressed air is arranged in the pipe 17 that sends the collected air. Further, the air passing through the pipe 17 passes through the second aftercooler 12, the third aftercooler 13, and the dryer 14, and is supplied to the outside as compressed air 90.
  • the pressure sensor 16 is arranged in the pipe 17, but if the pressure in the airline that collects the air compressed by the compression units 4a, 4b, and 4c can be detected, the pressure sensor 16 is arranged in another place. It doesn't matter.
  • the fluid mechanical device 200 includes a control unit.
  • the control unit receives temperature and pressure signals from the temperature sensors that detect the temperatures of the compression units 4a, 4b, and 4c, and the pressure sensor 16.
  • the control unit controls the motor or switch for driving the compressor body based on the information from the temperature sensor and the pressure sensor, and controls the start and stop of the operation of the compressor body.
  • FIG. 3 shows an operation example of a fluid mechanical device equipped with three scroll type compressor bodies A, B, and C.
  • a hydraulic machine equipped with a plurality of compressor main bodies changes the number of compressor main bodies to be operated from the transition of the pressure change generated by the change in the amount of air used. When the amount of air used is small, the number of compressor main bodies to be operated is reduced, and when the amount of air used is large, the number of compressor main bodies to be operated is increased.
  • the control unit is configured to include a CPU or a microcomputer. Further, it may be configured by FPGA (field-programmable gate array).
  • FPGA field-programmable gate array
  • the lower limit pressure arrival estimated time Td is, for example, the measured pressure P (k-1) one second before the determination time and the measured pressure P (k) at the determination time when the pressure is decreasing with respect to the time axis. From the gradient of the pressure change during the period, the estimated arrival time Td304 at which the lower limit pressure 302 is reached is calculated from the determination time.
  • the expected stop pressure arrival time Tu is, for example, the measured pressure P (k-1) one second before the determination time and the measured pressure P (k) at the determination time when the pressure rises with respect to the time axis. From the gradient of the pressure change during the period, the expected arrival time Tu303 from the determination time to the stop pressure 301 is calculated.
  • FIG. 4 is a diagram showing an example of the pressure transition and the operation of the three compressor bodies A, B, and C in the normal state 401 and when it is detected that one compressor body A is in a consumable state. is there. Normally, the three compressor bodies operate while rotating according to changes in pressure.
  • the control unit determines that the corresponding compressor body A is exhausted and controls to stop the compressor body A, and the like. Continue operation with the compressor.
  • Compressor body A where wear was detected is stopped and set as a spare machine. If the amount of air supplied is sufficient, the compressor body other than the compressor body A rotates and operates while changing the compressor.
  • the compressor body A stopped as in 404 is operated, and when the air consumption decreases and the pressure increases, the compression with large consumption such as 405 is performed.
  • the machine body A is stopped first.
  • an alarm is issued and the user of the compressor body is notified of the wear to encourage maintenance of the compressor body.
  • the stop pressure of the corresponding compressor body is set to a pressure 403 that is lower than that of other compressor bodies, and the compressor is stopped with priority and the load due to high pressure is reduced. By doing so, the operation is continued while further reducing the consumption of the compressor body.
  • FIG. 5 is a schematic diagram of the pressure transition when the expected arrival time to the stop pressure is lengthened to determine the stop of the compressor main body. It is a schematic diagram of the pressure transition when the time Tu for determining the arrival at the stop pressure is lengthened instead of lowering the stop pressure of the compressor main body.
  • the exhausted compressor body can be stopped in a low pressure state by setting the expected stop pressure arrival time Tu '501 by lengthening the stop determination time of the compressor body.
  • FIG. 7 is a conceptual diagram of driving.
  • the stop pressure of the consumed compressor body is compared with the stop pressure of the compressed compressor body that is not consumed.
  • An example of controlling to lower is shown. Since the depleted compressor body is determined to stop at a lower pressure than the non-depleted compressor body, the temperature applied to the compressor body can be lowered and deterioration can be reduced.
  • FIG. 8 is a diagram showing a flow of a stop determination of the pressure machine main body when the wear of the compressor main body is not determined. As shown in FIG. 8, while the compressor body is operating, the pressure sensor 16 measures the pressure at regular intervals, the measured pressure data is sent to the control unit, and the control unit acquires the time change of the pressure. (Step S81).
  • the control unit calculates Tu based on the time change of pressure, and compares Tu with the set threshold value (step S82).
  • Tu is the estimated stop pressure arrival time from the reference time (including the judgment time) until the pressure reaches the stop pressure. If Tu is less than the threshold value in step S82, the control unit executes control to stop one compressor main body having the longest operating time (step S83). If Tu is equal to or greater than the threshold value in step S82, this determination flow ends (END).
  • FIG. 9 is a diagram showing a flow of stopping determination of the pressure machine main body when determining whether or not there is a exhausted compressor main body.
  • the pressure sensor 16 measures the pressure at regular intervals, the measured pressure data is sent to the control unit, and the control unit acquires the time change of the pressure. (Step S91).
  • the control unit calculates Tu based on the time change of pressure, and compares Tu with the set threshold value (step S92).
  • step S92 when Tu is less than the threshold value (when the pressure is sufficient), the control unit confirms whether the exhausted compressor main body is operating or stopped (step S93).
  • control unit controls to stop the operation of the consumed compressor main body (step S94).
  • control unit executes control to stop one non-consumed compressor body having the longest operating time (step S95).
  • FIG. 10 is a diagram showing a flow of determining the operation start of the pressure machine main body when the wear of the compressor main body is not determined.
  • the pressure sensor 16 measures the pressure at regular intervals, the measured pressure data is sent to the control unit, and the control unit acquires the time change of the pressure. (Step S101).
  • the control unit calculates Td based on the time change of pressure, and compares the set threshold value with Td (step S102).
  • Td is the estimated time to reach the lower limit pressure at which the pressure reaches the lower limit pressure from the reference time (including the time of determination). If Td is less than the threshold value in step S102, the control unit confirms whether or not there is a stopped compressor main body (step S103). If there is a compressor main body stopped in step S103, the control unit executes control to start the operation of the compressor main body having the shortest operation time (step S104).
  • FIG. 11 is a diagram showing a flow in which the control unit determines the start of operation of the pressure compressor body when determining whether or not there is a exhausted compressor body.
