WO2024088133A1 - 双频共口径辐射单元及天线 - Google Patents

双频共口径辐射单元及天线 Download PDF

Info

Publication number
WO2024088133A1
WO2024088133A1 PCT/CN2023/125202 CN2023125202W WO2024088133A1 WO 2024088133 A1 WO2024088133 A1 WO 2024088133A1 CN 2023125202 W CN2023125202 W CN 2023125202W WO 2024088133 A1 WO2024088133 A1 WO 2024088133A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
feeding
frequency
band radiator
dual
Prior art date
Application number
PCT/CN2023/125202
Other languages
English (en)
French (fr)
Inventor
张强
刘正贵
潘利君
吕晨菲
Original Assignee
中信科移动通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信科移动通信技术股份有限公司 filed Critical 中信科移动通信技术股份有限公司
Publication of WO2024088133A1 publication Critical patent/WO2024088133A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present application relates to the technical field of communication antennas, and in particular to a dual-frequency co-aperture radiation unit and antenna.
  • the present application provides a dual-frequency co-aperture radiation unit and antenna to solve the defects of low reliability and high cost of multi-frequency multi-system antennas in the prior art.
  • the present application provides a dual-frequency co-aperture radiation unit, comprising:
  • a feeding base comprising a metal base and a feeding balun, wherein the feeding balun is embedded in the metal base and connected to an external unit;
  • a first frequency band radiator disposed on the metal base, the first frequency band radiator comprising at least one polarization formed by a symmetrical dipole binary array;
  • the first frequency band feeding group includes a plurality of first feeding elements, one of which is One end is connected to a first frequency band dipole, and one end of two first feeding elements of the same polarization that are not connected to the first frequency band dipole is connected to the feeding balun to feed the first frequency band radiator;
  • a second frequency band radiator is nested in the first frequency band radiator and is disposed on the metal base, wherein the second frequency band radiator includes at least one polarization formed by a symmetrical dipole binary array;
  • the second frequency band feeding group includes at least one second feeding element, and one second feeding element is arranged corresponding to a polarized second frequency band binary array to feed the second frequency band radiator.
  • the metal base is provided with a first through hole;
  • the feeding balun includes an inner core and a rubber-coated medium, the rubber-coated medium is wrapped around the outside of the inner core, and the inner core and the rubber-coated medium are embedded in the first through hole; the first end of the inner core is connected to the first feeding component, and the second end of the inner core is connected to the external unit.
  • the metal base is also provided with a second through hole;
  • the second feeding component includes a connecting section and a feeding section, the connecting section is passed through the second through hole and connected to the external unit, and the feeding section is connected to the corresponding second frequency band binary array.
  • a first metal support and a second metal support are provided at the bottom of the metal base, the first through hole is penetrated through the first metal support, and the second through hole is penetrated through the second metal support; a first metal via hole and a second metal via hole are provided at the bottom of the first frequency band radiator, the first metal via hole and the first through hole are arranged correspondingly, and the second metal via hole and the second through hole are arranged correspondingly.
  • the first frequency band radiator, the second frequency band radiator and the feeding base are all separately arranged.
  • the first frequency band radiator and The second frequency band radiator and the feeding base are connected to each other, or the first frequency band radiator, the second frequency band radiator and the feeding base are rigidly connected through metal fasteners.
  • a first connection hole and a second connection hole are opened at the bottom of the first frequency band radiator, the first connection hole is fixedly connected to the metal base by fasteners, and the second connection hole is fixedly connected to the second frequency band radiator by fasteners.
  • the first feeding element is a coaxial cable
  • the inner conductor of the coaxial cable is connected to the feeding balun
  • the outer conductor of the coaxial cable is connected to the metal base.
  • the second feeding component is one of a sheet metal component, a die-cast component or a printed circuit component.
  • the dual-frequency co-aperture radiating unit also includes a guide plate, which is arranged on the side of the second frequency band radiator away from the feeding base, and the guide plate is arranged at an interval with the second frequency band radiator.
  • the present application also provides an antenna, comprising a dual-frequency co-aperture radiating unit as described in any one of the above.
  • the antenna includes a plurality of the dual-frequency co-aperture radiating units, and the plurality of the dual-frequency co-aperture radiating units are a combination of same-frequency units or at least a partial combination of different-frequency units.
  • the dual-frequency common-aperture radiation unit and antenna provided by the present application have a compact structure by nesting the first-band radiator and the second-band radiator and a common feeding base, and the radiation unit can be miniaturized, which can further reduce the windward area of the antenna; the signal input to the first-band radiator is realized by the feeding balun, and the signal input to the second-band radiator is realized by the second-band feeding group, and the terminal and the oscillator line are removed on the basis of the traditional radiation unit, which can reduce the hole position of the reflector, improve the intermodulation stability, reduce the intermodulation risks caused by welding operations, improve reliability, and achieve low cost; at the same time, the second-band radiator and the feeding base are separated
  • the second frequency band radiator does not need to be electroplated, which can save the electroplating cost and further reduce the cost.
  • FIG1 is a schematic diagram of the three-dimensional structure of a dual-frequency common-aperture radiation unit provided in an embodiment of the present application;
  • FIG2 is a schematic diagram of the decomposed structure of a dual-frequency co-aperture radiation unit provided in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of the assembly of a first frequency band radiator, a first frequency band feeding group, a feeding base and a plastic part provided in an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of the assembly of a first frequency band radiator and a first frequency band feeding group provided in an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a second frequency band radiator, a second frequency band feeding group and a guide plate provided in an embodiment of the present application;
  • FIG6 is a schematic diagram of the structure of a second frequency band feeding group provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the three-dimensional structure of the feeding base and the first frequency band feeding group provided in an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the exploded structure of the feeding base and the first frequency band feeding group provided in an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of the assembly of a feeding base and a second frequency band feeding group provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a plastic part provided in an embodiment of the present application.
  • FIG. 11 is a horizontal plane radiation parameter diagram of the first frequency band radiation of the dual-frequency co-aperture radiation unit provided in an embodiment of the present application;
  • FIG. 13 is a standing wave ratio curve diagram of the first frequency band radiation of the dual-frequency common-aperture radiation unit provided in an embodiment of the present application;
  • FIG14 is a standing wave ratio curve diagram of the second frequency band radiation of the dual-frequency common-aperture radiation unit provided in an embodiment of the present application.
  • first frequency band radiator 21: first frequency band dipole
  • 22 first connection hole
  • 23 second connection hole
  • 24 first metal via hole
  • 25 second metal via hole
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the dual-frequency co-aperture radiation unit provided by the present application includes a feeding base 1, a first frequency band radiator 2, a first frequency band feeding group 3, a second frequency band radiator 4 and a second frequency band feeding group 5.
  • the feeding base 1 includes a metal base 11 and a feeding balun 12, the feeding balun 12 is embedded in the metal base 11, and the feeding balun 12 is connected to the external unit 200 to access the external signal.
  • the first frequency band radiator 2 is arranged on the metal base 11, and the first frequency band radiator 2 includes at least one polarization composed of a symmetrical dipole binary array;
  • the first frequency band feeding group 3 includes a plurality of first feeding elements 31, one end of a first feeding element 31 is connected to a first frequency band dipole 21, and the ends of the two first feeding elements 31 of the same polarization that are not connected to the first frequency band dipole 21 are connected to the feeding balun 12 to feed the first frequency band radiator 2.
