WO2021164117A1 - 具有透波功能的低频天线组件和双极化天线 - Google Patents

具有透波功能的低频天线组件和双极化天线 Download PDF

Info

Publication number
WO2021164117A1
WO2021164117A1 PCT/CN2020/085384 CN2020085384W WO2021164117A1 WO 2021164117 A1 WO2021164117 A1 WO 2021164117A1 CN 2020085384 W CN2020085384 W CN 2020085384W WO 2021164117 A1 WO2021164117 A1 WO 2021164117A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency antenna
low
antenna assembly
frequency
radiator
Prior art date
Application number
PCT/CN2020/085384
Other languages
English (en)
French (fr)
Inventor
邱小凯
王宁
陈扬
王永博
刘维卓
崔益阳
Original Assignee
摩比天线技术(深圳)有限公司
摩比科技(深圳)有限公司
摩比通讯技术(吉安)有限公司
摩比科技(西安)有限公司
深圳市晟煜智慧网络科技有限公司
西安摩比天线技术工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩比天线技术(深圳)有限公司, 摩比科技(深圳)有限公司, 摩比通讯技术(吉安)有限公司, 摩比科技(西安)有限公司, 深圳市晟煜智慧网络科技有限公司, 西安摩比天线技术工程有限公司 filed Critical 摩比天线技术(深圳)有限公司
Publication of WO2021164117A1 publication Critical patent/WO2021164117A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the invention belongs to the technical field of antennas, and in particular relates to a low-frequency antenna assembly and a dual-polarized antenna with a wave-transmitting function.
  • base station antennas are developing towards multi-frequency, multi-port, and multi-standard.
  • base station antennas are dominated by dual-polarized 2-port antennas, which are simple in structure and easy to use; in the 3G era, the antennas are dominated by dual-frequency 4-port antennas, compatible with 2G networks, and the antenna size has not increased significantly; in the 4G era, the antennas
  • the MIMO function is required.
  • the antenna port doubles and the mainstream demand is more than 6 antennas.
  • the frequency band increases and site resources are tight. As few sites as possible are deployed with more base station systems, higher requirements are placed on antennas, and fully integrated antennas have become a mainstream requirement.
  • the traditional method to achieve antenna integration is to achieve structural stacking and assembly, that is, antennas of different frequency bands and different columns of the same frequency are realized by splicing left and right or splicing up and down.
  • the antenna size will increase.
  • the construction is difficult and costly.
  • the increase in the windward area will increase the wind load pressure, which will affect the reliability of the antenna.
  • the other is to use a more mature high and low frequency coaxial scheme, but the coaxial scheme cannot be combined at will, and the unit spacing cannot be combined at will.
  • the array size cannot be further reduced, especially in TDD (Time Division Duplexing, Time Division Duplex) + FDD (Frequency Division Duplex, frequency division duplex) multi-system integrated antenna, the coaxial scheme is almost impossible to realize.
  • radiating elements similar to cross and X-shaped radiating elements have gradually been used in base station antennas.
  • Such radiating elements can achieve flexible arrays and easy to achieve multi-antenna integration.
  • due to the performance interference of radiating elements of different frequency bands, especially low-frequency radiating elements The impact on the high-frequency radiation signal causes the performance of the radiating unit that is shielded below the low frequency to fail to perform, which leads to a decrease in the performance of the antenna network.
  • the embodiments of the present invention provide a low-frequency antenna assembly to solve the problem of interference of the low-frequency radiation unit on the performance of the high-frequency radiation signal when multiple antennas are integrated.
  • a first aspect of the embodiments of the present invention provides a low-frequency antenna assembly, and the low-frequency antenna assembly includes:
  • a dielectric substrate having a first mounting surface and a second mounting surface corresponding to the first mounting surface;
  • the radiator circuit is laid on the first mounting surface of the dielectric substrate, and the radiator circuit includes two vibrators installed in orthogonal polarizations, and each of the vibrators includes diagonally disposed Two ring-shaped radiator single arms, each of the ring-shaped radiator single arms includes a plurality of metal bodies arranged in a ring shape and a short-circuit coaxial line for connecting two adjacent metal bodies;
  • Each of the short-circuit coaxial wires includes an outer conductor and a core wire passing through the outer conductor.
  • the core wire has a first wire end and a second wire end opposite to the first wire end.
  • the outer conductor It has a first end and a second end opposite to the first end.
  • the first wire end of the core wire is short-circuited and connected to the first end of the outer conductor.
  • the second end of the outer conductor The end passes through the second mounting surface and is connected to one of the adjacent metal bodies, and the second wire end of the core wire passes through the second mounting surface, the first mounting surface, and the corresponding The metal body is connected to another adjacent metal body;
  • a power feeding component one end of the power feeding component is vertically coupled to the two vibrators, and the other end of the power feeding component is connected to a power feeding network.
  • the side length of the radiator line is 0.3 ⁇ 1 to 0.35 ⁇ 1
  • ⁇ 1 is the wavelength of the low-frequency radiation signal.
  • the length of each metal body is less than 0.125 ⁇ 2 , and ⁇ 2 is the wavelength of the radiation signal to be transmitted.
  • the power feeding component includes two PCB circuit boards embedded in an orthogonal structure, and one end of each PCB circuit board passes through the second mounting surface and the first mounting surface in turn and is connected to The other end of the corresponding metal body is connected to the feeding network.
  • the single arm of the radiator has a circular ring structure or a square ring structure.
  • the short-circuit coaxial line further includes a metal cap, and the first end of the core wire is short-circuited to the first end of the outer conductor through the metal cap.
  • the second aspect of the embodiments of the present invention provides a dual-polarized antenna, which includes a reflector and a number of high-frequency antenna components, as well as the above-mentioned low-frequency antenna component with wave-transmitting function, and the end face of the low-frequency antenna component is higher than On the end face of the high-frequency antenna component, the high-frequency antenna component and the low-frequency antenna component are arranged on the reflector plate.