  • the pressure sensor 16 measures the pressure at regular time intervals, the measured pressure data is sent to the control unit, and the control unit acquires the time change of the pressure (step S111).
  • the control unit obtains Td based on the time change of the pressure, and compares Td with the set threshold value (step S112).
  • step S112 if Td is less than the threshold value (when the pressure is insufficient), it is confirmed whether or not there is a stopped compressor main body (step S113). If there is a stopped compressor body, the control unit confirms whether the stopped compressor body has a worn-out compressor body based on the temperature information from the temperature sensor (step S114).
  • control unit executes control such as starting the above (step S115).
  • control unit executes control to start the operation of the consumed compressor body (step S116).
  • step S112 If Td is equal to or higher than the threshold value in step S112, or if it is confirmed in step S113 that there is no stopped compressor body, this determination process ends (END).
  • step S114 When only the non-consumed compressor main body is stopped in step S114, the compression of one of the non-consumed stopped compressor main bodies having the shortest operating time is the same as in step S104 of FIG.
  • the control unit executes control that drives the main body of the machine.
  • the control unit stores the number of judgments detected as wear, and if the specified number of times, which is the threshold value for wear judgment, is exceeded, the corresponding compressor body is stopped as a failure. In that case, even if a drop in pressure is detected due to insufficient air supply, the compressor body is controlled so that it does not operate. By doing so, instead of having the corresponding compressor main body stand by as a spare machine, it is possible to obtain an opportunity for repair or replacement, and it is possible to avoid an abnormality that has a large effect such as the compressor main body becoming inoperable.
  • the compressor main body that has detected the wear is protected among the plurality of compressor main bodies. Furthermore, since there is a stopped compressor body that is not normally consumed, a fluid mechanical device that supplies the compressed air required by the user is realized by giving priority to the operation of the compressed compressor body that is not consumed. it can.
  • the operation of the depleted compressor body can be started and air with the pressure required by the user can be supplied.
  • the operation is started in the order of consumption detection of the depleted compressor body, and the user It can supply air at the required pressure.
  • the second embodiment is different from the first embodiment in that the wear state detection unit is a current detector that measures the current of the motor.
  • the current detector measures the current value of the motors that drive each compressor body, and when the measured current value exceeds the specified judgment value, the compressor body is reserved.
  • the control unit controls to stop.
  • control unit controls to operate the compressor body whose consumption state has been determined only when the amount of air is insufficient.
  • a current detector for measuring the current of the motor is already provided, it is not necessary to newly set a sensor such as a temperature sensor for each compressor main body.
  • the third embodiment is different from the first embodiment in that the consumption state detection unit is a power detector that measures the electric power of the motor. That is, the power detector measures the input power of the motors that drive each compressor body to determine the consumption, and when the measured power value exceeds the predetermined judgment value, the compressor body is used as a spare machine. As a result, the control unit controls to stop the power.
  • the consumption state detection unit is a power detector that measures the electric power of the motor. That is, the power detector measures the input power of the motors that drive each compressor body to determine the consumption, and when the measured power value exceeds the predetermined judgment value, the compressor body is used as a spare machine.
  • the control unit controls to stop the power.
  • control unit controls to operate the compressor body determined to be in a depleted state only when the amount of air is insufficient.
  • a power detector for measuring the electric power of the motor is already provided, it is not necessary to newly set a sensor such as a temperature sensor for each compressor main body.
  • Example 4 is different from Example 1 in that the wear state detection unit is a vibration detector that measures the vibration of the compressor body. That is, the vibration detector measures the vibration of each compressor body for the judgment of wear, and when the measured vibration value exceeds the predetermined judgment value, the compressor body is stopped as a spare machine.
  • the control unit controls.
  • control unit controls to operate the compressor body determined to be in a depleted state only when the amount of air is insufficient.
  • a vibration detector for measuring the vibration of the compressor is already provided, it is not necessary to newly set a sensor such as a temperature sensor for each compressor main body.
  • the fifth embodiment is different from the first embodiment in that the exhaust state detection unit is an air amount detector that measures the air amount of the compressor body. In other words, when the amount of air discharged from each compressor body is measured by the air amount detector and the measured air amount value exceeds the specified judgment value, the amount of air is insufficient.
  • the control unit controls to stop the compressor body as a spare machine.
  • control unit controls to operate the compressor body determined to be in a depleted state only when the amount of air is insufficient.
  • the air amount detector for measuring the air amount of the compressor main body is already provided, it is not necessary to newly set a sensor such as a temperature sensor for each compressor main body.
  • Example 6 is different from Example 1 in that the wear state detection unit is a noise detector that measures the noise of the compressor body.
  • the noise detector measures the noise of each compressor body for the judgment of wear, and when the measured noise value exceeds the set judgment value, the compressor body is stopped as a spare machine.
  • the control unit controls.
  • control unit controls to operate the compressor body determined to be in a depleted state only when the amount of air is insufficient.
  • a noise detector for measuring the noise value of the compressor main body is already provided, it is not necessary to newly set a sensor such as a temperature sensor for each compressor main body.
  • Example 7 is different from Example 1 in that the wear state detection unit is an operation time detector that measures the operation time of the compressor body. That is, the noise detector measures the operating time of each compressor body for the determination of wear, and when the measured operating time exceeds the predetermined judgment value, the compressor body is stopped as a spare machine.
  • the control unit controls as such.
  • control unit controls to operate the compressor body determined to be in a depleted state only when the amount of air is insufficient.
  • the exhausted compression main body may be operated as a spare machine when the amount of air is insufficient.
  • the compressor body may be determined to be a failure.
  • the threshold value is higher than or higher than the first threshold value for determining the consumption determined by the temperature, current, input power, and the like.
  • a second threshold value at a level that can be judged as a failure is set.
  • the control unit determines that the compressor body is abnormal due to a failure, stops it as a failure, and even if it detects a decrease in pressure due to insufficient air supply, it is relevant.
  • the compressor body is controlled so that it does not operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

