WO2021063122A1 - 天线及其辐射单元、辐射单元巴伦结构和制造方法 - Google Patents

天线及其辐射单元、辐射单元巴伦结构和制造方法 Download PDF

Info

Publication number
WO2021063122A1
WO2021063122A1 PCT/CN2020/109878 CN2020109878W WO2021063122A1 WO 2021063122 A1 WO2021063122 A1 WO 2021063122A1 CN 2020109878 W CN2020109878 W CN 2020109878W WO 2021063122 A1 WO2021063122 A1 WO 2021063122A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
balun
radiation unit
unit according
radiating
Prior art date
Application number
PCT/CN2020/109878
Other languages
English (en)
French (fr)
Inventor
黄立文
刘培涛
姜维维
肖飞
孙善球
卜斌龙
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Priority to US17/764,736 priority Critical patent/US12132269B2/en
Priority to EP20871575.5A priority patent/EP4024610A4/en
Publication of WO2021063122A1 publication Critical patent/WO2021063122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • This application relates to the field of mobile antennas, in particular to an antenna and its radiating unit, radiating unit balun structure and manufacturing method.
  • the conventional nested radiating unit 100 is designed to consist of four dipoles 1, which are combined with a coaxial cable 2 of one wavelength or longer and a power splitter 3 It is connected to the feeder network of the antenna system, in which the cable 2 is fixed to the reflector through the cable clamp 4.
  • connection method on the one hand leads to a very complicated spatial layout on the back of the antenna reflector 200, and in addition, the cable and power splitter are relatively complex. Difficulty in fixing leads to poor intermodulation stability of the antenna system, and for the same reason, it will inevitably not help to improve production efficiency.
  • the primary purpose of this application is to provide a radiating unit that can improve its intermodulation stability.
  • Another object of the present application is to provide an antenna using the above-mentioned radiating unit.
  • Another object of the present application is to provide a radiating element balun structure that can simplify the spatial layout of the back of the antenna to improve the antenna intermodulation stability.
  • Another object of the present application is to provide a method for manufacturing the above-mentioned radiation unit.
  • the present application relates to a radiating unit having two dipoles belonging to the same polarization and two feeding parts respectively feeding the two dipoles, and the two feeding parts One end of each is electrically connected to its corresponding dipole, and the other end of each is combined through the same physical combination port inherent in the radiating unit.
  • the combining port is integrated into the balun structure of the radiating unit to become its inherent part.
  • the dipole has a solid space structure and is supported by the balun structure.
  • the balun structure has a base and a balun arm connected to the base and correspondingly provided to support the radiating arm in the dipole, and the combining port is integrally formed on the base.
  • the junction port is formed on the base, relative to the geometric symmetry axis of the two dipoles.
  • the power feeding component starts from the junction port and is laid along the direction in which its corresponding balun arm supports the radiating arm.
  • the power feeding component is laid along the front or back of the balun arm, and the connection part of the combining port for the combining is adaptively arranged on the same front or back.
  • the combination port and the dipole are both installed on the same side of the reflector where the radiation unit is located, and thus are regarded as an inherent part of the radiation unit.
  • the dipole is a patch vibrator, and the combining port is placed at an adjacent position that can maintain the electrical performance of the dipole.
  • the dipole is a die-casting vibrator.
  • the combination port is pre-equipped at the corresponding position of the reflector where the radiation unit is located, and is therefore regarded as an inherent part of the radiation unit.
  • the distance from the spatial position of the combining port to the respective feeding points of the two dipoles of the same polarization is approximately the same.
  • the combining port has a cylindrical structure, the outer wall of which constitutes an outer conductor, the through hole defined by the outer wall is provided with an inner conductor, and the inner conductor of each feeding part is connected to the inner conductor of the combining port , The outer conductor of each feeding part is connected with the outer conductor of the combined port.
  • the feeding component is a coaxial cable
  • the two coaxial cables provided for the same polarization have substantially the same length.
  • the combination port has a corresponding conductive element for connecting the outer conductor of the outer cable with the outer conductor of the feeding member, and connecting the inner conductor of the outer cable with the inner conductor of the feeding member.
  • the two conductive elements corresponding to the inner conductor and the outer conductor of the combination port have a capacitive coupling feature between them.
  • the radiating unit further includes another polarization arranged in a polarization orthogonal manner to the foregoing polarization, and the two polarizations have the same structure, and respectively have the corresponding combination port and the power feeding component.
  • the two polarized dipoles are both supported on the base through the balun arm, and the two combining ports are also integrated on the base, and each feeding component is laid on the corresponding dipole and combined Between the road ports, run the cables along the corresponding balun arms.
  • the combining port corresponding to each polarization is at the position of the base and corresponds to the bottom of the balun arm supporting a dipole of the other polarization, so that the combining port is combined with the two ports of the combining port.
  • the lengths of the two feeding parts from the combined port to the feeding point of the two dipoles of the corresponding polarization are approximately the same
  • each of the combined ports is adapted to be directly electrically connected to the phase shifter of the antenna through only a single cable, so as to be adapted to receive a signal directly output by the phase shifter, and realize the function through the combined port. Minute.
  • the length of the feeding member is set at the position of the combining port to meet the impedance matching condition required for transmitting its corresponding polarization signal via the radiating unit.
  • the length of the feeding component is an integer multiple of 0.5 times the working wavelength of the corresponding polarization signal.
  • the feeding component is a coaxial cable, the outer conductor of which is grounded through the outer conductor of the combining port, and the inner conductor is electrically connected to the external cable through the inner conductor of the combining port.
  • the present application also relates to an antenna, which includes a plurality of the above-mentioned radiating elements, and a phase shifting network composed of a plurality of phase shifters, which is used to output the phase shift that realizes the signal phase difference relationship after the phase shift.
  • the phase shift signal output terminal of each phase shifter is transmitted to a corresponding combination port of a corresponding radiating unit through a single cable.
  • phase-shifting network and cables are located on the reverse side of the reflector of the antenna, and each of the radiation units is fixed on the front surface of the reflector by a three-point support structure.
  • the radiation unit is a low-frequency radiation unit for radiating low-frequency signals, and a high-frequency radiation unit for radiating high-frequency signals is installed within a range enclosed by a dipole of the radiation unit.
  • this application also relates to a radiating unit balun structure, which includes a base and at least a pair of balun arms, each pair of balun arms has two symmetrical groups of balun arms, and each group of balun arms surrounds the base.
  • the base is integrally formed with a combining port
  • the combining port includes an outer conductor formed by the outer wall of a through hole formed by the base, and an inner conductor pre-buried and fixed in the through hole, each group of bars
  • the end of the lenticular arm is used for fixing the dipole of the radiating unit
  • the body of each group of balun arm is used for arranging the wire to accommodate the feeding component connected between the dipole and the combining port.
  • the combination ports corresponding to the same pair of balun arms are located such that the two dipoles supported by the pair of balun arms are fed by the corresponding feeding components to achieve impedance matching.
  • the junction port corresponding to one pair of balun arms is just at the base position corresponding to the other pair of balun arms.
  • the present application also relates to a method for manufacturing a radiation unit, including the following steps: preparing a mold for forming the balun structure of the radiation unit; casting a blank of the radiation unit; and removing the radiation unit from the mold. Forming blank; install the medium wrapped with the inner conductor in the through hole of the outer conductor.
  • the radiating unit of the present application realizes the signal combining of the feeding parts of two dipoles belonging to the same polarization through its inherent combining port.
  • the feed network can feed the radiating unit with one polarization.
  • the existing antenna it is connected between the radiating unit and the phase shifter through two cables to achieve the same polarization.
  • the feeding scheme of two dipoles helps to reduce a large number of cables, and can also reduce the cables on the reverse side of the antenna reflector, making the layout on the reverse side of the reflector more concise; at the same time, it also reduces the use of coaxial cables. , Which helps to save costs and reduce the weight of the antenna.
  • the radiating unit is a feeder component (such as a coaxial cable) fed by two dipoles of the same polarization and is combined through a combining port, compared with the existing reflector and radiating unit , Phase shifter, power splitter, coaxial cable connecting the phase shifter and power splitter, coaxial cable connecting the power splitter and radiating unit, and an antenna composed of three or more cable clips, no additional wiring is required
  • the power splitter reduces the length of the coaxial cable, helps reduce costs, and makes the layout on the back of the antenna more concise.
  • Figure 1a is a perspective view of an existing antenna, showing the connection relationship between the radiating unit and the reflector;
  • Fig. 1b is a perspective view of the antenna shown in Fig. 1a from another perspective, showing the structure of the back of the reflector.
  • Fig. 2 is a perspective view of a radiation unit according to an embodiment of the application.
  • Figure 3 is an enlarged view of part A in Figure 2;
  • FIG. 4 is a perspective view of a radiation unit according to another embodiment of the application.
