WO2023045282A1 - 高频辐射单元与多频基站天线 - Google Patents

高频辐射单元与多频基站天线 Download PDF

Info

Publication number
WO2023045282A1
WO2023045282A1 PCT/CN2022/081832 CN2022081832W WO2023045282A1 WO 2023045282 A1 WO2023045282 A1 WO 2023045282A1 CN 2022081832 W CN2022081832 W CN 2022081832W WO 2023045282 A1 WO2023045282 A1 WO 2023045282A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical section
radiation unit
balun
frequency radiation
frequency
Prior art date
Application number
PCT/CN2022/081832
Other languages
English (en)
French (fr)
Inventor
郑之伦
李明超
赖展军
李致祥
黎伟韶
梁嘉驹
Original Assignee
京信通信技术(广州)有限公司
京信射频技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信射频技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2023045282A1 publication Critical patent/WO2023045282A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0053Selective devices used as spatial filter or angular sidelobe filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of antenna communication, in particular to a high-frequency radiation unit and a multi-frequency base station antenna.
  • the array arrangement of different frequency bands will be more compact, and the mutual coupling problem is particularly prominent.
  • the low-frequency radiation unit will generate a certain excitation signal to its adjacent high-frequency radiation unit, thereby generating parasitic radiation, causing the low-frequency pattern to be deformed, and the low-frequency radiation performance drops sharply; due to the more compact array arrangement, the high-frequency The mutual coupling between adjacent arrays increases, and the beam width in the horizontal plane becomes wider, resulting in a decrease in gain.
  • a high-frequency radiation unit the high-frequency radiation unit includes: a radiator, the radiator includes a first dipole and a second dipole arranged orthogonally, the first dipole The sub-dipole includes two first radiating plates, and the second dipole includes two second radiating plates; the vibrator seat, the vibrator seat includes a connecting part, two first baluns and two second baluns, the two The bottom ends of the first balun and the two second baluns are connected to the connecting portion, and the top ends of the two first baluns are connected to the two first radiating plates in a one-to-one correspondence.
  • the tops of the two second baluns are connected to the two second radiating plates in one-to-one correspondence, and a straight line passing through the center of the connecting portion and perpendicular to the surface of the radiating plate is defined as the centerline; and the second A feeder and a second feeder, the first feeder and the second feeder are arranged orthogonally, the first feeder is electrically connected to the first dipole, the The second feeder is electrically connected to the second dipole, the first feeder includes a first vertical section, the first vertical section is arranged on the periphery of the vibrator seat, and the first feeder A distance between a vertical segment and the center line is larger than a distance between the first balun and the center line; the second feeder includes a second vertical segment, and the second vertical segment is arranged on the The periphery of the vibrator seat, and the distance between the second vertical section and the center line is greater than the distance between the second balun and the center line.
  • the first vertical section and the centerline is greater than the distance between the first balun and the centerline
  • the distance between the second vertical section and the centerline is greater than the distance between the second balun and the centerline
  • the vertical section and the second vertical section are respectively arranged in the internal wiring grooves of the first balun and the second balun, so that there is no need to set a closed balun structure as in the traditional technology, but can be set as an open
  • the balun structure can reduce the structural size of the vibrator base to a certain extent, which can realize the miniaturization of the vibrator base, reduce the high-frequency spurious radiation of the balun, and effectively increase the gain of the high-frequency radiation unit.
  • the first feeder further includes a first horizontal section, one end of the first horizontal section is connected to the first vertical section, and the top ends of the two first baluns Each is provided with a first groove corresponding to the first transverse section, the first transverse section is set in the first groove, and the distance between the first transverse section and the inner wall of the first groove An insulating spacer is arranged between them;
  • the second feeder also includes a second horizontal section, one end of the second horizontal section is connected to the second vertical section, and the top ends of the two second baluns Each is provided with a second groove corresponding to the second transverse section, the second transverse section is set in the second groove, and the distance between the second transverse section and the inner wall of the second groove Insulation spacers are provided between them.
  • the first feed member further includes a third vertical section, the third vertical section is connected to the other end of the first horizontal section, and the third vertical section is arranged on The outer periphery of the vibrator base, and the distance between the third vertical segment and the center line is greater than the distance between the first balun and the center line;
  • the second feed member also includes a fourth vertical section, the fourth vertical section is connected to the other end of the second transverse section, the fourth vertical section is arranged on the periphery of the vibrator seat, and the fourth vertical section is connected to the centerline The spacing is greater than the spacing between the second balun and the center line.
  • the vibrator base further includes a first sleeve and a second sleeve connected to the connecting portion; the first sleeve is arranged corresponding to the first vertical section, and the first sleeve A vertical section is passed through the first sleeve, and the first vertical section and the first sleeve are respectively used to connect with the inner conductor and the outer conductor of one of the coaxial lines; the second The sleeve is arranged corresponding to the second vertical section, and the second vertical section is passed through the second sleeve, and the second vertical section and the second sleeve are respectively used to communicate with another The inner conductor of a coaxial line is connected to the outer conductor.
  • a first concave surface is provided on the part of the connecting part facing the first sleeve, and the first sleeve is fixedly arranged on the first concave surface;
  • the second sleeve is provided with a second concave surface, and the second sleeve is fixedly arranged on the second concave surface.
  • the first vertical section is used for electrical connection with a transmission line transmitting signals in one polarization direction
  • the second vertical section is used for connecting with a transmission line transmitting signals in another polarization direction. electrical connection.
  • the first radiant panel is a first frame body, and the first frame body is a closed frame body, or a part of the first frame body far away from the first balun is provided with The first notch;
  • the second radiant plate is a second frame body, and the second frame body is a closed frame body, or the second frame body is provided with a second gap.
  • the high-frequency radiation unit further includes a coupling metal plate, the coupling metal plate is arranged above the radiator at intervals, and a hollow opening is provided on the surface of the coupling metal plate;
  • the hollow opening is cross-shaped or rice-shaped.
  • the coupling metal plate is a square plate; the diagonal length of the hollow opening is m, and m is 0.25 to 0.4 times the wavelength of the central operating frequency; the length of any side of the coupling metal plate is is n, and n is 0.35 to 0.55 times the wavelength of the central operating frequency.
  • the aperture size of the first dipole and the second dipole is L, and L is 0.2 to 0.35 times the wavelength of the central operating frequency; the surface of the radiator to the connecting part The distance from the bottom surface is H, and H is 0.14 to 0.2 times the wavelength of the central working frequency.
  • a multi-frequency base station antenna the multi-frequency base station antenna includes at least one high-frequency radiation unit, and also includes a reflector and at least one low-frequency radiation unit, and the high-frequency radiation unit and the low-frequency radiation unit are both arranged on on the reflector.
  • the distance between the first vertical segment and the center line is greater than the distance between the first balun and the center line
  • the distance between the second vertical segment and the center line is greater than the distance between the second balun and the center line
  • the vertical section and the second vertical section are respectively arranged in the internal wiring grooves of the first balun and the second balun, so that there is no need to set a closed balun structure as in the traditional technology, but can be set as an open
  • the balun structure can reduce the structural size of the vibrator base to a certain extent, which can realize the miniaturization of the vibrator base, reduce the high-frequency spurious radiation of the balun, and effectively increase the gain of the high-frequency radiation unit.
  • the height and aperture size of the radiator can be effectively reduced while achieving broadband impedance matching of the high-frequency radiation unit, thereby reducing the low-frequency spurious radiation of the radiator itself ;
  • the coupling between the coupling metal plate and the radiator has high-pass filtering characteristics, which can effectively suppress the coupling signal of the low-frequency radiation unit, thereby reducing the low-frequency spurious radiation of the high-frequency radiation unit, and effectively improving the low-frequency antenna in the multi-frequency base station antenna. gain.
  • Fig. 1 is a perspective view of a high-frequency radiation unit provided by an embodiment of the present invention
  • Fig. 2 is a top view of the high-frequency radiation unit shown in Fig. 1;
  • Fig. 3 is a front view of the high-frequency radiation unit shown in Fig. 1;
  • Fig. 4 is a side view of the high-frequency radiation unit shown in Fig. 1;
  • Fig. 5 is the top view of the high-frequency radiation unit of another embodiment
  • Fig. 6 is a top view of a high-frequency radiation unit in another embodiment
  • Fig. 7 is a perspective view of a high-frequency radiation unit in another embodiment
  • Fig. 8 is a perspective view of a vibrator seat and a feeder provided by an embodiment of the present invention.
  • Fig. 9 is a top view of a coupling metal plate provided by an embodiment of the present invention.
  • Fig. 10 is a top view of a high-frequency radiation unit provided by an embodiment of the present invention.
  • Fig. 11 is the simulation S parameter curve diagram of the high-frequency radiation unit provided by an embodiment of the present invention.