流体機械装置は、流体を吐出する複数の流体機械と、流体機械の消耗状態を検知する消耗状態検知部と、流体機械からの圧力を検知する圧力検知部と、複数の前記流体機械を制御する制御部と、を有し、制御部は、消耗した流体機械があるかを判定し、圧力が不足する場合には、消耗していない流体機械の運転を開始させるように制御する。

Description

流体機械装置
 本発明は、流体機械装置に関する。
 製造ラインでの動力源や、工作機、プレス機、エアブローなどのエア源として利用される圧縮気体を生成する気体圧縮機が知られている。気体圧縮機は、ケーシングによって構成される圧縮室内で気体を圧縮する圧縮機本体を備え、圧縮された気体は吐出口から吐出配管を介して気体タンクに吐出させる構成となっている。
 気体圧縮機に関して特許文献1の技術が知られている。特許文献1は圧縮機本体の温度が上限温度を超えたときに無負荷運転を行うことにより、高温による部品の故障、劣化等から保護し、部品の寿命を延ばして耐久性を高めることができる。
特開2008-31965
 特許文献1に記載の圧縮機ではパッケージ内の高温を検出した際に無負荷運転を行う。無負荷運転とは圧縮動作を行わない運転状態であると記載されている(段落番号0041を参照)。
 空気使用量が増加し、圧力が下がった場合については、特許文献1の技術では、無負荷運転をするので、圧縮機の温度が低下するまで、圧力を上昇させることができないことになる。
 また、複数の圧縮機本体を搭載したマルチ圧縮機は、ユーザの圧縮空気の使用量に応じて稼働させる圧縮機本体の数を増減させて必要な圧縮空気を生成する流体機械装置である。このような流体機械装置においては、1台の圧縮機本体の異常が発生した場合に、特許文献1のように異常の発生した圧縮機本体を無負荷運転にすることで圧縮機本体の保護はできる。
 しかし、異常の圧縮機本体は圧縮動作を行わないので、ユーザの使用量が増大すると、ユーザに必要な圧縮空気を供給できない場合が生じるおそれがある。
 本発明の目的は、流体機械を保護しながら、必要な圧縮空気を供給することが可能な流体機械装置を提供することにある。
 本発明の好ましい一例としては、流体を吐出する複数の流体機械と、前記流体機械の消耗状態を検知する消耗状態検知部と、前記流体機械からの圧力を検知する圧力検知部と、複数の前記流体機械を制御する制御部と、を有し、
前記制御部は、
消耗した前記流体機械があるかを判定し、
前記圧力が不足する場合には、消耗していない前記流体機械の運転を開始させるように制御する流体機械装置である。
 本発明によれば、流体機械を保護しながら、必要な圧縮空気を供給することが可能となる。
実施例1の圧縮機本体の断面図である。 実施例1の流体機械装置の内部構造である。 停止圧力までの到達予想時間により流体機械を停止するようにする運転の概念図である。 実施例1における通常運転時と圧縮機1台の消耗検出時の動作の概念図である。 停止圧力までの到達予想時間を長くした場合の圧力推移の模式図である。 実施例1における流体機械の構成の概念図である。 停止圧力を下げるようにして流体機械を停止するようにする運転の概念図である。 圧縮機本体の消耗を判断しない場合における圧力機本体の停止判定のフローを示す図。 消耗した圧縮機本体が有るかどうかを判断する場合における圧力機本体の停止判定のフローを示す図。 圧縮機本体の消耗を判断しない場合における圧力機本体の運転開始判定のフローを示す図。 消耗した圧縮機本体が有るかどうかを判断する場合における圧力機本体の運転開始判定のフローを示す図。
 以下、図面を用いて、実施例を説明する。
 本実施例では圧縮機本体の圧縮方式として、固定スクロールと旋回スクロールとの間で圧縮室を構成し、旋回運動によって空気を圧縮する複数台のスクロール圧縮機本体(流体機械)を搭載した流体機械装置を例に説明する。
 図1は、実施例1における圧縮機本体の断面図である。図1に示すように本圧縮機は、ステータ101とロータ102から構成されたモータから、旋回スクロール104と固定スクロール105で構成されたスクロール圧縮機に、シャフト103を介して動力を伝達している。スクロール圧縮機で圧縮された空気は吐出口109から配管を通りアフタークーラなどの流体機械装置内を通過する。
 モータはインバータ107から出力される電圧の周波数で回転速度が変化する。冷却ファン106はシャフト103から動力が伝達されており、発生した冷却風を図示しないダクトを介して旋回スクロール104と固定スクロール105の冷却フィンに送り、圧縮機を冷却する。温度センサ108は固定スクロール105の冷却フィンの先端に配置されている。温度センサ108は測定した温度を用いて圧縮機の消耗状態を検知する消耗状態検知部の役割を持つ。
 旋回スクロール104と固定スクロール105とが摺動することで、それらの先端部に配置したチップシールが摩耗する。そうなると旋回スクロール104もしくは固定スクロール105の温度が上昇することから、温度により圧縮機本体が消耗しているかを判断する場合の一例とすることができる。
 図2は、流体機械装置200の一例として、スクロール方式の圧縮機本体を複数台搭載したパッケージ型流体機械装置の斜視図を示している。複数台(ここでは3台)のスクロール圧縮機本体201、202、203を、1つのパッケージ内に収め、使用空気量に応じて圧縮機本体の運転台数を変え空気量の変化に対応する。