  • the dual-polarized antenna further includes a number of intermediate frequency antenna components, and each of the intermediate frequency antenna components and each of the high frequency antenna components are respectively located on opposite sides of the low frequency antenna component.
  • the length of the metal body of the single arm of the ring radiator of the low-frequency antenna assembly close to the intermediate frequency antenna assembly is greater than that of the metal body of the ring radiator arm of the low-frequency antenna assembly close to the high-frequency antenna assembly Body length.
  • the reflector has a first arrangement area, two second arrangement areas located on opposite sides of the first arrangement area, and a distance from the first arrangement area to the second arrangement area.
  • the two third deployment areas on the side, each of the high-frequency antenna components are arranged in parallel in the first deployment area, each of the low-frequency antenna components is arranged in parallel in the second deployment area, each of the intermediate frequency antenna components They are arranged side by side in the third arrangement area.
  • a low-frequency antenna assembly is formed by arranging a dielectric substrate, a radiator circuit, and a feeding component to receive low-frequency radiation signals.
  • the ring-shaped radiator is arranged in segments with a single arm, and the segmented metal body exhibits low scattering of high-frequency electromagnetic waves. This feature can effectively reduce the impact on high-frequency radiation performance.
  • a short-circuit coaxial line is set to connect the metal bodies in sequence.
  • the short-circuit coaxial line can be equivalent to an LC parallel resonant circuit. Play a low-pass and high-impedance role, so as to achieve low-frequency performance.
  • FIG. 1 is a schematic diagram of the first structure of a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a second structure of a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the first structure of a short-circuit coaxial line in a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an equivalent circuit of a short-circuited coaxial line in a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a structure of a feeding component in a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a second structure of a short-circuit coaxial line in a low-frequency antenna assembly provided by an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a third structure of a low-frequency antenna assembly provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the first structure of a dual-polarized antenna provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a second structure of a dual-polarized antenna provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a fourth structure of a low-frequency antenna assembly provided by an embodiment of the present invention.
  • Dielectric substrate 20. Radiator line, 30, short-circuit coaxial line, 40, feeding part, 21, metal body, 22. First through hole, 23. Second through hole, 24. Third Through hole, 25. Fourth through hole, 26. Solder point, 20A. First vibrator, 20B. Second vibrator, 20A1. First ring radiator with single arm, 20A2. Second ring radiator with single arm, 20B1. Section Three ring radiator single arm, 20B2. Fourth ring radiator single arm, 31. Outer conductor, 32. Core wire, 33. Metal cap, 31A. First end, 31B. Second end, 32A. First Line end, 31B. Second end, L. Inductance, C. Capacitance, 41. The first PCB circuit board, 42.
  • the second PCB circuit board 43.
  • the second bump structure 45.
  • the fourth bump structure 100.
  • Low frequency antenna assembly 200.
  • High frequency antenna assembly 300.
  • Reflector 400.
  • Intermediate frequency antenna assembly 310.
  • First layout area 320.
  • Section The second layout area 330.
  • the third layout area 320.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • FIG. 1 is a schematic diagram of the first structure of a low-frequency antenna assembly provided by an embodiment of the present invention. For ease of description, only the parts related to this embodiment are shown, and the details are as follows:
  • the low-frequency antenna assembly 100 includes:
  • the dielectric substrate 10 has a first mounting surface and a second mounting surface corresponding to the first mounting surface;
  • the radiator circuit 20 is laid on the first mounting surface of the dielectric substrate 10.
  • the radiator circuit 20 includes two vibrators mounted in orthogonal polarizations, namely, the first vibrator 21A and the second vibrator 21B, each vibrator It includes two ring-shaped radiator single arms arranged diagonally, that is, the first vibrator 21A includes a first ring-shaped radiator single arm 21A1 and a first ring-shaped radiator single arm 21A2, and the second vibrator 21B includes a third ring-shaped radiator single arm 21B1 and the fourth ring-shaped radiator single arm 21B2, each ring-shaped radiator single arm includes a plurality of metal bodies 21 arranged in a ring shape and a short-circuit coaxial line 30 for connecting two adjacent metal bodies 21;
  • Each short-circuit coaxial wire 30 includes an outer conductor 31 and a core wire 32 passing through the outer conductor 31.
  • the core wire 32 has a first wire end 32A and a second wire end 32B opposite to the first wire end.
  • the outer conductor 31 has a first end 31A and a second end 31B opposite to the first end.
  • the first wire end 32A of the core wire 32 is short-circuited and connected to the first end 31A of the outer conductor 31.
  • the second end 31B passes through the second mounting surface and is connected to one of the adjacent metal bodies 21, and the second wire end 32B of the core wire 32 sequentially passes through the second mounting surface, the first mounting surface and the corresponding metal body 21 and Connected to another adjacent metal body 21;
  • the feeding part 40 has one end of the feeding part 40 vertically coupled to the two oscillators, and the other end of the feeding part 40 is connected to the feeding network.
  • the dielectric substrate 10 is used to carry and fix the radiator circuit 20.
  • the shape of the dielectric substrate 10 can be set according to requirements, such as circular, square, etc., and the two vibrators of the radiator circuit 20 are installed in orthogonal polarizations. , And each vibrator includes two ring-shaped radiator arms arranged diagonally.
  • the specific shape of the ring-shaped radiator arm can be designed to be round, square or elliptical. As shown in Figure 2 or Figure 7, the radiator arm is Circular ring structure or square ring structure.
  • the looped circuit can make the single arm of the radiator meet the electrical size required for excitation under a small diameter.
  • the single-arm radiator forms a circular current path of the radiating unit to the diameter.
  • the outer edge of the radiator can obtain a higher radiation field superposition gain.
  • the aperture size can be reduced by about 15% to 20%, which can effectively reduce the width of the multi-column low-frequency antenna array.
  • the single arm of the ring-shaped radiator includes a plurality of metal bodies 21 arranged in a ring shape and a short-circuit coaxial line 30 for connecting two adjacent metal bodies 21.