  • FIG. 5 is a perspective view of a radiation unit according to another embodiment of this application.
  • Fig. 6 is a cross-sectional view of a radiation unit according to an embodiment of the application.
  • FIG. 7 is a cross-sectional view of a radiation unit according to another embodiment of this application.
  • FIG. 8a is a perspective view of an antenna according to an embodiment of the application, showing the structure of the reflector in a front view angle;
  • Fig. 8b is a perspective view of the antenna shown in Fig. 8a from another perspective, showing the structure from the back side of the reflector;
  • Figure 9 is an actual measurement diagram of the existing antenna intermodulation
  • FIG. 10 is an actual measurement diagram of the intermodulation of the antenna according to this embodiment.
  • the present application relates to an antenna, which includes a reflector, a radiation unit provided on the front of the reflector, and a feed network including a phase shifter provided on the reverse of the reflector.
  • the feed network includes a plurality of phase shifters.
  • the phase shift network is used to output a phase shift signal that realizes the signal phase difference relationship after the phase shift, and feeds the radiation unit.
  • the radiation unit includes a low-frequency radiation unit for radiating low-frequency signals and/or a high-frequency radiation unit for radiating high-frequency signals, which can be at least one array of low-frequency radiation units, and can be at least one high-frequency radiation unit
  • the array can be at least one low-frequency array and at least one high-frequency array adjacent to each other, and a high-frequency radiation unit array can be set between two adjacent low-frequency radiation units, and it is best to embed a low-frequency radiation unit
  • a high-frequency radiation unit can be arranged in multiple different and/or the same high-frequency arrays for any low-frequency radiation array in a flower arrangement, etc., which can be specifically set by a technician according to system performance requirements, such as gain requirements.
  • the radiation unit has two dipoles in the same polarization direction and two feeding parts respectively feeding the two dipoles, and each end of the two feeding parts is electrically connected to its corresponding dipole. Connected, the other ends of each are combined through the same physical combining port inherent in the radiating unit.
  • the radiating unit is preferably a dual-polarization radiating unit, and each polarization direction has two dipoles and two feeders respectively feeding the two dipoles of the same polarization.
  • An electrical component, one end of each of the two feeding components is electrically connected to its corresponding dipole, and the other end of each is combined through the same physical combining port inherent in the radiating unit.
  • the so-called physical combined port means that the combined port has a physical structure, and more specifically, it provides an interface structure for cable connection.
  • the combination port can realize the combination of at least two signals.
  • the combination port is a structure belonging to the radiating unit, which can be integrally formed or integrated assembling with the main part of the radiating unit to achieve integrated integration. It can also be pre-fixed when the main part of the radiating unit is installed on the reflector. It is connected to the junction port of the reflector to form an inherent part of the radiation unit.
  • the main body includes a dipole and a balun structure.
  • the dipole has a spatial solid structure that is different from printing and is supported by the balun structure.
  • the balun structure usually includes a balun arm, and the feeding parts can be laid along the body of the balun arm and connected with the dipole.
  • the balun structure also includes a balun arm for connecting multiple balun arms to form a whole
  • the main body includes a dipole.
  • the combining port is connected to the base, or the combining port is directly fixed to the balun arm.
  • the combining port and the base or the balun arm are integrally formed and arranged.
  • the joint port can also be set separately from the balun arm or the base.
  • the combining port can be pre-fixed at a designated position on the reflector, and is electrically connected to the dipole of the vibrator when the vibrator is installed on the reflector.
  • the combination port can be connected to the metal support.
  • the power feeding part of the combining port and the patch vibrator are located on the same side of the reflector, the combining port is regarded as a part of the radiation unit.
  • each feeding component has a matching relationship with the position of the combination port, and the matching relationship between the two meets the impedance matching condition required for transmitting its corresponding polarization signal via the radiating unit.
  • the feeding component when the feeding component is a 75-ohm coaxial cable, its length is an integer multiple of 0.5 times the working wavelength of the corresponding polarized signal.
  • the lengths of the two feeding parts that feed the two dipoles of the same polarization are approximately the same.
  • the spatial position of the combining port can be adjusted to the position of each of the two dipoles of the same polarization.
  • the distances of the feeding points are approximately equal, which facilitates the arrangement of feeding parts and improves the consistency of the radiating unit.
  • the length of the two feeding parts may not be strictly equal, and can be adjusted according to the setting of the cross-polarization ratio or other electrical indicators.
  • the length of the cable can be adjusted, and on the other hand, the combined circuit can be adjusted. The location of the port.
  • the combining port is provided on the base at the geometric symmetry axis relative to the two dipoles, for example, the combining port corresponding to a pair of balun arms is just located at the corresponding position of the other pair of balun arms. At the base position.
  • the combination port has a corresponding conductive element for connecting the outer conductor of the outer cable with the outer conductor of the feeding member, and connecting the inner conductor of the outer cable with the inner conductor of the feeding member.
  • the two conductive elements corresponding to the inner conductor and the outer conductor of the combining port have a capacitive coupling feature.
  • the junction port has a cylindrical structure, the outer wall of which constitutes an outer conductor, the through hole defined by the outer wall is provided with an inner conductor, and each feeding component has an inner conductor and a junction port.
  • the inner conductors are connected, and the outer conductors of each feeding part are connected to the outer conductors of the combined port.
  • each phase shifter is transmitted to a corresponding combination port of a corresponding radiating unit through a single cable (such as a coaxial cable). Since the two feeding parts that feed the two dipoles of the same polarization are combined and connected to the combined port at each end, each polarization of the radiating unit can be directly connected to only one coaxial cable. Between the combiner port and the phase shifter of the feed network, the feed network completes the feeding of two dipoles of one polarization. Compared with existing antennas, based on impedance matching, two longer coaxial cables need to be extended through each polarization to connect to the same port of the phase shifter, reducing one coaxial cable. For an antenna composed of multiple dual-polarized radiation units, a large number of coaxial cables are reduced, so that the layout of the back of the reflector is greatly optimized, and the back of the reflector is more concise.
  • the feeder component is laid along the front or back of the balun arm, and the connection part of the combining port for combining is adaptively arranged on the same front or back surface.
  • the combining port is provided on the base, it It can protrude from the front of the base, or not protrude from the front of the base, depending on the convenience of wiring.
  • the radiation unit 100 includes a ring-shaped base 1, two pairs of balun arms extending upward and outward from the front of the base 1, four pairs connected to the balun arm 2 at one end away from the base 1 in a one-to-one correspondence.
  • each pair of balun arms 2 includes two groups of balun arms, and each group of balun arms includes two symmetrically arranged balun arms for supporting two radiating arms of a dipole.
  • the feeding component is a coaxial cable 4.
  • the four dipoles 3 are divided into two pairs, and each pair of dipoles 3 work in the same polarization direction, and they are supported on a pair of balun arms.
  • the two pairs of dipoles 3 work in two polarization directions orthogonal to each other.
  • the two polarization directions are, for example, a +45° polarization direction and a -45° polarization direction, or perpendicular polarizations intersect.
  • Each dipole 3 includes two radiating arms 30, and the radiating arms 30 are linear, so that the four dipoles 3 collectively enclose a regular quadrilateral.
  • the radiating arm 30 is arc-shaped, so that the four dipoles 3 together form a circle.
  • the coaxial cable 4 has two dipoles 3 corresponding to each polarization direction. One end of the two coaxial cables 4 is connected to the dipole 3, and the other end of the two coaxial cables 4 is connected to the combined circuit. Port, and make the parallel impedance of the two coaxial cables at the combined port 5 a specific impedance, such as 50 ohms, to match the output impedance of the feeding network.
  • a specific impedance such as 50 ohms
  • the coaxial cable 4 as the feeder is a 75-ohm coaxial cable, its length is an integer multiple of half a wavelength, and when the coaxial cable 4 is a 100-ohm coaxial cable, two The parallel impedance of the coaxial cable at the combined port is 50 ohms, so its length can be any length, which can be set by a technician according to actual needs.
  • the impedance at the combiner port 5 is 50 ohms, which matches the output impedance of the antenna feed network, it is no longer necessary to set up a corresponding length of coaxial cable between the combiner port 5 and the phase shifter for impedance matching, reducing The length of the coaxial cable.
  • the length of the coaxial cable 4 as the feeding component is an integer multiple of half of the working wavelength, and the principle of the length design is: the output impedance of the feeding network of the existing base station antenna is all 50 ohms, and the current The dipole 3 is mostly composed of a half-wave oscillator.
  • the ideal impedance of the half-wave oscillator is about 75 ohms.
  • the combined port 5 of the radiating unit 100 of the present application must be used.
  • the output impedance needs to be 50 ohms.
  • the two dipoles 3 of the same polarization direction need to pass through two 75 ohm coaxial cables that are integer multiples of half a wavelength (0.5 ⁇ ). Connect in parallel at the combiner port 5 to achieve 50 ohm impedance.