 図6は、実施例1の流体機械装置200の全体の概念図である。ここでは、パッケージ型気体圧縮機を例に説明する。パッケージ型気体圧縮機は、圧縮機本体を駆動する駆動部であるモータを備え、単数または複数の圧縮機本体と、制御回路、操作パネル等を一体としてパーケージに収め、省スペース化を図った気体圧縮機である。
 本実施例では3段の圧縮部4a、4b、4cから構成される。外部から電源を取り入れるターミナル10から各圧縮機本体の制御用のインバータ2a、2b、2cおよびドライヤ14に電気配線9を接続している。
 また、各インバータまたはスイッチ2a、2b、2cからは各モータ3a、3b、3cを接続している。各モータ3a、3b、3cによって各圧縮部4a、4b、4cが駆動する。
 圧縮する空気1はフィルタ5a、5b、5cを通して供給され、圧縮部4a、4b、4c、逆止弁6a、6b、6c、第1のアフタークーラ7a、7b、7c、ゴムホース8a、8b、8cを通過した後、1つのエアラインにまとまる。
 ゴムホース8a、8b、8cは容易に着脱可能な構造となっている。まとまったエアを送る配管17には、圧縮された空気の圧力を検知する圧力センサ16を配置する。また、配管17を通過するエアは、第2のアフタークーラ12、第3のアフタークーラ13、ドライヤ14を通り、圧縮空気90として外部に供給される。
 図6では、圧力センサ16を、配管17に配置したが、各圧縮部4a、4b、4cで圧縮された空気をまとめたエアラインにおける圧力を検知できるのであれば、別の場所に配置してもかまわない。
 図6では省略したが、流体機械装置200は、制御部を備える。各圧縮部4a、4b、4cの温度を検知する温度センサ、および圧力センサ16からの温度や圧力の信号を制御部が受け取る。制御部は、温度センサや圧力センサからの情報に基づいて、圧縮機本体を駆動するためのモータもしくはスイッチを制御し、圧縮機本体の運転開始や運転停止の制御をする。
 図3は、スクロール方式の圧縮機本体A、B、Cの3台を搭載した流体機械装置の運転例を示している。複数台の圧縮機本体を備える流体機械装置は空気の使用量の変化によって発生する圧力変化の推移から運転する圧縮機本体の台数を変化させる。空気の使用量が少ない場合は運転する圧縮機本体の台数を減らし、使用量が多い場合は運転する圧縮機本体の台数を増やすという制御を、流体機械装置の制御部が行う。
 制御部は、CPU、もしくはマイコンを含む構成である。また、FPGA(field-programmable gate array)で構成してもよい。圧縮機本体の台数を増加する場合には、下限圧力302までの到達予想時間Td304をもとに判定を行い、到達予想時間Td304が閾値以下となった場合に運転台数を追加する。
 下限圧力到達予想時間Tdは、例えば、圧力が時間軸に対して下降している場合に、判定時刻の1秒前の測定圧力P(k-1)と判定時刻における測定圧力P(k)との間の圧力変化の傾きから、判定時刻から下限圧力302になる到達予想時間Td304を算出する。
 圧縮機本体の台数を減少させる場合には、停止圧力301までの到達予想時間Tu303をもとに判定を行い、到達予想時間Tu303が閾値以下となった場合に運転台数を減らすように制御する。
 停止圧力到達予想時間Tuは、例えば、圧力が時間軸に対して上昇している場合に、判定時刻の1秒前の測定圧力P(k-1)と判定時刻における測定圧力P(k)との間の圧力変化の傾きから、判定時刻から停止圧力301になる到達予想時間Tu303を算出する。
 図4は、圧力推移と3台の圧縮機本体A、B、Cの運転について通常時401と、1台の圧縮機本体Aが消耗状態であることを検出した場合402の例を示す図である。3台の圧縮機本体は通常時、圧力の推移に応じてローテーションしながら運転する。
 例えば、圧縮機本体Aで消耗が大きいとき温度センサ108で測定した温度が上昇する。温度センサ108から送られた温度についてのデータを制御部が受け取り、温度が閾値を超えた場合、制御部は、該当する圧縮機本体Aは消耗したと判断し、停止させるように制御し、他の圧縮機で運転を継続する。
 消耗が検出された圧縮機本体Aは停止し、予備機として設定する。空気供給量が足りている場合は圧縮機本体A以外の圧縮機本体でローテーションし運転圧縮機を替えながら運転する。
 空気消費量が増加し、圧力が低下した場合、404のように停止させている圧縮機本体Aを運転させ、空気消費量が減少し、圧力が上昇した場合、405のように消耗の大きい圧縮機本体Aを最初に停止させる。圧縮機本体の消耗を検知した場合、警報を発報し、圧縮機本体の使用者に消耗を伝えることで圧縮機本体のメンテナンスを促す。
 また、消耗を検出した圧縮機本体を再運転する際には該当する圧縮機本体の停止圧力を他の圧縮機本体より低い圧力403に設定し、優先させて停止させる上、高圧による負荷を軽減させることで該当圧縮機本体のさらなる消耗を低下させながら運転を継続させる。
 図5は、圧縮機本体の停止判定を行う、停止圧力までの到達予想時間を長くした場合の圧力推移の模式図である。圧縮機本体の停止圧力を下げる代わりに停止圧力までの到達判定をする時間Tuを長くした場合の圧力推移の模式図である。
 圧縮機本体の停止圧力を下げる代わりに圧縮機本体の停止判定時間を長くした停止圧力到達予想時間Tu‘501とすることで消耗した圧縮機本体を圧力の低い状態で停止させることもできる。