  • Fig. 12 is a comparison diagram of the simulated directivity coefficient between the high-frequency radiation unit provided by the embodiment of the present invention and the high-frequency radiation unit of the conventional balun structure when the operating frequency is 2.6 GHz;
  • Fig. 13 is a top view of a multi-frequency base station antenna provided by an embodiment of the present invention.
  • High-frequency radiation unit 110. Radiator; 111. First radiation plate; 1111. First gap; 1112. First hollow area; 112. Second radiation plate; 1121. Second gap; 1122. Second hollow District; 120, vibrator seat; 121, connecting portion; 1211, first concave surface; 1212, second concave surface; 122, first balun; 1221, first groove; 123, second balun; 1231, second concave Slot; 124, the first sleeve; 125, the second sleeve; 130, the first feeder; 131, the first vertical section; 132, the first horizontal section; 133, the third vertical section; 140, the first 141, the second vertical section; 142, the second horizontal section; 150, the coupling metal plate; 151, the hollow opening; 200, the low-frequency radiation unit; O, the center line.
  • FIG. 1 shows a perspective view of the high-frequency radiation unit 100 provided in Figure 1 as an embodiment of the present invention
  • Figure 2 shows a top view of the high-frequency radiation unit 100 shown in Figure 1
  • Figure 3 A front view of the high-frequency radiation unit 100 shown in FIG. 1 is shown
  • FIG. 4 shows a side view of the high-frequency radiation unit 100 shown in FIG. 1 .
  • An embodiment of the present invention provides a high-frequency radiation unit 100 .
  • the high-frequency radiation unit 100 includes: a radiator 110 , a vibrator base 120 , and a first feeder 130 and a second feeder 140 .
  • the radiator 110 includes a first dipole (not shown) and a second dipole (not shown) arranged orthogonally.
  • the first dipole includes two first radiating plates 111
  • the second dipole includes two second radiating plates 112
  • the vibrator base 120 includes a connecting portion 121 , two first baluns 122 and two second baluns 123 .
  • the bottom ends of the two first baluns 122 and the two second baluns 123 are connected to the connection part 121, and the tops of the two first baluns 122 are connected to the two first radiating plates 111 in one-to-one correspondence.
  • the tops of the two baluns 123 are connected to the two second radiating panels 112 in one-to-one correspondence, and a straight line passing through the center of the connecting portion 121 and perpendicular to the surface of the radiating panel is defined as a center line O (not shown in the figure).
  • the first feeder 130 and the second feeder 140 are arranged orthogonally, and the first feeder 130 is electrically connected to the first dipole (specifically including the electrical connection mode of coupled connection and the electrical connection mode of direct connection),
  • the second feed member 140 is electrically connected to the second dipole (specifically including the electrical connection manner of coupled connection and the electrical connection manner of direct connection).
  • the first feed member 130 includes a first vertical section 131, which is disposed on the periphery of the vibrator seat, specifically, is spaced from one of the first baluns 122, and the first vertical section 131 The distance from the central line O is greater than the distance from the first balun 122 to the central line O.
  • the second feed member 140 includes a second vertical section 141, which is disposed on the periphery of the vibrator base, specifically, is spaced from one of the second baluns 123, and the second vertical section 141 The distance from the central line O is greater than the distance from the second balun 123 to the central line O.
  • the distance between the first vertical section 131 and the centerline O is greater than the distance between the first balun 122 and the centerline O
  • the distance between the second vertical section 141 and the centerline O is greater than the distance between the second balun 141 and the centerline O.
  • the distance between the balun 123 and the centerline O that is, the first vertical section 131 is arranged on the side of the first balun 122 away from the centerline O, and the second vertical section 141 is arranged on the side of the second balun 123 away from the centerline O
  • the first vertical section 131 and the second vertical section 141 are not respectively arranged in the internal wire slots of the first balun 122 and the second balun 123 as in the traditional technology, so that there is no need to
  • a closed balun structure is set in the traditional technology, but an open balun structure can be set, which can reduce the structural size of the vibrator base 120 to a certain extent, that is, can realize the miniaturization of the vibrator base 120, and at the same time
  • the high-frequency spurious radiation of the balun can be reduced, and the gain of the high-frequency radiation unit 100 can be effectively improved.
  • the electrical connection in this embodiment can be achieved by coupling and connecting the two, or the two can be electrically connected by mutual electrical contact, which is not limited here. It can be set according to the actual needs.
  • the connecting portion 121 is generally designed as a circular plate, a square plate, a hexagonal plate, an octagonal plate, etc., correspondingly, the center of the circular plate is taken as the center of the connecting portion 121, and the square plate, square plate, The intersection of the diagonal lines of the hexagonal plate or octagon serves as the center of the connecting portion 121 .
  • the connection part 121 can also be an irregular structure, and the geometric center of the connection part 121 is taken as the center of the connection part 121 .
  • first vertical section 131 and one of the first baluns 122 means that there is an intermediate between them, or there may be no intermediate, which is not limited here.
  • spaced arrangement between the second vertical section 141 and one of the second baluns 123 means that there is an intermediate between the two, or there may be no intermediate, which is not limited here.
  • both the first feed member 130 and the second feed member 140 are, for example, feed sheets or feed rods.
  • the first feed member 130 further includes a first transverse section 132 .
  • One end of the first transverse section 132 is connected to the first vertical section 131 .
  • the top ends of the two first baluns 122 are provided with a first groove 1221 corresponding to the first transverse section 132, the first transverse section 132 is set in the first groove 1221, and the first transverse section 132 is connected to the first An insulating spacer (not shown in the figure) is provided between the inner walls of the groove 1221 .
  • the second feeder 140 also includes a second transverse section 142, one end of the second transverse section 142 is connected to the second vertical section 141, and the top ends of the two second baluns 123 are provided with 142 corresponding to the second groove 1231, the second transverse section 142 is arranged in the second groove 1231, and an insulating spacer (not shown in the figure) is arranged between the second transverse section 142 and the inner wall of the second groove 1231 ).
  • the first transverse section 132 is arranged in the first groove 1221, and is spaced apart from the two first radiating plates 111 respectively, so as to realize coupling and connection with the two first radiating plates 111, and is responsible for one of the polarization direction signals.
  • the second transverse section 142 is set in the second groove 1231, it is spaced apart from the two second radiating plates 112 to realize coupling connection with the two second radiating plates 112, responsible for another polarization direction signal transmission.
  • the first transverse section 132 is connected to the inner wall of the first groove 1221 through an insulating spacer, so that the first feeder 130 can be stably arranged on the vibrator base 120; similarly, the second transverse section 142 is connected to the inner wall of the first groove 1221 through an insulating spacer.
  • the inner walls of the second groove 1231 are connected to each other, so that the second feed member 140 can be stably arranged on the vibrator base 120 .
  • the insulating spacer is, for example, an insulating material such as a plastic part, a ceramic part, a rubber part, etc., mainly to prevent the first transverse section 132 of the first power feeding part 130 from being electrically connected to the top end of the first balun 122. , and at the same time play the role of fixing the first feeder 130 .
  • the electrical connection between the second transverse section 142 of the second power feeding member 140 and the top end of the second balun 123 can be avoided, and at the same time, it can be used to fix the second power feeding member 140 .
  • FIG. 7 shows a perspective view of a high-frequency radiation unit 100 according to another embodiment
  • FIG. 8 shows a perspective view of a vibrator base 120 and a feed member provided by an embodiment of the present invention
  • the first feed member 130 further includes a third vertical segment 133 .
  • the third vertical section 133 is connected to the other end of the first transverse section 132, the third vertical section 133 is arranged on the periphery of the vibrator seat 120, specifically, it is spaced apart from another first balun 122, and the third vertical section 133
  • the distance between the segment 133 and the centerline O is greater than the distance between the first balun 122 and the centerline O.
  • the second feed member 140 also includes a fourth vertical section (not shown in the figure), the fourth vertical section is connected to the other end of the second transverse section 142, and the fourth vertical section is arranged on the vibrator base 120
  • the periphery specifically, is spaced apart from another second balun 123 , and the distance between the fourth vertical segment and the central line O is greater than the distance between the second balun 123 and the central line O.
  • the distance between the third vertical section 133 and the centerline O is greater than the distance between the first balun 122 and the centerline O
  • the distance between the fourth vertical section and the centerline O is greater than the distance between the second balun 123 and the centerline O
  • the spacing that is, the third vertical section 133 is arranged on the side of the first balun 122 away from the centerline O
  • the fourth vertical section is arranged on the side of the second balun 123 away from the centerline O, so it is not like
  • the third vertical section 133 and the fourth vertical section are respectively arranged in the internal wiring grooves of the first balun 122 and the second balun 123, so that there is no need to set a closed bar as in the traditional technology.
  • balun structure can reduce the structural size of the vibrator base 120 to a certain extent, that is, can realize the miniaturization of the vibrator base 120, and can reduce the high-frequency parasitic of the balun radiation, effectively increasing the gain of the high-frequency radiation unit 100.
  • the vibrator base 120 further includes a first sleeve 124 and a second sleeve 125 connected to the connecting portion 121 .