  • the second frequency band radiator 4 is nested in the first frequency band radiator 2 and is arranged on the metal base 11.
  • the second frequency band radiator 4 includes at least one polarization composed of a symmetrical dipole binary array; the second frequency band feeding group 5 includes at least one second feeding element 51, and one second feeding element 51 is arranged corresponding to one polarized second frequency band binary array to feed the second frequency band radiator 4.
  • the second frequency band radiator 4 is embedded in the first frequency band radiator. 2, realizing dual-frequency common aperture characteristics; the first frequency band radiator 2 and the second frequency band radiator 4 are both arranged on the feeding base 1, and the feeding base 1 realizes the support and electrical connection of the first frequency band radiator 2 and the second frequency band radiator 4 at the same time; the feeding base 1 is also used to connect with the external unit 200.
  • the symmetrical dipole binary array of each polarization of the first-band radiator 2 includes two first-band dipoles 21, and the two first-band dipoles 21 are symmetrically arranged to form one polarization; the number of the first feeding elements 31 is the same as the number of the first-band dipoles 21, that is, the first-band feeding group 3 includes at least two first feeding elements 31, one end of one first feeding element 31 is electrically connected to one first-band dipole 21, and the two first feeding elements 31 corresponding to the two first-band dipoles 21 of the same polarization are not electrically connected to the first-band dipole 21.
  • the feeding balun 12 plays the role of a combining connection end, combining the two first frequency band dipole 21 ports into one port to access the external signal, so as to feed the external signal to the radiation arms of the two first frequency band dipoles 21, so that the input signal passes through the external unit 200 through the feeding balun 12 and the first feeding element 31 to feed a polarization of the first frequency band radiator 2, thereby realizing the signal input to the first frequency band radiator 2.
  • the second feeding element 51 includes a connecting part and a feeding part.
  • the connecting part can be connected to the external unit 200 through the feeding base 1 and the first frequency band radiator 2 to access the external signal.
  • the feeding part is connected to a polarized second frequency band binary array of the second frequency band radiator 4 to feed the external signal to the polarized second frequency band binary array, so that the input signal passes through the external unit 200 and the second feeding element 51 to feed one polarization of the second frequency band radiator 4, thereby realizing the signal input to the second frequency band radiator 4.
  • the dual-frequency common-aperture radiation unit of the present application has a compact structure by nesting the first-band radiator 2 and the second-band radiator 4 and a common feeding base 1, and realizes miniaturization of the radiation unit, which can further reduce the windward area of the antenna; the signal input to the first-band radiator 2 is realized by feeding the balun 12, and the signal input to the second-band radiator 2 is realized by feeding the second-band feeding group 5.
  • the signal input of the second frequency band radiator 4 is achieved by removing the terminal and the oscillator line on the basis of the traditional radiation unit, which can reduce the number of holes in the reflector, improve the intermodulation stability, reduce the intermodulation risks caused by welding operations, improve reliability, and achieve low cost; at the same time, the second frequency band radiator 4 is separated from the feeding base 1, and the second frequency band radiator 4 does not need to be electroplated, which can save the electroplating cost and further reduce the cost, thereby realizing the integration of multiple frequency bands and multiple standards on the basis of miniaturization of the antenna, ensuring that the indicators of each frequency band will not deteriorate, and solving the defects of low reliability and high cost of multi-frequency and multi-system antennas in the prior art.
  • the first frequency band radiator 2 is a low frequency radiator
  • the second frequency band radiator 4 is a high frequency radiator.
  • the frequency of the low frequency radiator is lower than that of the high frequency radiator, that is, the radiation frequency of the first frequency band radiator 2 is lower than the radiation frequency of the second frequency band radiator 4.
  • the first frequency band radiator 2, the second frequency band radiator 4 and the feeding base 1 are all separately arranged.
  • the first frequency band radiator 2 and the second frequency band radiator 4 do not need to be electroplated, which reduces costs and makes production more environmentally friendly.
  • the first frequency band radiator 2, the second frequency band radiator 4 and the feeding base 1 are connected to each other and avoid contact with each other, so as to improve intermodulation stability.
  • the first frequency band radiator 2 is rigidly connected to the second frequency band radiator 4 and the feeding base 1 through a metal fastener.
  • the metal fastener is a metal screw. The rigid connection is more firm and stable, ensuring reliability.
  • the bottom of the first frequency band radiator 2 is provided with a first connection hole 22 and a second connection hole 23, the first connection hole 22 is fixedly connected to the metal base 11 by a fastener, and the second connection hole 23 is fixedly connected to the second frequency band radiator 4 by a fastener, thereby rigidly connecting the first frequency band radiator 2 to the second frequency band radiator 4 and the feeding base 1.
  • the dual-frequency co-aperture radiation unit can also be fixedly connected to the reflector of the antenna by a fastener, such as a screw.
  • first connection hole 22 and the second connection hole 23 are metal holes; the number of the first connection holes 22 can be multiple, for example, three, and the three first connection holes 22 are not
  • the co-linear connection makes the connection between the first frequency band radiator 2 and the metal base 11 more firm, stable and reliable.
  • the metal base 11 is provided with a first through hole 111;
  • the feeding balun 12 includes an inner core 121 and a rubber-coated medium 122, the rubber-coated medium 122 is wrapped around the outside of the inner core 121, and the inner core 121 and the rubber-coated medium 122 are embedded in the first through hole 111; the first end of the inner core 121 is connected to the first feeding component 31, and the second end of the inner core is connected to the external unit 200.
  • the inner core 121 and the encapsulating medium 122 are embedded in the first through hole 111, so that the feeding balun 12 is embedded in the metal base 11; by providing the encapsulating medium 122, the inner core 121 can be protected, and the inner core 121 can be isolated from the inner wall of the first through hole 111 to prevent the inner core 121 from contacting the metal base 11 to cause a short circuit, and at the same time, it can also prevent the inner core 121 from shaking left and right and contacting the external conductor of the feeding balun 12 to cause a short circuit, and the connection is more stable, thereby improving the stability of the radiation unit index; the first end of the inner core 121 is located on the side of the metal base 11 close to the first frequency band radiator 2, and is connected to two first feeding elements 31 of the same polarization for circuit combination; the second end of the inner core 121 is located on the side of the metal base 11 away from the first frequency band radiator 2, so as to be connected to the external unit 200
  • the first frequency band radiator 2 is composed of two symmetrical dipole binary arrays to form two polarizations, and the two polarizations are arranged orthogonally, for example, placed at ⁇ 45°, one of the dipole binary arrays constitutes one polarization, and the other dipole binary array constitutes another polarization, that is, the first frequency band radiator 2 includes four first frequency band dipoles 21; correspondingly, the first frequency band feeding group 3 includes four first feeding elements 31, and the four first feeding elements 31 are arranged in a one-to-one correspondence with the four first frequency band dipoles 21, so as to realize the input of two polarized signals to the first frequency band radiator 2.
  • the first frequency band dipole 21 is a half-wave bowl-shaped radiating oscillator
  • the first frequency band radiator 2 is a binary array composed of two half-wave bowl-shaped radiating oscillators with a ⁇ 45° angle.