 図7は、運転の概念図である。図7では、図5のように停止判定をする停止圧力までの到達予想時間を長くするのではなく、消耗していない圧縮機本体の停止圧力に比べて、消耗した圧縮機本体については停止圧力を下げるように制御する例を示す。消耗した圧縮本体は、消耗していない圧縮機本体に比べて低い圧力で停止の判定を受けるので、圧縮機本体に加わる温度を低下させ、劣化を軽減することができる。
 図8は、圧縮機本体の消耗を判断しない場合における圧力機本体の停止判定のフローを示す図である。
  図8に示したように、圧縮機本体が運転中、圧力センサ16が圧力を一定時間ごとに測定し、その測定した圧力データは制御部に送られ、制御部は圧力の時間変化を取得する(ステップS81)。
 制御部は圧力の時間変化に基づいてTuを算出し、定めておいた閾値とTuを比較する(ステップS82)。
  ここでTuは、基準時(判定時を含む)から圧力が停止圧力に到達するまでの停止圧力到達予想時間である。
  ステップS82でTuが閾値未満の場合には、運転時間の最も長い圧縮機本体1台を停止させる制御を制御部が実行する(ステップS83)。
  ステップS82でTuが閾値以上の場合には、本判定フローは終了する(END)。
 図9は、消耗した圧縮機本体が有るかどうかを判断する場合における圧力機本体の停止判定のフローを示す図である。
 図9に示したように、圧縮機本体が運転中、圧力センサ16が圧力を一定時間ごとに測定し、その測定した圧力データは制御部に送られ、制御部は圧力の時間変化を取得する(ステップS91)。
 制御部は圧力の時間変化に基づいてTuを算出し、定めておいた閾値とTuを比較する(ステップS92)。
 ステップS92で、Tuが閾値未満の場合(圧力が足りている場合)には、消耗した圧縮機本体が運転しているか停止中かを制御部は確認する(ステップS93)。
 ステップS93で消耗した圧縮機本体が運転中の場合は、制御部は消耗した圧縮機本体の運転を停止させるように制御する(ステップS94)。
 ステップS93で消耗した圧縮機本体が全て停止中の場合は、運転時間の最も長い消耗していない1台の圧縮機本体を停止させる制御を制御部が実行する(ステップS95)。
 図10は、圧縮機本体の消耗を判断しない場合における圧力機本体の運転開始判定のフローを示す図である。
 図10に示したように、圧縮機本体を運転中、圧力センサ16が圧力を一定時間ごとに測定し、その測定した圧力データは制御部に送られ、制御部は圧力の時間変化を取得する(ステップS101)。
 制御部は圧力の時間変化に基づいてTdを算出し、定めておいた閾値とTdを比較する(ステップS102)。
 ここで、Tdは、基準時(判定時を含む)から圧力が下限圧力に到達する下限圧力到達予想時間である。
  ステップS102でTdが閾値未満の場合には、制御部は停止中の圧縮機本体があるかどうかを確認する(ステップS103)。ステップS103で停止中の圧縮機本体がある場合には運転時間の1番短い圧縮機本体の運転を開始させる制御を制御部が実行する(ステップS104)。
 ステップS102でTdが閾値以上の場合、ならびにステップS103で停止中の圧縮機本体が無い場合には、本判定フローは終了する(END)。
 図11は、消耗した圧縮機本体が有るかどうかを判断する場合における圧力機本体の運転開始を制御部が判定するフローを示す図である。
 圧縮機本体が運転中に、圧力センサ16が圧力を一定時間ごとに測定し、その測定した圧力データは制御部に送られ、制御部は圧力の時間変化を取得する(ステップS111)。制御部はその圧力の時間変化に基づいてTdを求め、Tdを定めておいた閾値と比較する(ステップS112)。
 ステップS112で、Tdが閾値未満の場合(圧力が不足する場合)には、停止中の圧縮機本体があるかどうかを確認する(ステップS113)。停止中の圧縮機本体がある場合は、制御部が温度センサからの温度情報に基づいて停止中の圧縮機本体に消耗した圧縮機本体があるかどうかを確認する(ステップS114)。
 消耗した圧縮機本体が停止中であり、さらに停止中の消耗していない圧縮機本体が有る場合には、消耗していない圧縮機本体のうち運転時間が一番短い圧縮機本体1台の運転を開始させるような制御を制御部が実行する(ステップS115)。
 ステップS114にて消耗している圧縮機本体以外に停止している圧縮機本体がない場合には、消耗した圧縮機本体の運転を開始させる制御を制御部が実行する(ステップS116)。
 ステップS112で、Tdが閾値以上の場合、およびステップS113で停止中の圧縮機本体が無いことが確認された場合には、本判定処理は終了する(END)。
 ステップS114で消耗していない圧縮機本体のみが停止していた場合は、図10のステップS104と同じく、消耗していない停止中の圧縮機本体のうち、運転時間が一番短い1台の圧縮機本体を運転させるような制御を制御部が実行する。
 消耗した圧縮機本体について、消耗として検知した判定回数を制御部は記憶しておき、定めておいた消耗判定の閾値である規定回数を超えた場合、該当圧縮機本体を故障として停止させる。その場合、空気供給量の不足により、圧力の低下等を検出した場合でも該当圧縮機本体は運転しない状態とする制御をする。そうすることで、該当する圧縮機本体を予備機として待機させるのではなく、修理や交換の機会を得るようにし、その圧縮機本体が稼働できなくなるといった影響が大きい異常を回避することができる。