  • the short-circuit coaxial line 30 includes an outer conductor 31 and a core wire 32 passing through the outer conductor 31.
  • the wire end 32A is short-circuit connected to the first end 31A of the outer conductor 31, which can be short-circuited by welding, metal wire, and short-circuiting of the metal body 21. As shown in Figs.
  • the second end of the outer conductor 31 The end 31B passes through the second mounting surface and is connected to one of the adjacent metal bodies 21.
  • the second end 31B of the outer conductor 31 is connected to one of the metal bodies 21 by welding, and is adjacent to A metal body 21 is provided with a solder joint 26, and the second wire end 32B of the core wire 32 passes through the dielectric substrate 10 and the corresponding metal body 21 and bridges to another adjacent metal body 21 and is welded to the solder joint 26 ,
  • the core wire 32 and the outer conductor 31 form a parallel distributed capacitance
  • the line formed by the core wire 32 and the outer conductor 31 is a series inductance
  • the short-circuit coaxial line 30 as a whole is an LC parallel resonant circuit, as shown in Figure 4, the short circuit is the same
  • the axis 30 plays a role of low-pass and high-resistance, ensuring the normal operation of the low-frequency antenna assembly, thereby achieving low-frequency performance.
  • the radiator line 20 is used to receive or transmit radiation signals, and is connected to the feeding network through the feeding part 40.
  • the feeding part 40 is vertically coupled to the two oscillators of the radiator line 20, in order to facilitate the connection between the oscillator and the feeding part 40.
  • the metal bodies 21 at the intersections of the four radiator arms are all in a 90-degree angle shape and are arranged adjacent to each other.
  • the metal bodies 21 adjacent to the intersection are provided with through holes for coupling with the feeding member 40, including
  • the first through hole 22, the second through hole 23, the third through hole 24, and the fourth through hole 25 are provided with corresponding bump structures on the feeding member 40 and are coupled to the through holes through the dielectric substrate 10, and the radiator The line 20 is fed through the feeding part 40 in the center.
  • a low-frequency antenna assembly 100 is formed by arranging a dielectric substrate 10, a radiator line 20, and a feeding component 40 to receive low-frequency radiation signals.
  • the ring-shaped radiator is arranged in segments with a single arm, and the segmented metal body 21 is paired with each other.
  • the high-frequency electromagnetic wave exhibits low scattering characteristics, which can effectively reduce the impact on the high-frequency radiation performance.
  • a short-circuit coaxial line 30 is set to connect the metal bodies 21 in sequence, and the short-circuit coaxial line 30, etc. The effect is an LC parallel resonant circuit, which plays a low-pass and high-impedance role, thereby achieving low-frequency performance, and solving the problem of low-frequency radiation unit interference to high-frequency radiation signal performance when multiple antennas are integrated.
  • the side length of the radiator line 20 is 0.3 ⁇ 1 ⁇ 0.35 ⁇ 1
  • ⁇ 1 is the wavelength of the low-frequency radiation signal
  • the side length of the radiator line 20 refers to the two ring-shaped radiators on the same side.
  • the total width of the arms, and the diagonally arranged ring-shaped radiators have the same structure and symmetrical arrangement of the single arms, so the side lengths of each side are the same.
  • the radiator line 20 The side length of is 0.3 ⁇ 1 ⁇ 0.35 ⁇ 1. If the side length is too large or too small, the matching characteristics of the low-frequency radiation signal will be reduced and the matching characteristics will not be met.
  • each metal body 21 is less than 0.125 ⁇ 2 , and ⁇ 2 is the wavelength of the radiation signal to be transmitted. The length is 0.122 ⁇ 2 .
  • the feeding component 40 is a feeding balun, and includes two PCB circuit boards in an embedded orthogonal structure, including a first PCB circuit board 41 and a second PCB circuit board 42, One end of each PCB circuit board passes through the second mounting surface and the first mounting surface is connected to the corresponding metal body 21 in turn, and the other end is connected to the feeder network.
  • Each PCB circuit board is provided with two diagonally opposite Two bump structures are coupled to the ring radiator with a single arm.
  • one end of the first PCB circuit board 41 is provided with a first bump structure 43 and a second bump structure 44
  • one end of the second PCB circuit board 42 is provided with a third bump.
  • the metal body 21 adjacent to the intersection is provided with through holes 22, 23, 24, and 25 for coupling with the feeding member 40, and the bump structure passes through the dielectric substrate 10 and Through-hole coupling connection, one end of the feeding balun is connected to the radiator line 20, and the other end is connected to the feeding network, and the radiator line 20 is fed through the feeding balun in the center.
  • the short-circuit coaxial wire 30 further includes a metal cap 33, and the first end 32A of the core wire 32 is short-circuited to the first end 31A of the outer conductor 31 through the metal cap 33, The inner side of the metal cap 33 is attached to the core wire 32 and the outer conductor 31 to realize short-circuit connection.
  • the short-circuited coaxial line 30 is equivalent to a low-pass and high-resistance filter by short-circuiting the metal cap 33 to suppress high-frequency currents. Low-frequency current can pass normally.
  • the second aspect of the embodiments of the present invention provides a dual-polarized antenna, which includes a reflector 300 and a plurality of high-frequency antenna components 200, and the above-mentioned low-frequency antenna component 100 with a wave-transmitting function.
  • the end surface of the component 100 is higher than the end surface of the high-frequency antenna component 200, and the high-frequency antenna component 200 and the low-frequency antenna component 100 are arranged on the reflector 300.
  • the single arm of the ring radiator on the low-frequency antenna assembly 100 is arranged in sections and realizes the wave-transmission function of high-frequency radiation signals.
  • the high-frequency radiation signals can be sent through the low-frequency antenna assembly 100 or sent to the The high-frequency antenna assembly 200 under the antenna assembly 100 realizes multi-antenna integration.