  • the first frequency band radiator 2 is arranged so that an installation space is enclosed inside; the second frequency band radiator 4 is nested and installed in the installation space of the first frequency band radiator 2.
  • the first feeding element 31 is a coaxial cable
  • the inner conductor of the coaxial cable is connected to the feeding balun 12
  • the outer conductor of the coaxial cable is connected to the metal base 11 .
  • the first frequency band feeding group 3 is connected via a coaxial cable
  • the coaxial cable may be a coaxial cable
  • a first end of an inner conductor of the coaxial cable is connected to the first frequency band radiator 2
  • a second end is connected to an inner core 121 of a feeding balun 12 nested in a metal base 11, thereby realizing signal input to the first frequency band radiator 2.
  • the coaxial cable has a simple structure, low cost, stable feeding effect, and high reliability.
  • the first frequency band feeding group 3 is composed of four coaxial cables. Among them, one end of the four coaxial cables is connected to the four first frequency band dipoles 21 in the two symmetrical dipole binary arrays one by one, the other ends of the two coaxial cables of the same polarization that are not connected to the first frequency band dipoles 21 are connected to the feeding base 1 after being combined, and the other ends of the two coaxial cables of the other polarization that are not connected to the first frequency band dipoles 21 are connected to the feeding base 1 after being combined.
  • the metal base 11 is also provided with a second through hole 112;
  • the second feeding component 51 includes a connecting section 511 and a feeding section 512, the connecting section 511 is passed through the second through hole 112 to be connected to the external unit 200, and the feeding section 512 is connected to the corresponding second frequency band binary array.
  • the connecting section 511 of the second feeding element 51 is the connecting part
  • the feeding section 512 is the feeding part.
  • the connecting section 511 is penetrated through the second through hole 112 of the metal base 11, so that the connecting section 511 can pass through the metal base 11 to be connected to the external unit 200;
  • the feeding section 512 corresponds to a polarized second frequency band binary array arrangement of the second frequency band radiator 4, so that the input signal is fed to the second frequency band radiator 4 through the second frequency band feeding group 5 through the external unit 200.
  • the second frequency band radiator 4 is composed of two symmetrical dipole binary arrays with two polarizations, and the two polarizations are arranged orthogonally, for example, at ⁇ 45°; correspondingly,
  • the two-band feeding group 5 includes two polarized feeding structures, that is, the second-band feeding group 5 includes two second feeding elements 51, and the two second feeding elements 51 are arranged in a one-to-one correspondence with the two polarizations of the second-band radiator 4 to implement the two polarized signal inputs to the second-band radiator 4.
  • the connecting section 511 of the second feeding element 51 is a feeding matching part, and the feeding section 512 has an open-circuit branch.
  • the second frequency band feeding group 5 also includes an isolating member 52.
  • the isolating member 52 may be a rubber package.
  • the isolating member 52 is wrapped around the outside of the connecting section 511 of the second feeding member 51.
  • the connecting section 511 is inserted into the second through hole 112
  • the isolating member 52 is located between the connecting section 511 and the inner wall of the second through hole 112 to prevent the second feeding member 51 from contacting the metal base 11.
  • the second feeding member 51 can be protected and prevented from contacting the second feeding member 51 with the second frequency band radiator 4, thereby ensuring the feeding effect and improving the intermodulation stability.
  • the second feeder 51 is a sheet metal part, a die casting part or a printed circuit part.
  • the structure is simple and easy to form, and the cost is low.
  • the second frequency band radiator 4 and/or the second feeding element 51 adopts an integrated structure, which has a simple structure, good consistency, longer service life and lower cost.
  • the dual-frequency common-aperture radiation unit also includes a guide plate 6, which is arranged on the side of the second frequency band radiator 4 away from the feeding base 1, and the guide plate 6 is spaced apart from the second frequency band radiator 4.
  • the guide plate 6 is located above the second frequency band radiator 4, which can realize the antenna beam focusing effect, improve indicators such as horizontal plane beam width and gain, enhance the radiation performance of the second frequency band radiator 4, and enhance reliability.
  • the bottom of the metal base 11 is provided with a first metal support 113 and a second metal support 114, the first through hole 111 is penetrated through the first metal support 113, and the second through hole 112 is penetrated through the second metal support 114;
  • the bottom of the first frequency band radiator 2 is provided with a first metal via 24 and a second metal via 25, the first metal via 24 and the first through hole 111 are arranged correspondingly, and the second metal via 25 and the second through hole 25 are arranged correspondingly.
  • the holes 112 are arranged correspondingly.
  • the metal base 11 is connected to the outer conductor of the external unit 200 through the first metal support 113 and the second metal support 114 arranged at the bottom;
  • the feed balun 12 is inserted and embedded in the first metal support 113 through the first through hole 111, the encapsulated medium 122 of the feed balun 12 is fixedly connected to the first metal support 113, and the second end of the inner core 121 of the feed balun 12 is electrically connected to the inner conductor of the external unit 200;
  • the first frequency band radiator 2 is connected to the metal base 11,
  • the first metal via 24 is arranged corresponding to the first through hole 111, the first end of the inner core 121 of the feed balun 12 passes through the first metal via 24, and is connected to the two first feeding elements 31 of the same polarization for circuit combination;
  • the second metal via 25 is arranged corresponding to the second through hole 112, and the connecting section 511 of the second feeding element 51 passes through the second metal via 25 and the second through hole 112 to be electrically connected to the inner conductor of the
  • the feeding base 1 can not only support and electrically connect the first frequency band radiator 2 and the second frequency band radiator 4, but also connect the first feeding element 31 and the second feeding element 51 with the external unit 200 to input external signals.
  • the structure is compact, which is conducive to miniaturization of the antenna.
  • first metal support 113 and the second metal support 114 are metal columns, and a welding notch 115 is further provided at the bottom of the metal column to facilitate welding of the metal column with the outer conductor of the external unit 200 .
  • the external unit 200 may be a radio frequency transmission component, such as a coaxial cable, the metal column is welded to the outer conductor of the coaxial cable, and the dual-frequency co-aperture radiation unit is connected to the external signal through the coaxial cable.
  • a radio frequency transmission component such as a coaxial cable
  • the metal column is welded to the outer conductor of the coaxial cable
  • the dual-frequency co-aperture radiation unit is connected to the external signal through the coaxial cable.
  • the first frequency band radiator 2 and the second frequency band radiator 4 each include two polarizations
  • the first frequency band feeding group 3 includes four first feeding elements
  • the second frequency band feeding group 5 includes two second feeding elements 51;
  • the feeding base 1 includes two feeding baluns 12, and four metal columns are arranged at the bottom of the metal base 11, two of which are first metal supports 113 for connecting to the first frequency band feeding group 3, and the other two are second metal supports 114 for connecting to the second frequency band feeding group 5.
  • dual-frequency co-aperture radiation The unit also includes a plastic part 7, which is disposed between the first frequency band radiator 2 and the second frequency band radiator 4, and the first metal via 24 and the second metal via 25 are connected to the metal base 11 through the plastic part 7.
  • the feeding base 1, the first frequency band radiator 2 and the second frequency band radiator 4 are fixed to each other through the plastic part 7, and the plastic part 7 fixes the second frequency band radiator 4 to play an insulating role, which can reduce the contact between the first frequency band radiator 2 and the second frequency band radiator 4, and is conducive to improving the intermodulation stability.