 実施例1によれば、複数の圧縮機本体のうち消耗を検知した圧縮機本体を保護する。さらに、通常は消耗していない停止中の圧縮機本体があることから、消耗していない圧縮機本体を優先して運転開始させることで、ユーザに必要な圧縮空気を供給する流体機械装置を実現できる。
 また、消耗した圧縮機本体しか停止中の圧縮機本体が無い場合で、圧力が不足する場合は、消耗した圧縮機本体の運転を開始させ、ユーザの必要な圧力の空気を供給できる。
 また、消耗した圧縮機本体が複数台あり、消耗した本体しか停止中の圧縮機本体が無い場合で、圧力が不足する場合は、消耗した圧縮機本体の消耗検知順に運転を開始させ、ユーザの必要な圧力の空気を供給できる。
 実施例2においては、消耗状態検知部がモータの電流を計測する電流検知器である点で実施例1と相違する。つまり、消耗の判定については圧縮機本体1台ずつを駆動するモータの電流値を電流検知器が測定し、測定した電流値が定めておいた判定値を超えた場合に当該圧縮機本体を予備機として、停止させるように制御部は制御する。
 また、空気量不足が発生した場合のみ消耗状態を判定された圧縮機本体を運転させるように制御部が制御をする。本実施例によれば、モータの電流を計測する電流検知器が既に備えて有る場合には、圧縮機本体ごとに温度センサなどのセンサを新たに設定する必要がない。
 実施例3においては、消耗状態検知部がモータの電力を計測する電力検知器である点で実施例1と相違する。つまり、消耗の判定について圧縮機本体1台ずつを駆動するモータの入力電力を電力検知器が測定し、測定した電力値が定めておいた判定値を超えた場合に当該圧縮機本体を予備機として、停止させるように制御部が制御する。
 また、空気量不足が発生した場合のみ消耗状態と判定された圧縮機本体を運転させるように制御部が制御をする。本実施例によれば、モータの電力を計測する電力検知器を既に備えて有る場合には、圧縮機本体ごとに温度センサなどのセンサを新たに設定する必要がない。
 実施例4においては、消耗状態検知部が圧縮機本体の振動を計測する振動検知器である点で実施例1と相違する。つまり、消耗の判定について圧縮機本体1台ずつの振動を振動検知器が測定し、測定した振動値が定めておいた判定値を超えた場合に当該圧縮機本体を予備機として、停止させるように制御部が制御する。
 また、空気量不足が発生した場合のみ消耗状態と判定された圧縮機本体を運転させるように制御部が制御をする。本実施例によれば、圧縮機の振動を計測する振動検知器を既に備えて有る場合には、圧縮機本体ごとに温度センサなどのセンサを新たに設定する必要がない。
 実施例5においては、消耗状態検知部が圧縮機本体の空気量を計測する空気量検知器である点で実施例1と相違する。つまり、消耗の判定について圧縮機本体1台ずつの吐出空気量を空気量検知器が測定し、測定した空気量値が定めておいた判定値を下回るように超えた場合に、空気量が不足していると判断し、当該圧縮機本体を予備機として、停止させるように制御部が制御する。
 また、空気量不足が発生した場合のみ消耗状態と判定された圧縮機本体を運転させるように制御部が制御をする。本実施例によれば、圧縮機本体の空気量を計測する空気量検知器を既に備えて有る場合には、圧縮機本体ごとに温度センサなどのセンサを新たに設定する必要がない。
 実施例6においては、消耗状態検知部が圧縮機本体の騒音を計測する騒音検知器である点で実施例1と相違する。つまり、消耗の判定について圧縮機本体1台ずつの騒音を騒音検知器が測定し、測定した騒音値が定めておいた判定値を超えた場合に当該圧縮機本体を予備機として、停止させるように制御部が制御する。
 また、空気量不足が発生した場合のみ消耗状態と判定された圧縮機本体を運転させるように制御部が制御をする。本実施例によれば、圧縮機本体の騒音値を計測する騒音検知器を既に備えて有る場合には、圧縮機本体ごとに温度センサなどのセンサを新たに設定する必要がない。
 実施例7においては、消耗状態検知部が圧縮機本体の運転時間を計測する運転時間検知器である点で実施例1と相違する。つまり、消耗の判定について圧縮機本体1台ずつの運転時間を騒音検知器が測定し、測定した運転時間が定めておいた判定値を超えた場合に当該圧縮機本体を予備機として、停止させるように制御部が制御する。
 また、空気量不足が発生した場合のみ消耗状態と判定された圧縮機本体を運転させるように制御部が制御をする。
 上記の実施例では、消耗した圧縮本体は予備機として、空気量が不足した場合には運転する場合がある。しかし、圧縮機本体を故障と判定する場合がある。そのような判定をする場合には、実施例1から実施例7に示したように、温度、電流、入力電力などで定めておいた消耗であると判定する第1の閾値より、さらに高いもしくは故障と判断できるレベルの第2の閾値を設ける。
 第2の閾値を超えた場合には、圧縮機本体は、故障により異常であると制御部は判断し、故障として停止させ、空気供給量の不足により、圧力の低下等を検出した場合でも当該圧縮機本体は運転しないように制御する。
 圧縮機本体の異常を故障として判定し、停止させることで、圧縮機本体の保守や、修理などを確実に実行することができる。
108・・・温度センサ、301・・・停止圧力、302・・・下限圧力、303・・・停止圧力到達予想時間Tu、304・・・下限圧力到達予想時間Td