  • the high-frequency radiation signal is filtered through the short-circuited coaxial line 30.
  • the short-circuited coaxial line 30 can be equivalent to an LC parallel resonant circuit to achieve low pass. High resistance to achieve low frequency performance.
  • the dual-polarized antenna further includes several intermediate frequency antenna components 400, and each intermediate frequency antenna component 400 and each high frequency antenna component 200 are located in the low frequency antenna component 100, respectively.
  • the high-frequency antenna assembly 200 and the low-frequency antenna assembly 100 are far away from each other on the opposite sides of, so that the intermediate-frequency radiation signal and the high-frequency radiation signal will not affect each other.
  • the low-frequency antenna assembly 100 transmits the intermediate-frequency radiation signal and the high-frequency radiation signal. Wave and filtering, low-frequency radiation signals and intermediate-frequency radiation signals will not affect each other, and low-frequency radiation signals and high-frequency radiation signals will not affect each other.
  • the metal body 21 of the single arm of the circular radiator in the low frequency antenna assembly 100 close to the intermediate frequency antenna assembly 400 is longer than the length of the metal body 21 in the low frequency antenna assembly 100 close to the high frequency antenna.
  • the second ring radiator single arm 21A2 is close to the high-frequency antenna assembly 200
  • the third ring radiator single arm 21B1 is close to the intermediate frequency antenna assembly 400.
  • the wavelength of the signal is inversely proportional to the frequency. Therefore, the wavelength of the high-frequency radiation signal is smaller than that of the intermediate-frequency radiation signal.
  • the single arm of the ring radiator in the low-frequency antenna assembly 100 close to the intermediate frequency antenna assembly 400 The length of the metal body 21 of the low-frequency antenna assembly 100 is greater than the length of the metal body 21 of the single arm of the circular radiator of the high-frequency antenna assembly 200. The wave-transmitting effect of high-frequency radiation signals.
  • the reflector 300 has a first layout area 310, two second layout areas 320 located on opposite sides of the first layout area 310, and two second layout areas 320 respectively located at a distance away from the first layout area 320.
  • the high-frequency antenna assembly 200 is arranged in the middle arrangement area of the reflector 300, that is, the first arrangement area 310, the intermediate frequency antenna assembly 400 is arranged on both sides of the reflector 300, and the low frequency antenna assembly 100 is respectively located in the intermediate frequency antenna assembly 400 and the intermediate frequency antenna assembly.
  • the low-frequency antenna component 100 is arranged above the intermediate-frequency antenna assembly 400 and the high-frequency antenna assembly 200, and the intermediate-frequency antenna assembly 400 and the high-frequency antenna assembly 200 are shielded.