  • FIG 11 it is a horizontal plane radiation parameter diagram of the first frequency band radiation of the dual-frequency co-aperture radiation unit provided in the embodiment of the present application.
  • the horizontal axis is the angle Phi, the unit is deg, and the angle is the azimuth angle in the horizontal plane;
  • the vertical axis is the horizontal plane gain, the unit is dBi.
  • Each curve represents the change curve of the horizontal plane gain at different frequencies with the azimuth angle Phi value when the phase angle Theta is 90°, that is, the horizontal plane radiation pattern at different frequencies. It can be seen that the horizontal plane radiation pattern of the first frequency band radiation of the dual-frequency co-aperture radiation unit of the present application basically overlaps at each frequency, with a small difference.
  • FIG 12 it is a horizontal plane radiation parameter diagram of the second frequency band radiation of the dual-frequency co-aperture radiation unit provided in an embodiment of the present application.
  • the horizontal axis is the angle Phi, the unit is deg, and the angle is the azimuth angle in the horizontal plane;
  • the vertical axis is the horizontal plane gain, the unit is dBi.
  • Each curve represents the change curve of the horizontal plane gain at different frequencies with the azimuth angle Phi value when the phase angle Theta is 90°, that is, the horizontal plane radiation pattern at different frequencies. It can be seen that the horizontal plane radiation pattern of the second frequency band radiation of the dual-frequency co-aperture radiation unit of the present application has a small difference at each frequency.
  • FIG 13 it is a standing wave ratio curve of the first frequency band radiation of the dual-frequency co-aperture radiating unit provided in an embodiment of the present application.
  • the horizontal axis is frequency, in MHz; the vertical axis is standing wave ratio.
  • the solid line represents the standing wave ratio-frequency curve of the positive polarization (+45° polarization) of the first frequency band, and the dotted line represents the standing wave ratio-frequency curve of the negative polarization (-45° polarization) of the first frequency band. It can be seen that the standing wave ratio of the dual-frequency co-aperture radiating unit of the present application is less than 1.4 in the low-frequency part.
  • the first embodiment of the dual-frequency common aperture radiation unit provided in the present application Standing wave ratio curve of dual-band radiation.
  • the horizontal axis is frequency, in MHz; the vertical axis is standing wave ratio.
  • the solid line represents the standing wave ratio-frequency curve of the positive polarization (+45° polarization) of the second frequency band, and the dotted line represents the standing wave ratio-frequency curve of the negative polarization (-45° polarization) of the second frequency band. It can be seen that the standing wave ratio of the dual-frequency co-aperture radiation unit of the present application is less than 1.25 in the high-frequency part.
  • the dual-frequency co-aperture radiating unit of the present application has a low standing wave ratio in both the low-frequency part and the high-frequency part, good impedance matching, and good intermodulation stability, ensuring that the indicators of each frequency band do not deteriorate, with high reliability and low cost.
  • the present application also provides an antenna, including the dual-frequency co-aperture radiating unit provided by any of the above embodiments.
  • the antenna includes a plurality of dual-frequency co-aperture radiating units, and the plurality of dual-frequency co-aperture radiating units are a combination of same-frequency units, or at least a partial combination of different-frequency units.