  • the first sleeve 124 is arranged corresponding to the first vertical section 131, the first vertical section 131 is passed through the first sleeve 124, and the first vertical section 131 and the first sleeve 124 are respectively used for matching with one of them.
  • the inner conductor of the axis is connected to the outer conductor.
  • the second sleeve 125 is provided corresponding to the second vertical section 141, and the second vertical section 141 is passed through the second sleeve 125, and the second vertical section 141 and the second sleeve 125 are respectively used to communicate with another
  • the inner conductor of a coaxial line is connected to the outer conductor.
  • first vertical section 131 is welded to one of the inner conductors of the coaxial line, and the first sleeve 124 is connected to one of the outer conductors of the coaxial line by welding.
  • the second vertical section 141 is connected to the inner conductor of another coaxial line by welding, and the second sleeve 125 is connected to the outer conductor of another coaxial line by welding.
  • first vertical section 131 and the second vertical section 141 without setting the first sleeve 124 and the second sleeve 125 Transmission lines such as microstrip lines and striplines are connected, for example, by soldering. That is, optionally, the first vertical section 131 is used for electrical connection with a transmission line transmitting signals in one polarization direction, and the second vertical section 141 is used for electrically connecting with a transmission line transmitting signals in another polarization direction.
  • the first concave surface 1211 is provided on the part of the connecting part 121 facing the first sleeve 124, and the first sleeve 124 is fixedly arranged on the first concave surface 1211; the upper part of the connecting part 121 faces the second
  • the portion of the sleeve 125 is provided with a second concave surface 1212 , and the second sleeve 125 is fixedly disposed on the second concave surface 1212 .
  • the first concave surface 1211 is an arc-shaped concave surface
  • the first sleeve 124 is a sleeve with a circular cross section. on a concave surface 1211
  • the second concave surface 1212 is configured similarly, and details will not be repeated here.
  • radiator 110 and the vibrator base 120 are integrally formed by casting, which can reduce solder joints, improve production efficiency, and ensure product quality. Of course, they can also be connected by welding.
  • FIG. 5 shows a top view of a high frequency radiation unit 100 in another embodiment
  • FIG. 6 shows a top view of a high frequency radiation unit 100 in another embodiment
  • the first radiant plate 111 is a first frame body
  • the first frame body is a closed frame body (as shown in FIG. 2 ), or a position of the first frame body away from the first balun 122 is provided with
  • the first notch 1111 (as shown in Figure 5 or Figure 6);
  • the second radiating plate 112 is a second frame, the second frame is a closed frame (as shown in Figure 2), or the second frame is far away from
  • a second notch 1121 (as shown in FIG. 5 or FIG. 6 ) is disposed at the position of the second balun 123 .
  • first frame specifically refers to the first hollow area 1112 being provided in the middle area of the first radiating board 111 to form a frame.
  • second frame body specifically refers to the fact that the second hollow area 1122 is provided in the middle area of the second radiant panel 112 to form a frame body.
  • the first frame body can be either a closed frame body or a non-closed frame body.
  • the first frame body is a non-closed frame body, for example, in A first notch 1111 is provided at a position away from the first balun 122 , and for example, the first frame body includes two first radiating sides connected to the first balun 122 .
  • the second frame can be either a closed frame or a non-closed frame.
  • the second frame is a non-closed frame, for example, a second The notch 1121 is another example that the second frame includes two second radiating sides connected to the second balun 123 .
  • the specific shape of the first frame body and the specific shape of the second frame body are not limited here, and can be set according to actual needs.
  • FIG. 9 shows a top view of a coupling metal plate 150 provided by an embodiment of the present invention
  • FIG. 10 shows a top view of a high frequency radiation unit 100 provided by an embodiment of the present invention
  • the high frequency radiation unit 100 further includes a coupling metal plate 150 .
  • the coupling metal plates 150 are disposed above the radiator 110 at intervals, and hollow holes 151 are formed on the surface of the coupling metal plates 150 .
  • the hollow opening 151 is cross-shaped or rice-shaped.
  • the height and aperture size of the radiator 110 can be effectively reduced while achieving broadband impedance matching of the high-frequency radiation unit 100, thereby reducing the size of the radiator 110.
  • own low-frequency spurious radiation in addition, the coupling between the coupling metal plate 150 and the radiator 110 has a high-pass filter characteristic, which can effectively suppress the coupling signal of the low-frequency radiation unit 200, thereby reducing the low-frequency spurious radiation of the high-frequency radiation unit 100, effectively Increased low-frequency antenna gain in multi-frequency base station antennas.
  • the high-frequency radiation unit 100 since the high-frequency radiation unit 100 has a higher gain than conventional high-frequency radiation units, and has good performance in suppressing low-frequency spurious radiation, the high-frequency radiation unit 100 and low-frequency radiation can be effectively reduced under the premise of ensuring antenna performance.
  • the distance between the units 200 makes the layout of the antenna array more compact, realizing miniaturization and high performance of the antenna.
  • the high-frequency radiation unit 100 has a simple structure, is easy to be integrally formed, and has the advantages of miniaturization, low cost, light weight, and fewer solder joints.
  • the coupling metal plate 150 is a square plate; the diagonal length of the hollow opening 151 is m, and m is 0.25 to 0.4 times the wavelength of the central operating frequency; the coupling metal plate 150 The length of any side is n, and n is 0.35 to 0.55 times the wavelength of the central working frequency.
  • the working frequency band is, for example, 1427MHz-2690MHz, and the relative bandwidth is about 61.4%.
  • the coupling metal plate 150 is fixedly disposed above the radiator 110 through an insulating spacer. Specifically, the distance between the coupling metal plate 150 and the upper surface of the radiator 110 is S, and S is less than 0.05 times the wavelength of the central operating frequency.
  • the aperture size of the first dipole and the second dipole is L, and L is 0.2 to 0.35 times the wavelength of the central operating frequency; the surface of the radiator 110 is connected to The distance between the bottom surface of the portion 121 is H, and H is 0.14 to 0.2 times the wavelength of the central operating frequency.
  • the broadband impedance matching of the high-frequency radiation unit 100 can be realized, and the working bandwidth of the voltage standing wave ratio less than 1.4 can reach 62%, and at the same time, it can effectively suppress the low-frequency coupled signal.
  • the above-mentioned coupling metal plate 150 may not be required.
  • L is, for example, 0.5 times the wavelength of the central operating frequency
  • H is, for example, the wavelength of the central operating frequency. 0.25 times the wavelength.
  • Fig. 11 shows the simulation S parameter curve diagram of the high-frequency radiation unit 100 provided by an embodiment of the present invention
  • Fig. 12 shows the high A comparison chart of the simulated directivity coefficient between the high-frequency radiation unit 100 and the high-frequency radiation unit 100 with a conventional balun structure.
  • S11 represents the reflection coefficient of one of the polarizations
  • S22 represents the reflection coefficient of the other polarization
  • S21 represents the isolation between the two polarizations. It can be seen from Fig.
  • the unit 100 has good ultra-wideband characteristics; it can be seen from Figure 12 that the high-frequency radiation unit 100 in this embodiment has a narrower beam width and a higher directivity coefficient than the traditional high-frequency radiation unit, Radiation performance is improved.
  • FIG. 13 shows a top view of a multi-frequency base station antenna provided by an embodiment of the present invention.
  • a multi-frequency base station antenna the multi-frequency base station antenna includes at least one high-frequency radiation unit 100 in any of the above-mentioned embodiments, and also includes a reflector (not shown in the figure) and at least one low-frequency radiation unit 200 , the high-frequency radiation unit 100 and the low-frequency radiation unit 200 are both disposed on the reflector.
  • the connecting portion 121 is disposed on the surface of the reflector, the first sleeve 124 and the second sleeve 125 are connected to the coaxial line after passing through the reflector, and the first sleeve 124 and the second sleeve 125 are also fixed. placed on the reflector.
  • the distance between the first vertical segment 131 and the center line O is greater than the distance between the first balun 122 and the center line O
  • the distance between the second vertical segment 141 and the center line O is greater than that of the second balun 123 and the centerline O
  • the first vertical section 131 is arranged on the side of the first balun 122 away from the centerline O
  • the second vertical section 141 is arranged on the side of the second balun 123 away from the centerline O
  • a closed balun structure is set, but an open balun structure can be set, and the structural size of the vibrator base 120 can be reduced to a certain extent, that is, the miniaturization of the vibrator base 120 can be realized, and at the
  • the height and aperture size of the radiator 110 can be effectively reduced while achieving broadband impedance matching of the high-frequency radiation unit 100, thereby reducing the size of the radiator 110.
  • the coupling between the coupling metal plate 150 and the radiator 110 has a high-pass filter characteristic, which can effectively suppress the coupling signal of the low-frequency radiation unit 200, thereby reducing the low-frequency spurious radiation of the high-frequency radiation unit 100, effectively Increased low-frequency antenna gain in multi-frequency base station antennas.
  • first balun 122, second balun 123 can be "a part of the connecting part 121", that is, “the first balun 122, the second balun 123” and “the other part of the connecting part 121".
  • Part is integrally formed; it can also be an independent component that can be separated from “other parts of the connecting part 121", that is, the “first convex body” can be manufactured independently, and then combined with “other parts of the connecting part 121" into a whole .
  • the "first balun 122 and the second balun 123" are parts of the "connecting part 121" integrally formed.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Abstract