  • the dual The polarized antenna includes two columns of low frequency antenna components 100, two columns of intermediate frequency antenna components 400, four columns of high frequency antenna components 200, and four columns of high frequency antenna components 200 are located in the middle of the reflector 300, and two columns of intermediate frequency antenna components 400 are respectively located on the reflector. On both sides of 300, two rows of low-frequency antenna components 100 are respectively located between the intermediate-frequency antenna component 400 and the high-frequency antenna component 200.
  • the size of the array antenna is greatly reduced. Compared with the traditional TDD+FDD antenna, the antenna performance cost is lower and the network construction is convenient. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种具有透波功能的低频天线组件和双极化天线,其中,低频天线组件包括介质基板、辐射体线路和馈电部件,其中,辐射体线路中的环形辐射体单臂分段设置,分段后的金属体对高频电磁波呈现低散射特性,可以有效降低对高频辐射性能的影响,同时,为了保证低频天线组件正常工作,同时设置短路同轴线将金属体进行依次连接,起到低通高阻作用,从而实现低频性能。

Description

具有透波功能的低频天线组件和双极化天线 技术领域
本发明属于天线技术领域,尤其涉及一种具有透波功能的低频天线组件和双极化天线。
背景技术
随着无线通信的快速发展,基站天线朝着多频多端口、多制式发展。2G时代,基站天线以双极化2端口天线为主,天线结构简单,使用方便;3G时代,天线以双频4端口天线为主,兼容2G网络,天线尺寸无明显增加;到了4G时代,天线频带进一步增加,需要同时支持2G、3G、4G网络,同时需要使用MIMO功能,天线端口翻倍增长,主流需求为6口以上天线;到了5G时代,频段增加,同时站点资源紧张,运营商需要在尽可能少的站点布局更多的基站系统,对天线提出了更高的要求,全集成天线成为主流需求。
传统实现天线集成的方法,一种是结构堆叠及拼装实现,即不同频段、同频不同列的天线通过左右拼接或者上下拼接的方式实现,但是无论采用哪种拼接方式,都会造成天线尺寸增加,施工难且成本高,迎风面积增加导致风载压力增加,影响天线使用的可靠性;另一种是使用较为成熟的高低频共轴方案实现,但是共轴方案单元间距不能随意组合,且共轴阵列尺寸无法进一步缩小,尤其在TDD(Time Division Duplexing,时分双工)+FDD(Frequency Division Duplex,频分双工)多系统集成天线,共轴方案几乎无法实现。
近几年来,类似正十字以及X型的辐射单元逐渐用于基站天线,此类辐射单元可以实现灵活组阵,易于实现多天线集成,但是由于不同频段辐射单元存在性能干扰,尤其是低频辐射单元对高频辐射信号的影响,导致位于低频下方被遮挡的辐射单元性能无法发挥,从而导致天线网络性能下降。
技术问题
有鉴于此,本发明实施例提供了一种低频天线组件,以解决多天线集成时低频辐射单元对高频辐射信号性能干扰的问题。
技术解决方案
本发明实施例的第一方面提供了一种低频天线组件,所述低频天线组件包括:
介质基板,所述介质基板具有第一安装面以及与所述第一安装面相对应的第二安装面;
辐射体线路,所述辐射体线路铺设于所述介质基板的所述第一安装面上,所述辐射体线路包括呈正交极化安装的两个振子,各所述振子包括呈对角设置的两个环形辐射体单臂,各所述环形辐射体单臂包括呈环形布设的多个金属体以及用于连接相邻两所述金属体的短路同轴线;
各所述短路同轴线均包括外导体和穿设于所述外导体的芯线,所述芯线具有第一线端以及与所述第一线端相对的第二线端,所述外导体具有第一端部以及与所述第一端部相对的第二端部,所述芯线的第一线端与所述外导体的第一端部相短路连接,所述外导体的第二端部穿设于所述第二安装面且连接于相邻的其中一所述金属体,所述芯线的第二线端依次穿过所述第二安装面、所述第一安装面以及对应所述金属体且连接于相邻的另一所述金属体;
馈电部件,所述馈电部件的一端与两个所述振子垂直耦合连接,所述馈电部件的另一端与馈电网络相连接。
在一个实施例中,所述辐射体线路的边长为0.3λ 1~0.35λ 1,λ 1为低频辐射信号的波长。
在一个实施例中,各所述金属体的长度小于0.125λ 2,λ 2为待透波辐射信号的波长。
在一个实施例中,所述馈电部件包括呈嵌入正交结构的两个PCB线路板,各所述PCB线路板的一端依次穿设所述第二安装面和所述第一安装面连接于对应的所述金属体,另一端连接于馈电网络。
在一个实施例中,所述辐射体单臂呈圆形环状结构或者方形环状结构。
在一个实施例中,所述短路同轴线还包括一金属帽,所述芯线的第一线端通过所述金属帽与所述外导体的第一端部短路连接。
本发明实施例的第二方面提供了一种双极化天线,包括反射板和若干高频天线组件,以及如上所述的具有透波功能的低频天线组件,所述低频天线组件的端面高于所述高频天线组件的端面,所述高频天线组件、所述低频天线组件排布于所述反射板上。
在一个实施例中,所述双极化天线还包括若干中频天线组件,各所述中频天线组件和各所述高频天线组件分别位于所述低频天线组件的相对两侧。
在一个实施例中,所述低频天线组件中靠近所述中频天线组件的环形辐射体单臂的金属体长度大于所述低频天线组件中靠近所述高频天线组件的环形辐射体单臂的金属体长度。
在一个实施例中,所述反射板具有第一布设区、位于所述第一布设区相对两侧的两个第二布设区以及分别位于所述第二布设区远离所述第一布设区一侧的两个第三布设区,各所述高频天线组件并列地布设于所述第一布设区,各所述低频天线组件并列地布设于所述第二布设区,各所述中频天线组件并列地布设于所述第三布设区。
有益效果
本发明实施例通过设置介质基板、辐射体线路和馈电部件组成低频天线组件以接收低频辐射信号,其中,环形辐射体单臂分段设置,分段后的金属体对高频电磁波呈现低散射特性,可以有效降低对高频辐射性能的影响,同时,为了保证低频天线组件正常工作,同时设置短路同轴线将金属体进行依次连接,短路同轴线可以等效为一个LC并联谐振电路,起到低通高阻作用,从而实现低频性能。
附图说明
图1为本发明实施例提供的低频天线组件的第一种结构示意图;
图2为本发明实施例提供的低频天线组件的第二种结构示意图;
图3为本发明实施例提供的低频天线组件中的短路同轴线的第一种结构示意图;
图4为本发明实施例提供的低频天线组件中的短路同轴线的等效电路示意图;