  • the balun arm 2 of the conventional radiating unit 100 is in order to achieve balanced feeding, its length is mostly a quarter of the wavelength (ie 0.25 ⁇ ), and the dielectric constant of the coaxial cable is generally 2.01, half-wavelength coaxial
  • the length of the cable is Preferably, the length of the coaxial cable of the present application along the balun arm 2 is 0.25 ⁇ , and the length of the ring-shaped base 1 is about 0.1 ⁇ , and the length of the coaxial cable as the feeding component just meets the minimum length of impedance matching.
  • the existing radiation unit 100 as shown in Figures 1a and 1b, 200 is a reflector, 100 is an existing radiation unit 100 installed on the front of the reflector, and 2 is a coaxial cable connecting the radiation unit 100 on the back of the reflector.
  • Figure 1b shows that the coaxial cables connected to the four dipoles 3 of the existing radiating unit 100 need to pass through the reflector 200 to connect to the power divider 3.
  • the power divider 3 uses one-to-two connection terminals, or a PCB If the length of the coaxial cable 2 of the existing radiating unit 100 is half a wavelength, the length of the cable is not enough to pass through the reflector to connect to the power divider, so the existing radiating unit 100 The length of the coaxial cable must be one wavelength or longer. It can be seen from the above that the radiating unit 100 of this embodiment has the best coaxial cable length compared to the existing radiating unit 100, which greatly saves the cost of the cable, and its impedance matching performance is better.
  • the junction port 5 has a cylindrical structure, its outer wall constitutes an outer conductor 50, the through hole defined by the outer wall is provided with an inner conductor 51, between the outer conductor 50 and the inner conductor 51 It is filled with an insulating medium to fix the inner conductor 51 in the through hole of the outer conductor 50.
  • the combining port has a structure similar to a coaxial cable, and the inner conductors of the two feeding parts belonging to the same polarization are connected to the inner conductor 51 of the combining port 5.
  • the outer conductor is connected to the outer conductor 50 of the combination port 5.
  • the combination port has an outer conductor for connecting the outer conductor of the outer cable with the outer conductor of the feeding member, and connecting the inner conductor of the outer cable with the inner conductor of the feeding member.
  • the two conductive elements corresponding to the inner conductor and the outer conductor of the combination port have a capacitive coupling feature between the two corresponding conductive elements.
  • the cross section of the combining port is circular.
  • the combining port may also be polygonal. The combiner port realizes a cylindrical structure, which is convenient to connect with the coaxial cable as an external cable.
  • the combining port 5 can be integrally formed with its outer wall (ie, the outer conductor) during the die-casting process of the main part of the radiation unit, and then the medium wrapped with the inner conductor is placed in the through hole of the outer conductor, thereby Constitute the combined port.
  • the four dipoles 3 in the two polarization directions can be fed via two Two combination ports 5 are connected to the feeder network through two coaxial cables connected to the phase shifter, reducing the number of coaxial cables.
  • the radiating unit 100 when the radiating unit 100 is applied to an antenna, it is only necessary to open two cable vias on the reflector for the two combining ports 5 to pass through and connect with the phase shifter of the feed network. In the existing antenna, four cable vias need to be opened, which reduces the cable vias by half, which can greatly reduce the problem of poor intermodulation stability due to burrs in the cable vias.
  • the number of coaxial cables connected between the radiating unit and the phase shifter can be reduced, so that the cables on the reverse side of the reflector can be reduced, the layout of the reverse side of the reflector is greatly optimized, and the reverse side of the reflector is more concise.
  • the distance between the feeding part 52 of the combining port 5 and the two dipoles 3 in the same polarization direction is equal, so that the lengths of the two coaxial cables 4 are equal, for example, both are half-wavelength, so that For impedance matching and facilitating the wiring of the coaxial cable 4 on the balun arm 2 and the base 1. It should be understood that the length of the two coaxial cables 4 can also be approximately equal or adjusted according to actual needs due to processing errors or due to impedance matching and cross-polarization ratio adjustment requirements.
  • the base 1 is provided with a welding groove 10 at a position close to the junction port 5, and the welding groove 10 can be used for the outer conductor of the coaxial cable 4 to be clamped and welded.
  • the welding groove 10 can be used for the outer conductor of the coaxial cable 4 to be clamped and welded.
  • two welding grooves 10 are provided at each joint port 5, and the two welding grooves 10 are roughly arranged in an "eight" shape.
  • a wiring groove 20 is provided on the front or back of the balun arm 2, and the coaxial cable 4 is placed in the wiring groove 20 and welded to the wiring groove 20,
  • the connection parts (not marked, the same below) for the combining port 5 are adaptively arranged on the same front or back side.
  • the wiring groove 20 is opened on the front of the balun arm 2.
  • the coupling port 5 penetrates the base 1 to facilitate the coaxial cable on the front of the balun arm 2.
  • 4 is connected to the combined port 5 and the feeder network.
  • the wiring groove 20 is opened on the opposite side of the balun arm 2.
  • the combining port 5 is provided on the opposite side of the base, and the outer conductor 50 is close to the wiring groove 20
  • a relief hole 53 is opened on the side wall for the inner conductor of the coaxial cable 4 to extend in and connect with the inner conductor 51 of the joint port 5.
  • the balun arm 2 is provided with a sealing plate 21 on both sides opposite to the wiring groove 20 to wrap the coaxial cable 4 in the balun arm 2, either
  • the coaxial cable 4 constitutes protection and can also achieve a certain aesthetic effect.
  • three fixing posts 6 for fixing the radiation unit 100 to the reflector are evenly distributed on the base 1.
  • the fixing column 6 is provided with a threaded hole 60 penetrating the lower end surface of the base 1 so as to connect with the threaded hole 60 of the fixing column 6 through the threaded hole on the reflector plate by means of a screw, so as to realize the fixing of the radiation unit 100 and the reflector plate.
  • the triangular fixing structure is formed by three fixing posts 6 evenly distributed on the bottom plate.
  • one fixing post 6 can be reduced, and the fixing structure is firmer, saving materials and reducing weight; correspondingly ,
  • the threaded holes on the reflector 200 can be reduced, and the factors that cause intermodulation instability due to the presence of burrs at the hole positions can be reduced.
  • the radiating unit 100 further includes a filtering stub, and the filtering stub includes a short-circuit terminal 7 electrically connected to the combining port 5 through a coaxial cable.
  • the short-circuit terminal 7 electrically connected to the combined port 5 to form a filtering subsection, the problem of mutual coupling between different frequency bands of multi-frequency and multi-system antennas can be effectively reduced.
  • the cable length between the short-circuit terminal and the combined port 5 is preferably 1/4 wavelength.
  • the main part of the radiation unit may also only include a dipole and a balun arm for supporting the dipole, and the balun arm is directly fixed to the reflector when the radiation unit is installed on the reflector.
  • the joint port is fixed to the balun arm.
  • the lengths of the two combining ports 5 corresponding to the two polarizations are equal.
  • the two combining ports 5 are exposed on the base 1
  • the power feeding parts 52 on the front side are arranged at different heights, so as to facilitate the welding of the coaxial cable and the joint port.
  • the power feeding part 52 of the combining port 5 may not be exposed on the front of the base.
  • the above embodiments all illustrate the structure of the radiation unit with a die-cast vibrator, but it does not mean that the radiation unit of the present application is only a die-cast vibrator. It can also be a patch vibrator, and the joint port is placed to maintain the coupling. The electrical properties of the poles are in the vicinity.
  • the antenna provided by the present application includes a reflector 200, the above-mentioned radiation unit 100 provided on the front of the reflector 200, and a feeder including a phase shifter 400 provided on the back of the reflector 200 Network, the reflector 200 is provided with a cable through hole, and each of the combined ports passes through the cable through hole and is connected to a signal output port of the phase shifter through only one coaxial cable .
  • the above-mentioned radiating unit 100 includes a low-frequency radiating unit for radiating low-frequency signals and a high-frequency radiating unit 300 for radiating high-frequency signals, and some of the high-frequency radiating units 300 are nested in the low-frequency radiating unit to realize a dual-frequency antenna design.
  • the radiating unit and the phase shifter 400 are connected through a coaxial cable 500 to realize that the radiating unit is connected to the feeder network to feed it, and the coaxial cable is fixed on the reflector 200 through a cable clamp 600.
  • the cable clamp 600 has two clamping parts (not labeled), which are distributed along the width direction of the reflector, and can correspondingly clamp two coaxial cables respectively connected to the low-frequency radiation unit and the high-frequency radiation unit.
  • the existing antenna can reduce the number of clips.
  • a base station antenna is often provided by multiple radiating units to provide signal coverage.
  • the antenna constituted by the radiating unit of the present application is used, since each radiating unit can reduce the number, length and cable clamps of coaxial cables.
  • the layout of the antenna on the back of the reflector becomes quite simple, and the weight of the antenna is reduced; since there is no need to set up a separate power splitter, the connection between the radiating unit and the phase shifter and the reflector is relatively stable, which is beneficial to improve the stability of intermodulation.
  • the reflector only needs to open two cable vias for each radiating unit for the feeder to insert and install, and three fixing holes for the radiating unit to be fixed, which greatly reduces the number of holes on the reflector and reduces burrs in the holes.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供一种天线及其辐射单元、辐射单元巴伦结构,所述辐射单元具有属于同一极化的两个偶极子及分别为所述两个偶极子馈电的两个馈电部件,两个所述馈电部件的各自一端与其相应的偶极子电连接,各自另一端通过该辐射单元所固有的同一物理合路端口实现合路。通过设置属于辐射单元固有的合路端口,并使其连接于与同一极化的两个偶极子连接的两个馈电部件(如同轴电缆)的各自一端,从而实现通过该合路端口实现两个偶极子的信号的分/合路,使得辐射单元应用于天线时仅需通过一根同轴电缆连接于移相器与合路端口之间即可实现移相器对一个极化的两个偶极子的馈电,减少了反射板反面的同轴电缆的数量,使反射板反面的布局更为简洁。