  • the dual-frequency co-aperture radiation unit can be appropriately arranged to obtain a multi-band fusion base station antenna, which improves intermodulation stability and has a lower cost, thereby solving the defects of low reliability and high cost of multi-frequency multi-system antennas in the prior art.
  • the antenna can adopt a same-frequency unit combination, that is, the working frequency bands of multiple dual-frequency co-aperture radiation units are the same, and the antenna can simultaneously receive/send signals from multiple devices in the same frequency band.
  • the antenna may also adopt at least a partial heterodyne combination, that is, at least one of the multiple dual-frequency co-aperture radiating units is different from the other operating frequency bands, so that the antenna can simultaneously receive/send signals from multiple devices in more frequency bands.
  • the antenna of the embodiment of the present application is more convenient and flexible to use and meets various usage requirements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及通信天线技术领域,提供一种双频共口径辐射单元及天线,双频共口径辐射单元包括馈电底座、第一频段辐射器、第一频段馈电组、第二频段辐射器和第二频段馈电组,馈电底座包括金属底座和馈电巴伦,馈电巴伦嵌设于金属底座中;第一频段辐射器和第二频段辐射器均设置于金属底座上,且第二频段辐射器嵌套设置于第一频段辐射器内;第一频段馈电组包括多个第一馈电件,第一馈电件的一端与第一频段辐射器相连、另一端与馈电巴伦合路连接,以对第一频段辐射器馈电;第二频段馈电组对第二频段辐射器馈电。

Description

双频共口径辐射单元及天线
相关申请的交叉引用
本申请要求于2022年10月24日提交的申请号为202211305658.4,名称为“双频共口径辐射单元及天线”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信天线技术领域,尤其涉及一种双频共口径辐射单元及天线。
背景技术
随着5G通信技术的发展,4G/5G融合天线成为主流天线。然而,多频融合对天线的要求也增多,既要实现天线尺寸小型化,又要实现多频段、多制式之间的融合,保证每个频段指标不恶化;同时,成本和重量也是天线的重要考核指标,因而天线的小型化、高性能、低成本成为设计者开发的目标。
传统的高低频共口径辐射单元,采用振子线加端子方案,互调稳定性较差,可靠性较低,而且需要对辐射单元的辐射体进行电镀,生产成本较高。
发明内容
本申请提供一种双频共口径辐射单元及天线,用以解决现有技术中多频多系统天线的可靠性较低和成本较高的缺陷。
第一方面,本申请提供一种双频共口径辐射单元,包括:
馈电底座,包括金属底座和馈电巴伦,所述馈电巴伦嵌设于所述金属底座中,所述馈电巴伦与外接单元连接;
第一频段辐射器,设置于所述金属底座上,所述第一频段辐射器包括由对称偶极子二元阵构成的至少一个极化;
第一频段馈电组,包括多个第一馈电件,一个所述第一馈电件的 一端与一个第一频段偶极子相连,同一极化的两个所述第一馈电件未与所述第一频段偶极子相连的一端与所述馈电巴伦合路连接,以对所述第一频段辐射器馈电;
第二频段辐射器,嵌套设置于所述第一频段辐射器内,并设置于所述金属底座上,所述第二频段辐射器包括由对称偶极子二元阵构成的至少一个极化;
第二频段馈电组,包括至少一个第二馈电件,一个所述第二馈电件对应于一个极化的第二频段二元阵设置,以对所述第二频段辐射器馈电。
根据本申请提供的双频共口径辐射单元,所述金属底座设置有第一通孔;所述馈电巴伦包括内芯和包胶介质,所述包胶介质包裹于所述内芯的外部,所述内芯和所述包胶介质嵌设于所述第一通孔内;所述内芯的第一端与所述第一馈电件连接,所述内芯的第二端与所述外接单元连接。
根据本申请提供的双频共口径辐射单元,所述金属底座还设置有第二通孔;所述第二馈电件包括连接段和馈电段,所述连接段穿设于所述第二通孔并与所述外接单元连接,所述馈电段与对应的所述第二频段二元阵连接。
根据本申请提供的双频共口径辐射单元,所述金属底座的底部设置有第一金属支撑和第二金属支撑,所述第一通孔贯设于所述第一金属支撑,所述第二通孔贯设于所述第二金属支撑;所述第一频段辐射器的底部开设有第一金属过孔和第二金属过孔,所述第一金属过孔和所述第一通孔相对应设置,所述第二金属过孔和所述第二通孔相对应设置。
根据本申请提供的双频共口径辐射单元,所述第一频段辐射器与所述第二频段辐射器和所述馈电底座均分体设置。
根据本申请提供的双频共口径辐射单元,所述第一频段辐射器与 所述第二频段辐射器和所述馈电底座相互连接,或者,所述第一频段辐射器与所述第二频段辐射器和所述馈电底座通过金属紧固件刚性连接。
根据本申请提供的双频共口径辐射单元,所述第一频段辐射器的底部开设有第一连接孔和第二连接孔,所述第一连接孔与所述金属底座通过紧固件固定连接,所述第二连接孔与所述第二频段辐射器通过紧固件固定连接。
根据本申请提供的双频共口径辐射单元,所述第一馈电件为同轴线缆,所述同轴线缆的内导体与所述馈电巴伦连接,所述同轴线缆的外导体与所述金属底座连接。
根据本申请提供的双频共口径辐射单元,所述第二馈电件为钣金件、压铸件或印刷电路制件中的一种。
根据本申请提供的双频共口径辐射单元,所述双频共口径辐射单元还包括引向片,所述引向片设置于所述第二频段辐射器的背离所述馈电底座的一侧,且所述引向片与所述第二频段辐射器间隔布置。
第二方面,本申请还提供一种天线,包括如上述任一种所述的双频共口径辐射单元。
根据本申请提供的天线,所述天线包括多个所述双频共口径辐射单元,多个所述双频共口径辐射单元为同频单元组合或者至少部分异频单元组合。
本申请提供的双频共口径辐射单元及天线,通过嵌套设置第一频段辐射器和第二频段辐射器以及共用馈电底座,结构紧凑,实现辐射单元小型化,可以使得天线迎风面积进一步减小;通过馈电巴伦实现对第一频段辐射器的信号输入,通过第二频段馈电组实现对第二频段辐射器的信号输入,在传统辐射单元基础上实现去端子和去振子线,可以减少反射板孔位,提升互调稳定性,减少焊接操作造成的互调隐患,提升可靠性,并实现低成本;同时第二频段辐射器与馈电底座分 离,第二频段辐射器无需电镀,可以节省电镀成本,使得成本进一步降低,从而在实现天线小型化的基础上,实现对多频段、多制式之间的融合,并保证每个频段的指标不会恶化,解决现有技术中多频多系统天线的可靠性较低和成本较高的缺陷。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对本申请实施例描述中所需要使用的附图作一简单地介绍。需要说明的是,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的双频共口径辐射单元的立体结构示意图;
图2是本申请实施例提供的双频共口径辐射单元的分解结构示意图;
图3是本申请实施例提供的第一频段辐射器、第一频段馈电组、馈电底座及塑料件装配的结构示意图;
图4是本申请实施例提供的第一频段辐射器和第一频段馈电组装配的结构示意图;
图5是本申请实施例提供的第二频段辐射器、第二频段馈电组和引向片的结构示意图;
图6是本申请实施例提供的第二频段馈电组的结构示意图;
图7是本申请实施例提供的馈电底座和第一频段馈电组装配的立体结构示意图;