本发明涉及一种高频辐射单元与多频基站天线,高频辐射单元包括辐射体、振子座以及第一馈电件与第二馈电件。由于第一竖向段与中心线的间距大于第一巴伦与中心线的间距,第二竖向段与中心线的间距大于第二巴伦与中心线的间距,即第一竖向段布置于第一巴伦远离于中心线的一侧,第二竖向段布置于第二巴伦远离于中心线的一侧,这样并非是如同传统技术中将第一竖向段、第二竖向段均分别布置于第一巴伦、第二巴伦的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座的结构尺寸,即能使得实现振子座的小型化,同时能减小巴伦的寄生辐射,有效提升高频辐射单元的增益。

Description

高频辐射单元与多频基站天线 技术领域
本发明涉及天线通信技术领域,特别是涉及一种高频辐射单元与多频基站天线。
背景技术
随着移动通信技术的快速发展,在当前多网共存的环境下,基站天线的数量需求成倍增加,基站天线选址困难、安装不便等问题日益显现。为节省站址和天馈资源,多频共用天线已成为当前基站天线的主流,且正向更多频段数、更窄天线截面的方向快速演进。
然而,在天线的频段数日益增多的前提下,为保证天线截面尺寸不变甚至更窄,不同频段的阵列排布将更为紧凑,互耦问题尤为突出。例如,低频辐射单元会对其邻近的高频辐射单元产生一定的激励信号,从而产生寄生辐射,导致低频方向图发生畸形,使低频的辐射性能急剧下降;高频由于阵列排布更为紧凑,相邻阵列间的互耦加大,水平面波束宽度变宽,导致增益下降。
发明内容
基于此,有必要克服现有技术的缺陷,提供一种高频辐射单元与多频基站天线,它能够实现小型化、宽频带与高增益。
其技术方案如下:一种高频辐射单元,所述高频辐射单元包括:辐射体,所述辐射体包括正交设置的第一偶极子与第二偶极子,所述第一偶极子包括两个第一辐射板,所述第二偶极子包括两个第二辐射板;振子座,所述振子座包 括连接部、两个第一巴伦与两个第二巴伦,两个所述第一巴伦、两个所述第二巴伦的底端均与所述连接部相连,两个所述第一巴伦的顶端与两个所述第一辐射板一一对应相连,两个所述第二巴伦的顶端与两个所述第二辐射板一一对应相连,将经过所述连接部中心并垂直于所述辐射板板面的直线定义为中心线;以及第一馈电件与第二馈电件,所述第一馈电件与所述第二馈电件正交设置,所述第一馈电件与所述第一偶极子电连接,所述第二馈电件与所述第二偶极子电连接,所述第一馈电件包括第一竖向段,所述第一竖向段设置于所述振子座的外围,且所述第一竖向段与所述中心线的间距大于所述第一巴伦与所述中心线的间距;所述第二馈电件包括第二竖向段,所述第二竖向段设置于所述振子座的外围,且所述第二竖向段与所述中心线的间距大于所述第二巴伦与所述中心线的间距。
上述的高频辐射单元,由于第一竖向段与中心线的间距大于第一巴伦与中心线的间距,第二竖向段与中心线的间距大于第二巴伦与中心线的间距,即第一竖向段布置于第一巴伦远离于中心线的一侧,第二竖向段布置于第二巴伦远离于中心线的一侧,这样并非是如同传统技术中将第一竖向段、第二竖向段均分别布置于第一巴伦、第二巴伦的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座的结构尺寸,即能使得实现振子座的小型化,同时能减小巴伦的高频寄生辐射,有效提升高频辐射单元的增益。
在其中一个实施例中,所述第一馈电件还包括第一横向段,所述第一横向段的一端与所述第一竖向段相连,两个所述第一巴伦的顶端上均设置有与所述第一横向段相应的第一凹槽,所述第一横向段设置于所述第一凹槽中,且所述第一横向段与所述第一凹槽的内壁之间设置有绝缘隔离件;所述第二馈电件还 包括第二横向段,所述第二横向段的一端与所述第二竖向段相连,两个所述第二巴伦的顶端上均设置有与所述第二横向段相应的第二凹槽,所述第二横向段设置于所述第二凹槽中,且所述第二横向段与所述第二凹槽的内壁之间设置有绝缘隔离件。
在其中一个实施例中,所述第一馈电件还包括第三竖向段,所述第三竖向段与所述第一横向段的另一端相连,所述第三竖向段设置于所述振子座的外围,且所述第三竖向段与所述中心线的间距大于所述第一巴伦与所述中心线的间距;所述第二馈电件还包括第四竖向段,所述第四竖向段与所述第二横向段的另一端相连,所述第四竖向段设置于所述振子座的外围,且所述第四竖向段与所述中心线的间距大于所述第二巴伦与所述中心线的间距。
在其中一个实施例中,所述振子座还包括与所述连接部相连的第一套筒与第二套筒;所述第一套筒与所述第一竖向段对应设置,所述第一竖向段穿设于所述第一套筒中,所述第一竖向段与所述第一套筒分别用于与其中一个同轴线的内导体与外导体相连;所述第二套筒与所述第二竖向段对应设置,所述第二竖向段穿设于所述第二套筒中,所述第二竖向段与所述第二套筒分别用于与另一个同轴线的内导体与外导体相连。
在其中一个实施例中,所述连接部上面向所述第一套筒的部位均设置有第一凹面,所述第一套筒固定设置于所述第一凹面;所述连接部上面向所述第二套筒的部位设置有第二凹面,所述第二套筒固定设置于所述第二凹面。
在其中一个实施例中,所述第一竖向段用于与传输其中一种极化方向信号的传输线电连接,所述第二竖向段用于与传输另一种极化方向信号的传输线电连接。
在其中一个实施例中,所述第一辐射板为第一框体,所述第一框体为封闭 式框体,或者所述第一框体远离于所述第一巴伦的部位设置有第一缺口;所述第二辐射板为第二框体,所述第二框体为封闭式框体,或者所述第二框体上远离于所述第二巴伦的部位设置有第二缺口。
在其中一个实施例中,所述高频辐射单元还包括耦合金属板,所述耦合金属板间隔地设置于所述辐射体的上方,所述耦合金属板的板面上设有镂空口;所述镂空口为十字形或米字形。
在其中一个实施例中,所述耦合金属板为方形板;所述镂空口的对角线长度为m,m为中心工作频率的波长的0.25至0.4倍;所述耦合金属板的任一边长为n,n为所述中心工作频率的波长的0.35至0.55倍。
在其中一个实施例中,所述第一偶极子与所述第二偶极子的口径尺寸为L,L为中心工作频率的波长的0.2至0.35倍;所述辐射体的表面到连接部底面的距离为H,H为中心工作频率的波长的0.14至0.2倍。
一种多频基站天线,所述多频基站天线包括至少一个所述的高频辐射单元,还包括反射板与至少一个低频辐射单元,所述高频辐射单元与所述低频辐射单元均设置于所述反射板上。
上述的多频基站天线,由于第一竖向段与中心线的间距大于第一巴伦与中心线的间距,第二竖向段与中心线的间距大于第二巴伦与中心线的间距,即第一竖向段布置于第一巴伦远离于中心线的一侧,第二竖向段布置于第二巴伦远离于中心线的一侧,这样并非是如同传统技术中将第一竖向段、第二竖向段均分别布置于第一巴伦、第二巴伦的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座的结构尺寸,即能使得实现振子座的小型化,同时能减小巴伦的高频寄生辐射,有效提升高频辐射单元的增益。进而,通过在辐射体的上方设置 间隔的耦合金属板,可在实现高频辐射单元的宽带阻抗匹配的同时,有效减小辐射体的高度及口径尺寸,从而减小辐射体自身的低频寄生辐射;此外,耦合金属板与辐射体之间的耦合具有高通滤波特性,能有效抑制低频辐射单元的耦合信号,从而减小高频辐射单元的低频寄生辐射,有效提升多频基站天线中的低频天线增益。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的高频辐射单元的立体图;
图2为图1所示的高频辐射单元的俯视图;
图3为图1所示的高频辐射单元的主视图;
图4为图1所示的高频辐射单元的侧视图;
图5为另一实施例的高频辐射单元的俯视图;
图6为又一实施例的高频辐射单元的俯视图;
图7为再一实施例的高频辐射单元的立体图;
图8为本发明一实施例提供的振子座及馈电件的立体图;
图9为本发明一实施例提供的耦合金属板的俯视图;
图10为本发明一实施例提供的高频辐射单元的俯视图;
图11为本发明一实施例提供的高频辐射单元的仿真S参数曲线图;
图12为工作频率为2.6GHz时本发明实施例提供的高频辐射单元与常规巴伦结构的高频辐射单元的仿真方向性系数对比图;