Description

天线及其辐射单元、辐射单元巴伦结构和制造方法 技术领域
本申请涉及移动天线领域,尤其涉及一种天线及其辐射单元、辐射单元巴伦结构和制造方法。
背景技术
随着通信行业的发展,小型化、多频段、多制式的基站天线越来越成为通信行业应用的主流天线。为了提升空间利用率,目前多频段、多制式天线一般采用同轴嵌套结构,即将高频辐射单元嵌入低频辐射单元中。如图1a和图1b所示,目前的基站天线中,常规的嵌套用辐射单元100设计由四个偶极子1组成,通过一个波长或更长的同轴电缆2和功分器3组合连接到天线系统的馈电网络中,其中电缆2通过电缆卡夹4固定于反射板上,这种连接方式一方面导致天线反射板200背面的空间布局非常复杂,另外由于电缆和功分器较难固定导致天线系统的互调稳定性较差,同理,也必然无助于提升生产效率。
发明内容
本申请的首要目的旨在提供一种可以提高其互调稳定性的辐射单元。
本申请的另一目的旨在提供一种应用上述辐射单元的天线。
本申请的又一目的旨在提供一种可以简化天线的背面空间布局以提高天线互调稳定性的辐射单元巴伦结构。
本申请的再一目的旨在提供一种上述辐射单元的制造方法。
为了实现上述目的,本申请提供以下技术方案:
作为第一方面,本申请涉及一种辐射单元,具有属于同一极化的两个偶极子及分别为所述两个偶极子馈电的两个馈电部件,两个所述馈电部件的各自一端与其相应的偶极子电连接,各自另一端通过该辐射单元所固有 的同一物理合路端口实现合路。
所述合路端口一体化集成于所述辐射单元所具有的巴伦结构中以成为其固有部分。
优选地,所述偶极子具有实体空间结构,由所述巴伦结构所支撑。
进一步地,所述巴伦结构具有底座和连接于底座、为支撑所述偶极子中的辐射臂而相应设置的巴伦臂,所述合路端口一体化形成于所述底座上。
优选地,所述合路端口形成于底座上、相对于所述两个偶极子的几何对称轴线处。
优选地,所述馈电部件自合路端口始,沿其相应的巴伦臂支撑所述辐射臂的方向铺设。
优选地,所述馈电部件沿巴伦臂的正面或反面铺设,所述合路端口用于合路的连接部位适应性地设置于同一正面或反面。
优选地,所述合路端口与所述偶极子均装设于辐射单元所在的反射板的同一侧,由此视为该辐射单元的固有部分。
优选地,所述偶极子为贴片振子,所述合路端口置于能保持偶极子的电气性能的邻近位置处。或者,所述偶极子为压铸成型的振子。
优选地,所述合路端口被预配备于该辐射单元所在的反射板的相应位置处,由此视为该辐射单元的固有部分。
优选地,所述合路端口所在的空间位置到所述同一极化的两个偶极子各自的馈电点的距离大致相等。
优选地,所述合路端口呈筒型结构,其外壁构成外导体,由其外壁限定形成的通孔处设置有内导体,各馈电部件所具有内导体与合路端口的内导体相连接,各馈电部件所具有的外导体与合路端口的外导体相连接。
优选地,所述馈电部件为同轴电缆,为同一极化提供的两条所述同轴电缆具有大致相同的长度。
优选地,所述合路端口具有用于将外部线缆的外导体与馈电部件的外导体相连接,将外部线缆的内导体与馈电部件的内导体相连接的对应导电元件。
优选地,所述合路端口的与内导体和外导体相对应的两个导电元件之间具有容性耦合特征。
进一步地,该辐射单元还包括与前述极化以极化正交方式排布的另一极化,两个极化具有相同的结构,分别具有各自对应的所述合路端口和馈电部件。
优选地,两个所述的极化的偶极子均通过巴伦臂支撑在底座上,且两个合路端口也集成在所述底座上,各馈电部件铺设于相应的偶极子和合路端口之间,沿相应的巴伦臂排线。
优选地,每个极化所对应的合路端口在所述底座的位置,与支撑另一极化的一个偶极子的巴伦臂底部相对应,以使得合路于该合路端口的两个馈电部件自该合路端口到达其相应极化两个偶极子的馈电点的长度大致相等
优选地,每个所述的合路端口,适于仅通过单一线缆与天线的移相器直接电连接,以适于接收该移相器直接输出的一路信号,经由该合路端口实现功分。
优选地,所述馈电部件的长度的所述合路端口所处的位置的设置,满足经由该辐射单元发射其相应极化信号所需的阻抗匹配条件。
优选地,所述馈电部件的长度为相应极化信号的0.5倍工作波长的整数倍。
优选地,所述馈电部件为同轴电缆,其外导体通过合路端口的外导体接地,其内导体通过合路端口的内导体与外部线缆电性连接。
作为第二方面,本申请还涉及一种天线,其包括多个上述辐射单元,以及由多个移相器构成的移相网络,其用于输出经移相后实现信号相位差分关系的移相信号,每个所述移相器的移相信号输出端均通过单独一条线缆传输至对应的一个所述辐射单元的一个对应的合路端口处。
优选地,所述移相网络及线缆居于天线的反射板的反面,而每个所述的辐射单元以三点支撑结构固定于所述反射板正面。
优选地,所述辐射单元为用于辐射低频信号的低频辐射单元,在该辐射单元的偶极子围成的范围之内,装设有用于辐射高频信号的高频辐射单 元。
作为第三方面,本申请还涉及一种辐射单元巴伦结构,其包括底座和至少一对巴伦臂,每对巴伦臂有对称的两组巴伦臂,各组巴伦臂绕底座的周向等距设置,所述底座一体成型有合路端口,该合路端口包括外导体,由底座形成的通孔外壁形成,和预埋并固定于该通孔内的内导体,每组巴伦臂末端用于固定辐射单元的偶极子,每组巴伦臂的本体用于排线容置连接于所述偶极子和合路端口之间的馈电部件。
优选地,同一对巴伦臂所对应的合路端口,其所处的位置使得该对巴伦臂所支撑的两个偶极子被相应的馈电部件实现阻抗匹配馈电。
优选地,当存在两对巴伦臂时,一对巴伦臂所对应的合路端口刚好位于另一对巴伦臂所对应的底座位置处。
作为第四方面,本申请还涉及一种辐射单元的制造方法,包括以下步骤:预备用于形成上述辐射单元巴伦结构的模具;浇铸成型所述辐射单元的坯件;脱模取出辐射单元的成型坯件;将包裹有内导体的介质装设于外导体的通孔内。
相比现有技术,本申请的方案具有以下优点:
本申请的辐射单元,通过其固有的合路端口实现属于同一极化的两个偶极子的馈电部件的信号合路,在其应用于天线中时,仅需通过一根同轴电缆连接于合路端口与移相器之间即可实现馈电网络对辐射单元一个极化的馈电,相对于现有天线通过两根线缆连接于辐射单元与移相器之间实现同一极化两个偶极子的馈电的方案,有助于减少大量的线缆,也可减少了天线反射板反面的线缆,使得反射板反面的布局较为简洁;同时还减少了同轴电缆的使用,有助于节省成本、降低天线重量。
本申请的天线中,由于辐射单元为同一极化的两个偶极子馈电的馈电部件(如同轴电缆)通过一个合路端口合路,相比现有的由反射板、辐射单元、移相器、功分器、连接移相器和功分器的同轴电缆和连接功分器和辐射单元的同轴电缆和三个及以上电缆卡件组成的天线,不需要额外设置接线功分器,减少同轴电缆的长度,有助于降低成本,且使得天线背面布局更加简洁。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为现有天线的立体图,示出了辐射单元与反射板的连接关系;
图1b为图1a所示天线的另一视角的立体图,示出反射板背面的结构。
图2为本申请一种实施方式的辐射单元的立体图;
图3为图2中A部分的放大图;
图4为本申请另一实施方式的辐射单元的立体图;
图5为本申请又一实施方式的辐射单元的立体图;
图6为本申请一种实施方式的辐射单元的剖视图;
图7为本申请另一种实施方式的辐射单元的剖视图;
图8a为本申请一种实施方式的天线的立体图,示出反射板正面视角的结构;
图8b为图8a所示天线的另一视角的立体图,示出反射板背面视角的结构;
图9为现有天线互调实测图;
图10为本实施方式的天线的互调实测图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本申请涉及一种天线,其包括反射板、设于反射板正面的辐射单元及设于反射板反面的包含移相器的馈电网络,所述馈电网络包括由多个移相器构成的移相网络,其用于输出经移相后实现信号相位差分关系的移相信 号,为所述辐射单元馈电。
其中,所述辐射单元包括用于辐射低频信号的低频辐射单元和/或用于辐射高频信号的高频辐射单元,可以为至少一个的低频辐射单元组阵、可以为至少一个高频辐射单元组阵,可以为至少一个低频阵列和至少一个高频阵列相邻组阵,可以为相邻两个低频辐射单元之间设置一个高频辐射单元组阵,并最好在一个低频辐射单元内嵌套一个高频辐射单元,可以为任一低频辐射阵列插花式布置在多个不同和/或相同的高频阵列中等等,其具体可以由技术人员根据系统性能需求,例如增益需求来设置。
所述辐射单元同一极化方向具有两个偶极子及分别为所述两个偶极子馈电的两个馈电部件,两个所述馈电部件的各自一端与其相应的偶极子电连接,各自另一端通过该辐射单元所固有的同一物理的合路端口实现合路。
在一种实施方式中,所述辐射单元优选为双极化辐射单元,其每个极化方向具有两个偶极子及分别为同一极化所述两个偶极子馈电的两个馈电部件,两个所述馈电部件的各自一端与其相应的偶极子电连接,各自另一端通过该辐射单元所固有的同一物理合路端口实现合路。
在此,所称的物理的合路端口是指该合路端口具有物理结构,更具体的情况下是提供一个可供线缆连接的接口结构。该合路端口可以实现至少两路信号的合路。另外,该合路端口为属于辐射单元的结构,其可以与辐射单元的主体部位一体成型或一体化装配设置以实现一体化集成,也可在辐射单元的主体部位安装于反射板时与预固定于反射板的合路端口对接而构成辐射单元的一固有部分。
其中,对于压铸型振子,所述主体部位包括偶极子及巴伦结构,在该种振子中,偶极子具有有别于印刷成型的空间实体结构,由巴伦结构所支撑,所述巴伦结构通常包括巴伦臂,馈电部件可沿巴伦臂的本体铺设并与偶极子连接,必要时,所述巴伦结构还包括用于将多个巴伦臂连接起来构成一个整体的底座,多个巴伦臂绕底座的周向等距排布。对于贴片振子,主体部位包括偶极子。
对于压铸型振子,所述合路端口与所述底座连接,或者合路端口直接 固定于巴伦臂,较佳地,所述合路端口与所述底座或巴伦臂一体成型设置,在其他方式中,合路端口也可与巴伦臂或底座分体设置。对于贴片振子,所述合路端口可预固定于反射板上指定位置处,在振子安装于反射板时与振子的偶极子电性连接,当贴片振子还由金属结构件支撑时,合路端口可连接于金属支撑件。在此,由于合路端口的馈电部位与贴片振子位于反射板的同一侧,因而合路端口视为辐射单元一部分。
每个馈电部件的长度与所述合路端口所设置的位置具有匹配关系,,两者之间的匹配关系满足经由该辐射单元发射其相应极化信号所需的阻抗匹配条件。
进一步地,在一个具体实例中,当馈电部件为75欧姆同轴电缆时,其长度为相应极化信号的0.5倍工作波长的整数倍。优选地,为同一极化两个偶极子馈电的两个馈电部件的长度大致相等,具体可以使所述合路端口所在的空间位置到所述同一极化的两个偶极子各自的馈电点的距离大致相等,由此可方便馈电部件的设置,提高辐射单元的一致性。需要说明的是,两个馈电部件的长度可以不严格相等,可以根据交叉极化比或其他电气指标的设定而进行调整,一方面可以调节线缆的长度,另一方面可以调整合路端口的设置位置。
较佳地,所述合路端口设于底座上相对于所述两个偶极子的几何对称轴线处,例如一对巴伦臂所对应的合路端口刚好位于另一对巴伦臂所对应的底座位置处。
优选地,所述合路端口具有用于将外部线缆的外导体与馈电部件的外导体相连接,将外部线缆的内导体与馈电部件的内导体相连接的对应导电元件。并且所述合路端口的与内导体和外导体相对应的两个导电元件之间具有容性耦合特征。