Claims (19)

  1. 流体を吐出する複数の流体機械と、
    前記流体機械の消耗状態を検知する消耗状態検知部と、
    前記流体機械からの圧力を検知する圧力検知部と、
    複数の前記流体機械を制御する制御部と、を有し、
    前記制御部は、
    消耗した前記流体機械があるかを判定し、
    前記圧力が不足する場合には、
    消耗していない前記流体機械の運転を開始させるように制御することを特徴とする流体機械装置。
  2. 請求項1の流体機械装置において、
    前記制御部は、
    運転中の消耗した前記流体機械があるとともに、前記圧力が足りている場合には、
    消耗した前記流体機械の運転を停止させるように制御することを特徴とする流体機械装置。
  3. 請求項1の流体機械装置において、
    前記制御部は、
    停止中の前記流体機械は消耗している前記流体機械しかなく、前記圧力が不足する場合には、
    消耗している前記流体機械の運転を開始させるように制御することを特徴とする流体機械装置。
  4. 請求項1の流体機械装置において、
    前記制御部は、
    下限圧力に基づいて、前記圧力が不足する場合を判断し、
    停止圧力に基づいて、前記圧力が足りている場合を判断することを特徴とする流体機械装置。
  5. 請求項3の流体機械装置において、
    消耗した前記流体機械が複数あり、前記圧力が不足する場合には、
    消耗している前記流体機械の運転を開始させるように制御することを特徴とする流体機械装置。
  6. 請求項4の流体機械装置において、
    消耗した前記流体機械の前記停止圧力は、消耗していない前記流体機械の前記停止圧力より低い圧力に設定してあり、
    前記制御部は、
    前記停止圧力に基づいて、前記圧力が足りている場合を判断することを特徴とする流体機械装置。
  7. 請求項4の流体機械装置において、
    前記制御部は、
    前記停止圧力に到達する停止圧力到達予測時間を算出し、
    前記停止圧力到達予測時間が定めておいた時間より短い場合には、前記圧力が足りている場合であると判断することを特徴とする流体機械装置。
  8. 請求項4の流体機械装置において、
    前記制御部は、
    前記下限圧力に到達する下限圧力到達予測時間を算出し、
    前記下限圧力到達予測時間が定めておいた時間より短い場合には、前記圧力が不足する場合であると判断することを特徴とする流体機械装置。
  9. 請求項1の流体機械装置において、
    前記制御部は、
    消耗であると判定した前記流体機械の判定回数を記憶し、
    前記判定回数が、定めておいた回数を超えた場合には、故障として停止させることを特徴とする流体機械装置。
  10. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械の温度を検知する温度センサであることを特徴とする流体機械装置。
  11. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械を駆動する電動機に流れる電流を検知する電流検知器であることを特徴とする流体機械装置。
  12. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械を駆動する電動機が消費する電力を検知する電力検知器であることを特徴とする流体機械装置。
  13. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械の振動を検知する振動検知器であることを特徴とする流体機械装置。
  14. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械の吐出空気量を検知する空気量検知器であることを特徴とする流体機械装置。
  15. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械の騒音を検知する騒音検知器であることを特徴とする流体機械装置。
  16. 請求項1の流体機械装置において、
    前記消耗状態検知部は、
    前記流体機械の運転時間を検知する運転時間検知器であることを特徴とする流体機械装置。
  17. 請求項1の流体機械装置において、
    前記制御部は、
    前記消耗状態検知部からの検知した値が、消耗かどうかを判断する第1の閾値よりも高い第2の閾値を超えた異常の場合には、
    異常を検知した前記流体機械を故障として停止させることを特徴とする流体機械装置。
  18. 請求項1の流体機械装置において、
    停止中の前記流体機械は、全て消耗していない前記流体機械であり前記圧力が不足する場合には、
    前記制御部は、停止中の前記流体機械のうち、運転時間の短いのを優先して運転を開始させ、
    運転中の前記流体機械は、全て消耗していない前記流体機械であり前記圧力が足りている場合には、
    前記制御部は、運転中の前記流体機械のうち、運転時間の長いのを優先して運転を停止させることを特徴とする流体機械装置。
  19. 請求項1に記載の流体機械装置において、
    前記流体機械はスクロール圧縮機であり、
    前記スクロール圧縮機を駆動する駆動部および操作部をパッケージに収めたことを特徴とする流体機械装置。
PCT/JP2020/032420 2019-10-01 2020-08-27 流体機械装置 WO2021065266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/626,031 US20220252065A1 (en) 2019-10-01 2020-08-27 Fluid Machine Device
CN202080051025.8A CN114127422B (zh) 2019-10-01 2020-08-27 流体机械装置
EP20871851.0A EP4039978A4 (en) 2019-10-01 2020-08-27 FLUID MACHINE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019181202A JP2021055648A (ja) 2019-10-01 2019-10-01 流体機械装置
JP2019-181202 2019-10-01