图5为本发明实施例提供的低频天线组件中的馈电部件的一种结构示意图;
图6为本发明实施例提供的低频天线组件中的短路同轴线的第二种结构示意图;
图7为本发明实施例提供的低频天线组件的第三种结构示意图;
图8为本发明实施例提供的双极化天线的第一种结构示意图;
图9为本发明实施例提供的双极化天线的第二种结构示意图;
图10为本发明实施例提供的低频天线组件的第四种结构示意图。
图中:10.介质基板,20.辐射体线路,30,短路同轴线,40,馈电部件,21,金属体,22.第一通孔,23.第二通孔,24.第三通孔,25.第四通孔,26.焊点,20A.第一振子,20B.第二振子,20A1.第一环形辐射体单臂,20A2.第二环形辐射体单臂,20B1.第三环形辐射体单臂,20B2.第四环形辐射体单臂,31.外导体,32.芯线,33.金属帽,31A.第一端部,31B.第二端部,32A.第一线端,31B.第二端部,L.电感,C.电容,41.第一PCB线路板,42.第二PCB线路板,43.第一凸点结构,44.第二凸点结构,45.第三凸点结构,46.第四凸点结构,100.低频天线组件,200.高频天线组件,300.反射板,400.中频天线组件,310.第一布设区,320.第二布设区,330.第三布设区。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1为本发明实施例提供的低频天线组件的第一种结构示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
低频天线组件100包括:
介质基板10,介质基板10具有第一安装面以及与第一安装面相对应的第二安装面;
辐射体线路20,辐射体线路20铺设于介质基板10的第一安装面上,辐射体线路20包括呈正交极化安装的两个振子,即第一振子21A和第二振子21B,各振子包括呈对角设置的两个环形辐射体单臂,即第一振子21A包括第一环形辐射体单臂21A1和第一环形辐射体单臂21A2,第二振子21B包括第三环形辐射体单臂21B1和第四环形辐射体单臂21B2,各环形辐射体单臂包括呈环形布设的多个金属体21以及用于连接相邻两金属体21的短路同轴线30;
各短路同轴线30均包括外导体31和穿设于外导体31的芯线32,如图3所示,芯线32具有第一线端32A以及与第一线端相对的第二线端32B,外导体31具有第一端部31A以及与第一端部相对的第二端部31B,芯线32的第一线端32A与外导体31的第一端部31A短路连接,外导体31的第二端部31B穿设于第二安装面且连接于相邻的其中一金属体21,芯线32的第二线端32B依次穿过第二安装面、第一安装面以及对应金属体21且连接于相邻的另一金属体21;
馈电部件40,馈电部件40的一端与两个振子垂直耦合连接,馈电部件40的另一端与馈电网络相连接。
本实施例中,介质基板10用于承载和固定辐射体线路20,介质基板10的形状可根据需求进行设置,例如圆形、方形等,辐射体线路20的两个振子呈正交极化安装,且每一振子包括对角设置的两个环形辐射体单臂,环形辐射体单臂具体形状可设计成圆形、方形或者椭圆形,如图2或者图7所示,辐射体单臂呈圆形环状结构或者方形环状结构。
成环的线路可以使得辐射体单臂在小口径下满足激励需要的电尺寸,相比中心馈电的十字型以及X型辐射体单臂,辐射体单臂成环形的辐射单元电流路径流向口径的外沿,能够获取更高的辐射场叠加增益,在同增益情况下,口径尺寸可缩小约15%~20%,能够有效减小多列低频天线组阵后的宽度尺寸。
其中,环形辐射体单臂包括呈环形布设的多个金属体21以及用于连接相邻两金属体21的短路同轴线30,通过对低频辐射臂进行分段处理,分段后的短金属体21在高频呈现低散射特性,可以有效降低对高频辐射性能的影响,同时,短路同轴线30包括外导体31和穿设于外导体31的芯线32,芯线32的第一线端32A与外导体31的第一端部31A相短路连接,可通过焊接、金属线、金属体21短接的方式进行短路连接,如图2和图3所示,外导体31的第二端部31B穿设于第二安装面且连接于相邻的其中一金属体21,本实施例中,外导体31的第二端部31B通过焊接的方式与其中一金属体21连接,相邻的一金属体21上设有焊点26,芯线32的第二线端32B穿过介质基板10和对应的金属体21并跨接至相邻的另一金属体21上并与焊点26焊接,芯线32和外导体31之间构成并联分布电容,芯线32和外导体31构成的线路为串联电感,短路同轴线30整体为一个LC并联谐振电路,如图4所示,短路同轴线30起到低通高阻作用,保证了低频天线组件正常工作,从而实现低频性能,其中,短路同轴线30与金属体21焊接角度不做具体限制,可垂直焊接或者呈其他角度焊接。
辐射体线路20用于接收或者发射辐射信号,并通过馈电部件40与馈电网络连接,馈电部件40与辐射体线路20的两个振子垂直耦合连接,为了方便振子与馈电部件40的连接,四个辐射体单臂的交汇处的金属体21均呈90度折角形状并相邻设置,交汇处相邻的金属体21上设置有用于与馈电部件40耦合连接的通孔,包括第一通孔22、第二通孔23、第三通孔24和第四通孔25,馈电部件40上设置有对应的凸点结构并穿过介质基板10与通孔耦合连接,辐射体线路20在中心通过馈电部件40进行馈电。
本发明实施例通过设置介质基板10、辐射体线路20、和馈电部件40组成低频天线组件100以接收低频辐射信号,其中,环形辐射体单臂分段设置,分段后的金属体21对高频电磁波呈现低散射特性,可以有效降低对高频辐射性能的影响,同时,为了保证低频天线组件100正常工作,设置短路同轴线30将金属体21进行依次连接,短路同轴线30等效为一个LC并联谐振电路,起到低通高阻作用,从而实现低频性能,并且解决多天线集成时低频辐射单元对高频辐射信号性能干扰的问题。
在一个实施例中,辐射体线路20的边长为0.3λ 1~0.35λ 1,λ 1为低频辐射信号的波长,辐射体线路20的边长指的是处于同一侧两个环形辐射体单臂的总宽度,并且对角设置的环形辐射体单臂结构相同且对称设置,因此各边的边长相等,根据低频天线组件100在低频段的匹配特性,本实施例中,辐射体线路20的边长为0.3λ1~0.35λ1,边长过大或者过小易导致低频辐射信号的匹配特性降低从而达不到匹配特性要求,同理,分段会影响低频天线组件100在低频段的匹配特性,为了兼顾匹配和透波功能选择,各金属体21的长度小于0.125λ 2,λ 2为待透波辐射信号的波长,在一个实施例中,结合匹配和透波功能选择分段体的长度为0.122λ 2
如图5所示,在一个实施例中,馈电部件40为馈电巴伦,包括呈嵌入正交结构的两个PCB线路板,包括第一PCB线路板41和第二PCB线路板42,各PCB线路板的一端依次穿设第二安装面和第一安装面连接于对应的金属体21,另一端连接于馈电网络,每一PCB线路板上设置有两个分别与对角设置的环形辐射体单臂耦合连接的两个凸点结构,例如第一PCB线路板41一端设置有第一凸点结构43和第二凸点结构44,第二PCB线路板42一端设置有第三凸点结构45和第四凸点结构46,交汇处相邻的金属体21上设置有用于与馈电部件40耦合连接的通孔22、23、24和25,凸点结构穿过介质基板10与通孔耦合连接,馈电巴伦一端连接辐射体线路20,另一端连接馈电网络,辐射体线路20在中心通过馈电巴伦进行馈电。
如图6所示,在一个实施例中,短路同轴线30还包括一金属帽33,芯线32的第一线端32A通过金属帽33与外导体31的第一端部31A短路连接,金属帽33的内侧分别与芯线32和外导体31贴设并实现短路连接,通过金属帽33短接,短路同轴线30等效为一个低通高阻的滤波器,遏制高频电流,低频电流能够正常通过。