图8是本申请实施例提供的馈电底座和第一频段馈电组装配的分解结构示意图;
图9是本申请实施例提供的馈电底座和第二频段馈电组装配的结构示意图;
图10是本申请实施例提供的塑料件的结构示意图;
图11是本申请实施例提供的双频共口径辐射单元的第一频段辐射的水平面辐射参数图;
图12是本申请实施例提供的双频共口径辐射单元的第二频段辐射的水平面辐射参数图;
图13是本申请实施例提供的双频共口径辐射单元的第一频段辐射的驻波比曲线图;
图14是本申请实施例提供的双频共口径辐射单元的第二频段辐射的驻波比曲线图。
附图标记:
1:馈电底座;11:金属底座;111:第一通孔;112:第二通孔;113:第一金属支撑;114:第二金属支撑;115:焊接缺口;12:馈电巴伦;121:内芯;122:包胶介质;
2:第一频段辐射器;21:第一频段偶极子;22:第一连接孔;23:第二连接孔;24:第一金属过孔;25:第二金属过孔;
3:第一频段馈电组;31:第一馈电件;
4:第二频段辐射器;
5:第二频段馈电组;51:第二馈电件;511:连接段;512:馈电段;52:隔离件;
6:引向片;7:塑料件;200:外接单元。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,“垂直方向”、“水平方向”、“+45°或-45°方向”、“上”、“中”、“下”以及类似的表述只是为了说明的目的, 而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面结合图1-图10描述本申请的双频共口径辐射单元。
如图1至图9所示,本申请提供的双频共口径辐射单元,包括馈电底座1、第一频段辐射器2、第一频段馈电组3、第二频段辐射器4和第二频段馈电组5。其中,馈电底座1包括金属底座11和馈电巴伦12,馈电巴伦12嵌设于金属底座11中,馈电巴伦12与外接单元200连接以接入外部信号。第一频段辐射器2设置于金属底座11上,第一频段辐射器2包括由对称偶极子二元阵构成的至少一个极化;第一频段馈电组3包括多个第一馈电件31,一个第一馈电件31的一端与一个第一频段偶极子21相连接,同一极化的两个第一馈电件31未与第一频段偶极子21相连的一端与馈电巴伦12合路连接,以对第一频段辐射器2馈电。第二频段辐射器4嵌套设置于第一频段辐射器2内,并设置于金属底座11上,第二频段辐射器4包括由对称偶极子二元阵构成的至少一个极化;第二频段馈电组5包括至少一个第二馈电件51,一个第二馈电件51对应于一个极化的第二频段二元阵设置,以对第二频段辐射器4馈电。
在本实施例中,通过将第二频段辐射器4嵌套于第一频段辐射器 2内,实现双频共口径特性;第一频段辐射器2和第二频段辐射器4均设置于馈电底座1上,馈电底座1实现同时对第一频段辐射器2和第二频段辐射器4的支撑及电气连接;馈电底座1还用于与外接单元200连接。
第一频段辐射器2的每一极化的对称偶极子二元阵均包括两个第一频段偶极子21,两个第一频段偶极子21对称设置,从而构成一个极化;第一馈电件31的数量与第一频段偶极子21的数量相同,即第一频段馈电组3包括至少两个第一馈电件31,一个第一馈电件31的一端与一个第一频段偶极子21电性连接,对应于同一极化的两个第一频段偶极子21的两个第一馈电件31未与第一频段偶极子21电性连接的一端合路连接之后,即两个第一馈电件31各有一端进行合路连接之后,与馈电巴伦12电性连接,馈电巴伦12起到合路连接端的作用,将两个第一频段偶极子21端口合路至一个端口来接入外部信号,以将外部信号馈电至该两个第一频段偶极子21的辐射臂,从而输入信号通过外接单元200经过馈电巴伦12和第一馈电件31对第一频段辐射器2的一个极化馈电,实现对第一频段辐射器2的信号输入。
第二馈电件51包括连接部分和馈电部分,连接部分能够穿过馈电底座1和第一频段辐射器2与外接单元200连接,以接入外部信号,馈电部分与第二频段辐射器4一个极化的第二频段二元阵连接,以将外部信号馈电至该一个极化的第二频段二元阵,从而输入信号通过外接单元200经过第二馈电件51对第二频段辐射器4的一个极化馈电,实现对第二频段辐射器4的信号输入。
本申请的双频共口径辐射单元,通过嵌套设置第一频段辐射器2和第二频段辐射器4以及共用馈电底座1,结构紧凑,实现辐射单元小型化,可以使得天线迎风面积进一步减小;通过馈电巴伦12实现对第一频段辐射器2的信号输入,通过第二频段馈电组5馈电实现对 第二频段辐射器4的信号输入,在传统辐射单元基础上实现去端子和去振子线,可以减少反射板孔位,提升互调稳定性,减少焊接操作造成的互调隐患,提升可靠性,并实现低成本;同时第二频段辐射器4与馈电底座1分离,第二频段辐射器4无需电镀,可以节省电镀成本,使得成本进一步降低,从而在实现天线小型化的基础上,实现对多频段、多制式之间的融合,保证每个频段的指标不会恶化,解决现有技术中多频多系统天线的可靠性较低和成本较高的缺陷。
在一个实施例中,第一频段辐射器2为低频辐射器,第二频段辐射器4为高频辐射器,低频辐射器的频率低于高频辐射器的频率,即第一频段辐射器2的辐射频率低于第二频段辐射器4的辐射频率。
具体地,如图2所示,第一频段辐射器2与第二频段辐射器4和馈电底座1均分体设置。通过第一频段辐射器2、第二频段辐射器4和馈电底座1采用分体结构,第一频段辐射器2和第二频段辐射器4均无需电镀,降低成本,而且生产更环保。
在一个实施例中,第一频段辐射器2与第二频段辐射器4和馈电底座1相互连接,相互之间避免接触,可以提高互调稳定性。
在另一个实施例中,第一频段辐射器2与第二频段辐射器4和馈电底座1通过金属紧固件刚性连接。例如,金属紧固件为金属螺钉。采用刚性连接更加牢固稳定,保障可靠性。
具体地,如图4所示,第一频段辐射器2的底部开设有第一连接孔22和第二连接孔23,第一连接孔22与金属底座11通过紧固件固定连接,第二连接孔23与第二频段辐射器4通过紧固件固定连接,从而将第一频段辐射器2与第二频段辐射器4和馈电底座1刚性连接。同时,双频共口径辐射单元也可以通过紧固件,例如螺钉,与天线的反射板固定连接。
在一个实施例中,第一连接孔22和第二连接孔23为金属孔;第一连接孔22的数量可以为多个,例如三个,且三个第一连接孔22不 共线,使得第一频段辐射器2与金属底座11连接更加牢固,稳定可靠。
具体地,如图7和图8所示,金属底座11设置有第一通孔111;馈电巴伦12包括内芯121和包胶介质122,包胶介质122包裹于内芯121的外部,内芯121和包胶介质122嵌设于第一通孔111内;内芯121的第一端与第一馈电件31连接,内芯的第二端与外接单元200连接。
在本实施例中,通过设置第一通孔111,内芯121和包胶介质122嵌设于第一通孔111内,从而将馈电巴伦12嵌设在金属底座11之中;通过设置包胶介质122,可以保护内芯121,还可以将内芯121与第一通孔111的内壁相互隔离,防止内芯121与金属底座11接触产生短路,同时还能避免内芯121左右晃动而与馈电巴伦12的外部导体接触产生短路,而且连接更稳定,提高辐射单元指标稳定性;内芯121的第一端位于金属底座11靠近第一频段辐射器2的一侧,与同一极化的两个第一馈电件31相连接进行合路;内芯121的第二端位于金属底座11背离第一频段辐射器2的一侧,以与外接单元200相连接,实现输入信号通过外接单元200,经过第一频段馈电组3对第一频段辐射器2的其中一个极化馈电。
在一个实施例中,如图1至图4所示,第一频段辐射器2由两个对称偶极子二元阵构成两个极化,两个极化正交布置,例如以±45°放置,其中一个偶极子二元阵构成一个极化,另一个偶极子二元阵构成另外一个极化,即第一频段辐射器2包括四个第一频段偶极子21;相对应地第一频段馈电组3包括四个第一馈电件31,四个第一馈电件31与四个第一频段偶极子21一一对应设置,实现对第一频段辐射器2的两个极化的信号输入。
在一个具体实施例中,第一频段偶极子21为半波碗状辐射振子,第一频段辐射器2由两个半波碗状辐射振子组成的二元阵±45°放 置,从而第一频段辐射器2内围成安装空间;第二频段辐射器4嵌套安装于第一频段辐射器2的安装空间内。
在一个实施例中,第一馈电件31为同轴线缆,同轴线缆的内导体与馈电巴伦12连接,同轴线缆的外导体与金属底座11连接。
在本实施例中,第一频段馈电组3通过同轴线缆连接,例如同轴线缆可以是同轴电缆,同轴线缆的内导体第一端与第一频段辐射器2相连,第二端与嵌套在金属底座11中的馈电巴伦12的内芯121相连,从而实现对第一频段辐射器2的信号输入。同轴线缆结构简单,成本较低,而且馈电效果稳定,可靠性高。
在一个具体实施例中,第一频段馈电组3由四个同轴线缆构成。其中,四个同轴线缆的一端与两个对称偶极子二元阵中的四个第一频段偶极子21一一对应连接,同一极化的两个同轴线缆的未与第一频段偶极子21连接的另一端合路连接之后与馈电底座1连接,另一极化的两个同轴线缆的未与第一频段偶极子21连接的另一端合路连接之后与馈电底座1连接。