Publications (1)

Publication Number Publication Date
WO2021065266A1 true WO2021065266A1 (ja) 2021-04-08

Family

ID=75270223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032420 WO2021065266A1 (ja) 2019-10-01 2020-08-27 流体機械装置

Country Status (5)

Country Link
US (1) US20220252065A1 (ja)
EP (1) EP4039978A4 (ja)
JP (1) JP2021055648A (ja)
CN (1) CN114127422B (ja)
WO (1) WO2021065266A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132486A (en) * 1980-03-24 1981-10-16 Toshiba Corp Controller for number of pump in operation
JPS578383A (en) * 1980-06-18 1982-01-16 Mitsubishi Electric Corp Habitual and spare cooling pumps change-over apparatus
JPS59145619A (ja) * 1983-02-09 1984-08-21 Nippon Denso Co Ltd 圧縮機の保護装置
JPS61178584A (ja) * 1985-02-01 1986-08-11 Daikin Ind Ltd 圧縮機の運転制御装置
JPH06249151A (ja) * 1993-02-24 1994-09-06 Matsushita Electric Ind Co Ltd 圧縮空気装置自動運転システム
JPH1063301A (ja) * 1996-08-14 1998-03-06 New Cosmos Electric Corp 回転機ユニットの異常検出システム
JP2002098061A (ja) * 2000-09-26 2002-04-05 Oyodo Diesel Kk 電動式空気圧縮機あるいは圧縮空気供給系の診断装置
JP2003343449A (ja) * 2002-05-28 2003-12-03 Tokico Ltd 往復動型圧縮機
JP2004116311A (ja) * 2002-09-24 2004-04-15 Hitachi Home & Life Solutions Inc ポンプ装置
JP2007120497A (ja) * 2005-09-30 2007-05-17 Hitachi Ltd 空気圧縮装置の制御装置
JP2008031965A (ja) 2006-07-31 2008-02-14 Hitachi Ltd 圧縮機
JP2009264301A (ja) * 2008-04-25 2009-11-12 Hitachi Ltd 往復動型圧縮機
JP2018031335A (ja) * 2016-08-26 2018-03-01 株式会社日立産機システム 圧縮機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19517748A1 (de) * 1994-05-16 1995-11-23 Toyoda Automatic Loom Works Verfahren und Vorrichtung zur Zuführung von Druckluft
JP4644399B2 (ja) * 2001-09-21 2011-03-02 株式会社日立製作所 気体分離装置
JP4023249B2 (ja) * 2002-07-25 2007-12-19 ダイキン工業株式会社 圧縮機内部状態推定装置及び空気調和装置
JP2004156533A (ja) * 2002-11-06 2004-06-03 Kobe Steel Ltd 圧縮機及び圧縮機の制御方法
US6941785B2 (en) * 2003-05-13 2005-09-13 Ut-Battelle, Llc Electric fuel pump condition monitor system using electrical signature analysis
EP1931545B1 (en) * 2005-09-16 2010-06-16 Wabtec Holding Corporation Pneumatic emergency brake assurance module
US10100827B2 (en) * 2008-07-28 2018-10-16 Eaton Intelligent Power Limited Electronic control for a rotary fluid device
KR101174430B1 (ko) * 2012-01-20 2012-08-16 김금균 압축기 보조제어장치 및 그에 의한 압축기 보조제어방법
JP6249671B2 (ja) * 2013-08-09 2017-12-20 北越工業株式会社 インバータ駆動圧縮機の運転制御方法及びインバータ駆動圧縮機
DE102013111218A1 (de) * 2013-10-10 2015-04-16 Kaeser Kompressoren Se Elektronische Steuerungseinrichtung für eine Komponente der Drucklufterzeugung, Druckluftaufbereitung, Druckluftspeicherung und/oder Druckluftverteilung
US20160265520A1 (en) * 2013-10-29 2016-09-15 Eaton Corporation Electronic control for a rotary fluid device
BR102014023475A2 (pt) * 2014-09-22 2016-05-10 Whirlpool Sa método de detecção de abertura indevida de válvula de sucção de compressor alternativo de múltipla sucção
US9777723B2 (en) * 2015-01-02 2017-10-03 General Electric Company System and method for health management of pumping system
US10704552B2 (en) * 2016-02-02 2020-07-07 Powerex/Iwata Air Technology Inc. Vacuum system
US10584698B2 (en) * 2016-04-07 2020-03-10 Schlumberger Technology Corporation Pump assembly health assessment
US11067080B2 (en) * 2018-07-17 2021-07-20 Air Squared, Inc. Low cost scroll compressor or vacuum pump

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132486A (en) * 1980-03-24 1981-10-16 Toshiba Corp Controller for number of pump in operation
JPS578383A (en) * 1980-06-18 1982-01-16 Mitsubishi Electric Corp Habitual and spare cooling pumps change-over apparatus
JPS59145619A (ja) * 1983-02-09 1984-08-21 Nippon Denso Co Ltd 圧縮機の保護装置
JPS61178584A (ja) * 1985-02-01 1986-08-11 Daikin Ind Ltd 圧縮機の運転制御装置
JPH06249151A (ja) * 1993-02-24 1994-09-06 Matsushita Electric Ind Co Ltd 圧縮空気装置自動運転システム
JPH1063301A (ja) * 1996-08-14 1998-03-06 New Cosmos Electric Corp 回転機ユニットの異常検出システム
JP2002098061A (ja) * 2000-09-26 2002-04-05 Oyodo Diesel Kk 電動式空気圧縮機あるいは圧縮空気供給系の診断装置
JP2003343449A (ja) * 2002-05-28 2003-12-03 Tokico Ltd 往復動型圧縮機
JP2004116311A (ja) * 2002-09-24 2004-04-15 Hitachi Home & Life Solutions Inc ポンプ装置
JP2007120497A (ja) * 2005-09-30 2007-05-17 Hitachi Ltd 空気圧縮装置の制御装置
JP2008031965A (ja) 2006-07-31 2008-02-14 Hitachi Ltd 圧縮機
JP2009264301A (ja) * 2008-04-25 2009-11-12 Hitachi Ltd 往復動型圧縮機
JP2018031335A (ja) * 2016-08-26 2018-03-01 株式会社日立産機システム 圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4039978A4

Also Published As

Publication number Publication date
CN114127422A (zh) 2022-03-01
JP2021055648A (ja) 2021-04-08
US20220252065A1 (en) 2022-08-11
EP4039978A1 (en) 2022-08-10
CN114127422B (zh) 2023-06-16
EP4039978A4 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP4737770B2 (ja) 真空ポンプの運転制御装置および方法
US11867292B2 (en) Mechanical seal device with microsystem, pump device using the same and method of operating the same
JP5410123B2 (ja) 空気圧縮機
TW201725347A (zh) 監視裝置及監視方法
JP2009197602A (ja) 真空ポンプ装置の電子部品の寿命度合い予測方法、及び真空ポンプ装置
JP2012110070A (ja) 空気調和機
CN114341495B (zh) 压缩机、监视系统和压缩机的监视方法
JP5646282B2 (ja) 圧縮装置及びその運転制御方法
WO2021065266A1 (ja) 流体機械装置
JP2007205206A (ja) スクロール式流体機械
KR102128914B1 (ko) 압축기의 진단장치 및 진단방법
JP7236265B2 (ja) 流体機械
KR20220099575A (ko) 레일 차량용 압축기 시스템, 및 압축기 시스템의 냉각 장치를 제어하기 위한 방법
CN112752907A (zh) 气体压缩机
WO2021153111A1 (ja) 可搬型空気圧縮機、および可搬型空気圧縮機の制御方法
WO2024018848A1 (ja) 空気圧縮機
JP6944797B2 (ja) 流体機械
JP5452580B2 (ja) 空気圧縮機
US20230250824A1 (en) Pump control system capable of detecting fault of pump
TW202336349A (zh) 真空泵的控制裝置以及控制方法
JP2022187882A (ja) 圧縮空気製造装置
JP4845990B2 (ja) 空気圧縮機
JP2017120061A (ja) ドライ真空ポンプ装置
JP2009236117A (ja) 空気圧縮機
KR20120060076A (ko) Bldc 모터 구동형 냉각팬의 고장 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871851

Country of ref document: EP

Effective date: 20220502