在一种实施方式中,所述合路端口呈筒型结构,其外壁构成外导体,由其外壁限定形成的通孔处设置有内导体,各馈电部件所具有内导体与合路端口的内导体相连接,各馈电部件所具有的外导体与合路端口的外导体相连接。
本申请中,每个所述移相器的移相信号输出端均通过单独一条线缆 (如同轴电缆)传输至对应的一个所述辐射单元的一个对应的合路端口处。由于为同一极化的两个偶极子馈电的两个馈电部件各自一端合路连接于合路端口,因而该辐射单元的每个极化都可以仅通过一根同轴电缆直接连接于合路端口与馈电网络的移相器之间,完成馈电网络对一个极化的两个偶极子的馈电。相对于现有天线,基于阻抗匹配,需要通过每个极化延伸出两根较长的同轴电缆连接于移相器同一个端口,减少了一根同轴电缆。对于一副多个双极化辐射单元共同构成的天线而言,减少了大量的同轴电缆,使得反射板反面的布局得到大大的优化,反射板反面更为简洁。
优选地,所述馈电部件沿巴伦臂的正面或反面铺设,所述合路端口用于合路的连接部位适应性地设置于同一正面或反面,当合路端口设于底座时,其可以凸出于底座的正面,也可不从底座的正面凸出,具体可视布线的便利性设置。
下面以压铸型振子为例,说明本申请的辐射单元的结构、涉及的原理及其所带来的效果。参见图2,所述辐射单元100包括环形的底座1、由底座1正面倾斜向上且向外延伸的两对巴伦臂2、四个一一对应连接于巴伦臂2远离底座1一端的偶极子3、连接于偶极子3为之馈电的馈电部件,以及设于底座1下方的合路端口5。其中,每对巴伦臂2包括两组巴伦臂,每组巴伦臂包括两个对称设置的巴伦臂,用于支撑一个偶极子的两个辐射臂。所述馈电部件为同轴电缆4。
四个所述偶极子3分为两对,每对偶极子3工作于同一个极化方向,其被支撑于一对巴伦臂上。优选地,两对偶极子3工作于相互正交的两个极化方向,两个所述极化方向例如为+45°极化方向和-45°极化方向,或垂直极化相交等。每个偶极子3均包括两个辐射臂30,所述辐射臂30为直线型,使得四个偶极子3共同围成正四边形。请结合图5,在另一个实施方式中,所述辐射臂30为弧线型,使得四个偶极子3共同围合成圆形。
优选地,所述同轴电缆4对应每个极化方向的两个偶极子3设有两根,两根同轴电缆4的各自一端与偶极子3连接,各自另一端连接到合路端口,并且使得两根同轴电缆于该合路端口5处的并联阻抗为特定阻抗,例如50欧姆,以与馈电网络的输出阻抗相适配。当作为馈电部件的所述同轴 电缆4为75欧姆的同轴电缆时,其长度为半个波长的整数倍,并且当所述同轴电缆4为100欧姆的同轴电缆时,两根同轴电缆于合路端口处的并联阻抗为50欧姆,因而其长度可为任意长度,可由技术人员根据实际需要设置。
由于合路端口5处的阻抗为50欧姆,与天线馈电网络的输出阻抗相匹配,不再需要在合路端口5与移相器之间设置相应长度的同轴电缆来进行阻抗匹配,减少同轴电缆的长度。
优选地,作为所述馈电部件的同轴电缆4的长度为半个工作波长的整数倍,其长度设计的原理是:现有基站天线的馈电网络的输出阻抗均为50欧姆,而现有偶极子3多由半波振子构成,半波振子的理想阻抗为75欧姆左右,为了让偶极子3与基站天线中的馈网匹配,须使本申请辐射单元100的合路端口5的输出阻抗需为50欧姆。例如在一个实施例中为了实现合路端口5的输出阻抗为50欧姆,相同极化方向的两个偶极子3需要通过半个波长(0.5λ)整数倍的75欧姆的两根同轴电缆在合路端口5处并联连接实现50欧姆阻抗。由于常规辐射单元100的巴伦臂2为了实现平衡馈电,其长度多为四分之一个波长(即0.25λ),而同轴电缆的介电常数一般为2.01,半个波长的同轴电缆的长度为
Figure PCTCN2020109878-appb-000001
优选地,本申请同轴电缆沿巴伦臂2的长度为0.25λ,沿环形的底座1的长度约为0.1λ,作为馈电部件的同轴电缆长度刚好满足阻抗匹配的最小长度。
而现有辐射单元100,如图1a和1b所示,200是反射板,100是安装在反射板正面的现有辐射单元100,2是在反射板背面连接辐射单元100的同轴电缆,由图1b可知现有辐射单元100的四个偶极子3连接的同轴电缆需要穿过反射板200连接功分器3,本图中功分器3采用一分二接线端子,也可采用PCB功分器等其它功分方式,现有辐射单元100的同轴电缆2的长度如果为半个波长,其线缆长度不足够穿过反射板来连接功分器,所以现有辐射单元100的同轴电缆长度必须为一个波长或更长。由以上可知,本实施例的辐射单元100相比于现有辐射单元100,其同轴电缆的长度最优,大大节约线缆成本,且其阻抗匹配性能更好。
请结合图3,优选地,所述合路端口5呈筒型结构,其外壁构成外导体50,由其外壁限定形成的通孔处设置有内导体51,外导体50与内导体51之间填充以绝缘介质而将内导体51固定于外导体50的通孔内。在此实施方式中,合路端口构成类似于同轴电缆的结构,属于同一极化的两馈电部件所具有的内导体与合路端口5的内导体51相连接,馈电部件所具有的外导体与合路端口5的外导体50相连接。另外,在其他实施方式中,所述合路端口具有分别用于将外部线缆的外导体与馈电部件的外导体相连接,将外部线缆的内导体与馈电部件的内导体相连接的对应的两个导电元件,所述合路端口的与内导体和外导体相对应的两个导电元件之间具有容性耦合特征。在此实施方式中,所述合路端口的截面呈圆形,在其他实施方式中,所述合路端口也可为多边形。合路端口实现一种筒状结构,方便与作为外部线缆的同轴电缆相连接。
所述合路端口5可以在辐射单元的主体部位压铸成型过程中一体成型其外壁(即外导体),然后将包裹有所述内导体的介质置于所述外导体的通孔内,由此构成所述合路端口。
由于与同一极化方向的两个偶极子3连接的两根同轴电缆4合路连接于一个合路端口5,因而两个极化方向的四个偶极子3的馈电可经由两个合路端口5通过两根同轴电缆与移相器连接而连接到馈电网络,减少同轴电缆的数量。一方面,在该辐射单元100在应用于天线时,仅需在反射板上开设两个线缆过孔,供两个合路端口5穿过与馈电网络的移相器连接即可,相对于现有天线需要开设四个线缆过孔的方案,减少了一半线缆过孔,可以极大程度上减少因线缆过孔存在毛刺而导致互调稳定性差的问题。另一方面,可以减少辐射单元与移相器之间连接的同轴电缆的数量,使得反射板反面的线缆得以减少,反射板反面的布局得到大大的优化,反射板反面较为简洁。
优选地,所述合路端口5的馈电部位52到同一极化方向的两个偶极子3之间的距离相等,使得两根同轴电缆4的长度相等,例如均为半波长,以便于阻抗匹配和方便同轴电缆4在巴伦臂2和底座1上的布线。应当理解的,由于加工误差或出于阻抗匹配、交叉极化比调节的需要,两根同轴 电缆4的长度也可大致相等或者根据实际需要调整长度。
进一步地,所述底座1靠近所述合路端口5的位置设有焊接槽10,所述焊接槽10可供同轴电缆4的外导体卡入并焊接。为便于同一极化方向的两根同轴电缆4的焊接,每个合路端口5处设有两个所述焊接槽10,并且两个焊接槽10大致呈“八”字设置。
较佳地,为方便同轴电缆4的布线,所述巴伦臂2的正面或反面设有布线槽20,所述同轴电缆4置于所述布线槽20内并与布线槽20焊接,所述合路端口5用于合路的连接部位(未标示,下同)适应性地设置于同一正面或反面。
参见图2,在一个实施例中,所述布线槽20开设于巴伦臂2的正面,此时,所述合路端口5贯穿所述底座1,以便于巴伦臂2正面的同轴电缆4与合路端口5和馈电网络连接。请结合图4,在另一个实施方式中,所述布线槽20开设于巴伦臂2的反面,对应的,所述合路端口5设于底座的反面,其外导体50靠近布线槽20的侧壁上开设有让位孔53,以供同轴电缆4的内导体伸入与合路端口5的所述内导体51连接。
请结合图5,优选地,所述巴伦臂2设有与所述布线槽20相对的两侧连接以将同轴电缆4包裹于所述巴伦臂2内的封板21,既可对同轴电缆4构成保护,也可达到一定的美观效果。
优选地,所述底座1上均布有三个用于将该辐射单元100固定到反射板上的固定柱6。所述固定柱6开设有贯穿底座1下端面的螺纹孔60,以借助螺钉穿过反射板上的螺纹孔与固定柱6的螺纹孔60连接,从而实现辐射单元100与反射板的固定。本实施方式中,通过均布于底板的三个固定柱6构成三角形固定结构,相对于现有四边形固定结构,可以减少一个固定柱6,并且固定结构更牢固,节省材料,降低重量;对应地,可以减少反射板200上的螺纹孔,减少因孔位存在毛刺而导致互调不稳定的因素。
进一步地,所述辐射单元100还包括滤波枝节,所述滤波枝节包括通过同轴电缆与所述合路端口5电连接的短路端子7。通过设置与合路端口5电连接的短路端子7而构成滤波枝节,可以有效减少多频段、多系统天 线不同频段间的互耦问题。其中,短路端子与合路端口5之间的线缆长度优选为1/4倍波长。
在其他实施方式中,所述辐射单元的主体部分也可仅包括偶极子及用于支撑偶极子的巴伦臂,所述巴伦臂在辐射单元安装于反射板时直接固定于反射板,在该种实施方式中,所述合路端口与所述巴伦臂固定。
请结合图6,优选地,对应两个极化的两个合路端口5的长度相等,为了方便作为馈电部件的同轴电缆4的铺设,两个所述合路端口5露出于底座1正面的馈电部位52以不同的高度设置,从而可以方便同轴电缆与合路端口的焊接。另外,请结合图7,合路端口5的馈电部位52也可不露出于底座正面设置。
以上实施方式均以压铸型振子对辐射单元的结构进行举例说明,但不意味着本申请的辐射单元仅为压铸型振子,其还可以是贴片振子,所述合路端口置于能保持偶极子的电气性能的邻近位置处。
请结合图8a和图8b,作为第二方面,本申请提供的天线包括反射板200、设于反射板200正面的上述辐射单元100及设于反射板200背面的包含移相器400的馈电网络,所述反射板200上开设有线缆过孔,每个所述合路端口穿过所述线缆过孔后仅通过一根同轴电缆与一个所述移相器的信号输出端口连接。其中上述辐射单元100包括用于辐射低频信号的低频辐射单元和辐射高频信号的高频辐射单元300,其中部分高频辐射单元300嵌套于低频辐射单元中,以实现双频天线设计。辐射单元与移相器400之间通过同轴电缆500连接,以实现辐射单元接入馈电网络对其馈电,所述同轴电缆通过线缆卡夹600固定于反射板200上。
所述线缆卡夹600具有两个夹持部(未标示),其沿反射板宽度方向分布,可对应夹持两根分别与低频辐射单元和高频辐射单元连接的同轴电缆,相对于现有天线,可减少卡夹的数量。
众所周知地,一副基站天线往往由多个辐射单元提供信号覆盖,采用本申请的辐射单元构成的天线,由于每个辐射单元可减少同轴线缆的数量、长度和线缆卡夹,所述天线在反射板背面的布局变得相当简洁,并且天线重量得以降低;由于不需要设置单独的功分器,辐射单元与移相器和 反射板的连接较为稳定,有利于提高互调稳定性,另外反射板对应每个辐射单元仅需开设两个线缆过孔供馈电器插入安装、开设三个固定孔供辐射单元固定,大大减少反射板上开设的孔位,减少孔位存在毛刺而造成互调差的问题。
本申请天线的交调实测数据如图10所示,其最差值为-131.1dBm,而现有基站天线的交调实测数据如图9所示,其最差值为-116.9dBm,由图可知,本申请天线的交调得到了明显的改善。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (29)