如图8所示,本发明实施例的第二方面提供了一种双极化天线,包括反射板300和若干高频天线组件200,以及如上的具有透波功能的低频天线组件100,低频天线组件100的端面高于高频天线组件200的端面,高频天线组件200、低频天线组件100排布于反射板300上。
本实施例中,低频天线组件100上的环形辐射体单臂进行了分段设置并实现了高频辐射信号的透波功能,高频辐射信号可经低频天线组件100发送或者被发送至位于低频天线组件100下方的高频天线组件200,从而实现多天线集成,同时高频辐射信号通过短路同轴线30进行滤波,短路同轴线30可以等效为一个LC并联谐振电路,起到低通高阻作用,从而实现低频性能。
为了实现更多的天线集成,如图9所示,在一个实施例中,双极化天线还包括若干中频天线组件400,各中频天线组件400和各高频天线组件200分别位于低频天线组件100的相对两侧,高频天线组件200和低频天线组件100两者彼此远离,中频辐射信号和高频辐射信号不会相互影响,同时,低频天线组件100对中频辐射信号和高频辐射信号进行透波和滤波,低频辐射信号与中频辐射信号之间不会相互影响,以及低频辐射信号和高频辐射信号之间不会相互影响。
为了进一步提高透波效果,如图10所示,在一个实施例中,低频天线组件100中靠近中频天线组件400的环形辐射体单臂的金属体21长度大于低频天线组件100中靠近高频天线组件200的环形辐射体单臂的金属体21长度,本实施例中,第二环形辐射体单臂21A2靠近高频天线组件200,第三环形辐射体单臂21B1靠近中频天线组件400,可以理解的是,信号的波长和频率成反比,因此,高频辐射信号的波长小于中频辐射信号,因此,根据金属体21的计算公式,低频天线组件100中靠近中频天线组件400的环形辐射体单臂的金属体21长度大于低频天线组件100中靠近高频天线组件200的环形辐射体单臂的金属体21长度,低频天线组件100呈分对称设置,从而提高对分列两侧的中频辐射信号和高频辐射信号的透波效果。
如图9所示,在一个实施例中,反射板300具有第一布设区310、位于第一布设区310相对两侧的两个第二布设区320以及分别位于第二布设区320远离第一布设区310一侧的两个第三布设区330,各高频天线组件200并列地布设于第一布设区310,各低频天线组件100并列地布设于第二布设区320,各中频天线组件400并列地布设于第三布设区330。
本实施例中,高频天线组件200设置在反射板300的中间布设区即第一布设区310,中频天线组件400设置在反射板300的两侧,低频天线组件100分别位于中频天线组件400和高频天线组件200之间,同时,为了减少反射板300的面积,低频天线组件100设置在中频天线组件400和高频天线组件200的上方,被遮挡的中频天线组件400和高频天线组件200在低频天线组件100的透波作用下可正常接收到中频辐射信号和低频辐射信号,从而不会影响各天线组件的信号接收,各天线组件组成了TDD+FDD 天线,在一个实施例中,双极化天线包括两列低频天线组件100、两列中频天线组件400、四列高频天线组件200、四列高频天线组件200位于反射板300的中间,两列中频天线组件400分别位于反射板300的两侧,两列低频天线组件100分别位于中频天线组件400和高频天线组件200之间,该阵列天线尺寸大幅缩小,相比传统TDD+FDD天线,该天线性能成本降低,建网方便。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种具有透波功能的低频天线组件,其特征在于,所述低频天线组件包括:
    介质基板,所述介质基板具有第一安装面以及与所述第一安装面相对应的第二安装面;
    辐射体线路,所述辐射体线路铺设于所述介质基板的所述第一安装面上,所述辐射体线路包括呈正交极化安装的两个振子,各所述振子包括呈对角设置的两个环形辐射体单臂,各所述环形辐射体单臂包括呈环形布设的多个金属体以及用于连接相邻两所述金属体的短路同轴线;
    各所述短路同轴线均包括外导体和穿设于所述外导体的芯线,所述芯线具有第一线端以及与所述第一线端相对的第二线端,所述外导体具有第一端部以及与所述第一端部相对的第二端部,所述芯线的第一线端与所述外导体的第一端部相短路连接,所述外导体的第二端部穿设于所述第二安装面且连接于相邻的其中一所述金属体,所述芯线的第二线端依次穿过所述第二安装面、所述第一安装面以及对应所述金属体且连接于相邻的另一所述金属体;
    馈电部件,所述馈电部件的一端与两个所述振子垂直耦合连接,所述馈电部件的另一端与馈电网络相连接。
  2. 如权利要求1所述的具有透波功能的低频天线组件,其特征在于,所述辐射体线路的边长为0.3λ 1~0.35λ 1,λ 1为低频辐射信号的波长。
  3. 如权利要求1所述的具有透波功能的低频天线组件,其特征在于,各所述金属体的长度小于0.125λ 2,λ 2为待透波辐射信号的波长。
  4. 如权利要求1所述的具有透波功能的低频天线组件,其特征在于,所述馈电部件包括呈嵌入正交结构的两个PCB线路板,各所述PCB线路板的一端依次穿设所述第二安装面和所述第一安装面连接于对应的所述金属体,另一端连接于馈电网络。
  5. 如权利要求1所述的具有透波功能的低频天线组件,其特征在于,所述辐射体单臂呈圆形环状结构或者方形环状结构。
  6. 如权利要求1所述的具有透波功能的低频天线组件,其特征在于,所述短路同轴线还包括一金属帽,所述芯线的第一线端通过所述金属帽与所述外导体的第一端部短路连接。
  7. 一种双极化天线,包括反射板和若干高频天线组件,其特征在于,还包括如权利要求1~6任一项所述的具有透波功能的低频天线组件,所述低频天线组件的端面高于所述高频天线组件的端面,所述高频天线组件、所述低频天线组件排布于所述反射板上。
  8. 如权利要求7所述的双极化天线,其特征在于,所述双极化天线还包括若干中频天线组件,各所述中频天线组件和各所述高频天线组件分别位于所述低频天线组件的相对两侧。
  9. 如权利要求8所述的双极化天线,其特征在于,所述低频天线组件中靠近所述中频天线组件的环形辐射体单臂的金属体长度大于所述低频天线组件中靠近所述高频天线组件的环形辐射体单臂的金属体长度。
  10. 如权利要求8所述的双极化天线,其特征在于,所述反射板具有第一布设区、位于所述第一布设区相对两侧的两个第二布设区以及分别位于所述第二布设区远离所述第一布设区一侧的两个第三布设区,各所述高频天线组件并列地布设于所述第一布设区,各所述低频天线组件并列地布设于所述第二布设区,各所述中频天线组件并列地布设于所述第三布设区。
PCT/CN2020/085384 2020-02-18 2020-04-17 具有透波功能的低频天线组件和双极化天线 WO2021164117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010100230.0A CN111180883A (zh) 2020-02-18 2020-02-18 具有透波功能的低频天线组件和双极化天线
CN202010100230.0 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164117A1 true WO2021164117A1 (zh) 2021-08-26

Family

ID=70656596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085384 WO2021164117A1 (zh) 2020-02-18 2020-04-17 具有透波功能的低频天线组件和双极化天线