具体地,如图5至图9所示,金属底座11还设置有第二通孔112;第二馈电件51包括连接段511和馈电段512,连接段511穿设于第二通孔112以与外接单元200连接,馈电段512与对应的第二频段二元阵连接。
在本实施例中,第二馈电件51的连接段511为连接部分,馈电段512为馈电部分,通过设置第二通孔112,连接段511穿设于金属底座11的第二通孔112,从而连接段511能够穿过金属底座11与外接单元200连接;馈电段512对应第二频段辐射器4的一个极化的第二频段二元阵布置,实现输入信号通过外接单元200经过第二频段馈电组5对第二频段辐射器4馈电。
在一个实施例中,第二频段辐射器4由两个对称偶极子二元阵构成两个极化,两个极化正交布置,例如以±45°布置;相对应地,第 二频段馈电组5包括两个极化的馈电结构,即第二频段馈电组5包括两个第二馈电件51,两个第二馈电件51与第二频段辐射器4的两个极化一一对应设置,实现对第二频段辐射器4的两个极化的信号输入。其中,第二馈电件51的连接段511为馈电匹配部分,馈电段512具有开路枝节。
具体地,如图6和图9所示,第二频段馈电组5还包括隔离件52,例如隔离件52可以是包胶,隔离件52包裹于第二馈电件51的连接段511的外部,连接段511穿设于第二通孔112中时,隔离件52位于连接段511与第二通孔112的内壁之间,避免第二馈电件51与金属底座11接触,可以保护第二馈电件51,并避免第二馈电件51与第二频段辐射器4相接触,保证馈电效果,提高互调稳定性。
在一个实施例中,第二馈电件51为钣金件、压铸件或印刷电路制件中的一种。通过采用钣金件、压铸件或印刷电路制造第二馈电件51,结构简单易成型,成本较低。
在一个具体实施例中,第二频段辐射器4和/或第二馈电件51采用一体成型结构,结构简单,一致性好,使用寿命更长,成本较低。
在一个实施例中,如图1、图2和图5所示,双频共口径辐射单元还包括引向片6,引向片6设置于第二频段辐射器4的背离馈电底座1的一侧,且引向片6与第二频段辐射器4间隔布置。
在本实施例中,通过设置引向片6,引向片6位于第二频段辐射器4上方,能够实现天线聚波束作用,改善水平面波束宽度和增益等指标,提升第二频段辐射器4的辐射性能,提升可靠性。
具体地,如图1至图3、图7至图9所示,金属底座11的底部设置有第一金属支撑113和第二金属支撑114,第一通孔111贯设于第一金属支撑113,第二通孔112贯设于第二金属支撑114;第一频段辐射器2的底部开设有第一金属过孔24和第二金属过孔25,第一金属过孔24和第一通孔111相对应设置,第二金属过孔25和第二通 孔112相对应设置。
在本实施例中,金属底座11通过底部设置的第一金属支撑113和第二金属支撑114与外接单元200的外导体连接;馈电巴伦12通过第一通孔111穿插嵌设于第一金属支撑113内,馈电巴伦12的包胶介质122与第一金属支撑113固定连接,馈电巴伦12的内芯121的第二端与外接单元200的内导体电性连接;第一频段辐射器2与金属底座11连接,第一金属过孔24与第一通孔111相对应设置,馈电巴伦12的内芯121第一端穿过第一金属过孔24,与同一极化的两个第一馈电件31相连接进行合路;第二金属过孔25与第二通孔112相对应设置,第二馈电件51的连接段511穿过第二金属过孔25和第二通孔112,以与外接单元200的内导体电性连接。馈电底座1既能实现第一频段辐射器2和第二频段辐射器4的支撑和电气连接,也能实现第一馈电件31和第二馈电件51与外接单元200的连接,以输入外部信号,结构紧凑,有利于天线小型化。
具体地,第一金属支撑113和第二金属支撑114为金属柱,金属柱的底部还设置有焊接缺口115,方便金属柱与外接单元200的外导体焊接。
可选地,外接单元200可以是射频传输件,例如同轴线缆,金属柱与同轴线缆的外导体焊接连接,双频共口径辐射单元通过同轴线缆接入外部信号。
在一个具体实施例中,第一频段辐射器2和第二频段辐射器4均包括两个极化,第一频段馈电组3包括四个第一馈电件31,第二频段馈电组5包括两个第二馈电件51;相对应地,馈电底座1包括两个馈电巴伦12,金属底座11的底部设置有四个金属柱,其中两个是第一金属支撑113,用来和第一频段馈电组3相连接,另两个是第二金属支撑114,用来和第二频段馈电组5相连接。
在一个实施例中,如图2、图3和图10所示,双频共口径辐射 单元还包括塑料件7,塑料件7设置于第一频段辐射器2与第二频段辐射器4之间,第一金属过孔24和第二金属过孔25与金属底座11通过塑料件7相连接。馈电底座1、第一频段辐射器2和第二频段辐射器4相互之间通过塑料件7固定,塑料件7固定第二频段辐射器4,起到绝缘作用,可以减少第一频段辐射器2和第二频段辐射器4之间的接触,有利于提高互调稳定性。
在一个具体实施例中,如图11所示,为本申请实施例提供的双频共口径辐射单元的第一频段辐射的水平面辐射参数图。图11中,横轴为角度Phi,单位为度deg,该角度为水平面内的方位角;竖轴为水平面增益,单位为dBi。各条曲线代表在相位角Theta为90°时,不同频率下的水平面增益随方位角Phi值的变化曲线,即不同频率下的水平面方向图。可以看出,本申请的双频共口径辐射单元的第一频段辐射的水平面方向图,在各个频率下基本重合,相差较小。
如图12所示,为本申请实施例提供的双频共口径辐射单元的第二频段辐射的水平面辐射参数图。图12中,横轴为角度Phi,单位为deg,该角度为水平面内的方位角;竖轴为水平面增益,单位为dBi。各条曲线代表在相位角Theta为90°时,不同频率下的水平面增益随方位角Phi值的变化曲线,即不同频率下的水平面方向图。可以看出,本申请的双频共口径辐射单元的第二频段辐射的水平面方向图,在各个频率下相差较小。
如图13所示,为本申请实施例提供的双频共口径辐射单元的第一频段辐射的驻波比曲线图。图13中,横轴为频率,单位为MHz;竖轴为驻波比。实线表示第一频段的正极化(+45°极化)的驻波比-频率曲线,虚线表示第一频段的负极化(-45°极化)的驻波比-频率曲线。可以看出,本申请的双频共口径辐射单元在低频部分驻波比小于1.4。
如图14所示,为本申请实施例提供的双频共口径辐射单元的第 二频段辐射的驻波比曲线图。图14中,横轴为频率,单位为MHz;竖轴为驻波比。实线表示第二频段的正极化(+45°极化)的驻波比-频率曲线,虚线表示第二频段的负极化(-45°极化)的驻波比-频率曲线。可以看出,本申请的双频共口径辐射单元在高频部分驻波比小于1.25。
本申请的双频共口径辐射单元,在低频部分和高频部分的驻波比均较低,阻抗匹配性好,而且互调稳定性好,保证每个频段指标不恶化,可靠性较高,成本较低。另一方面,本申请还提供一种天线,包括由上述任一实施例提供的双频共口径辐射单元。
在一个实施例中,天线包括多个双频共口径辐射单元,多个双频共口径辐射单元为同频单元组合,或者,至少部分异频单元组合。
在本实施例中,双频共口径辐射单元通过适当的布局,可以得到多频段融合基站天线,提升互调稳定性,成本较低,解决现有技术中多频多系统天线的可靠性较低和成本较高的缺陷。
其中,天线可以采用同频单元组合,即多个双频共口径辐射单元的工作频段均相同,天线能够同时接收/发送同一频段的多个设备的信号。
天线也可以采用至少部分异频组合,即多个双频共口径辐射单元中的至少一个与其他的工作频段不同,从而天线能够同时接收/发送更多个频段的多个设备的信号。
本申请实施例的天线,使用更加方便灵活,满足多种使用需求。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种双频共口径辐射单元,包括:
    馈电底座,包括金属底座和馈电巴伦,所述馈电巴伦嵌设于所述金属底座中,所述馈电巴伦与外接单元连接;
    第一频段辐射器,设置于所述金属底座上,所述第一频段辐射器包括由对称偶极子二元阵构成的至少一个极化;
    第一频段馈电组,包括多个第一馈电件,一个所述第一馈电件的一端与一个第一频段偶极子相连,同一极化的两个所述第一馈电件未与所述第一频段偶极子相连的一端与所述馈电巴伦合路连接,以对所述第一频段辐射器馈电;
    第二频段辐射器,嵌套设置于所述第一频段辐射器内,并设置于所述金属底座上,所述第二频段辐射器包括由对称偶极子二元阵构成的至少一个极化;
    第二频段馈电组,包括至少一个第二馈电件,一个所述第二馈电件对应于一个极化的第二频段二元阵设置,以对所述第二频段辐射器馈电。
  2. 根据权利要求1所述的双频共口径辐射单元,其中,所述金属底座设置有第一通孔;所述馈电巴伦包括内芯和包胶介质,所述包胶介质包裹于所述内芯的外部,所述内芯和所述包胶介质嵌设于所述第一通孔内;所述内芯的第一端与所述第一馈电件连接,所述内芯的第二端与所述外接单元连接。
  3. 根据权利要求2所述的双频共口径辐射单元,其中,所述金属底座还设置有第二通孔;所述第二馈电件包括连接段和馈电段,所述连接段穿设于所述第二通孔并与所述外接单元连接,所述馈电段与对应的所述第二频段二元阵连接。