图13为本发明一实施例提供的多频基站天线的俯视图。
100、高频辐射单元;110、辐射体;111、第一辐射板;1111、第一缺口;1112、第一镂空区;112、第二辐射板;1121、第二缺口;1122、第二镂空区;120、振子座;121、连接部;1211、第一凹面;1212、第二凹面;122、第一巴伦;1221、第一凹槽;123、第二巴伦;1231、第二凹槽;124、第一套筒;125、第二套筒;130、第一馈电件;131、第一竖向段;132、第一横向段;133、第三竖向段;140、第二馈电件;141、第二竖向段;142、第二横向段;150、耦合金属板;151、镂空口;200、低频辐射单元;O、中心线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
参阅图1至图4,图1示出了图1为本发明一实施例提供的高频辐射单元100的立体图,图2示出了图1所示的高频辐射单元100的俯视图,图3示出了图1所示的高频辐射单元100的主视图,图4示出了图1所示的高频辐射单元100的侧视图。本发明一实施例提供的一种高频辐射单元100,高频辐射单元100包括:辐射体110、振子座120以及第一馈电件130与第二馈电件140。辐 射体110包括正交设置的第一偶极子(未标示)与第二偶极子(未标示)。第一偶极子包括两个第一辐射板111,第二偶极子包括两个第二辐射板112。振子座120包括连接部121、两个第一巴伦122与两个第二巴伦123。两个第一巴伦122、两个第二巴伦123的底端均与连接部121相连,两个第一巴伦122的顶端与两个第一辐射板111一一对应相连,两个第二巴伦123的顶端与两个第二辐射板112一一对应相连,将经过连接部121中心并垂直于辐射板板面的直线定义为中心线O(图中未标示)。第一馈电件130与第二馈电件140正交设置,第一馈电件130与第一偶极子电连接(具体包括耦合相连的电连接方式,与直接相连的电连接方式),第二馈电件140与第二偶极子电连接(具体包括耦合相连的电连接方式,与直接相连的电连接方式)。第一馈电件130包括第一竖向段131,第一竖向段131设置于所述振子座的外围,具体而言与其中一个第一巴伦122间隔设置,且第一竖向段131与中心线O的间距大于第一巴伦122与中心线O的间距。第二馈电件140包括第二竖向段141,第二竖向段141设置于所述振子座的外围,具体而言与其中一个第二巴伦123间隔设置,且第二竖向段141与中心线O的间距大于第二巴伦123与中心线O的间距。
上述的高频辐射单元100,由于第一竖向段131与中心线O的间距大于第一巴伦122与中心线O的间距,第二竖向段141与中心线O的间距大于第二巴伦123与中心线O的间距,即第一竖向段131布置于第一巴伦122远离于中心线O的一侧,第二竖向段141布置于第二巴伦123远离于中心线O的一侧,这样并非是如同传统技术中将第一竖向段131、第二竖向段141均分别布置于第一巴伦122、第二巴伦123的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座120的结构尺寸,即能使得实现振子座120的小型化,同时能减小巴伦的高频寄生 辐射,有效提升高频辐射单元100的增益。
需要说明的是,本实施例中的电连接既可以是耦合相连的方式实现两者电连接,也可以是两者通过相互电性接触的方式实现两者电连接,在此不进行限定,根据实际需求进行设置即可。
需要说明的是,连接部121一般例如设计为圆形板、方形板、六边形板、八边形板等等,相应地,将圆形板的圆心作为连接部121的中心,方形板、六边形板或八边形的对角线的连线交点作为连接部121的中心。连接部121也可以是不规则的结构,将连接部121的几何中心作为连接部121的中心。
需要说明的是,第一竖向段131与其中一个第一巴伦122间隔设置指的是两者之间存在中间物,也可以不存在中间物,在此不进行限定。同样地,第二竖向段141与其中一个第二巴伦123间隔设置指的是两者之间存在中间物,也可以不存在中间物,在此不进行限定。
具体而言,第一馈电件130与第二馈电件140均例如为馈电片或馈电杆。
请参阅图1,在一些实施例中,第一馈电件130还包括第一横向段132。第一横向段132的一端与第一竖向段131相连。两个第一巴伦122的顶端上均设置有与第一横向段132相应的第一凹槽1221,第一横向段132设置于第一凹槽1221中,且第一横向段132与第一凹槽1221的内壁之间设置有绝缘隔离件(图中未示出)。此外,第二馈电件140还包括第二横向段142,第二横向段142的一端与第二竖向段141相连,两个第二巴伦123的顶端上均设置有与第二横向段142相应的第二凹槽1231,第二横向段142设置于第二凹槽1231中,且第二横向段142与第二凹槽1231的内壁之间设置有绝缘隔离件(图中未示出)。如此,第一横向段132设置于第一凹槽1221中,分别与两个第一辐射板111之间间隔设置,实现与两个第一辐射板111耦合连接,负责其中一个极化方向信号 的传输;第二横向段142设置于第二凹槽1231中后,分别与两个第二辐射板112之间间隔设置,实现与两个第二辐射板112耦合连接,负责另一个极化方向信号的传输。此外,第一横向段132通过绝缘隔离件与第一凹槽1221的内壁相连,能实现第一馈电件130稳固地设置于振子座120上;同样,第二横向段142通过绝缘隔离件与第二凹槽1231的内壁相连,能实现第二馈电件140稳固地设置于振子座120上。
需要说明的是,绝缘隔离件例如为塑料件、陶瓷件、橡胶件等等绝缘性材料,主要是为了避免第一馈电件130的第一横向段132与第一巴伦122的顶端电连接,同时起到固定第一馈电件130的作用。同样地,能避免第二馈电件140的第二横向段142与第二巴伦123的顶端电连接,同时起到固定第二馈电件140的作用。
参阅图7与图8,图7示出了再一实施例的高频辐射单元100的立体图,图8示出了本发明一实施例提供的振子座120及馈电件的立体图。在一些实施例中,第一馈电件130还包括第三竖向段133。第三竖向段133与第一横向段132的另一端相连,第三竖向段133设置于振子座120的外围,具体的是与另一个第一巴伦122间隔设置,且第三竖向段133与中心线O的间距大于第一巴伦122与中心线O的间距。此外,第二馈电件140还包括第四竖向段(图中未示出),第四竖向段与第二横向段142的另一端相连,第四竖向段设置于振子座120的外围,具体的是与另一个第二巴伦123间隔设置,且第四竖向段与中心线O的间距大于第二巴伦123与中心线O的间距。如此,由于第三竖向段133与中心线O的间距大于第一巴伦122与中心线O的间距,第四竖向段与中心线O的间距大于第二巴伦123与中心线O的间距,即第三竖向段133布置于第一巴伦122远离于中心线O的一侧,第四竖向段布置于第二巴伦123远离于中心线O的一 侧,这样并非是如同传统技术中将第三竖向段133、第四竖向段均分别布置于第一巴伦122、第二巴伦123的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座120的结构尺寸,即能使得实现振子座120的小型化,同时能减小巴伦的高频寄生辐射,有效提升高频辐射单元100的增益。
参阅图1与图4,在一些实施例中,振子座120还包括与连接部121相连的第一套筒124与第二套筒125。第一套筒124与第一竖向段131对应设置,第一竖向段131穿设于第一套筒124中,第一竖向段131与第一套筒124分别用于与其中一个同轴线的内导体与外导体相连。此外,第二套筒125与第二竖向段141对应设置,第二竖向段141穿设于第二套筒125中,第二竖向段141与第二套筒125分别用于与另一个同轴线的内导体与外导体相连。如此,第一竖向段131、第一套筒124与其中一个同轴线相连后,实现传输其中一个极化方向的信号;第二竖向段141、第二套筒125与另一个同轴线相连后,实现传输另一个极化方向的信号。