Country Status (2)

Country Link
CN (1) CN111180883A (zh)
WO (1) WO2021164117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964504A (zh) * 2021-09-09 2022-01-21 华南理工大学 一种多边环形双极化高增益宽带基站天线及通信设备
CN114122701A (zh) * 2021-11-18 2022-03-01 中信科移动通信技术股份有限公司 辐射单元及阵列天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736470B (zh) * 2020-12-01 2023-08-25 中信科移动通信技术股份有限公司 多频阵列天线及基站
CN112768888B (zh) * 2020-12-25 2022-06-07 网络通信与安全紫金山实验室 天线阵元和阵列天线
CN113506981B (zh) * 2021-07-15 2022-11-01 广东工业大学 一种低散射天线及其多频天线阵列
CN114336007B (zh) * 2021-12-01 2023-02-24 华南理工大学 通信设备、阵列天线及低频振子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321251A1 (en) * 2006-09-28 2010-12-23 Jan Hesselbarth Antenna elements, arrays and base stations including mast-mounted antenna arrays
JP2016119551A (ja) * 2014-12-19 2016-06-30 電気興業株式会社 偏波共用アンテナ装置
CN206098688U (zh) * 2016-10-20 2017-04-12 深圳国人通信股份有限公司 一种新型天线辐射单元
CN109860985A (zh) * 2019-01-16 2019-06-07 摩比科技(深圳)有限公司 一种辐射单元、天线及天线阵列
CN110741508A (zh) * 2017-05-03 2020-01-31 康普技术有限责任公司 具有交叉偶极子辐射元件的多频带基站天线
CN211265713U (zh) * 2020-02-18 2020-08-14 摩比天线技术(深圳)有限公司 具有透波功能的低频天线组件和双极化天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321251A1 (en) * 2006-09-28 2010-12-23 Jan Hesselbarth Antenna elements, arrays and base stations including mast-mounted antenna arrays
JP2016119551A (ja) * 2014-12-19 2016-06-30 電気興業株式会社 偏波共用アンテナ装置
CN206098688U (zh) * 2016-10-20 2017-04-12 深圳国人通信股份有限公司 一种新型天线辐射单元
CN110741508A (zh) * 2017-05-03 2020-01-31 康普技术有限责任公司 具有交叉偶极子辐射元件的多频带基站天线
CN109860985A (zh) * 2019-01-16 2019-06-07 摩比科技(深圳)有限公司 一种辐射单元、天线及天线阵列
CN211265713U (zh) * 2020-02-18 2020-08-14 摩比天线技术(深圳)有限公司 具有透波功能的低频天线组件和双极化天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964504A (zh) * 2021-09-09 2022-01-21 华南理工大学 一种多边环形双极化高增益宽带基站天线及通信设备
CN113964504B (zh) * 2021-09-09 2023-01-13 华南理工大学 一种多边环形双极化高增益宽带基站天线及通信设备
CN114122701A (zh) * 2021-11-18 2022-03-01 中信科移动通信技术股份有限公司 辐射单元及阵列天线
CN114122701B (zh) * 2021-11-18 2024-04-05 中信科移动通信技术股份有限公司 辐射单元及阵列天线

Also Published As

Publication number Publication date
CN111180883A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021164117A1 (zh) 具有透波功能的低频天线组件和双极化天线
US11837792B2 (en) High-frequency radiator, multi-frequency array antenna, and base station
KR20180105833A (ko) 다이폴 안테나 장치 및 이를 이용한 배열 안테나 장치
CN112635988B (zh) 天线振子单元
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
CN208589539U (zh) 一种低剖面、小型化、高隔离度的双极化贴片天线单元
WO2023216455A1 (zh) 一种方向图高一致性的低频滤波单元及天线阵列
WO2023045282A1 (zh) 高频辐射单元与多频基站天线
CN113708048A (zh) 基站天线及其高频辐射单元
CN113036400A (zh) 辐射元件、天线组件和基站天线
CN111987438A (zh) 平面双极化振子板、天线振子单元及多频天线组阵单元
CN213753054U (zh) 天线振子单元
CN112563733B (zh) 一种高频辐射单元及紧凑型双频带天线
CN212303896U (zh) 一种基站mimo天线单元
CN211265713U (zh) 具有透波功能的低频天线组件和双极化天线
CN108767449B (zh) 基于amc结构的多制式融合天线
CN114122700B (zh) 振子及基站天线
CN212485556U (zh) 平面双极化振子板、天线振子单元及多频天线组阵单元
CN212542676U (zh) 一种振子天线
JP2024505805A (ja) 偏波共用磁電アンテナ・アレイ
CN111864345A (zh) 一种基站mimo天线单元
CN111900536A (zh) 一种具有层叠结构的微带天线
CN112467348B (zh) 多频共面振子及基站天线
CN215896703U (zh) 双频双馈高增益滤波天线及电子设备
CN218827800U (zh) 一种辐射臂折叠式小型化低频辐射单元及基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920265

Country of ref document: EP

Kind code of ref document: A1