  4. 根据权利要求3所述的双频共口径辐射单元,其中,所述金 属底座的底部设置有第一金属支撑和第二金属支撑,所述第一通孔贯设于所述第一金属支撑,所述第二通孔贯设于所述第二金属支撑;所述第一频段辐射器的底部开设有第一金属过孔和第二金属过孔,所述第一金属过孔和所述第一通孔相对应设置,所述第二金属过孔和所述第二通孔相对应设置。
  5. 根据权利要求1所述的双频共口径辐射单元,其中,所述第一频段辐射器与所述第二频段辐射器和所述馈电底座均分体设置。
  6. 根据权利要求5所述的双频共口径辐射单元,其中,所述第一频段辐射器与所述第二频段辐射器和所述馈电底座相互连接,或者,所述第一频段辐射器与所述第二频段辐射器和所述馈电底座通过金属紧固件刚性连接。
  7. 根据权利要求5所述的双频共口径辐射单元,其中,所述第一频段辐射器的底部开设有第一连接孔和第二连接孔,所述第一连接孔与所述金属底座通过紧固件固定连接,所述第二连接孔与所述第二频段辐射器通过紧固件固定连接。
  8. 根据权利要求1所述的双频共口径辐射单元,其中,所述第一馈电件为同轴线缆,所述同轴线缆的内导体与所述馈电巴伦连接,所述同轴线缆的外导体与所述金属底座连接。
  9. 根据权利要求1所述的双频共口径辐射单元,其中,所述第二馈电件为钣金件、压铸件或印刷电路制件中的一种。
  10. 根据权利要求1至9任一项所述的双频共口径辐射单元,还包括引向片,所述引向片设置于所述第二频段辐射器的背离所述馈电底座的一侧,且所述引向片与所述第二频段辐射器间隔布置。
  11. 一种天线,其特征在于,包括如权利要求1至10任一项所述的双频共口径辐射单元。
  12. 根据权利要求11所述的天线,其特征在于,所述天线包括多个所述双频共口径辐射单元,多个所述双频共口径辐射单元为同频 单元组合或者至少部分异频单元组合。
PCT/CN2023/125202 2022-10-24 2023-10-18 双频共口径辐射单元及天线 WO2024088133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211305658.4 2022-10-24
CN202211305658.4A CN115663459A (zh) 2022-10-24 2022-10-24 双频共口径辐射单元及天线

Publications (1)

Publication Number Publication Date
WO2024088133A1 true WO2024088133A1 (zh) 2024-05-02

Family

ID=84991726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125202 WO2024088133A1 (zh) 2022-10-24 2023-10-18 双频共口径辐射单元及天线

Country Status (2)

Country Link
CN (1) CN115663459A (zh)
WO (1) WO2024088133A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663459A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 双频共口径辐射单元及天线
CN117791132A (zh) * 2023-09-28 2024-03-29 中信科移动通信技术股份有限公司 辐射单元及基站天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953253A (zh) * 2015-07-07 2015-09-30 董玉良 双极化环天线
CN111129730A (zh) * 2019-12-20 2020-05-08 京信通信技术(广州)有限公司 天线及其双频辐射结构
CN113113762A (zh) * 2021-03-12 2021-07-13 西安电子科技大学 一种双频双极化共口径基站天线、移动通信系统
CN114300829A (zh) * 2021-12-30 2022-04-08 京信通信技术(广州)有限公司 天线装置与高频辐射单元
CN114725698A (zh) * 2022-04-28 2022-07-08 华南理工大学 宽带透波低频天线、多频共口径天线阵列及通信设备
US20220239008A1 (en) * 2019-10-18 2022-07-28 Huawei Technologies Co., Ltd. Common aperture antenna and communication device
CN115663459A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 双频共口径辐射单元及天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953253A (zh) * 2015-07-07 2015-09-30 董玉良 双极化环天线
US20220239008A1 (en) * 2019-10-18 2022-07-28 Huawei Technologies Co., Ltd. Common aperture antenna and communication device
CN111129730A (zh) * 2019-12-20 2020-05-08 京信通信技术(广州)有限公司 天线及其双频辐射结构
CN113113762A (zh) * 2021-03-12 2021-07-13 西安电子科技大学 一种双频双极化共口径基站天线、移动通信系统
CN114300829A (zh) * 2021-12-30 2022-04-08 京信通信技术(广州)有限公司 天线装置与高频辐射单元
CN114725698A (zh) * 2022-04-28 2022-07-08 华南理工大学 宽带透波低频天线、多频共口径天线阵列及通信设备
CN115663459A (zh) * 2022-10-24 2023-01-31 中信科移动通信技术股份有限公司 双频共口径辐射单元及天线

Also Published As

Publication number Publication date
CN115663459A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024088133A1 (zh) 双频共口径辐射单元及天线
US6734828B2 (en) Dual band planar high-frequency antenna
CN107808998B (zh) 多极化辐射振子及天线
CN111092296B (zh) 基站天线及其辐射单元
CN108899644B (zh) 一种低剖面、小型化、高隔离度的双极化贴片天线单元
WO2024087593A1 (zh) 共口径辐射单元及天线
CN111092297B (zh) 低剖面的多频全向垂直极化天线
WO2020181774A1 (zh) 一种宽带双极化天线
US20210376481A1 (en) Radiation apparatus and multi-band array antenna
Bao et al. A broadband dual-polarization antenna element for wireless communication base station
WO2021232820A1 (zh) 基站天线及其高频辐射单元
CN2845198Y (zh) 双频双极化天线
JP2006115451A (ja) 指向性制御マイクロストリップアンテナおよび該アンテナを用いた無線モジュールならびに無線システム
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
CN115051142A (zh) 一种多频基站天线单元及通信设备
US11532887B2 (en) Radiation element for antenna and antenna including the radiation element
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
CN114639963B (zh) 多频段双圆极化全向天线
JP5018628B2 (ja) デュアルバンドアンテナ装置
CN114069215B (zh) 一种双同频双极化辐射单元及天线
CN111725619B (zh) 一种电扫天线
CN210142716U (zh) 耦合辐射单元及天线
JP4012414B2 (ja) 2周波用共用スリーブアンテナ
CN108172993B (zh) 一种双极化频率可重构天线
JP5407067B2 (ja) アンテナ装置