  1. 一种辐射单元,具有属于同一极化的两个偶极子及分别为所述两个偶极子馈电的两个馈电部件,
    两个所述馈电部件的各自一端与其相应的偶极子电连接,各自另一端通过该辐射单元所固有的同一物理合路端口实现合路。
  2. 根据权利要求1所述的辐射单元,所述合路端口一体化集成于所述辐射单元所具有的巴伦结构中以成为其固有部分。
  3. 根据权利要求2所述的辐射单元,所述偶极子具有实体空间结构,由所述巴伦结构所支撑。
  4. 根据权利要求2所述的辐射单元,所述巴伦结构具有底座和连接于底座、为支撑所述偶极子中的辐射臂而相应设置的巴伦臂,所述合路端口一体化形成于所述底座上。
  5. 根据权利要求4所述的辐射单元,所述合路端口形成于底座上、相对于所述两个偶极子的几何对称轴线处。
  6. 根据权利要求4所述的辐射单元,所述馈电部件自合路端口始,沿其相应的巴伦臂支撑所述辐射臂的方向铺设。
  7. 根据权利要求4所述的辐射单元,所述馈电部件沿巴伦臂的正面或反面铺设,所述合路端口用于合路的连接部位适应性地设置于同一正面或反面。
  8. 根据权利要求1所述的辐射单元,所述合路端口与所述偶极子均装设于辐射单元所在的反射板的同一侧,由此视为该辐射单元的固有部分。
  9. 根据权利要求8所述的辐射单元,所述偶极子为贴片振子,所述合路端口置于能保持偶极子的电气性能的邻近位置处;或者,所述偶极子为压铸成型的振子。
  10. 根据权利要求1所述的辐射单元,所述合路端口被预配备于该辐射单元所在的反射板的相应位置处,由此视为该辐射单元的固有部分。
  11. 根据权利要求1所述的辐射单元,所述合路端口所在的空间位置 到所述同一极化的两个偶极子各自的馈电点的距离大致相等。
  12. 根据权利要求1所述的辐射单元,所述合路端口呈筒型结构,其外壁构成外导体,由其外壁限定形成的通孔处设置有内导体,各馈电部件所具有内导体与合路端口的内导体相连接,各馈电部件所具有的外导体与合路端口的外导体相连接。
  13. 根据权利要求12所述的辐射单元,所述馈电部件为同轴电缆,为同一极化提供的两条所述同轴电缆具有大致相同的长度。
  14. 根据权利要求1所述的辐射单元,所述合路端口具有用于将外部线缆的外导体与馈电部件的外导体相连接,将外部线缆的内导体与馈电部件的内导体相连接的对应导电元件。
  15. 根据权利要求14所述的辐射单元,所述合路端口的与内导体和外导体相对应的两个导电元件之间具有容性耦合特征。
  16. 根据权利要求1所述的辐射单元,该辐射单元还包括与前述极化以极化正交方式排布的另一极化,两个极化具有相同的结构,分别具有各自对应的所述合路端口和馈电部件。
  17. 根据权利要求16所述的辐射单元,两个所述的极化的偶极子均通过巴伦臂支撑在底座上,且两个合路端口也集成在所述底座上,各馈电部件铺设于相应的偶极子和合路端口之间,沿相应的巴伦臂排线。
  18. 根据权利要求17所述的辐射单元,每个极化所对应的合路端口在所述底座的位置,与支撑另一极化的一个偶极子的巴伦臂底部相对应,以使得合路于该合路端口的两个馈电部件自该合路端口到达其相应极化两个偶极子的馈电点的长度大致相等。
  19. 根据权利要求1所述的辐射单元,每个所述的合路端口,适于仅通过单一线缆与天线的移相器直接电连接,以适于接收该移相器直接输出的一路信号,经由该合路端口实现功分。
  20. 根据权利要求1所述的辐射单元,所述馈电部件的长度和所述合路端口所处的位置的设置,满足经由该辐射单元发射其相应极化信号所需的阻抗匹配条件。
  21. 根据权利要求1所述的辐射单元,所述馈电部件的长度为相应极化信号的0.5倍工作波长的整数倍。
  22. 根据权利要求1所述的辐射单元,所述馈电部件为同轴电缆,其外导体通过合路端口的外导体接地,其内导体通过合路端口的内导体与外部线缆电性连接。
  23. 一种天线,其特征在于,包括如权利要求1至22任意一项多个所述的辐射单元,以及由多个移相器构成的移相网络,其用于输出经移相后实现信号相位差分关系的移相信号,每个所述移相器的移相信号输出端均通过单独一条线缆传输至对应的一个所述辐射单元的一个对应的合路端口处。
  24. 根据权利要求23所述的天线,所述移相网络及线缆居于天线的反射板的反面。
  25. 根据权利要求23所述的天线,所述辐射单元为用于辐射低频信号的低频辐射单元,在该辐射单元的偶极子围成的范围之内,装设有用于辐射高频信号的高频辐射单元。
  26. 一种辐射单元巴伦结构,包括底座和至少一对巴伦臂,每对巴伦臂有对称的两组巴伦臂,各组巴伦臂绕底座的周向等距设置,所述底座一体成型有合路端口,该合路端口包括外导体,由底座形成的通孔外壁形成,和预埋并固定于该通孔内的内导体,每组巴伦臂末端用于固定辐射单元的偶极子,每组巴伦臂的本体用于排线容置连接于所述偶极子和合路端口之间的馈电部件。
  27. 根据权利要求26所述的辐射单元巴伦结构,同一对巴伦臂所对应的合路端口,其所处的位置使得该对巴伦臂所支撑的两个偶极子被相应的馈电部件实现阻抗匹配馈电。
  28. 根据权利要求27所述的辐射单元巴伦结构,当存在两对巴伦臂时,一对巴伦臂所对应的合路端口刚好位于另一对巴伦臂所对应的底座位置处。
  29. 一种辐射单元的制造方法,包括如下步骤:预备用于形成如权利要求26至28任意一项所述的辐射单元巴伦结构的模具;浇铸成型所述辐 射单元的坯件;脱模取出辐射单元的成型坯件;将包裹有内导体的介质装设于外导体的通孔内。
PCT/CN2020/109878 2019-09-30 2020-08-18 天线及其辐射单元、辐射单元巴伦结构和制造方法 WO2021063122A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/764,736 US12132269B2 (en) 2019-09-30 2020-08-18 Antenna and radiation unit thereof, balun structure of radiation unit and manufacturing method
EP20871575.5A EP4024610A4 (en) 2019-09-30 2020-08-18 ANTENNA AND RADIATION UNIT THEREOF, BALUN STRUCTURE OF A RADIATION UNIT AND METHOD OF MANUFACTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944449 2019-09-30
CN201910944449.6 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063122A1 true WO2021063122A1 (zh) 2021-04-08