具体而言,第一竖向段131与其中一个同轴线的内导体焊接相连,第一套筒124与其中一个同轴线的外导体焊接相连。第二竖向段141与另一个同轴线的内导体焊接相连,第二套筒125与另一个同轴线的外导体焊接相连。
参阅图7与图8,作为一个可选的方案,也可以无需设置第一套筒124与第二套筒125,直接将第一竖向段131、第二竖向段141的底端分别与微带线、带状线等传输线例如焊接相连。即可选地,第一竖向段131用于与传输其中一种极化方向信号的传输线电连接,第二竖向段141用于与传输另一种极化方向信号的传输线电连接。
参阅图2,在一些实施例中,连接部121上面向第一套筒124的部位均设置 有第一凹面1211,第一套筒124固定设置于第一凹面1211;连接部121上面向第二套筒125的部位设置有第二凹面1212,第二套筒125固定设置于第二凹面1212。
具体而言,第一凹面1211为弧形凹面,第一套筒124为截面为圆形的套筒,第一套筒124的外壁面与第一凹面1211相适应,这样便于稳固地设置于第一凹面1211上。此外,第二凹面1212类似设置,在此不再赘述。
需要说明的是,辐射体110与振子座120为通过铸造一体成型,如此能减少焊点,提高生产效率,并保证产品质量。当然它们也可以通过焊接方式相连。
参阅图2、图5与图6,图5示出了另一实施例的高频辐射单元100的俯视图,图6示出了又一实施例的高频辐射单元100的俯视图。在一些实施例中,第一辐射板111为第一框体,第一框体为封闭式框体(如图2所示),或者第一框体远离于第一巴伦122的部位设置有第一缺口1111(如图5或图6所示);第二辐射板112为第二框体,第二框体为封闭式框体(如图2所示),或者第二框体上远离于第二巴伦123的部位设置有第二缺口1121(如图5或图6所示)。
参阅图2、图5与图6,需要说明的是,第一框体具体指的是第一辐射板111的板面中部区域设置有第一镂空区1112,从而形成框体。同样地,第二框体具体指的是第二辐射板112的板面中部区域设置有第二镂空区1122,从而形成框体。
参阅图2、图5与图6,需要说明的是,第一框体既可以是封闭式框体,又可以是非封闭式框体,当第一框体为非封闭式框体时,例如在远离于第一巴伦122的部位设置第一缺口1111,又例如是第一框体包括与第一巴伦122相连的两个第一辐射边。类似地,第二框体既可以是封闭式框体,又可以是非封闭式框体,当第二框体为非封闭式框体时,例如在远离于第二巴伦123的部位设置 第二缺口1121,又例如是第二框体包括与第二巴伦123相连的两个第二辐射边。此外,第一框体的具体形状,第二框体的具体形状在此不进行限定,可以根据实际需求进行设置即可。
参阅图9与图10,图9示出了本发明一实施例提供的耦合金属板150的俯视图,图10示出了本发明一实施例提供的高频辐射单元100的俯视图。在一些实施例中,高频辐射单元100还包括耦合金属板150。耦合金属板150间隔地设置于辐射体110的上方,耦合金属板150的板面上设有镂空口151。镂空口151为十字形或米字形。如此,通过在辐射体110的上方设置间隔的耦合金属板150,可在实现高频辐射单元100的宽带阻抗匹配的同时,有效减小辐射体110的高度及口径尺寸,从而减小辐射体110自身的低频寄生辐射;此外,耦合金属板150与辐射体110之间的耦合具有高通滤波特性,能有效抑制低频辐射单元200的耦合信号,从而减小高频辐射单元100的低频寄生辐射,有效提升多频基站天线中的低频天线增益。
此外,由于高频辐射单元100具有比常规高频辐射单元更高的增益,且具有良好的抑制低频寄生辐射的性能,可在保证天线性能的前提下有效减小高频辐射单元100与低频辐射单元200之间的距离,天线阵列布局更为紧凑,实现天线小型化与高性能。另外,高频辐射单元100结构简单,易于一体成型,具有小型化、成本低、重量轻、焊点少等优点。
参阅图9与图10,在一些实施例中,耦合金属板150为方形板;镂空口151的对角线长度为m,m为中心工作频率的波长的0.25至0.4倍;耦合金属板150的任一边长为n,n为中心工作频率的波长的0.35至0.55倍。
需要说明的是,本实施例中,工作频段例如为1427MHz~2690MHz,相对带宽约为61.4%。
进一步地,耦合金属板150通过绝缘隔离件固定地设置于辐射体110的上方。具体而言,耦合金属板150与辐射体110的上表面之间的间距为S,S为小于中心工作频率的波长的0.05倍。
参阅图2与图3,在一些实施例中,第一偶极子与第二偶极子的口径尺寸为L,L为中心工作频率的波长的0.2至0.35倍;辐射体110的表面到连接部121底面的距离为H,H为中心工作频率的波长的0.14至0.2倍。
如此,通过设置高频辐射单元100及耦合金属板150的尺寸参数,可实现高频辐射单元100的宽带阻抗匹配,电压驻波比小于1.4的工作带宽可达62%,同时能有效抑制低频的耦合信号。
作为一个可选的方案,也可以无需设置上述的耦合金属板150,当辐射体110上方的耦合金属板150去掉时,L例如为中心工作频率的波长的0.5倍,H例如为中心工作频率的波长的0.25倍。
请参阅图11与图12,图11示出了本发明一实施例提供的高频辐射单元100的仿真S参数曲线图,图12示出了工作频率为2.6GHz时本发明实施例提供的高频辐射单元100与常规巴伦结构的高频辐射单元100的仿真方向性系数对比图。图11中,S11表示其中一个极化的反射系数,S22表示另一个极化的反射系数,S21表示两个极化之间的隔离度,通过图11可以看出本实施例中的高频辐射单元100具有良好的超宽带特性;通过图12可以看出本实施例中的高频辐射单元100相对于传统的高频辐射单元而言,具有更窄的波束宽度与更高的方向性系数,辐射性能得以改善。
请参阅图13,图13示出了本发明一实施例提供的多频基站天线的俯视图。在一个实施例中,一种多频基站天线,多频基站天线包括上述任一实施例的至少一个高频辐射单元100,还包括反射板(图中未示出)与至少一个低频辐射单 元200,高频辐射单元100与低频辐射单元200均设置于反射板上。
具体而言,连接部121设置于反射板的板面上,第一套筒124与第二套筒125贯穿反射板后与同轴线相连,第一套筒124与第二套筒125还固定地设置于反射板上。
上述的多频基站天线,由于第一竖向段131与中心线O的间距大于第一巴伦122与中心线O的间距,第二竖向段141与中心线O的间距大于第二巴伦123与中心线O的间距,即第一竖向段131布置于第一巴伦122远离于中心线O的一侧,第二竖向段141布置于第二巴伦123远离于中心线O的一侧,这样并非是如同传统技术中将第一竖向段131、第二竖向段141均分别布置于第一巴伦122、第二巴伦123的内部走线槽中,从而便无需如传统技术中设置封闭式的巴伦结构,而是可以设置为开放式的巴伦结构,进而能一定程度地减小振子座120的结构尺寸,即能使得实现振子座120的小型化,同时能减小巴伦的高频寄生辐射,有效提升高频辐射单元100的增益。进而,通过在辐射体110的上方设置间隔的耦合金属板150,可在实现高频辐射单元100的宽带阻抗匹配的同时,有效减小辐射体110的高度及口径尺寸,从而减小辐射体110自身的低频寄生辐射;此外,耦合金属板150与辐射体110之间的耦合具有高通滤波特性,能有效抑制低频辐射单元200的耦合信号,从而减小高频辐射单元100的低频寄生辐射,有效提升多频基站天线中的低频天线增益。
需要说明的是,该“第一巴伦122、第二巴伦123”可以为“连接部121的一部分”,即“第一巴伦122、第二巴伦123”与“连接部121的其他部分”一体成型制造;也可以与“连接部121的其他部分”可分离的一个独立的构件,即“第一凸体”可以独立制造,再与“连接部121的其他部分”组合成一个整体。如图1所示,一实施例中,“第一巴伦122、第二巴伦123”为“连接部121” 一体成型制造的一部分。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也 可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (11)