Family

ID=70080350

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/109880 WO2021063123A1 (zh) 2019-09-30 2020-08-18 基站天线及其辐射单元
PCT/CN2020/109881 WO2021063124A1 (zh) 2019-09-30 2020-08-18 馈电组件及辐射单元
PCT/CN2020/109878 WO2021063122A1 (zh) 2019-09-30 2020-08-18 天线及其辐射单元、辐射单元巴伦结构和制造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/109880 WO2021063123A1 (zh) 2019-09-30 2020-08-18 基站天线及其辐射单元
PCT/CN2020/109881 WO2021063124A1 (zh) 2019-09-30 2020-08-18 馈电组件及辐射单元

Country Status (3)

Country Link
EP (1) EP4024610A4 (zh)
CN (6) CN111129773B (zh)
WO (3) WO2021063123A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129773B (zh) * 2019-09-30 2021-05-28 京信通信技术(广州)有限公司 调偏装置及辐射单元
CN112072287B (zh) * 2020-09-03 2022-09-27 武汉凡谷电子技术股份有限公司 一种双极化天线模块
CN112397246B (zh) * 2020-10-26 2022-03-08 中国电子科技集团公司第二十九研究所 偶极子天线结构及电缆组件
CN114256577B (zh) * 2021-12-03 2023-05-02 京信通信技术(广州)有限公司 集成式天线单元与基站天线
CN114284720B (zh) * 2021-12-09 2023-04-25 中国电子科技集团公司第二十九研究所 一种双同轴电缆的馈电结构
CN116031647A (zh) * 2022-12-28 2023-04-28 京信通信技术(广州)有限公司 辐射单元和天线
CN115986372B (zh) * 2022-12-30 2024-07-19 京信通信技术(广州)有限公司 基站天线
CN116031615A (zh) * 2022-12-30 2023-04-28 京信通信技术(广州)有限公司 基站天线
CN116315591A (zh) * 2023-02-07 2023-06-23 中信科移动通信技术股份有限公司 天线及基站系统
CN116487872B (zh) * 2023-05-17 2024-02-09 江苏亨鑫科技有限公司 一种具有pcb功分馈电结构低频辐射单元
CN116995427B (zh) * 2023-09-28 2024-01-26 中信科移动通信技术股份有限公司 辐射单元及基站天线
CN117477216B (zh) * 2023-12-27 2024-04-26 华南理工大学 耦合馈电的低频振子及阵列天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013560A (zh) * 2010-09-25 2011-04-13 广东通宇通讯设备有限公司 一种宽带高性能双极化辐射单元及天线
CN102723577A (zh) * 2012-05-18 2012-10-10 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
CN203232955U (zh) * 2013-04-25 2013-10-09 华为技术有限公司 天线振子及具有该天线振子的天线
CN203850423U (zh) * 2014-04-14 2014-09-24 江苏捷士通射频系统有限公司 一种宽频双极化振子
US20140361942A1 (en) * 2006-12-11 2014-12-11 Harris Corporation Multiple polarization loop antenna and associated methods
CN104716417A (zh) * 2013-12-12 2015-06-17 深圳光启创新技术有限公司 圆极化天线、圆极化天线系统和通讯设备
CN111092296A (zh) * 2019-09-30 2020-05-01 京信通信技术(广州)有限公司 基站天线及其辐射单元

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302905C1 (de) * 1993-02-02 1994-03-17 Kathrein Werke Kg Richtantenne, insbesondere Dipolantenne
US5418545A (en) * 1993-11-09 1995-05-23 Harris Corporation Variable length slot fed dipole antenna
US6037912A (en) * 1998-09-22 2000-03-14 Allen Telecom Inc. Low profile bi-directional antenna
DE10150150B4 (de) * 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray
FR2841391B3 (fr) * 2002-06-25 2004-09-24 Jacquelot Technologies Dispositif rayonnant bi-bande a double polarisation
WO2004055938A2 (en) * 2002-12-13 2004-07-01 Andrew Corporation Improvements relating to dipole antennas and coaxial to microstrip transitions
US6922174B2 (en) * 2003-06-26 2005-07-26 Kathrein-Werke Kg Mobile radio antenna for a base station
WO2007126831A2 (en) * 2006-03-30 2007-11-08 Powerwave Technologies, Inc. Broadband dual polarized base station antenna
US7688271B2 (en) * 2006-04-18 2010-03-30 Andrew Llc Dipole antenna
US7280083B1 (en) * 2006-08-08 2007-10-09 United States Of America As Represented By The Secretary Of The Navy Phased array blade antenna assembly
KR100826115B1 (ko) * 2006-09-26 2008-04-29 (주)에이스안테나 빔폭 편차를 개선시킨 절곡된 폴디드 다이폴 안테나
KR100856785B1 (ko) * 2006-10-13 2008-09-05 (주)에이스안테나 광대역 고이득 이중편파 다이폴 안테나
TW200832811A (en) * 2007-01-19 2008-08-01 Advanced Connectek Inc Circularly polarized antenna
WO2009048614A1 (en) * 2007-10-12 2009-04-16 Powerwave Technologies, Inc. Omni directional broadband coplanar antenna element
CN101425626B (zh) * 2007-10-30 2013-10-16 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
AU2011201657A1 (en) * 2008-10-15 2011-05-12 Andrew Llc Wideband radiating elements
CN101707291B (zh) * 2009-11-26 2012-10-24 广东通宇通讯股份有限公司 一种宽带的双极化天线单元
CN102117967A (zh) * 2009-12-30 2011-07-06 广东通宇通讯股份有限公司 一种宽频双极化天线辐射单元及天线
CN201699136U (zh) * 2009-12-30 2011-01-05 广东通宇通讯设备有限公司 一种宽频双极化天线辐射单元及天线
CN201966321U (zh) * 2010-12-17 2011-09-07 摩比天线技术(深圳)有限公司 一种电调天线的调节机构
WO2011100926A2 (zh) * 2011-04-14 2011-08-25 华为技术有限公司 相位调整装置及多频天线
CN102694237B (zh) * 2012-05-21 2015-08-19 华为技术有限公司 一种双极化天线单元及基站天线
KR101213188B1 (ko) * 2012-09-18 2012-12-18 주식회사 선우커뮤니케이션 이중편파 다이폴 안테나
CN202797284U (zh) * 2012-10-10 2013-03-13 华为技术有限公司 一种馈电网络、天线及双极化天线阵列馈电电路
CN202930542U (zh) * 2012-11-12 2013-05-08 摩比天线技术(深圳)有限公司 宽频双极化天线辐射单元及其天线
CN203103499U (zh) * 2012-12-13 2013-07-31 中国航空无线电电子研究所 超宽带印刷天线
CN103036073A (zh) * 2013-01-05 2013-04-10 广东通宇通讯股份有限公司 双频双极化天线
WO2014127422A1 (en) * 2013-02-21 2014-08-28 Bae Systems Australia Ltd High power - low loss antenna system and method
JP6064830B2 (ja) * 2013-08-07 2017-01-25 日立金属株式会社 アンテナ装置
CN103401073B (zh) * 2013-08-13 2016-01-06 武汉虹信通信技术有限责任公司 一种非金属接触式天线辐射单元相位调节控制器
CN103779658B (zh) * 2013-11-22 2016-08-24 佛山市安捷信通讯设备有限公司 低剖面多频段双极化天线
CN203589207U (zh) * 2013-11-22 2014-05-07 佛山市安捷信通讯设备有限公司 低剖面双极化低频辐射单元、天线阵列、天线装置及天线
CN103825104A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种td-lte基站内置合路小型化智能天线
CN204289687U (zh) * 2014-12-12 2015-04-22 湖北日海通讯技术有限公司 天线及其天线振子
US20160322695A1 (en) * 2015-04-30 2016-11-03 Motorola Solutions, Inc Rotary control with integrated antenna
CN104900987B (zh) * 2015-05-13 2019-01-29 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线阵列
CN105071044B (zh) * 2015-08-12 2018-08-14 四川省韬光通信有限公司 一种小型高隔离度双极化介质谐振器天线
CN205104602U (zh) * 2015-08-27 2016-03-23 摩比天线技术(深圳)有限公司 超宽频双极化辐射单元及其天线
SE539387C2 (en) * 2015-09-15 2017-09-12 Cellmax Tech Ab Antenna feeding network
WO2017070952A1 (zh) * 2015-10-30 2017-05-04 华为技术有限公司 一种天线系统
CN205564971U (zh) * 2016-02-19 2016-09-07 深圳国人通信股份有限公司 一种天线振子及其天线
CN205646132U (zh) * 2016-04-13 2016-10-12 深圳市蓝麒科技有限公司 偶极子及数字电视天线
CN205752490U (zh) * 2016-05-20 2016-11-30 中天宽带技术有限公司 一种应用于2g、3g或4g移动通信频段的高增益和低回损天线辐射单元
CN106129596A (zh) * 2016-07-27 2016-11-16 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN106025523B (zh) * 2016-08-09 2019-04-12 武汉虹信通信技术有限责任公司 一种十字型结构辐射单元及其天线阵列
CN106602223B (zh) * 2016-12-16 2023-05-02 华南理工大学 一种低频辐射单元
CN107181068A (zh) * 2017-04-17 2017-09-19 广东通宇通讯股份有限公司 高频超宽带双极化全波辐射单元
US10290950B1 (en) * 2017-04-20 2019-05-14 National Technology & Engineering Solutions Of Sandia, Llc Dual-band GPS antenna with horizontal polarization
CN207303345U (zh) * 2017-07-25 2018-05-01 广东通宇通讯股份有限公司 天线及其辐射单元
CN207217765U (zh) * 2017-10-13 2018-04-10 罗森伯格技术(昆山)有限公司 一种天线辐射单元
CN109672016A (zh) * 2017-10-13 2019-04-23 罗森伯格技术(昆山)有限公司 一种天线辐射单元
CN107910636B (zh) * 2017-10-26 2020-10-13 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线
CN108172978A (zh) * 2017-12-06 2018-06-15 京信通信系统(中国)有限公司 双极化辐射单元及天线装置
CN207559059U (zh) * 2017-12-11 2018-06-29 广东盛路通信科技股份有限公司 双频双极化小基站天线
CN108039570B (zh) * 2018-01-11 2024-03-08 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN108281765A (zh) * 2018-01-19 2018-07-13 武汉虹信通信技术有限责任公司 一种超宽频双极化辐射单元及天线
CN108461904A (zh) * 2018-03-13 2018-08-28 江苏捷士通射频系统有限公司 应用于低频段天线的超宽带辐射单元
CN207977449U (zh) * 2018-03-13 2018-10-16 江苏捷士通射频系统有限公司 应用于低频段天线的超宽带辐射单元
CN208272119U (zh) * 2018-04-19 2018-12-21 深圳国人通信股份有限公司 一种低频天线辐射单元
CN208589522U (zh) * 2018-05-07 2019-03-08 深圳国人通信股份有限公司 一种双极化辐射单元
CN108417998B (zh) * 2018-05-11 2024-01-30 京信通信技术(广州)有限公司 天线及其辐射单元
CN108717997A (zh) * 2018-05-29 2018-10-30 武汉虹信通信技术有限责任公司 一种低频天线振子及基站天线
CN109326872A (zh) * 2018-09-14 2019-02-12 京信通信系统(中国)有限公司 基站天线及其辐射单元
CN208782022U (zh) * 2018-10-17 2019-04-23 深圳国人通信股份有限公司 一种天线振子
CN109193113B (zh) * 2018-11-06 2024-01-16 深圳市鑫龙通信技术有限公司 一种基站天线的双极化辐射单元
CN209045768U (zh) * 2018-12-19 2019-06-28 深圳国人通信股份有限公司 一种电调基站天线
CN109713433B (zh) * 2019-01-15 2022-11-04 武汉虹信科技发展有限责任公司 分体式辐射单元、天线阵列及基站天线
CN109802234B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 基站天线及移相馈电装置
CN109980329B (zh) * 2019-03-12 2023-12-26 广州司南技术有限公司 一种宽带双极化天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140361942A1 (en) * 2006-12-11 2014-12-11 Harris Corporation Multiple polarization loop antenna and associated methods
CN102013560A (zh) * 2010-09-25 2011-04-13 广东通宇通讯设备有限公司 一种宽带高性能双极化辐射单元及天线
CN102723577A (zh) * 2012-05-18 2012-10-10 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
CN203232955U (zh) * 2013-04-25 2013-10-09 华为技术有限公司 天线振子及具有该天线振子的天线
CN104716417A (zh) * 2013-12-12 2015-06-17 深圳光启创新技术有限公司 圆极化天线、圆极化天线系统和通讯设备
CN203850423U (zh) * 2014-04-14 2014-09-24 江苏捷士通射频系统有限公司 一种宽频双极化振子
CN111092296A (zh) * 2019-09-30 2020-05-01 京信通信技术(广州)有限公司 基站天线及其辐射单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024610A4 *

Also Published As

Publication number Publication date
CN111129773A (zh) 2020-05-08
CN111129773B (zh) 2021-05-28
CN111180860B (zh) 2021-11-05
US20220376394A1 (en) 2022-11-24
CN111092296A (zh) 2020-05-01
CN111092296B (zh) 2022-04-26
CN110994179B (zh) 2021-08-20
EP4024610A4 (en) 2022-10-19
WO2021063123A1 (zh) 2021-04-08
EP4024610A1 (en) 2022-07-06
CN111180860A (zh) 2020-05-19
CN110994179A (zh) 2020-04-10
CN112582774A (zh) 2021-03-30
CN112582774B (zh) 2022-05-24
WO2021063124A1 (zh) 2021-04-08
CN210926288U (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021063122A1 (zh) 天线及其辐射单元、辐射单元巴伦结构和制造方法
US6819300B2 (en) Dual-polarized dipole array antenna
US7053852B2 (en) Crossed dipole antenna element
EP2013941B1 (en) Dual polarization broadband antenna
CN107808998B (zh) 多极化辐射振子及天线
WO2022077818A1 (zh) 低频辐射单元及基站天线
CN108155484B (zh) 宽频带的双极化壁挂天线
EP0079950A1 (en) Linearly polarized omnidirectional antenna
WO2024088133A1 (zh) 双频共口径辐射单元及天线
CN101719599A (zh) 圆极化介质谐振器阵列天线
CA2772517A1 (en) High isolation dual polarized dipole antenna elements and feed system
JP5432055B2 (ja) 偏波共用八木型アンテナ
CN113708048A (zh) 基站天线及其高频辐射单元
CN114300829A (zh) 天线装置与高频辐射单元
JP5139919B2 (ja) クロスダイポールアンテナ
CN210984959U (zh) 用于天线的馈电巴伦和天线
CN115986372B (zh) 基站天线
US12132269B2 (en) Antenna and radiation unit thereof, balun structure of radiation unit and manufacturing method
KR100343893B1 (ko) 원편파 다이폴 안테나
CN112310616B (zh) 一种低成本辐射单元及天线
CN209658400U (zh) 宽频辐射单元及基站天线
CN117477216B (zh) 耦合馈电的低频振子及阵列天线
RU2628300C2 (ru) Антенная решетка эллиптической поляризации
WO2023117096A1 (en) Antenna with dual polarized radiators
JPH0946123A (ja) 地線付きモノポ−ルアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005979

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020871575

Country of ref document: EP

Effective date: 20220330

ENP Entry into the national phase

Ref document number: 112022005979

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220329