  1. 一种高频辐射单元,其特征在于,所述高频辐射单元包括:
    辐射体,所述辐射体包括正交设置的第一偶极子与第二偶极子,所述第一偶极子包括两个第一辐射板,所述第二偶极子包括两个第二辐射板;
    振子座,所述振子座包括连接部、两个第一巴伦与两个第二巴伦,两个所述第一巴伦、两个所述第二巴伦的底端均与所述连接部相连,两个所述第一巴伦的顶端与两个所述第一辐射板一一对应相连,两个所述第二巴伦的顶端与两个所述第二辐射板一一对应相连,将经过所述连接部中心并垂直于所述辐射板板面的直线定义为中心线;以及第一馈电件与第二馈电件,所述第一馈电件与所述第二馈电件正交设置,所述第一馈电件与所述第一偶极子电连接,所述第二馈电件与所述第二偶极子电连接,所述第一馈电件包括第一竖向段,所述第一竖向段设置于所述振子座的外围,且所述第一竖向段与所述中心线的间距大于所述第一巴伦与所述中心线的间距;所述第二馈电件包括第二竖向段,所述第二竖向段设置于所述振子座的外围,且所述第二竖向段与所述中心线的间距大于所述第二巴伦与所述中心线的间距。
  2. 根据权利要求1所述的高频辐射单元,其特征在于,所述第一馈电件还包括第一横向段,所述第一横向段的一端与所述第一竖向段相连,两个所述第一巴伦的顶端上均设置有与所述第一横向段相应的第一凹槽,所述第一横向段设置于所述第一凹槽中,且所述第一横向段与所述第一凹槽的内壁之间设置有绝缘隔离件;所述第二馈电件还包括第二横向段,所述第二横向段的一端与所述第二竖向段相连,两个所述第二巴伦的顶端上均设置有与所述第二横向段相应的第二凹槽,所述第二横向段设置于所述第二凹槽中,且所述第二横向段与所述第二凹槽的内壁之间设置有绝缘隔离件。
  3. 根据权利要求2所述的高频辐射单元,其特征在于,所述第一馈电件还 包括第三竖向段,所述第三竖向段与所述第一横向段的另一端相连,所述第三竖向段设置于所述振子座的外围,且所述第三竖向段与所述中心线的间距大于所述第一巴伦与所述中心线的间距;所述第二馈电件还包括第四竖向段,所述第四竖向段与所述第二横向段的另一端相连,所述第四竖向段设置于所述振子座的外围,且所述第四竖向段与所述中心线的间距大于所述第二巴伦与所述中心线的间距。
  4. 根据权利要求1所述的高频辐射单元,其特征在于,所述振子座还包括与所述连接部相连的第一套筒与第二套筒;所述第一套筒与所述第一竖向段对应设置,所述第一竖向段穿设于所述第一套筒中,所述第一竖向段与所述第一套筒分别用于与其中一个同轴线的内导体与外导体相连;所述第二套筒与所述第二竖向段对应设置,所述第二竖向段穿设于所述第二套筒中,所述第二竖向段与所述第二套筒分别用于与另一个同轴线的内导体与外导体相连。
  5. 根据权利要求4所述的高频辐射单元,其特征在于,所述连接部上面向所述第一套筒的部位均设置有第一凹面,所述第一套筒固定设置于所述第一凹面;所述连接部上面向所述第二套筒的部位设置有第二凹面,所述第二套筒固定设置于所述第二凹面。
  6. 根据权利要求1所述的高频辐射单元,其特征在于,所述第一竖向段用于与传输其中一种极化方向信号的传输线电连接,所述第二竖向段用于与传输另一种极化方向信号的传输线电连接。
  7. 根据权利要求1所述的高频辐射单元,其特征在于,所述第一辐射板为第一框体,所述第一框体为封闭式框体,或者所述第一框体远离于所述第一巴伦的部位设置有第一缺口;所述第二辐射板为第二框体,所述第二框体为封闭式框体,或者所述第二框体上远离于所述第二巴伦的部位设置有第二缺口。
  8. 根据权利要求1所述的高频辐射单元,其特征在于,所述高频辐射单元还包括耦合金属板,所述耦合金属板间隔地设置于所述辐射体的上方,所述耦合金属板的板面上设有镂空口;所述镂空口为十字形或米字形。
  9. 根据权利要求8所述的高频辐射单元,其特征在于,所述耦合金属板为方形板;所述镂空口的对角线长度为m,m为中心工作频率的波长的0.25至0.4倍;所述耦合金属板的任一边长为n,n为所述中心工作频率的波长的0.35至0.55倍。
  10. 根据权利要求8所述的高频辐射单元,其特征在于,所述第一偶极子与所述第二偶极子的口径尺寸为L,L为中心工作频率的波长的0.2至0.35倍;所述辐射体的表面到连接部底面的距离为H,H为中心工作频率的波长的0.14至0.2倍。
  11. 一种多频基站天线,其特征在于,所述多频基站天线包括至少一个如权利要求1至10任意一项所述的高频辐射单元,还包括反射板与至少一个低频辐射单元,所述高频辐射单元与所述低频辐射单元均设置于所述反射板上。
PCT/CN2022/081832 2021-09-24 2022-03-18 高频辐射单元与多频基站天线 WO2023045282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111124060.0A CN113871856B (zh) 2021-09-24 2021-09-24 高频辐射单元与多频基站天线
CN202111124060.0 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045282A1 true WO2023045282A1 (zh) 2023-03-30

Family

ID=78994074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081832 WO2023045282A1 (zh) 2021-09-24 2022-03-18 高频辐射单元与多频基站天线

Country Status (2)

Country Link
CN (1) CN113871856B (zh)
WO (1) WO2023045282A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871856B (zh) * 2021-09-24 2023-08-29 京信通信技术(广州)有限公司 高频辐射单元与多频基站天线
WO2024030810A1 (en) * 2022-08-05 2024-02-08 Commscope Technologies Llc Low-cost ultra-wideband cross-dipole radiating elements and base station antennas including arrays of such radiating elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200460A1 (en) * 2014-01-15 2015-07-16 Raytheon Company Dual Polarized Array Antenna With Modular Multi-Balun Board and Associated Methods
CN205846220U (zh) * 2016-07-27 2016-12-28 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
CN108336486A (zh) * 2017-12-29 2018-07-27 京信通信系统(中国)有限公司 可调试辐射单元及天线
US20190140364A1 (en) * 2017-07-18 2019-05-09 The Board Of Regents Of The University Of Oklahoma Dual-Linear-Polarized, Highly-Isolated, Crossed-Dipole Antenna and Antenna Array
CN113871856A (zh) * 2021-09-24 2021-12-31 京信通信技术(广州)有限公司 高频辐射单元与多频基站天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110875B (zh) * 2010-12-21 2013-12-18 东莞市晖速天线技术有限公司 移动通信基站天线及其宽频双极化振子
CN203232955U (zh) * 2013-04-25 2013-10-09 华为技术有限公司 天线振子及具有该天线振子的天线
CN206893796U (zh) * 2017-05-26 2018-01-16 华南理工大学 高异频隔离宽带双频基站天线阵列
CN207624897U (zh) * 2017-12-29 2018-07-17 京信通信系统(中国)有限公司 天线及其高频辐射单元
CN208315769U (zh) * 2018-06-26 2019-01-01 江苏亨鑫科技有限公司 一种用于多频基站天线中的宽频双极化辐射单元
CN109037919B (zh) * 2018-08-02 2024-02-02 摩比天线技术(深圳)有限公司 振子组件、振子单元及天线
CN110011034A (zh) * 2019-03-29 2019-07-12 广州杰赛科技股份有限公司 一种天线辐射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200460A1 (en) * 2014-01-15 2015-07-16 Raytheon Company Dual Polarized Array Antenna With Modular Multi-Balun Board and Associated Methods
CN205846220U (zh) * 2016-07-27 2016-12-28 京信通信技术(广州)有限公司 天线辐射单元及多频宽带基站天线
US20190140364A1 (en) * 2017-07-18 2019-05-09 The Board Of Regents Of The University Of Oklahoma Dual-Linear-Polarized, Highly-Isolated, Crossed-Dipole Antenna and Antenna Array
CN108336486A (zh) * 2017-12-29 2018-07-27 京信通信系统(中国)有限公司 可调试辐射单元及天线
CN113871856A (zh) * 2021-09-24 2021-12-31 京信通信技术(广州)有限公司 高频辐射单元与多频基站天线

Also Published As

Publication number Publication date
CN113871856A (zh) 2021-12-31
CN113871856B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2022021824A1 (zh) 低频辐射单元及基站天线
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
US6734828B2 (en) Dual band planar high-frequency antenna
WO2010078797A1 (zh) 双极化辐射单元及其平面振子
WO2022077818A1 (zh) 低频辐射单元及基站天线
WO2021232820A1 (zh) 基站天线及其高频辐射单元
KR102018083B1 (ko) 광대역 패치 어레이 안테나 장치
CN111129750B (zh) 5g天线及其辐射单元
WO2023035391A1 (zh) 双频双极化天线和双频双极化天线阵列
WO2024088133A1 (zh) 双频共口径辐射单元及天线
WO2021164117A1 (zh) 具有透波功能的低频天线组件和双极化天线
WO2024087593A1 (zh) 共口径辐射单元及天线
CN108598699B (zh) 垂直极化全波振子阵列天线以及定向辐射天线
WO2020060536A1 (en) Wideband dual-polarized four-quad loop antenna
CN110048216A (zh) 小型双极化天线辐射装置及通信设备
KR102643317B1 (ko) 안테나, 안테나 모듈, 및 무선 네트워크 디바이스
JP2007142570A (ja) パッチアレイアンテナ
CN210957003U (zh) 5g天线及其辐射单元
CN110783698B (zh) 一种双频辐射单元及基站天线
US11437736B2 (en) Broadband antenna having polarization dependent output
CN109755738A (zh) 一种双极化网格天线
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
CN106532249A (zh) 一种紧凑的椭圆环形双极化基站天线
TW565967B (en) Dual band planar high-frequency antenna
CN211789541U (zh) 立体式高增益天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871347

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871347

Country of ref document: EP

Effective date: 20240424